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This paper addresses the problem of optimal positioning of surface bonded piezoelectric patches in
sandwich plates with viscoelastic core and laminated face layers. The objective is to maximize a set of
modal loss factors for a given frequency range using multiobjective topology optimization. Active damp-
ing is introduced through co-located negative velocity feedback control. The multiobjective topology
optimization problem is solved using the Direct MultiSearch Method. An application to a simply
supported sandwich plate is presented with results for the maximization of the first six modal loss fac-
tors. The influence of the finite element mesh is analyzed and the results are, to some extent, compared
with those obtained using alternative single objective optimization.
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1. Introduction

In this work we address a form of active constrained layer
damping, where piezoelectric patch sensors and actuators are
bonded to the exterior faces of a sandwich plate. The sandwich
plate has composite laminated face layers and a core with visco-
elastic material behavior. Piezoelectric patches are bonded to the
surfaces of the sandwich plate and co-located control is assumed
in order to provide active damping, using a negative velocity feed-
back control law.

In active damping it is important to be able to determine the
optimal number of active control devices and their placement on
the structure, as the number and placement of sensors can be crit-
ical to the robust functioning of active control systems. Also the
size of actuators may be optimized in actuator placement prob-
lems, but the passive structure is always assumed to be of prede-
termined geometry and material. Pioneering works regarding the
development of methodologies to determine the location of sen-
sors and actuators using heuristic optimization techniques have
been conducted by Franco Correia et al. [1], and Moita et al. [2],
using simulated annealing algorithms. Previously, Suleman and
Gonçalves [3] considered several objective functions simulta-
neously, such as maximizing the average static vertical
displacement of a beam and minimizing the mass of the actuators
and minimizing the actuation voltage, where the design variables
were the coordinates of actuator pairs and the size of rectangular
actuator patches. Geometric constraints and upper and lower lim-
its on design variables were considered. Adali et al. [4] also consid-
ered a beam problem where the maximum vertical deflection of a
laminated beam was to be minimized using one pair of actuators,
through a robust design approach. A practical application where
this type of optimization is important is the design of helicopter ro-
tor blades [5]. A state of the art review in optimization of smart
structures and actuators has been conducted by Frecker [6] in
2003 and a review on optimization criteria for placement of piezo-
electric sensors and actuators has been conducted by Gupta et al.
[7] in 2010. More recently, Kiyono et al. [8] presented a topology
optimization methodology for static design of piezolaminated shell
structures by considering the optimization of piezoelectric mate-
rial and polarization distributions together with the optimization
of the fiber angle of the composite, considering three different
objective functions for the design of actuators, sensors and energy
harvesters.

In the present work we are concerned with the optimal place-
ment of the co-located pairs of piezoelectric patch actuators in or-
der to maximize modal loss factors in sandwich structures with
viscoelastic core. For this purpose a topology optimization ap-
proach is considered and the multiobjective problem is solved
using the Direct MultiSearch method. The obtained solutions are
compared to the ones obtained through alternative methods [9]
based on Genetic Algorithms.
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2. Problem formulation

2.1. Finite element model

A finite element model is used to obtain the dynamic response
of the active sandwich plate of Fig. 1. The model is based on a
mixed layerwise approach where the viscoelastic core (v) is mod-
eled according to a higher order shear deformation theory with cu-
bic expansion of the in-plane displacement components in the
thickness coordinate. The composite laminated face layers (e1,e2)
and the piezoelectric sensor (s) and actuator (a) layers are each
modeled according to the first order shear deformation theory
for laminated plates.

The basic assumptions in the development of the sandwich
plate model are: all points on a normal to the plate have the same
transverse displacement w(x,y, t), where t denotes time, and the
origin of the z axis is the medium plane of the core layer; no slip
occurs at the interfaces between layers; the displacement is C0

along the layer interfaces; transverse displacement is constant
through the thickness of the sandwich; all materials are linear,
homogeneous and orthotropic and the elastic layers (e1) and (e2)
are made of laminated composite materials; for the viscoelastic
core, material properties are complex and frequency dependent;
upper and lower layers play the roles of sensor and actuator,
respectively, and are connected via feedback control laws, consid-
ering co-located control.

The displacement field of the face layers may be written in the
general form:

uiðx; y; z; tÞ ¼ ui
0ðx; y; tÞ þ ðz� ziÞhi

xðx; y; tÞ
v iðx; y; z; tÞ ¼ v i

0ðx; y; tÞ þ ðz� ziÞhi
yðx; y; tÞ

wiðx; y; z; tÞ ¼ w0ðx; y; tÞ
ð1Þ

where ui
0 and v i

0 are the in-plane displacements of the mid-plane of
the layer, hi

x and hi
y are rotations of normals to the mid-plane about

the y axis (anticlockwise) and x axis (clockwise), respectively, w0 is
the transverse displacement of the layer (same for all layers in the
sandwich), zi is the z coordinate of the mid-plane of each layer, with
reference to the core layer mid-plane (z = 0), and i = s, e1, e2, a is the
layer index.

For the viscoelastic core layer, the displacement field is written
as a second order Taylor series expansion of the in-plane displace-
ments in the thickness coordinate, with constant transverse
displacement:

uvðx; y; z; tÞ ¼ uv
0ðx; y; tÞ þ zhv

x ðx; y; tÞ þ z2u�0
vðx; y; tÞ þ z3h�x

vðx; y; tÞ
vvðx; y; z; tÞ ¼ vv

0ðx; y; tÞ þ zhv
y ðx; y; tÞ þ z2v�0

vðx; y; tÞ þ z3h�y
vðx; y; tÞ

wvðx; y; z; tÞ ¼ w0ðx; y; tÞ
ð2Þ

where uv
0 and vv

0 are the in-plane displacements of the mid-plane of
the core, hv

x and hv
y are rotations of normals to the mid-plane of the

core about the y axis (anticlockwise) and x axis (clockwise), respec-
Fig. 1. Sandwich plate.
tively, w0 is the transverse displacement of the core (same for all
layers in the sandwich). The functions u�0

v ; v�0v ; h�x
v and h�y

v are
higher order terms in the series expansion, defined also in the
mid-plane of the core layer.

Displacement continuity at the layer interfaces is imposed,
allowing us to retain the rotational degrees of freedom of the face
layers, while eliminating the corresponding in-plane displacement
ones. Hence, the generalized displacement field has 17 mechanical
unknowns, where the vector of mechanical degrees of freedom is:

d ¼
ha

x ha
y he2

x he2
y uv

0 vv
0 w0 hv

x hv
y u�0

v v�0v h�x
v

h�y
v he1

x he1
y hs

x hs
y

( )T

ð3Þ

We consider that fiber-reinforced laminae in elastic multi-lay-
ers (e1) and (e2), viscoelastic core (v), and piezoelectric sensor (s)
and actuator (a) layers are formulated as orthotropic. Furthermore,
piezoelectric material is assumed to be mm2 orthorhombic, polar-
ized in the thickness direction. Constitutive equations for each
lamina in the sandwich may then be expressed in the principal
material directions, and for the zero transverse normal stress situ-
ation as [10,11]:
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where rij are stress components, eij and cij are strain components, E i

and Di are the electric field and electric displacement components,
respectively, QE

ij are reduced stiffness coefficients at constant elec-
tric field, eij and e�ij are piezoelectric and reduced piezoelectric con-
stants, respectively, and �eij and ��e33 are dielectric and reduced
dielectric constants, measured at constant strain. Expressions for
the reduced quantities mentioned above can be found in Araújo
et al. [10] and Benjeddou and Dëu [11]. The complete set of equa-
tions in (4) is only used for the piezoelectric sensor and actuator
layers, while for the remaining elastic and viscoelastic layers, only
the first equation is considered, without the piezoelectric part. For
the viscoelastic core layer, the reduced stiffness coefficients QE

ij

are complex quantities, since the complex modulus approach was
used in this work, using the elastic–viscoelastic principle. In this
case, the usual engineering moduli may be represented by complex
quantities, considering isothermal conditions:

E�1ðjxÞ ¼ E1ðxÞð1þ jgE1
ðxÞÞ

E�2ðjxÞ ¼ E2ðxÞð1þ jgE2
ðxÞÞ

G�12ðjxÞ ¼ G12ðxÞð1þ jgG12
ðxÞÞ

G�23ðjxÞ ¼ G23ðxÞð1þ jgG23
ðxÞÞ

G�13ðjxÞ ¼ G13ðxÞð1þ jgG13
ðxÞÞ

m�12ðjxÞ ¼ m12ðxÞð1þ jgm12
ðxÞÞ

ð5Þ
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where E1, E2, G12, G23, G13 and m12 denote storage moduli,
gE1

; gE2
; gG12

; gG23
; gG13

and gm12
are the corresponding material

loss factors, x represents the angular frequency of vibration and
j ¼

ffiffiffiffiffiffiffi
�1
p

is the imaginary unit. Additionally, in Eq. (5), E, G and m
represent Young’s moduli, shear moduli and Poisson’s ratio,
respectively.

The equations of motion for the plate are obtained by applying
the generalized Hamilton’s principle, using an eight node serendip-
ity plate element with 17 mechanical degrees of freedom per node
as presented in Eq. (3), and one electric potential degree of freedom
per piezoelectric layer. It is assumed that the electric potential var-
ies linearly in the thickness direction and compatibility of displace-
ments at the layer interfaces is enforced:

Muu 0
0 0

� �
€u
€/

� �
þ

KuuðxÞ Ku/

KT
u/ K//

" #
u
/

� �
¼

Fu

0

� �
ð6Þ

where u; €u; / and €/ are complex mechanical degrees of freedom
and corresponding accelerations, electric potential and correspond-
ing second time derivatives, respectively. Muu and Kuu(x) are the
real mass matrix and complex stiffness matrix, respectively, corre-
sponding to purely mechanical behavior, while K// is the dielectric
stiffness matrix, Ku/ is the stiffness matrix that corresponds to the
coupling between the mechanical and the piezoelectric effects,
and Fuis the externally applied complex mechanical load vector.

The feedback control law is based on direct proportional or
velocity feedback, and can be written in the following form:

/a ¼ Gd/s þ Gv _/s ð7Þ

where Gdand Gv are the constant displacement and the constant
velocity feedback gains, respectively. The vectors of actuator (a)
and sensor (s) potentials are /a and /s, while _/s is the vector of sen-
sor potential time derivatives.

Assuming harmonic vibrations, the final equilibrium equations
are given by:

½K�ðxÞ �x2Muu�u ¼ Fu ð8Þ

where the condensed stiffness matrix is written as:

K�ðxÞ ¼ KuuðxÞ � ðGd þ jxGvÞKa
u/ þ Ks

u/

h i
Ks�1

// Ks>

u/ ð9Þ

and Kuu(x) is a complex matrix and Fu is the Fourier transform of
the time domain force history.

It is worthwhile noting that when electroded surfaces exist in a
given patch or layer, equipotential conditions should be imposed
before condensing the electric degrees of freedom. The forced
vibration problem is solved in the frequency domain, which re-
quires the solution of the linear system of equations in Eq. (8) for
each frequency point.

For the free vibration problem, Eq. (8) reduces to the following
nonlinear eigenvalue problem, due to the frequency dependent
nature of the stiffness matrix:

K�ðxÞ � k�nMuu
� �

un ¼ 0 ð10Þ

where un is a complex eigenvector and k�nis the associated complex
eigenvalue, which can be written as:

k�n ¼ knð1þ jgnÞ ð11Þ

and kn ¼ x2
n is the real part of the complex eigenvalue and gn is the

corresponding modal loss factor. The nonlinear eigenvalue problem
is solved iteratively and the iterative process is considered to have
converged when:

kxi �xi�1k
xi�1

6 � ð12Þ

where xi and xi�1 are current and previous iteration values for the
real part of the particular eigenfrequency of interest, respectively,
and � is the convergence tolerance. Further details regarding the
model can be found in Araújo et al. [12].

2.2. Optimal design formulation

A constrained nonlinear multiobjective optimization problem
can be mathematically formulated as

max FðxÞ � ðf1ðxÞ; f2ðxÞ; . . . ; fmðxÞÞ>

s:t: x 2 X
ð13Þ

involving m objective functions fj : X # Rn ! R [ fþ1g, j = 1, . . . , m
to maximize. Recall that to maximize fj is equivalent to minimize
�fj. ;– X # Rn represents the feasible region.

In the presence of m (P2) objective functions, the maximizer of
one function is not necessarily the maximizer of another. In this
case, we do not have a single point that yields the ‘‘optimum point
for all objectives’’. Instead, we have a set of points, called Pareto
optimal or nondominated set. Given two points x1, x2 in X, x1 is
said to dominate, in Pareto sense, another point x2 if and only if
solution x1 is strictly better than x2 in at least one of the objectives
and point x1 is not worse than x2 in any of the objectives. A set of
points in X is nondominated when no point in the set is dominated
by another one in the set.

Direct MultiSearch (DMS) [13] is a solver for multiobjective
optimization problems, without the use of derivatives and does
not aggregate any components of the objective function. It essen-
tially generalizes all direct-search methods of directional type from
single to multiobjective optimization. DMS maintains a list of fea-
sible nondominated points. At each iteration, the new feasible
evaluated points are added to this list and the dominated ones
are removed. Successful iterations correspond then to an iterate
list changes, meaning that a new feasible nondominated point
was found. Otherwise, the iteration is declared as unsuccessful.

The problem of finding the optimal distribution of a given num-
ber of piezoelectric sensor/actuator pairs for maximum damping is
formulated as a multiobjective topology optimization problem:

max
qe

FðqeÞ � ðf1ðqeÞ; f2ðqeÞ; . . . ; fmðqeÞÞ
>

s:t: V 6 V0

qmin 6 qe 6 1

ð14Þ

where fi(qe) = gi, gi are modal loss factors obtained by iteratively
solving the nonlinear eigenvalue problem in Eq. (10), qe are the de-
sign variables, corresponding to the pseudo-densities of the piezo-
electric material in each element (e) of the finite element mesh, V
is the total volume of piezoelectric material and V0 is the maximum
allowable volume of piezoelectric material. The formulation used in
this work is based on the PEMAP (piezoelectric material with penal-
ization) model [14], where the material pseudo-density qe of each
piezoelectric patch element is used to achieve a continuous mate-
rial model [15]:

KðeÞuu ¼ qpK
e KðeÞ0uu

KðeÞu/ ¼ qpK
e KðeÞ0u/

MðeÞ
uu ¼ qpM

e MðeÞ
0uu

ð15Þ

where KðeÞ0uu
; KðeÞ0u/

and MðeÞ
0uu

are the element matrices for the piezo-
electric material, without penalization. Two penalization factors,
pK and pM, are used to penalize intermediate densities, easing the
task of obtaining a near discrete 0 � 1 solution. In this work pK = 3
and pM = 1 are used for the stiffness and the mass of the piezoelec-
tric patches. It should be noted that all the element matrices in Eq.
(15) refer only to the piezoelectric patches: the base sandwich plate
is never affected by the pseudo-density variables.



Fig. 2. Best solutions for individual objectives with the coarse 6 � 4 mesh.
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3. Application

The plate considered for the application is a simply supported
300 � 200 mm composite laminated sandwich plate with a 1 mm
thick core and with face layers made of three 0.5 mm thick layers,
with lamination scheme [90�e/45�e/45�e/0�v/45�e/45�e/90�e], where
subscripts v and e stand for viscoelastic core and elastic face layers,
respectively. Simply supported conditions are applied in such a
way that all the translational degrees of freedom at the border of
the plate are constrained.

The piezoelectric patches to be used have surface electrodes and
in-plane dimensions of 50 � 50 mm and are 0.1 mm thick, and only
four pairs of patches are available to be bonded to the composite
plate, corresponding to a maximum allowable volume of
V0 = 2000 mm3. A negative velocity feedback control law with gain
Gv = �0.01 was used for each pair of co-located sensor and
actuator.

Material properties are presented in Table 1. For the present
application the core is isotropic and the piezoelectric patches are
transversely isotropic. Although the problem has been formulated
considering a viscoelastic core, it should be noted that the material
loss factor for the viscoelastic core is disregarded in the present
analysis, since we are concentrated on maximizing active damping
and passive damping has an additive effect.

The objective will be to determine the best location for these
four pairs of co-located sensors and actuators, in order to maximize
the first six modal loss factors of the bending modes.

3.1. Coarse mesh

The first step was to discretize the plate in a coarse 6 � 4 finite
element mesh. Nondominated solutions were obtained and from
this set, the solutions that maximize individually the first six mod-
al loss factors are presented in Fig. 2. We can observe that the con-
figuration that maximizes objectives 1, 3 and 4 is the same. The
best solution in terms of the maximization of the weighted sum
of the first six modes

P6
i¼1wigi, with linearly decreasing weights

(w1 = 0.323, w2 = 0.261, w3 = 0.198, w4 = 0.135, w5 = 0.073 and
w6 = 0.01) is also presented in Fig. 3. In all the figures shaded ele-
ments correspond to the patch positions and, for each configura-
tion, the value of the corresponding modal loss factor is shown.

It is worthwhile noting that the design variables in the Direct
MultiSearch solver are continuous (0.1 6 qe 6 1), where the lower
limit is nonzero for numerical stability reasons in the finite ele-
ment analysis. However, before an evaluation of the objectives is
conducted, all the design variables are rounded to their limits
(i.e., if qe P 0.5 then qe = 1 and if qe < 0.5 then qe = 0.1) and the vol-
ume constraint is then verified. This allows us to transform the
problem with continuous design variables into one with discrete
design variables.
Table 1
Material properties.

Elastic layers Core Patches

E1 (GPa) 98.0 59.6 � 10�3 47.0
E2 (GPa) 7.9 59.6 � 10�3 47.0
G12 (GPa) 5.6 20 � 10�3 16.3
G13 (GPa) 5.6 20 � 10�3 17.4
G23 (GPa) 5.6 20 � 10�3 17.4
m12 0.28 0.49 0.33
e�31 (N/Vm) — — �14.7
e�32 (N/Vm) — — �14.7
��e33 (�10�9 F/m) — — 21.2
q (kg/m3) 1520 1140 8036
For comparison purposes, a Genetic Algorithm [16] with binary
encoding [17] is also used to solve the problem of maximizing the
weighted sum of the first 6 modal loss factors. The algorithm ini-
tializes a random sample of individuals with different parameters
to be optimized using evolution via survival of the fittest. The
selection scheme used is tournament selection with a shuffling
technique for choosing random pairs for mating. The micro-GA op-
tion has been used, with uniform crossover and elitism (the best
individual is always replicated into the next generation). A popula-
tion size of 10 individuals was used for the Genetic Algorithm, with
a maximum of 200 generations, crossover probability of 0.5 and
mutation probability of 0.02. The optimal configuration obtained
was the same as in Fig. 3, which allows us to confirm our solution
using the nondominated solutions obtained through DMS.

Fig. 4 presents the magnitude of the frequency response func-
tions for the configuration of Fig. 3, obtained at a point located at
the center of the top rightmost quarter of the plate, with an impul-
Fig. 3. Best solution for weighted sum of objectives
P6

i¼1wigi ¼ 17:77%
� �

with the
coarse 6 � 4 mesh.
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sive excitation force of 10 N, applied at the same point. The ampli-
tude reduction for the considered frequency range is evident, dem-
onstrating the effectiveness of active control.

3.2. Refined mesh

As it is understood that a coarse mesh will bias the solution, the
next step was to use a more refined 12 � 8 finite element mesh. In
order to be able to use this mesh and at the same time maintain the
size of the sensors and actuators, equipotential conditions have to
be imposed to the finite elements belonging to the same patch.
Hence, it is no longer possible to have the same simple procedure
as before, since all the piezoelectric elements have to be grouped in
as many sets as the available patches (in this case there will be four
groups of four elements). The number of design variables is equal
to the number of elements in the finite element mesh
(12 � 8 = 96) and there will be four patches, each with 2 � 2 ele-
ments. The following algorithm was implemented to guarantee
Fig. 5. Example of application of the algorithm for selecting patch positions with
the refined mesh.
that only solutions with the correct grouping of elements are
evaluated:

1. A search for the element with the maximum density is
conducted.

2. The patch position is then chosen among the four possible loca-
tions in the neighborhood of the selected element. The maxi-
mum product of densities of the elements that make up the
candidate patches is the selection criteria.

3. The densities of the four elements of the selected patch are set
to zero and the process is repeated for the selection of the
remaining patches.

4. In the end, all elements with zero density are set to unit density
and the remaining ones to the minimum density.

5. Equipotential conditions are imposed to the four elements of
each patch and the solution is evaluated.

An example of application of this algorithm is presented in
Fig. 5, where from an initial continuous solution, an intermediate
solution is obtained by applying four times the first three steps
of the algorithm, and the final solution is obtained by applying step
four of the algorithm.

Using this algorithm along with our optimization problem, non-
dominated solutions were obtained and from this set, the solutions
that maximize individually the first six modal loss factors are pre-
sented in Fig. 6. Furthermore, the best solution from the nondom-
inated set that maximizes the weighted sum of the first six modal
loss factors is also presented in Fig. 7.

Again, Fig. 8 presents the magnitude of the frequency response
functions for the configuration of Fig. 7, obtained at a point located
at the center of the top rightmost quarter of the plate, with an



Fig. 7. Best solution for weighted sum of objectives
P6

i¼1wigi ¼ 17:42%
� �

with the
12 � 8 mesh.
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impulsive excitation force of 10 N, applied at the same point. The
amplitude reduction for the considered frequency range is evident,
demonstrating the effectiveness of active control.

4. Discussion of results

A comparison of the results of the refined mesh with the ones
obtained with the coarse mesh shows the influence of the mesh
size. The solutions obtained with the refined mesh correspond to
positions of the patches that are not possible to obtain using the
coarse mesh. One can also notice that the best solution obtained
with the refined mesh for the weighted sum of objectives has a
lower value of the objective function when compared with the cor-
responding solution using the coarse mesh. This is definitely due to
the mesh size influence on the results, as a check was done using
the optimal positioning of Fig. 3 along with the refined mesh,
resulting in

P6
i¼1wigi ¼ 16:84%, which is in fact a worse solution

than the one obtained in Fig. 7, with respect to this objective.
When comparing the frequency response functions using both

coarse and refined meshes, as displayed in Figs. 4 and 8, respec-
tively, one observes that a substantial attenuation is obtained with
the application of negative feedback control laws in both cases. The
dotted curves in these figures represent the frequency response of
the plates with the patches in each of the obtained optimal config-
urations of Figs. 3 and 7, but with short circuited electrodes, hence
eliminating the piezoelectric effect. Although substantially higher
modal loss factors are obtained for some modes with the refined
mesh, from the frequency response functions one can observe that
the reduction in the amplitudes of vibration are equivalent for both
meshes, and that from this point of view the coarse mesh gives also
acceptable results, from an engineering point of view.

5. Conclusions

A multiobjective approach to the optimal positioning of piezo-
electric patches in sandwich plates for active damping maximiza-
tion has been presented. Collocated negative velocity feedback
control has been used to provide active damping. Nondominated
solutions have been obtained with the Direct MultiSearch solver,
using the first six modal loss factors as objectives to maximize.
From these nondominated solutions, those that maximize individ-
ual objectives and also a weighted sum of objectives are presented
and discussed for two types of finite element meshes, showing the
expected influence of the mesh size in the optimal designs. Fre-
quency response functions show the effectiveness of active damp-
ing in the response of the optimal structures with substantial
reduction in the vibration levels.
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