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Lightweight amorphous silicon photovoltaic modules on
flexible plastic substrate!

Y. Vygranenko, A. Khosropour, R. Yang, A. Sazonov, A. Kosarev, A. Abramov, and E. Terukov

Abstract: Solar cells on lightweight and flexible substrates have advantages over glass- or wafer-based photovoltaic devices in
both terrestrial and space applications. Here, we report on development of amorphous silicon thin film photovoltaic modules
fabricated at maximum deposition temperature of 150 °C on 100 pm thick polyethylene-naphtalate plastic films. Each module of
10 cm x 10 cm area consists of 72 a-Si:H n-i-p rectangular structures with transparent conducting oxide top electrodes with Al
fingers and metal back electrodes deposited through the shadow masks. Individual structures are connected in series forming
eight rows with connection ports provided for external blocking diodes. The design optimization and device performance
analysis are performed using a developed SPICE model.

PACS Nos.: 88.40.H, 88.40.fc, 88.40.jj.

Résumé : Les cellules solaires sur support léger et flexible ont des avantages sur les dispositifs photovoltaiques basés sur
substrats de verre ou autre solide, et ce pour des utilisation terrestres et spatiales. Nous présentons ici le développement de
modules photovoltaiques en films minces de silicium amorphe, fabriqués a une température maximale de dépét de 150 °C sur
des films de plastique PEN de 100 pm d’épaisseur. Chaque module de 10 cm x 10 cm de surface contient 72 structures rectangu-
laires de a-Si : H n-i-p, avec des électrodes supérieures de TCO avec doigts d’Al et des électrodes arrieres métalliques déposées par
masque d’ombre. Les structures individuelles sont connectées en série pour former huit rangées avec ports de connexion
destinés aux diodes de blocage externes. Le design et les performances du dispositif sont analysés et évalués en utilisant un
modele SPICE. [Traduit par la Rédaction]

substrate. Detailed description of the device design and fabrica-
tion steps is the starting point of this work. We present and dis-
cuss a two-dimensional model of the solar cell. This follows with
the performance analysis of the PV module. Finally results of the
study are summarized in the conclusion part.

1. Introduction

Flexible hydrogenated amorphous silicon (a-Si:H) solar cells on
thin plastic substrates are of great interest for a wide variety of
engineering applications [1]. Flexible devices can be installed on
curved surfaces, they are less likely to be damaged by mechanical
friction and vibrations, and are easier to install. These advantages
could make it possible for mobile devices and various electric
appliances to cover part of their power demand from solar energy.
Even an integration of photovoltaics in clothes becomes a reality
[2]. Also light weight photovoltaic (PV) modules on plastic foils are
attractive for aerospace applications because of higher power-to-
weight ratio in comparison to common GaAs-based PV devices [3].

2. PV module design and fabrication

Figure 1a shows a photograph of the developed PV module. The
module 0f 10 cm x 10 cm area consists of 72 rectangular cells. The
individual cells are connected in series forming eight rows with
connection pads. Figure 1b shows the electrical circuit diagram,
where the sections of 18 cells are connected in parallel using

Two approaches are used to fabricate flexible a-Si:H PV mod-
ules. The first is the use of nontransparent substrates, such as
metallic foils or heat-resisting plastic films to enable a thin-film
deposition in a temperature regime of 220-300 °C, which is con-
sidered optimal for a-Si:H [4]. The second approach is the use
of low-cost polyethylene-naphtalate or polyethylene-teraphtalate
substrates that require process temperatures not exceeding
150 °C [5-7]. In this case, the device performance is lower because
of deteriorating electronic properties of a-Si:H. To date, the high-
est stable efficiency of 8.7% was reported for single junction a-Si:H
cells on a textured plastic substrate [8].

This paper reports on a monolithic a-Si:H-based photovoltaic
module utilizing 100 pm thick polyethylene-naphtalate film as a

external blocking diodes. The cell design and its interconnections
are illustrated in Figs. 1c and 1d. The cell is an a-Si:H n-i-p structure
with the Al/Cr back and ZnO:Al top electrodes. Two 0.3 mm wide
Al fingers are symmetrically placed on the ZnO:Al electrode to
reduce the emitter resistance. The photosensitive area of the cell
is 0.8 cm?.

We have developed a fabrication process, where three shadow
masks are used in sputtering steps to form the bottom and top
electrodes and the top metallization. The device fabrication starts
with plastic foils cleaned in an isopropanol bath for about 1 min.
After drying, the backside encapsulation and front buffer SiO,N,
layers are deposited in the single-chamber plasma-enhanced
chemical vapor deposition (PECVD) system at the substrate tem-

Received 15 October 2013. Accepted 21 January 2014.

Y. Vygranenko. Department of Electronics, Telecommunications and Computer Engineering, ISEL, Lisbon, 1959-007, Portugal; CTS-UNINOVA, 2829-516

Caparica, Portugal.

A. Khosropour, R. Yang, and A. Sazonov. Electrical and Computer Engineering Department, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
A. Kosarev. National Institute for Astrophysics, Optics and Electronics, Puebla 72840, Mexico; TF TE Ioffe R&D Center, St-Petersburg, Russia.

A. Abramov and E. Terukov. TF TE Ioffe R&D Center, St-Petersburg, Russia.

Corresponding author: Y. Vygranenko (e-mail: yvygranenko@deetc.isel.ipl.pt).
This paper was presented at the 25th International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS25).

Can. . Phys. 92: 871-874 (2014) dx.doi.org/10.1139/cjp-2013-0566

< Published at www.nrcresearchpress.com/cjp on 19 February 2014.


mailto:yvygranenko@deetc.isel.ipl.pt
http://dx.doi.org/10.1139/cjp-2013-0566

872

Can. J. Phys. Vol. 92, 2014

Fig. 1. (a) Photograph of the PV module. (b) Circuitry of the PV module with external blocking diodes. (c) Top view of two cells connected in

series. (d) Cross-sectional view of the cells.
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perature of ~140 °C. Then, the substrate in conjunction with
shadow mask 1is attached to the carrier followed by loading in
the sputtering system. After reaching a base pressure below 2 x
10-¢ Torr, 200 nm of Al is sputtered in Ar plasma at a process
pressure of 5 mTorr. Then, a thin (~20 nm) Cr buffer layer is
deposited under similar process conditions.

The n-i-p stack deposition is performed using a multichamber
13.56 MHz PECVD system, manufactured by MVSystems Inc. To
prevent cross contamination here, the doped and undoped layers
are deposited in different chambers in the single-pump-down pro-
cess. The 25 nm thick n-layer, 300 nm thick i-layer, and 15 nm
thick p-layer are deposited using SiH, + H, + PH;, SiH, + H,, and
SiH, + H, + CH,, + B,H, gas mixtures, respectively. Here, hydrogen
dilution ratio, [H2] [ ((H2] + [SiH4]) x 100%, is 75%. Doping gas flow
ratios are [PHj] [ [SiH,] = 1%, [B,Hg| [ [SiH,] = 1%, and [CH,] | [SiH,] =
67%. The deposition is performed at 600 mTorr pressure and
22 mW/cm? radio frequency power density. The substrate temper-
ature is about 150 °C.

The formation of ZnO:Al top electrodes is performed by sput-
tering through shadow mask 2 in the sputtering chamber of the
PECVD system. The 170 nm thick ZnO:Al layer is deposited in Ar
plasma at 4 mTorr pressure, 80 W radio frequency power, and

b)

Bottom
Electrode

ZnO:Al

Buffer dlelectrlc (a-SnO N )

Substrate (100 um thick PEN film)

Encapsulation dielectric (a-SiOxNy)

150 °C substrate temperature. The sheet resistance of the film is
about 60 (/sq.

To perform via opening, the a-Si:H NIP stack is selectively
etched through shadow mask 3 in the reactive ion etching system.
Dry etching is performed in SF¢ plasma at a process pressure of
60 mTorr, a gas flow of 15 sccm, and an radio frequency power of
50 W. An etching time is typically 90 s. After the dry etch step, the
150 nm thick Al layer is sputtered through shadow mask 3 under
the same experimental conditions as that for the bottom metalli-
zation.

An outgoing inspection of the PV module includes the visual
inspection using an optical microscope, and electrical character-
ization that included the measurements of current-voltage (I-V)
characteristics under AM1.5 illumination conditions for each sec-
tion of 18 cells. I-V curves were analyzed to deduce the solar cell
characteristics.

3. Device modelling and characterization

To optimize the device design, two-dimensional simulation was
performed. Figure 2a illustrates the proposed electrical model,
where the individual cell is divided into equidimensional rectan-
gular subcells with a node at the center of each sub-cell. An
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Fig. 2. (a) Simulated cell with uniform mesh and equivalent circuit of the subcell. (b) Potential distribution across the emitter at a biasing

voltage of 0.71 V.
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equivalent circuit of the sub-cell includes a diode, a current source
representing current generation in the n-i-p structure, a resistor,
R,, including both the resistance of the p-layer and contact
resistance of the p/ZnO:Al interface, and resistors R, and R, repre-
senting the top metallization and (or) transparent electrode, re-
spectively. Note that the sheet resistance of the bottom metal is at
least two orders of magnitude lower than that of the ZnO:Al layer,
and this series resistance component is not taken into account.
Nodes at the front edge of the Al grid are defined as the current
sink in this model with the boundary condition being the applied
bias. We used HSPICE simulator to perform calculations, while
MATLAB was used to form the input file, to readout data from the
output file, and to visualize the results. Input parameters include
the dimensions of the cell, coordinates of top metal islands, sheet
resistances of the TCO and top metal layers, net series resistance,
R, and parameters of the diode and current source elements. In
particular, the diode forward current is

= el 1]

1
where J, is the saturation current density, L, and L, are the subcell
dimensions in the direction X or Y, q is the elementary charge, n is
the photodiode ideality factor, k is Boltzmann’s constant, and T is
the temperature. The output of the current source is

Iph = ]phI‘xLy (2)

where J,;, is the photocurrent density. For p-i-n cells, the ], is a
bias voltage dependent function [9]

V= Vi VH
Jon = ]ph,OT[l - exP(V—Vbi)] (3a)
42
Vo= — 3b
B (3b)

X Position (mm )

where J,;, o is the photocurrent, Vi, the built-in voltage, d; the
i-layer thickness, and p7 the mobility-lifetime product also
known as the range of the carriers (i.e., distance drifted before
capture per unit field). Parameters Jo, n, R, Vi3, V,,, and J,;, o were
deduced from I-V characteristics of individual cells in the dark
and under illumination.

Figure 2b shows simulated potential distribution across the
emitter at the bias voltage of 0.71 V. Input parameters used for
simulation are |, =102 Afcm?,n =15, V;; =11V, V,=01V,R, =
1.5 Qcm?, and [, o = 9 mA[/cm?. Here, the voltage drop across the
Al finger is 10 V and voltage variation across the transparent elec-
trode is up to 50 mV at 0.3 (}/sq and 180 ()/sq sheet resistances of
the respective layers. Joule losses in the Al finger and ZnO:Al
electrode are 22 and 61 wW, respectively.

The thickness of the transparent electrode is optimized later to
minimize the optical and electrical losses. Reflection minimum of
TCO coating at a targeting wavelength, A, is at discrete values of
film thicknesses

Ao(2m + 1)

drco (4)

4n

T

where n, is the refractive index at A,, and m = 0, 1, ... We have
performed the device simulation at ZnO:Al thicknesses that cor-
respond to the first four reflection minima at A, =460 nm. To take
into account the absorption loss within the transparent electrode,
Jpn,o is calculated for the given film thicknesses using the absorp-
tion coefficient of ZnO:Al measured in the visible to near-infrared
spectral range. Figure 3 shows the calculated Joule losses in the Al
and ZnO:Al top layers, conversion efficiency, Eg, and fill factor, FF,
versus the transparent electrode thickness. The increase in the
ZnO:Al layer thickness leads to the reduction of Joule losses in the
emitter and to FF enhancement due to the decreasing series resis-
tance. However, the conversion efficiency reaches a peak value at
a thickness of 3Ay/4n,, then it decreases because of increasing
absorption loss. Based on this modeling result, the thickness of
ZnO:Al in our device is 180 nm.
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Fig. 3. Joule losses in the ZnO:Al and Al top layers, conversion
efficiency and fill factor versus ZnO:Al thickness.
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Fig. 4. Joule losses in the Al and ZnO:Al top layers, conversion
efficiency and fill factor versus Al-layer sheet resistance.
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We have also analyzed the impact of the metal grid on the
output characteristics. Figure 4 shows the Eg and FF along with
Joule losses in the emitter as a function of the Al-layer thickness.
Apparently the metal grid resistance must be lower than the re-
sistance of the transparent electrode to minimize the Joule losses.
For the optimized ZnO:Al electrode with 60 ()/sq sheet resistance,
the metal sheet resistance has to be below 0.4 )/sq. The 150 nm
thick Al-layer with ~0.25 (/sq is chosen for our devices as a
tradeoff between the sputtering time and device performance.

Can. J. Phys. Vol. 92, 2014

Fig. 5. [-V characteristics of the module section (18 individual cells
connected in series) under AM1.5 conditions.
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Figure 5 shows a typical I-V curve of the module section com-
posed of 18 cells under AM1.5 illumination conditions. The open
circuit voltage and fill factor here are lower than they are sup-
posed to be because of resistive shunts in some cells in the module
(about 15% of all cells for 0.8 cm? cell size in our laboratory).

4. Conclusion

We have fabricated monolithic a-Si:H PV modules on the
100 pm thick polyethylene-naphtalate substrate using a 150 °C
deposition process for a-Si:H films. To optimize the device design,
two-dimensional simulation was performed. The proposed SPICE
model takes into account the performance characteristics of the
n-i-p structure and distributed resistances of the transparent elec-
trode and top metal grid. The results suggest that the three-
quarter wavelength thickness is optimal for the ZnO:Al electrode,
while 150 nm thick Al is sufficient for the metal grid. The perfor-
mance characteristics of the PV module are below the simulation
results because of the presence of individual cells with shunts.
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