

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia Civil

Dimensionamento Sísmico de um Edifício de Betão Armado segundo os Eurocódigos. Verificação segundo o Eurocódigo 8 Parte 3

NUNO EDGAR CABRAL AMARO

Licenciado em Engenharia Civil

Trabalho de Dissertação de natureza científica para obtenção do grau de Mestre

em Engenharia Civil

Júri:

Presidente: Mestre Cristina Ferreira Xavier de Brito Machado, Prof. Coordenadora (ISEL)

Vogais:

Mestre António Carlos Teles de Sousa Gorgulho, Prof. Adjunto (ISEL)

Doutora Ana Rita F. C. de Sousa Gião Gamito Reis, Equiparada a Assistente 2ºTriénio (ISEL)

Doutor Paulo Jorge Henriques Mendes, Prof. Adjunto (ISEL)

Dezembro de 2014

Em memória ao meu pai Joaquim Amaro

AGRADECIMENTOS

Antes de mais, queria agradecer aos meus orientadores Engenheiro António Gorgulho e Engenheira Ana Rita Reis pelos conhecimentos transmitidos, orientação, compreensão, disponibilidade e pela enorme paciência.

Gostaria de agradecer à minha mãe por confiar sempre em mim e ao meu pai porque, apesar de já ter partido, está sempre presente e a torcer por mim. Agradeço ao meu irmão por me aturar e por gostar tanto de mim, à minha irmãzinha Daynara e à Lucy por ser mais do que uma cunhada, ser uma amiga e companheira.

Agradeço aos meus amigos de infância Victor, Valdirene, Adalberto e Eric por continuarem a ser os mesmos e pela força que me dão até hoje, aos meus amigos Yesmary, Pessoa, Bruno, Ana do Pico, Cátia, Petra, Ricardo, Sara, Maria, Mário, João Vasco, Marilyne, aos grupo do Lounge, do sushi e aos meus mais recentes amigos Marisa, Diana, Primos Balas e Lisa.

Queria agradecer aos amigos dos meus pais pela força e companheirismo, à minha família do Porto por tudo e a família Beto/Graça pela disponibilidade.

Por fim gostaria de agradecer ao Engenheiro Armando Martins pelo acompanhamento e amizade que transmite aos seus alunos.

RESUMO

O primeiro regulamento a ter em conta o efeito da ação sísmica foi o Regulamento da Segurança das Construções contra os Sismos (RSCCS, 1958). Apenas na última década do século passado é que foram criados os Eurocódigos, que correspondem a um conjunto de normas para projetos de obras de engenharia civil, comuns aos países pertencentes ao CEN (Comité Europeu da Normalização).

O dimensionamento de estruturas em Portugal encontra-se atualmente numa fase de transição da regulamentação antiga (nomeadamente, o Regulamento de Segurança e Acções (RSA) e o Regulamento de Estruturas de Betão Armado e Pré-esforçado (REBAP)) para a nova (Eurocódigos), prevendo-se que num futuro próximo os Eurocódigos entrem em vigor em território nacional.

Na presente dissertação aplica-se o EC8-Parte 3, que se refere à Avaliação e Reforço de Edifícios, na verificação da segurança de um edifício dimensionado segundo Eurocódigos. Este estudo é divido em duas partes, na primeira parte é feito o dimensionamento do edifício segundo os Eurocódigos EC0, EC1, EC2 e EC8-Parte 1, verificando-se os estados limites preconizados nestas normas para pilares, vigas e lajes da estrutura. Na segunda parte verificam-se os critérios de segurança presentes no EC8-Parte 3, analisando as capacidades e as exigências do edifício dimensionado na primeira parte.

Para o dimensionamento do edifício utiliza-se um programa de cálculo automático tridimensional de estruturas, visto atualmente constituírem uma ferramenta fundamental para a análise e dimensionamento de estruturas. O programa de cálculo automático utilizado foi o SAP2000, versão 15.2.1.

ABSTRACT

The first regulation to take into account the effect of seismic load was the "Regulamento da Segurança das Construções contra os Sismos" (RSCCS, 1958). Only in the last decade of the past century were created the Eurocodes, which correspond to a set of standards for of civil engineering projects, common to the countries belonging to the CEN (European Committee for Standardization).

The structural design in Portugal is currently in a transition phase from the old regulation (such as the "Regulamento de Segurança e Acções" (RSA) and the "Regulamento de Estruturas de Betão Armado e Pré-esforçado")(REBAP)) to the new ones (Eurocodes), being expected that in the near future Eurocodes take effect nationally.

In this dissertation, EC8-Part 3, which addresses to the Assessment and Retrofitting of Buildings, is applied to the safety verification of a building designed with Eurocodes. This study is divided in two parts, in the first part the building design is accomplish according to the Eurocodes EC0, EC1, EC2 and EC8-Part 1, verifying the recommended Limit States for columns, beams and slabs of the structure. In the second part the safety criteria's presented in EC8- Part 3 are verified, analyzing the capacities and the demand of the building designed in the first part.

A 3D software is used for the building design, as the use of this type of software currently constitutes a fundamental tool for the analysis and design of structures. The structures software used was SAP2000, version 15.2.1.

PALAVRAS-CHAVE

Eurocódigo

Ação sísmica

Edifícios

Capacidades

Exigências

KEY WORDS

Eurocode

Seismic action

Buildings

Capacities

Demands

ÍNDICE

1	IN	TRODU	ÇÃO	. 1
	1.1	Enqua	dramento	. 1
	1.2	Objetiv	vos e organização da dissertação	2
	1.3	Organi	zação da dissertação	2
2	DI	MENSI	ONAMENTO ESTRUTURAL	. 3
	2.1	Introdu	ıção	. 3
	2.2	Bases a	arquitetônicas e solução estrutural do edifício em estudo	3
	2.3	Ações		. 5
	2.	3.1 Ca	rgas Permanentes e sobrecargas	. 5
	2.	3.2 Aç	ão Sísmica	. 6
		2.3.2.1	Zonas Sísmicas	6
		2.3.2.2	Tipos de Terreno	. 7
		2.3.2.3	Classes de Importância	. 8
		2.3.2.4	Representação da Ação Sísmica	. 8
		2.3.2.5	Combinações de Ações	12
	2.4	Modela	ação	15
	2.5	Análise	e Sísmica	20
	2.	5.1 An	iálise modal	20
	2.	5.2 Re	gularidade estrutural	23
		2.5.2.1	Regularidade em planta	23
		2.5.2.2	Regularidade em altura	28
	2.	5.3 Ele	ementos Sísmicos Primários e Secundários	30
	2.	5.4 Co	eficiente de Comportamento	31
	2.	5.5 Es	pectros de resposta de cálculo	33
	2.	5.6 Efe	eitos acidentais de torção	34
	2.	5.7 Efe	eitos de Segunda Ordem	36

2.6 Verificação dos estados limites	
2.6.1 Estados Limites Últimos	
2.6.1.1 Vigas	39
2.6.1.1.1 Armadura Longitudinal	40
2.6.1.1.2 Armadura transversal	
2.6.1.1.3 "Capacity Design" nas vigas	45
2.6.1.2 Pilares	50
a) Armadura longitudinal	50
2.6.1.2.1 Armadura transversal	51
2.6.1.2.2 Armadura de confinamento	53
2.6.1.2.3 "Capacity Design" nos pilares	55
2.6.2 Estados Limites de Utilização	63
2.6.2.1 Controlo de deformações	63
2.6.2.2 Limitação de danos	68
3 VERIFICAÇÃO SEGUNDO EUROCÓDIGO 8 - PARTE 3	69
3.1 Requisitos de desempenho estrutural	69
3.2 Informação para a avaliação estrutural	70
3.3 Verificação da segurança de acordo com o EC8-Parte 3	72
3.3.1 Avaliação da capacidade de deformação dos pilares e vigas	74
3.3.1.1 Avaliação da capacidade nos pilares	77
3.3.1.2 Avaliação da capacidade nas vigas	80
3.3.2 Avaliação da capacidade resistente dos pilares ao corte	84
4 CONCLUSÕES	89
BIBLIOGRAFIA	90
Anexo 1 – Cálculos justificativos do dimensionamento do edifício	
Anexo 2 - Cálculos justificativos da verificação segundo o Eurocódigo	8 Parte 3 124
Anexo 3 – Peças desenhadas	

ÍNDICE DE FIGURAS

Figura 2.1 – Zonamento sísmico de Portugal para os dois tipos de Ação Sísmica 7
Figura 2.2 – Espectros de resposta para Ação Sísmica Tipo 1 e Tipo 2 para estruturas
com coeficiente de amortecimento de 5 %9
Figura 2.3 – Vista 3D do edifício em SAP2000 15
Figura 2.4 – Materiais estruturais a) betão; b) aço 16
Figura 2.5 – Caraterísticas de elementos. a) Pilar b) Viga 17
Figura 2.6 – Definição da laje do edifício 18
Figura 2.7 – Bloqueio dos nós da laje 19
Figura 2.8 – Combinação dos modos de vibração 22
Figura 2.9 – Posição do gravidade e do centro de rigidez da estrutura
Figura 2.10 – Critérios de regularidade em altura para os casos a) e b)
Figura 2.11 – Critérios de regularidade em altura para o caso c) 29
Figura 2.12 – Critérios de regularidade em altura para recuos não simétricos
Figura 2.13 – Espectros de resposta para ação sísmica do tipo 1 e 2
Figura 2.14 – Rotura do piso flexível
Figura 2.15 – Disposições complementares para a amarração nos nós viga-pilar
exteriores
Figura 2.16 – Armaduras transversais nas zonas críticas das vigas
Figura 2.17 – Valores de cálculo pela capacidade real dos esforços transversos nas vigas
Figura 2.18 – Localização da viga V4
Figura 2.19 – Verificação da segunça das vigas ao esforço transverso
Figura 2.20 – Rotura por esmagamento do betão - falta de cintagem
Figura 2.21 – Confinamento do núcleo de betão dos pilares 54
Figura 2.22 - Valores de cálculo pela capacidade real dos esforços transversos nos
pilares
Figura 2.23 – Disposição dos esforços na secção transversal
Figura 2.24 – Rotura frágil por esforço transverso
Figura 2.25 – Localização dos pilares P6 e P9 58
Figura 2.26 – Verificação da segunça dos pilares ao esforço transverso
Figura 2.27 – Deslocamentos da laje para a Combinação Quase-Permanente de Ações 64

Figura 3.1 - Exigências e capacidades de deformação dos pilares do edifício para o
ELCE
Figura 3.2 - Exigências e capacidades de deformação dos pilares do edifício para o
ELDS
Figura 3.3 – Exigências e capacidades de deformação das vigas do edifício para o ELDS
Figura 3.4 – Exigências e capacidades de deformação das vigas do edifício para o ELCE
Figura 3.5 – Gráfico de exigência/capacidade
Figura 3.6 - Verificação da segurança ao esforço transverso para o ELCE dos pilares do
edifício
Figura 3.7 – Comparação do V _{Rd-EC8-3} com V _{Rd-EC8-3,max}

ÍNDICE DE TABELAS

Tabela 2.1 – Dimensões das vigas do edifício	3
Tabela 2.2 – Classes de importância e respetivos coeficientes de importância	8
Tabela 2.3 - Valores dos parâmetros definidores dos espectros de resposta elástic	cos
verticais	11
Tabela 2.4 – Determinação do parâmetro avg	12
Tabela 2.5 – Alteração das dimensões dos pilares	20
Tabela 2.6 – Frequências e períodos da estrutura	21
Tabela 2.7 – Fatores de participação de massa por modo de vibração	22
Tabela 2.8 – Esbelteza (λ) do edifício	26
Tabela 2.9 - Raio de giração do piso, coordenadas do centro de massa (C.M) e	do
centro de rigidez (C.R), valor da excentricidade estrutural do edifício	27
Tabela 2.10 – Determinação dos deslocamentos e rotação impostos à estrutura	28
Tabela 2.11 – Determinação da rigidez de translação e rotação	28
Tabela 2.12 – Determinação do coeficiente de comportamento	32
Tabela 2.13 – Parâmetros que definem o espectro de resposta de cálculo	33
Tabela 2.14 – Determinação da força horizontal atuante no piso	35
Tabela 2.15 – Determinação do momento torsor acidental	35
Tabela 2.16 – Determinação dos deslocamentos relativos do edifício	37
Tabela 2.17 – Cálculo do valor de θ do edifício	37
Tabela 2.18 – Determinação do fator de ductilidade em curvatura	41
Tabela 2.19 – Áreas de armadura longitudinal da viga V4	48
Tabela 2.20 – Posição da linha neutra e momento resistente na viga V4	48
Tabela 2.21 – Determinação dos esforços transversos condicionantes na viga V4	49
Tabela 2.22 – Determinação do esforço transverso resistente máximo da viga V4	49
Tabela 2.23 – Determinação do esforço transverso resistente da viga V4	49
Tabela 2.24 – Áreas de armadura longitudinal dos pilares P6 e P9	59
Tabela 2.25 – Áreas de armadura transversal dos pilares P6 e P9	59
Tabela 2.26 – Posição da linha neutra dos pilares P6 e P9	60
Tabela 2.27 – Determinação dos momentos resistentes nas extremidades dos pilares	P6
e P9	60
Tabela 2.28 – Determinação do esforço transverso condicionante dos pilares P6 e P9.	61
Tabela 2.29 – Determinação do esforço resistente dos pilares P6 e P9	61

Tabela 2.30 - Determinação do esforço transverso resistente máximo nos pilares Po	6 e
Р9	61
Tabela 2.31 – Dados gerais e caraterísticas do pilar P9	62
Tabela 2.32 – Momentos para a Combinação Quase-Permanente de Ações	65
Tabela 2.33 – Determinação do coeficiente de homogeneização	66
Tabela 2.34 – Momento de Inércia da Secção não Fendilhada das trés zonas	66
Tabela 2.35 – Determinação dos momentos de fendilhação	66
Tabela 2.36 – Defornada a longo prazo	67
Tabela 2.37 – Verificação da deformação	67
Tabela 2.38 – Deslocamentos relativos condicionantes do edifício	68
Tabela 3.1 - Níveis de conhecimento, correspondentes métodos de análise e fator	de
confiança	72
Tabela 3.2 – Critérios de verificação dos estados limites segundo o EC8 - Parte 3	73
Tabela 3.3 – Taxa mecânica de armadura de tração e compressão do Pilar P9	77
Tabela 3.4 – Determinação da capacidade de deformação do Pilar P9	78
Tabela 3.5 – Exigências e capacidades de deformação do pilar P9 para o ELDS	78
Tabela 3.6 – Determinação do coeficiente de importância γ_I	79
Tabela 3.7 – Exigências e capacidades de deformação do pilar P9 para o ELCE	79
Tabela 3.8 – Taxa mecânica de armadura de tração da Viga V4	80
Tabela 3.9 – Taxa mecânica de armadura de compressão da Viga V4	81
Tabela 3.10 – Determinação da capacidade de deformação da Viga V4	81
Tabela 3.11 – Exigências e capacidades de deformação da viga V4 para o ELDS	81
Tabela 3.12 – Exigências e capacidades de deformação do viga V4 para o ELCE	82
Tabela 3.13 – Esforço transverso resistente VR,c do Pilar P9	85
Tabela 3.14 – Deformações de cedência do Pilar P9	85
Tabela 3.15 - Exigência de ductilidade em deslocamento do Pilar P9	86
Tabela 3.16 – Esforço transverso resistente cíclico VR-EC8-3 do pilar P9	86
Tabela 3.17 – Verificação da segurança ao ELCE do pilar P9	86
Tabela 3.18 – Esforço tranverso devido ao esmagamento do betão (VRd-EC8-3,max)	do
pilar P9	87

ÍNDICE DE SIGLAS E ABREVIAÇÕES

Letras maiúsculas latinas

A _c	Área da secção de um elemento de betão
A_{Ed}	Valor de cálculo da ação sísmica
A _s	Área da secção transversal de uma armadura
A _{sw}	Área de armadura de esforço transverso ao longo do comprimento s
A _{Ek}	Valor característico da ação sísmica para o período de retorno de referência;
A _{sismo1}	Valor da ação sísmica para o sismo Tipo 1
A _{sismo2}	Valor da ação sísmica para o sismo Tipo 2
E _{c,eff}	Módulo de elasticidade efetivo do betão
E _{c,m}	Módulo de elasticidade secante do betão
E _d	Valor de dimensionamento do efeito de uma ação
E _s	Valor de cálculo do módulo de elasticidade do aço de uma armadura para betão armado
E _d	Valor de dimensionamento do efeito de uma ação
F _i	Força horizontal atuante no piso <i>i</i>
F _b	Força de corte sísmica na base
G_k	Valor característico de uma ação permanente
I _I	Momento de inércia da secção não fendilhada
Ip	Momento polar de inércia em relação ao centro de massa do piso
K_X	Rigidez de translação em relação ao eixo x
K _y	Rigidez de translação em relação ao eixo y

 K_{Θ} Rigidez de rotação.

- K_w Coeficiente que reflete o modo de rotura predominante nos sistemas estruturais de paredes
- *L_i* Dimensão do piso na direção perpendicular à direção da ação sísmica
- $L_{máx}$ e L_{min} Maior e menor dimensão do edifício em planta, respetivamente, medidas em direções ortogonais
- L_{v} Razão momento/esforço transverso da extremidade do elemento
- $M_1 e M_2$ Momentos resistentes nas extremidades de uma viga ou pilar

 M_{ai} Momento torsor de eixo vertical aplicado no piso *i*

- $M_{Rb,i}$ Valor de cálculo do momento resistente da viga na extremidade *i* no sentido do momento fletor sísmico para o sentido da ação sísmica
- $M_{Rc,i}$ Valor de cálculo do momento resistente do pilar na extremidade *i* no sentido do momento fletor sísmico para o sentido da ação sísmica
- *N_{Ed}* Esforço normal atuante
- P Valor da ação do pré-esforço
- PP Peso próprio
- *P*_{tot} Valor total da carga gravítica acima do piso considerado, incluindo este
- Q Sobrecarga
- $Q_{k,i}$ Valor característico de uma ação variável
- $Q_{k,1}$ Valor característico de uma ação variável base
- *RCP* Restantes cargas permanentes
- *S* Coeficiente do solo
- $S_d(T)$ Espectro de cálculo
- $S_d(T_1)$ Ordenada do espectro de cálculo para o período T_1

REBA	Regulamento de Estruturas de Betão Armado
REBAP	Regulamento de Estruturas de Betão Armado e Pré-esforçado
RGEU	Regulamento Geral das Edificações Urbanas
RSA	Regulamento de Segurança e Acções
RSCCS	Regulamento da Segurança das Construções contra os Sismos
Т	Período de vibração de um sistema linear com um grau de liberdade
<i>T</i> ₁	Período de vibração fundamental do edifício para o movimento lateral na direção considerada
T_B	Limite inferior do período no patamar de aceleração constante
T _C	Limite superior do período no patamar de aceleração constante
T_D	Valor que define no espectro o início do ramo de deslocamento constante
TA	Efeitos acidentais de torção
V _{Ed,CD}	Esforço transverso resistente atuante obtido pela análise segundo o "Capacity Design"
V _{Rd EC8-3}	Resistência ao corte do elemento de um elemento com carregamento cíclico e após a cedência por flexão ser atingida.
V _W	Contribuição da armadura transversal para a resistência ao esforço transverso

Letras minúsculas latinas

a_g	Valor de calculo da aceleração a superfície para um terreno do tipo A
a _{gR}	Valor de referência da aceleração mínima na base de um terreno do tipo A
a_v	Variação de tensão no diagrama de momento fletor

a_{vg}	Valor de cálculo da aceleração à superfície do terreno na direção vertical
b	Menor dimensão do pilar
b _c	Largura da secção transversal do pilar
b _i	Distância entre varões consecutivos
b _o	Dimensão mínima do núcleo confinado
b _t	Largura média da zona comprimida
b_w	Largura da alma da viga
d	Altura útil da secção relativamente a armadura de tração
d'	Altura útil da secção relativamente a armadura de compressão
d_1	Distância entre a fibra mais comprimida da secção e o eixo da armadura comprimida
d_b	Diâmetro da armadura longitudinal
d_{bL}	Diâmetro mínimo dos varões longitudinais
d _e	Deslocamento de um mesmo ponto da estrutura, determinado através de uma análise linear baseada no espectro de resposta de cálculo
d _r	Valor de cálculo do deslocamento relativo entre pisos consecutivos, avaliando a diferença entre os deslocamentos laterais médios (d_s) no topo e na base do piso considerado, tendo em conta os efeitos acidentais de torção
e _{ai}	Excentricidade acidental
e _{ox}	Distância entre centro de rigidez e o centro de gravidade, medida segundo a direção <i>x</i> , perpendicular à direção de cálculo considerada
e _{oy}	Distância entre centro de rigidez e o centro de gravidade, medida segundo a direção <i>y</i> , perpendicular à direção de cálculo considerada
<i>f</i> _c	Tensão de rotura do betão afetado pelo coeficiente de confiança

f _{cd}	Valor de cálculo da tensão de rotura do betão à compressão
f _{ck}	Valor caraterístico de rotura de betão à compressão
f _{ctm}	Tensão média de resistência à tração do betão
f_y	Tensão de cedência do aço afetado pelo coeficiente de confiança
f _{yd}	Valor de cálculo da tensão de cedência à tração do aço das armaduras para betão armado
f_{yk}	Valor caterístico da tensão de cedência à tração do aço das armaduras para betão armado
f _{ywd}	Valor de cálculo da tensão de cedência das armaduras de esforço transverso
h	Altura entre pisos
h _c	Largura do pilar na direção paralela aos varões
k _D	Coeficiente que reflete a classe de ductilidade, igual a 2/3 para a classe DCM
l _{cl}	Comprimento livre do pilar
ls	Raio de giração da massa do piso em planta
m	Massa do piso
m _i	Massas dos pisos
n	Número total de varões longitudinais abraçados lateralmente por cintas ou ganchos
r_x	Raio de torção que corresponde à raiz quadrada da relação entre a rigidez de torção e a rigidez lateral na direção <i>y</i>
r _y	Raio de torção que corresponde à raiz quadrada da relação entre a rigidez de torção e a rigidez lateral na direção x
q	Coeficiente de comportamento

q_0	Valor básico do coeficiente de comportamento, estabelecido em função
	do tipo de sistema estrutural e da regularidade em altura.
S	Espaçamento da armadura transversal
S _h	Espaçamento entre estribos
q _{cqp}	Carregamento uniforme para a combinação quase-permanente de ações
q_d	Coeficiente de comportamento em deslocamento o qual admite o valor de
	q
Ζ	Braço interno da viga, que pode ser calculado por $z = 0.9 \times d$, em que d
	corresponde à distância entre o centro de gravidade das armaduras
	tracionadas e a fibra mais comprimida da secção
<i>Z</i> _i , <i>Z</i> _j	Altura das massas $m_i e m_j$ acima do nível de aplicação da ação sismica
	(fundação ou nível superior de uma cave rígida)

Letras minúsculas gregas

α	Ângulo entre as armaduras de esforço transverso e o eixo longitudinal da
	viga.
α	Coeficiente de eficácia
α	Coeficiente de homogeneização
α1	Valor que se multiplica à ação sísmica horizontal para ser atingida pela primeira vez a resistência à flexão em qualquer elemento da estrutura, mantendo-se constante as outras ações de cálculo
α_{cw}	Coeficiente que tem em conta o estado de tensão do betão comprimido
α _n	Quociente entre a área efetiva confinada e a área no interior das cintas no plano horizontal que contem as cintas
α_s	Quociente a área da secção efetivamente confinada a meia distância entre cintas e a área no interior das cintas

α _u	Valor pelo qual se multiplica à ação sísmica horizontal para que se formem rótulas plásticas num número de secções suficiente para provocar a instabilidade global da estrutura, mantendo as outras ações de cálculo constantes
β	Coeficiente correspondente ao limite inferior do espectro de cálculo horizontal
γ_1	Coeficiente de importância
γ _c	Coeficiente parcial de segurança relativo do betão
Yel	Fator de redução
γ_G	Coeficiente parcial relativo às ações permanentes
γ_Q	Coeficiente parcial relativo às ações variáveis
γ_P	Coeficiente parcial relativo às ações de pré-esforço
γ_s	Coeficiente parcial de segurança relativo do aço
Υ _{Rd}	Coeficiente de sobrerresistência por endurecimento do aço, considerado igual a 1,0 para as estruturas da classe DCM
Υ _{Rd}	Coeficiente de incerteza do modelo relativo ao valor de cálculo das resistências, considerado igual a 1,0 para a classe DCM
Ϋ́Rd	Coeficiente de sobrerresistência por endurecimento do aço e o confinamento do betão na zona de compressão da secção, considerado igual a 1,1 para as estruturas da classe DCM
δ_1	Flecha instantânea, considerando as caraterísticas da secção não fendilhada
δ_{∞}	Flecha a longo prazo, considerando as caraterísticas da secção não fendilhada
ε _{sy,d}	Valor de cálculo da extensão de cedência à tração do aço

xxi

η	Coeficiente de correção do amortecimento com o valor de referência η =
	1 para 5% de amortecimento viscoso
θ	Coeficiente de sensibilidade ao deslocamento relativo entre pisos
θ	Ângulo que define a inclinação das escoras
$ heta_E$	Valor das exigências em deformação retirados da análise
θ_y	Valor da deformação de cedência
$ heta_{um}$	Valor das capacidades em deformações últimas
λ	Fator de correção
$\mu_{ m \varphi}$	Fator de ductilidade em curvatura
μ^{pl}_{Δ}	Exigência de ductilidade em deslocamento
ν	Coeficiente de redução da ação sísmica, que segundo EC8-1 toma o valor
	de 0,4 para a Ação Sísmica do Tipo 1 e o valor de 0,55 para a Ação
	Sísmica do Tipo 2
v	Coeficiente de Poisson
ν_1	Coeficiente de redução da resistência do betão fendilhado por transverso
ν_d	Esforço normal reduzido de cálculo para a situação de projeto sísmica
ho'	Taxa de armadura da zona comprimida
$ ho_d$	Percentagem de armadura transversal de reforço, caso exista, em cada
	direção diagonal
$ \rho_{sx} $	Percentagem de armadura transversal paralela à direção x
$ ho_w$	Taxa de armadura de esforço transverso
σ_{cp}	Tensão de compressão no betão devida a um esforço normal
Ø _y	Curvatura de cedência na extremidade do elemento
Ψ_0	Coeficiente de combinação para as ações variáveis

- Ψ_2 Coeficiente de combinação quase-permanente para as ações variáveis ω Taxa mecânica de armadura de tração
- ω' Taxa mecânica de armadura de compressão
- $\omega_{\omega d}$ Taxa volumétrica de cintas nas zonas críticas

1 INTRODUÇÃO

1.1 Enquadramento

A ocorrência de um sismo tem impacto não só ao nível das estruturas, mas também no que concerne à segurança das populações. Por este motivo existe uma crescente preocupação na construção de estruturas sismo-resistentes.

Até 1958 as normas portuguesas para projetos de engenharia civil não tinham em conta o efeito do sismo, tendo sido criado nesse ano o Regulamento da Segurança das Construções contra os Sismos (RSCCS), que em conjunto com o Regulamento Geral das Edificações Urbanas (RGEU), tornaram-se nas primeiras orientações regulamentares para construção de estruturas face a ação sísmica. Em 1961, o RSCCS foi revogado, sendo aprovado em 18 de Novembro do mesmo ano o Regulamento de Solicitações em Edifícios e Pontes [1][2].

Passados cinco anos, em 1966 foi aprovado o Regulamento de Estruturas de Betão Armado (REBA) com algumas disposições descritas no RSCCS. Mesmo depois do aparecimento destes regulamentos não se dava tanta importância aos efeitos da ação sísmica. Apenas a partir de 1983, com a aprovação do Regulamento de Segurança e Acções (RSA) e do Regulamento de Estruturas de Betão Armado e Pré-esforçado (REBAP) é que os efeitos da ação sísmica foram considerados de forma próxima às exigências reais [3].

Apenas na última década do século passado (anos 90) é que foram criados os Eurocódigos, que correspondem a um conjunto de normas para projetos de obras de engenharia civil, comuns aos países pertencentes ao CEN (Comité Europeu da Normalização). Entre estas normas encontram-se os seguintes Eurocódigos: Eurocódigo 0 – Bases para o Projecto de Estruturas (EC0), Eurocódigo 1 – Acções em Estruturas (EC1), Eurocódigo 2 – Projecto de Estruturas em Betão (EC2) e o Eurocódigo 8 – Projecto de Estruturas para Resistência aos Sismos.

O EC0 estabelece as combinações de ações e bases de verificação de segurança, enquanto o EC1 define as ações, exceto a ação sísmica [4][5]. O EC2 determina as verificações de segurança e pormenorização dos elementos [6]. Já o EC8 define a ação sísmica e os aspetos para o dimensionamento e pormenorização dos elementos para estruturas resistentes aos sismos [7]. Uma vez que nem todas as regiões dos Estados-membros da União Europeia possuem as mesmas caraterísticas, os Eurocódigos reservam uma secção em aberto para que cada pais possa definir os parâmetros correspondentes a cada região.

Em Portugal os projetos de estruturas de betão armado estão ainda regulamentados pelo RSA e pelo REBAP, mas prevê-se que num futuro próximo os Eurocódigos entrem em vigor visto que representam o futuro do dimensionamento estrutural [8][9].

1.2 Objetivos e organização da dissertação

Na presente dissertação pretende-se dimensionar um edifício de acordo com os pressupostos do Eurocódigo 8 – Parte 1: Regras Gerais, Acções Sísmicas e Regras para Edifícios, e potencialmente avaliar a segurança deste edifício de acordo com o Eurocódigo 8 – Parte 3. Desta forma pretende-se analisar os pressupostos da avaliação da segurança de edifícios projetados à luz da nova regulamentação.

1.3 Organização da dissertação

Esta dissertação é constituída por quatro capítulos, apresentando-se no primeiro capítulo a organização e objetivos do trabalho.

O segundo capítulo está dividido em três partes. A primeira parte corresponde à modelação da estrutura. Na segunda parte faz-se a análise sísmica do edifício de acordo e por fim na terceira parte procede-se ao dimensionamento e verificação da segurança dos elementos estruturais de acordo com os princípios presentes nos EC0, EC1, EC2 e EC8 - Parte 1.

No terceiro capítulo apresenta-se a avaliação da segurança do edifício em questão de acordo com os pressupostos do Eurocódigo 8 – Parte 3, tendo em conta o dimensionamento feito no capítulo anterior.

No quarto capítulo apresentam-se as conclusões e considerações finais.

2 DIMENSIONAMENTO ESTRUTURAL

2.1 Introdução

O presente capítulo tem como objetivo o dimensionamento da estrutura seguindo os EC0, EC1, EC2 e EC8-1. Em primeiro lugar faz-se uma análise dos desenhos de arquitetura, define-se a solução estrutural e avaliam-se as ações a que o edifício está submetido, tendo em atenção os princípios presentes na regulamentação que entrará em vigor brevemente (Eurocódigos).

Posteriormente apresenta-se a descrição das opções tomadas na modelação da estrutura. Por último realiza-se a análise sísmica do edifício e verificam-se os estados limites de acordo com os Eurocódigos 2 e 8.

2.2 Bases arquitetônicas e solução estrutural do edifício em estudo

A estrutura em estudo corresponde a um edifício destinado ao armazenamento de peixe, localizado em Setúbal com uma área de aproximadamente 200m². A cobertura apresenta um degrau sendo que o nível mais baixo encontra-se a Nascente e o mais alto a Poente, estando a laje com menor cota em parte em consola, como se pode observar nas plantas e cortes de arquitetura.

O edifício é constituído por uma estrutura reticulada de pilares e vigas em ambas as direções. Dois dos pilares são interiores e centrais, inicialmente todos com uma secção de $0,30x0,30m^2$, sendo as dimensões das vigas apresentadas na Tabela 2.1.

Viga	a (m)	h (m)
V1	0,30	0,75
V2	0,30	0,60
V3	0,30	0,40
V4	0,30	0,75
V5	0,30	0,40
V6	0,30	0,40
V7	0,30	0,40
V8	0,30	0,40
V9	0,30	0,40
V10	0,30	0,40
V11	0,30	0,40
V12	0,30	0,40

Tabela 2.1 – Dimensões das vigas do edifício

Para a definição dos materiais estruturais tiveram-se em conta as especificações presentes nos Eurocódigos 2 e 8 - Parte 1.

A cláusula 5.3.2 do EC8-1 estipula a utilização de armadura de aço da classe B ou C, nas zonas críticas¹ dos elementos resistentes à ação sísmica, prescrita no o Anexo C do EC2.

Por sua vez, a cláusula 5.4.1.1(1)P do EC8-1 institui que não deve ser utilizado betão de classe inferior a C16/20 nesses elementos. Por fim a cláusula 5.4.1.1(2)P do EC8-1 define que se devem usar apenas varões nervurados nas armaduras nas zonas críticas dos elementos resistentes à ação sísmica das estruturas de classe DCM.

Uma vez avaliadas as condições impostas pelas normas caracterizam-se os materiais adotados:

> Betão

As caraterísticas do betão a utilizar basearam-se na Norma NP EN 206-1. Segundo a mesma, as condições de durabilidade deste material dependem das classes de exposição ambiental a que a estrutura está submetida. Analisando de forma sucinta os elementos estruturais em estudo, concluiu-se que as classes de exposição que mais se adaptam ao projeto são a classe XC1(Pt) para os elementos estruturais, sujeitos a ambientes secos ou puramente húmidos. Por sua vez foi utilizada a classe XC2(Pt) em fundações, dado que estão em contacto com o terreno, ambiente húmido raramente seco.

Uma vez escolhida a classe de exposição do betão recorreu-se à Especificação LNEC 464 para determinar a classe de resistência mínima do betão C25/30, com as seguintes caraterísticas:

- $\checkmark f_{ck} = 25 MPa \qquad (Quadro 3.1 do EC2)$
- ✓ $f_{cd} = 16,7 MPa$ (Quadro 3.1 do EC2)
- ✓ $f_{ctm} = 2,6 MPa$ (Quadro 3.1 do EC2)
- ✓ $f_{ctk \ 0.05} = 2,0 \ MPa$ (Quadro 3.1 do EC2)
- ✓ $f_{ctk \ 0.95} = 3,3 Mpa$ (Quadro 3.1 do EC2)

¹ Entende-se por zona crítica a parte do elemento onde se localiza a capacidade dissipativa, ou seja, região onde existe a probabilidade de formação de rótulas plásticas.

✓	$E_{cm} = 30,5 GPa$	(Quadro 3.1 do EC2)
✓	$v_c = 0,2$	(Quadro 3.1 do EC2)
✓	$\gamma_c = 24 KN/m^3$	(Quadro 3.1 do EC2)

≻ Aço

Visto que poderá ocorrer a plastificação das armaduras nas zonas criticas dos elementos estruturais, utilizou-se um aço da Classe C, que corresponde a um aço com ductilidade alta, mais concretamente o aço A400NR SD, com as seguintes caraterísticas:

✓	$f_{yk} = 400 Mpa$	(Anexo C do EC2)
✓	$E_s = 200 Gpa$	(Cláusula 3.2.7 (2) do EC2)
√	$\varepsilon_{uk} \geq 7,5\%$	(Anexo C do EC2)
✓	$\gamma_s = 78,5 \ KN/m^3$	(Artigo 3.2.7 (3) do EC2)
✓	$f_{yd} = 348 Mpa$	

2.3 Ações

Nesta secção foram tidos em conta os pressupostos presentes nos EC0 e EC1 para definição das ações e combinações de ações.

2.3.1 Cargas Permanentes e sobrecargas

As cargas permanentes resultam de dois conjuntos de ações, sendo o primeiro composto unicamente pelo peso próprio da estrutura. Por sua vez, o segundo conjunto designado por restante carga permanente (RCP) engloba o peso dos materiais não estruturais, neste caso, o peso próprio do revestimento. O revestimento da estrutura em estudo é constituído por uma camada de forma com um peso de 2,5 kN/m².

Os valores das sobrecargas da estrutura foram definidos a partir da Tabela 6.10 do EC1, que estabelece 0,4 kN/m² para coberturas da categoria H (não acessíveis). Foi também tida em conta a cláusula 9.8.3 (2) do EC2, que define uma carga de 10 kN/m para as vigas de fundação.

2.3.2 Ação Sísmica

Para a definição da ação sísmica, usada na análise e dimensionamento estrutural, foram considerados os princípios nos quais se fundamenta o EC8-1. Segundo a cláusula 1.1.1(1)P do EC8-1, as estruturas sujeitas a ações sísmicas devem garantir os seguintes requisitos:

- ✓ Proteção das vidas humanas;
- ✓ Limitação dos danos;
- ✓ Garantir operacionalidade das estruturas importantes para a proteção civil.

De acordo com a cláusula 2.1(1)P do EC8-1 é necessário garantir, com certo grau de fiabilidade, o não colapso da estrutura e a limitação de danos. Apenas desta maneira se poderá assegurar o cumprimento dos requisitos supracitados.

O primeiro requisito, não ocorrência de colapso, está relacionado com o Estado Limite Último e tem como finalidade a precaução da ocorrência de um colapso global ou local da estrutura quando sujeita à ação sísmica, assegurando simultaneamente a integridade estrutural e a capacidade resistente residual. Por sua vez, o segundo requisito, limitação de danos, está associado ao Estado Limite de Utilização e tem como objetivo garantir que a estrutura resista à ação sísmica sem que ocorram danos e limitação da utilização.

2.3.2.1 Zonas Sísmicas

No EC8-1 são designados dois tipos distintos de ação sísmica com distâncias focais, magnitudes e durações diferentes: a Ação do Tipo 1 e a Ação do Tipo 2. Estas Ações Sísmicas são definidas de forma probabilística com base nas zonas sismogênicas [10].

A Ação Sísmica do Tipo 1 está associada a sismos com epicentro na falha que separa as placas tectónicas africana e europeia, com elevada magnitude, maior duração, grande distância focal e frequências baixas. Por outro lado, a Ação Sísmica do Tipo 2 está associada a sismos com magnitude moderada, menor duração, pequena distancia focal, elevadas frequências, e com epicentro em território nacional [10].

Para ambos os tipos de ação sísmica são definidas cinco zonas, associadas a valores de aceleração máxima de referência (a_{gR}) diferentes. O EC8-1 estabelece que para Portugal Continental é necessário considerar os dois tipos de Ações Sísmicas, estando

Setúbal, onde se localiza o edifício em estudo, na Zona 1.3 para a Ação Sísmica do Tipo 1, e na Zona 2.3 para a Ação Sísmica do Tipo 2. Quanto às Regiões Autónomas, o regulamento define que seja considerada apenas a Ação Sísmica do Tipo 1 para o Arquipélago da Madeira, e a Ação Sísmica do Tipo 2 para o Arquipélago dos Açores, como se pode observar na Figura 2.1 [10].

Figura 2.1 – Zonamento sísmico de Portugal para os dois tipos de Ação Sísmica (7)

2.3.2.2 Tipos de Terreno

Um dos fatores a ter em conta no dimensionamento sísmico é o tipo de terreno, uma vez que a resistência sísmica de um edifício depende também das condições do terreno onde está construído. Sendo assim, a cláusula 3.1.2 do EC8-1 define sete tipos de terreno (A, B, C, D, E, S₁ e S₂) que são classificados segundo os seguintes parâmetros:

- ✓ Velocidade média das ondas de corte ($v_{s,30}$);
- ✓ Valores obtidos no ensaio N_{spt} ;
- ✓ Resistência não drenada do solo (C_u).

Após a análise destes aspetos concluiu-se que o terreno do edifício em estudo é do tipo C.

2.3.2.3 Classes de Importância

Segundo a cláusula 4.2.5(1)P do EC8-1 os edifícios podem ser classificados em quatro classes de importância, distintas entre si pelas consequências do colapso em termos de vidas humanas, da sua importância para a segurança pública e para a proteção civil após um evento sísmico. As classes de importância e seus respetivos coeficientes de importância são apresentados na Tabela 2.2.

		Coeficiente
Classes de	Edifícios	de
Importancia		importância
Ι	Edifícios de importância menor para a segurança pública, como edifícios agrícolas	0,8
II	Edifícios correntes que não pertencem às outras categorias	1,0
Ш	IIIEdifícios onde a resistência sísmica é importante tendo er conta as consequências associadas ao colapso, como escolas	
IV	Edifícios com importância vital para a proteção civil e para a segurança pública, como hospitais e quartéis de bombeiros	1,4

Tabela 2.2 – Classes de importância e respetivos coeficientes de importância [7]

Uma vez que o edifício em estudo é um edifício corrente, de acordo com a Tabela 2.2 é possível concluir que pertence à classe de importância II apresentando um coeficiente de importância de 1,0.

2.3.2.4 Representação da Ação Sísmica

O movimento sísmico num determinado ponto da superfície do terreno, segundo a cláusula 3.2.2.1(1)P do EC8-1, pode ser representado por um espectro de resposta elástica da aceleração à superfície do terreno, dedignado por *"espectro de resposta"*.

De acordo com a cláusula 3.2.2.2 do EC8-1 a ação sísmica em território nacional pode ser representada através de espectros de resposta do tipo 1 e espectro de resposta do tipo
2, como se pode ver na Figura 2.2, onde se pode verificar que os terrenos mais brandos estão sujeitos a acelerações mais elevadas.

Figura 2.2 – Espectros de resposta para Ação Sísmica Tipo 1 e Tipo 2 para estruturas com coeficiente de amortecimento de 5 % [7]

Resposta elástica horizontal.

Segundo a cláusula 3.2.2.2 do EC8-1, o espectro de resposta elástica $S_e(T)$, para as componentes horizontais, para um coeficiente de amortecimento igual a 5% é definido através das seguintes expressões:

$$0 \le T \le T_B: S_e(T) = a_g. S\left[1 + \frac{T}{T_B}.(\eta. 2, 5 - 1)\right]$$
(2.1)

$$T_B \le T \le T_C : S_e(T) = a_g . S. \eta. 2,5$$
 (2.2)

$$T_C \le T \le T_D: S_e(T) = a_g. S. \eta. 2, 5. \left[\frac{T_C}{T}\right]$$
 (2.3)

$$T_C \le T \le T_D: S_e(T) = a_g. S. \eta. 2, 5. \left[\frac{T_C T_D}{T^2}\right]$$
 (2.4)

Sendo:

- ✓ $S_e(T)$ Espectro de resposta elástica;
- \checkmark T Período de vibração de um sistema linear com um grau de liberdade;
- \checkmark T_B Limite inferior do período no patamar de aceleração constante;
- \checkmark T_C Limite superior do período no patamar de aceleração constante;
- ✓ T_D Valor que define no espectro o início do ramo de deslocamento constante;
- ✓ S Coeficiente do solo;
- ✓ q Coeficiente de comportamento ²;
- ✓ β Coeficiente correspondente ao limite inferior do espectro de cálculo horizontal (valor recomendado de 0,2);
- ✓ a_g Valor de calculo da aceleração a superfície para um terreno do tipo A ($a_g = \gamma_1 . a_{gR}$);
 - *a_{gR}* Valor de referência da aceleração mínima na à superfície para um terreno do tipo A;
 - γ_1 Coeficiente de importância.

O valor do coeficiente de solo (*S*), em Portugal, pode ser calculado segundo as seguintes expressões (Anexo Nacional-3.2.2.2(2)P do EC8 – Parte 1):

se
$$a_g \le 1 m/s^2 \implies S = S_{max}$$
 (2.5)

$$se \ 1 \ m/s^2 < a_g \le 4 \ m/s^2 \implies S = S_{max} - \frac{S_{max} - 1}{3} \times (a_g - 1)$$
 (2.6)

se
$$a_g \le 1 m/s^2 \implies S = 1,0$$
 (2.7)

Resposta elástica vertical

De acordo com a cláusula 3.2.2.3(1)P do EC8-1 as expressões que permitem determinar a componente vertical da ação sísmica S_{ve} (*T*) são as seguintes:

$$0 \le T \le T_B: S_e(T) = a_{vg}.S\left[1 + \frac{T}{T_B}.(\eta.3 - 1)\right]$$
(2.8)

$$T_B \le T \le T_C : S_e(T) = a_{vg}.\eta.3$$
 (2.9)

² Os aspetos relacionados com o coeficiente de comportamento q são abordados no ponto 2.5.4.

$$T_C \le T \le T_D: S_e(T) = a_{vg}.\eta.3.\frac{T_C}{T}$$
 (2.10)

$$T_C \le T \le T_D: S_e(T) = a_{\nu g}. \eta. 3. \frac{T_C. T_D.}{T^2}$$
 (2.11)

Sendo:

- ✓ a_{vg} Valor de cálculo da aceleração à superfície do terreno na direção vertical;
- ✓ η Coeficiente de correção do amortecimento com o valor de referência η = 1 para 5% de amortecimento viscoso.

Os valores dos parâmetros definidores dos espectros de resposta elásticos verticais podem observar-se na Tabela 2.3 (referente ao NA do EC8-1).

Tabela 2.3 – Valores dos parâmetros definidores dos espectros de resposta elásticos verticais [7]

Ação sísmica	avg/ag	$T_{B}\left(s\right)$	$T_{C}(s)$	$T_{D}(s)$
Tipo 1	0,75	0,05	0,25	1,00
Tipo 2	0,95	0,05	0,15	1,00

A cláusula 4.3.3.5.2(1)P do EC8-1 estabelece que se o valor de a_{vg} for superior a 2,5m/s², deve ser considerada a componente vertical da ação sísmica para os seguintes casos:

- ✓ Elementos estruturais horizontais ou quase horizontais com 20m ou mais;
- Elementos horizontais ou quase horizontais em consola com um comprimento superior a 5m;
- ✓ Vigas que suportam pilares;
- ✓ Estruturas com isolamento base.

Para o edifício em análise os valores da aceleração à superfície do terreno na direção vertical são apresentados na Tabela 2.4.

Ação Sísmica	γ_1	a_{gr} (m/s ²)	$a_g (m/s^2)$	a_{vg} (m/s ²)
Tipo 1	1,0	1,5	1,5	1,125
Tipo 2	1,0	1,7	1,7	1,615

Tabela 2.4 – Determinação do parâmetro avg

Analisando os parágrafos anteriores chega-se à conclusão que no caso em estudo não é necessário considerar a componente vertical da ação sísmica uma vez que os valores de a_{vg} são inferiores a 2,5 m/s².

2.3.2.5 Combinações de Ações

De modo a verificar os Estados Limites tiveram-se em conta os pressupostos relativos às combinações de ações presentes no EC0. Para o dimensionamento do edifício em estudo foram consideradas as seguintes combinações:

✓ Estados Limites Últimos - Combinação Fundamental (Cláusula 6.4.3.2 do EC0):

$$E_{d} = \sum_{j \ge 1} \gamma_{G,J} G_{k,j} + \gamma_{P} P + \gamma_{Q,1} Q_{k,1} + \sum_{j>1} \gamma_{Q,i} \Psi_{0,i} Q_{k,i}$$
(2.12)

✓ Estados Limites Últimos - Ação Sísmica (Cláusula 6.4.3.4 do EC0);

$$E_{d} = \sum_{j \ge 1} G_{k,j} + P'' + A_{Ed} + \sum_{j > 1} \Psi_{2,i} Q_{k,i}$$
(2.13)

✓ Estados Limites de Utilização – Combinação Quase-Permanente (Cláusula 6.5.3 (c) do EC0);

$$E_{d} = \sum_{j \ge 1} G_{k,j} + P' + \sum_{j > 1} \Psi_{2,i} Q_{k,i}$$
(2.14)

Onde:

- "+" Significa "a combinar com";
- Σ Significa "o efeito combinado de";
- γ_G Coeficiente parcial relativo às ações permanentes;
- γ_Q Coeficiente parcial relativo às ações variáveis;
- γ_P Coeficiente parcial relativo às ações de pré-esforço;
- Ψ_0 Coeficiente de combinação para as ações variáveis;
- Ψ_2 Coeficiente de combinação quase-permanente para as ações variáveis;
- E_d Valor de dimensionamento do efeito de uma ação;
- G_k Valor característico de uma ação permanente;
- $Q_{k,i}$ Valor característico de uma ação variável;
- $Q_{k,1}$ Valor característico de uma ação variável base;
- *P* Valor da ação do pré-esforço;
- A_{Ed} Valor de cálculo da ação sísmica ($A_{Ed} = \gamma_1 \times A_{Ek}$);
 - A_{Ek} Valor característico da ação sísmica para o período de retorno de referência;
 - $\circ \gamma_1$ Coeficiente de importância.

Os coeficientes parciais encontram-se definidos no Quadro A1.2(B) do EC0, os quais tomam os valores de 1,35 para as ações permanentes e 1,5 para as ações variáveis.

Uma vez analisados os requisitos anteriormente mencionados, e tendo em conta os pressupostos presentes no EC8-1 relativos aos efeitos de torção acidental (TA) referidos no ponto 2.5.6, as combinações de ações e os seus respetivos coeficientes parciais utilizados no dimensionamento do projeto em estudo são:

✓ Estados Limites Últimos - Combinação Fundamental:

$$1,35 \times (PP + RCP) + 1,5 \times Q$$
 (2.15)

✓ Estados Limites Últimos – Ação Sísmica ± Efeitos Acidentais de Torção:

Combinação 1:
$$(PP + RCP) + A_{sismo1}$$
 (2.16)

Combinação 2:
$$(PP + RCP) + A_{sismo2}$$
 (2.17)

Combinação 3:
$$(PP + RCP) + A_{sismo1} + TA$$
 (2.18)

Combinação 4:
$$(PP + RCP) + A_{sismo1} - TA$$
 (2.19)

Combinação 5:
$$(PP + RCP) + A_{sismo2} + TA$$
 (2.20)

Combinação 6:
$$(PP + RCP) + A_{sismo2} - TA$$
 (2.21)

✓ Estados Limites de Utilização: Combinação Quase-Permanente:

$$(PP + RCP) \tag{2.22}$$

Sendo:

- *PP* Peso próprio;
- *RCP* Restantes cargas permanentes;
- *Q* Sobrecarga;
- A_{sismo1} Valor da ação sísmica para o sismo Tipo 1;
- A_{sismo2} Valor da ação sísmica para o sismo Tipo 2;
- *TA* Efeitos acidentais de torção.

Para as combinações dos Estados Limites de Utilização e dos Estados Limites Últimos relativos à ação sísmica, não foram considerados os valores das cargas variáveis uma vez que a sobrecarga do edifício em estudo é do tipo H e segundo o Quadro A1. 1 do ECO apresentam o valor de Ψ_2 nulo.

2.4 Modelação

O modelo do edifício foi realizado com recurso ao programa de cálculo automático SAP2000 [11], considerando-se apenas os elementos estruturais como mostra a Figura 2.3.

Figura 2.3 – Vista 3D do edifício em SAP2000

Em primeiro lugar teve-se em atenção a definição das unidades usadas no modelo, adotando-se as unidades do Sistema Internacional, m para as distâncias, kN para as forças e kN.m para os momentos.

Para a modelação da estrutura foi criada uma malha com as distâncias em XY correspondentes ao limite do edifício e as distâncias entre os eixos dos pilares. Para o eixo Z teve-se em atenção a altura de cada nível de laje, considerando-se que o topo das sapatas de fundação se encontram 50cm abaixo do piso térreo. Uma vez definidas estas distâncias a malha passou a ter uma dimensão de 18,62 m segundo a direção X, 11,65 m segundo Y e 4,99 m segundo Z.

Em seguida foram definidos os materiais constituintes da estrutura: betão e aço, como se pode observar na Figura 2.4, cujas caraterísticas foram abordadas na secção 2.2

Material Property Data	Material Property Data
General Data Material Name and Display Enlor Material Name and Display Enlor Concrete Material Notes Modify/Show Notes Weight and Mass Weight per Unit Volume 25. Mass per Unit Volume 2,5433 Isotropic Property Data Modulus of Elasticity, E 30500000 Poisson's Ratio, U Coefficient of Thermal Expansion, A 1,170E-05 Shear Modulus, G	General Data Material Name and Display Color Material Name and Display Color Material Type Rebar Material Notes Modify/Show Notes Weight and Mass Weight per Unit Volume (R, 0048) Uniaxial Property Data Modulus of Elasticity, E Poisson's Ratio, U Coefficient of Thermal Expansion, A Shear Modulus, G
Other Properties for Concrete Materials Specified Concrete Compressive Strength, f'c Lightweight Concrete Shear Strength Reduction Factor Switch To Advanced Property Display OK Cancel A)	Other Properties for Rebar Materials Minimum Yield Stress, Fy 400000, Minimum Tensile Stress, Fu 460000, Expected Yield Stress, Fye 400000, Expected Tensile Stress, Fue 460000, Switch To Advanced Property Display 0K Cancel b)

Figura 2.4 – Materiais estruturais a) betão; b) aço

Uma vez estabelecidos os materiais estruturais prosseguiu-se à modelação dos elementos estruturais. Para a definição dos pilares foram usados elementos barra (*frame*) do tipo "*column*", onde se teve em conta as dimensões e tipo de material, como se pode observar na Figura 2.5.

Rectangular Section	Rectangular Section
Section Name P30x30 Section Notes Modify/Show Notes Properties Property Modifiers	Section Name V30x40 Section Notes Modify/Show Notes Properties Property Modifiers
Section Properties Set Modifiers + C25/30 -	Section Properties Set Modifiers + C25/30
Dimensions Depth (13) 0.3 Width (12) 0.3	Dimensions 0,4 2 Width (t2) 0,3 0,4 <
Display Color	Display Color
Concrete Reinforcement OK Cancel 2)	Concrete Reinforcement

Figura 2.5 – Caraterísticas de elementos. a) Pilar b) Viga

As dimensões dos pilares foram atribuídas atendendo aos eixos locais definidos pelo programa, estando os eixos locais 2 e 3 no plano XY, e o eixo local 1 perpendicular a este plano. De notar que os eixos locais 1, 2 e 3 são paralelos aos eixos Z,X e Y, respetivamente. Ainda foram também considerados os aspetos relacionados com as armaduras tais como: tipo de aço, configuração das armaduras e recobrimento.

A modelação das vigas foi realizada de modo similar à dos pilares, sendo que para a modelação destes elementos usaram-se elementos "*frame*" do tipo "*beam*", e os eixos locais tomam outra orientação. O eixo local 3 é paralelo ao eixo Z, como se pode verificar na Figura 2.5 b), e o eixos locais 1 e 2 paralelos a X ou Y dependendo da disposição espacial da viga. Atendendo à cláusula 4.3.1 (7)³ do EC8-1, os momentos de inércia das secções dos pilares e vigas foram diminuídos para metade do seu valor original.

As lajes foram tidas em consideração na modelação da estrutura, de modo a garantir o comportamento de diafragma rígido do piso, ou seja, de modo que a deformação do piso no seu plano fosse desprezável e provocasse um efeito reduzido na distribuição das forças entre elementos verticais [7].

³ De acordo com a cláusula 4.3.1(7) do EC8-1, poderá considerar-se que as propriedades de rigidez elástica de flexão e de esforço transverso dos elementos de betão armado e de alvenaria são iguais a metade da rigidez correspondentes dos elementos não fendilhados, a não ser que seja realizada uma análise mais rigorosa dos elementos fendilhados.

Para definir a laje do edifício foram considerados elementos de área do tipo "*Shell-Thick*", como mostra a Figura 2.6. Este tipo de modelação da laje é aconselhável, a não ser que existam distorções notáveis na mesma, má qualidade dos elementos e se as deformações por esforço transverso forem mínimas [11].

Tal como nos elementos sísmicos primários, também se teve em atenção a dimensão e o tipo de material da laje.

Sh	ell Section Data	
	Section Name	L22
	Section Notes	Modify/Show
		Display Color 📃
	Туре	
	C Shell - Thin	
	Shell - Thick	
	C Plate - Thin	
	C Plate Thick	
	C Membrane	
	C Shell - Layered/Nonl	inear
	Modify/SI	now Layer Definition
	Material	
	Material Name	+ C25/30 🔹
	Material Angle	0,
	- Thickness	
	Membrane	0,22
	Bending	0,22
	Concrete Shell Section De	esign Parameters
	Modify/Show Sh	ell Design Parameters
	Stiffness Modifiers	- Temp Dependent Properties
	Set Modifiers	Thermal Properties
	<u> </u>	Cancel

Figura 2.6 – Definição da laje do edifício

Uma vez concluída a caraterização dos elementos estruturais passou-se à introdução do espectro de resposta calculado de acordo com o ponto 2.5.5, prosseguindo-se assim para a definição das ações e combinações de ações abordadas anteriormente no ponto 2.3.

Para que a laje mantivesse o comportamento de diafragma rígido na análise do modelo do edifício e dimensionamento estrutural, bloquearam-se todos os nós da daquela com a opção "*diaphragm*" do tipo "*auto*", como se pode observar na Figura 2.7, para que a cobertura tivesse o comportamento de diafragma rígido.

Diaphragm Constraint				
Constraint Name DIAPH				
Coordinate System GLOBAL 🗨				
Constraint Axis				
O X Axis 💽 Auto				
O Y Axis				
O Z Axis				
Assign a different diaphragm constraint to each different selected Z level				

Figura 2.7 – Bloqueio dos nós da laje

Após a conclusão da modelação e análise da estrutura constatou-se que os pilares com as dimensões iniciais apresentavam armadura superior à armadura máxima (4%), tendose assim de alterar a dimensão dos pilares. Como se pode verificar na Tabela 2.5 apenas os pilares centrais permaneceram com as mesmas dimensões.

Dilon	Dimensõe	es iniciais	Dimensõ	ões finais
Pilar	a (m)	b (m)	a (m)	b (m)
P1	0,30	0,30	0,30	1,10
P2	0,30	0,30	0,70	0,30
P3	0,30	0,30	0,70	0,30
P4	0,30	0,30	0,30	0,70
P5.1	0,30	0,30	0,30	0,70
P5.2	0,30	0,30	0,30	0,70
P6.1	0,30	0,30	0,30	0,30
P6.2	0,30	0,30	0,30	0,30
P7.1	0,30	0,30	0,30	0,30
P7.2	0,30	0,30	0,30	0,30
P8.1	0,30	0,30	0,30	0,70
P8.2	0,30	0,30	0,30	0,70
P9	0,30	0,30	0,30	0,70
P10	0,30	0,30	0,70	0,30
P11	0,30	0,30	0,70	0,30
P12	0,30	0,30	0,30	0,70

Tabela 2.5 – Alteração das dimensões dos pilares

Após estas alterações foi necessário recalcular a estrutura, sendo que nos próximos capítulos todos os valores e análises são efetuados com as novas dimensões.

2.5 Análise Sísmica

Quando um sismo ocorre há uma propagação de ondas pelos solos, que são transmitidas à estrutura através das fundações [10].

2.5.1 Análise modal

De acordo com a cláusula 4.3.3.3.1(3) do EC8-1, devem considerar-se as respostas dos modos de vibração que contribuem de forma significativa para a resposta global de uma estrutura. Este requisito pode ser safisfeito se puder ser demonstrada uma das seguintes condições:

- ✓ A soma das massas totais efetivas tidas em conta na análise modal representa mais de 90% da massa total da estrutura;
- Todos os modos com massas modais efetivas superiores a 5% da massa total são tidos em conta.

Neste sentido, optou-se por considerar os 12 modos de vibração que o programa de cálculo automático apresenta por defeito para a análise da estrutura, tendo-se obtido o período e a frequência para cada modo de vibração, apresentados na Tabela 2.6.

Modo	Período (s)	Frequência (Hz)
1	0,552	1,81
2	0,514	1,95
3	0,394	2,54
4	0,124	8,08
5	0,121	8,26
6	0,114	8,78
7	0,112	8,95
8	0,108	9,23
9	0,106	9,47
10	0,099	10,09
11	0,095	10,49
12	0,094	10,60

Tabela 2.6 – Frequências e períodos da estrutura

A cláusula 4.3.3.3.2 do EC8-1 define que as respostas de dois modos de vibração, T_i e T_j , podem ser considerados independentes entre si se $T_j \leq 0.9T_i$. Caso não se verifique esta condição, a mesma cláusula prevê que se devem adotar métodos mais rigorosos para a combinação dos máximos modais, como por exemplo a "Combinação Quadrática Completa". Esta combinação foi utilizada na modelação estrutural do edifício, como se pode observar na Figura 2.8.

Load Case Name	Notes	Load Case Type
ACASE1	Set Def Name Modify/Show	Response Spectrum 🗨 Design
Modal Combination		Directional Combination
• CQC	GMC ft 1.	SRSS
C SRSS	GMC 12 0	C CQC3
C Absolute		C Absolute
C GMC	Periodic + Rigid Type SRSS 💌	Scale Factor
C NRC 10 Percent		
O Double Sum		
Use Modes from this Mo	dal Load Case MODAL 💌	
Use Modes from this Mo	dal Load Case MODAL	Add Modify
Use Modes from this Mo	dal Load Case MDDAL	Add Modify Delete
Use Modes from this Mo Loads Applied Load Type Loa Accel U1 Show Advanced Lo Other Parameters	dal Load Case MDDAL	Add Modify Delete
Use Modes from this Mo Loads Applied Load Type Loa Accel U1 Show Advanced Lo Other Parameters Model Desping	dal Load Case MODAL	Add Modify Delete

Figura 2.8 – Combinação dos modos de vibração

Relativamente aos fatores de participação de massa dos diferentes modos de vibração, obtiveram-se os seguintes valores (Tabela 2.7).

-				1		
Modo	U_x	$\Sigma(U_x)$	U_y	$\Sigma(U_y)$	Rz	$\Sigma(U_z)$
1	0,0009	0,0009	0,9889	0,9889	0,0550	0,0025
2	0,9621	0,9631	0,0017	0,9906	0,0001	0,0302
3	0,0359	0,9990	0,0027	0,9932	0,0000	0,9921
4	0,0002	0,9992	0,0016	0,9949	0,0736	0,9921
5	0,0002	0,9994	0,0006	0,9954	0,0390	0,9924
6	0,0000	0,9994	0,0000	0,9954	0,0519	0,9924
7	0,0001	0,9995	0,0000	0,9955	0,0018	0,9924
8	0,0003	0,9998	0,0000	0,9955	0,0001	0,9924
9	0,0000	0,9998	0,0013	0,9968	0,0004	0,9925
10	0,0000	0,9998	0,0000	0,9968	0,0006	0,9925
11	0,0000	0,9998	0,0003	0,9971	0,0410	0,9926
12	0,0000	0,9998	0,0002	0,9973	0,0468	0,9926

Tabela 2.7 – Fatores de participação de massa por modo de vibração

Como se pode verificar na Tabela 2.7, os dois primeiros modos apresentam mais de 95% da massa total da estrutura, cumprindo assim o critério supracitado, enquanto que nos outros modos movimenta-se menos de 5% da massa total.

Os períodos correspondentes ao primeiro e ao segundo modo de vibração representam os períodos fundamentais de vibração⁴, para as direções y e x, respetivamente.

2.5.2 Regularidade estrutural

Para efeitos de dimensionamento, os edifícios podem ser classificados em regulares ou não regulares. Tanto as caraterísticas geométricas da estrutura, como a disposição espacial dos elementos estruturais influenciam na distribuição das massas, que por sua vez afetam o comportamento sísmico de um edifício.

A verificação dos critérios associados à regularidade em planta e em altura tem implicações no modelo estrutural, no método de análise e no coeficiente de comportamento.

2.5.2.1 Regularidade em planta

A regularidade em planta está associada à geometria da planta do edifício e à organização dos elementos resistentes [13]. A cláusula 4.2.3.2 do EC8-1 estabelece que, para que um edifício seja classificado como regular em planta tem de satisfazer todas as seguintes condições:

- a) A estrutura do edifício, em planta, deve apresentar uma rigidez lateral e distribuição de massas aproximadamente simétrica em relação a dois eixos ortogonais;
- b) O edifício deve apresentar uma configuração compacta, ou seja, cada piso deve ser delimitado por uma poligonal convexa. Se existirem ângulos reentrantes,

⁴ O conceito de período fundamental de vibração (T_1) é utilizado no cálculo da força de corte sísmica na base e do fator de ductilidade em curvatura, abordados nos pontos 2.5.6 e 2.6.1.1 2.6.1.1.1 a) respetivamente.

caso a rigidez do piso em planta não seja afetada por esses recuos, e se a área existente entre o contorno de cada piso e a linha poligonal envolvente não ultrapasse os 5% da área do piso, poderá ser considerada a regularidade em planta;

- c) A rigidez dos pisos no plano deve ser suficientemente grande quando comparada com a rigidez lateral dos elementos verticais, de modo que a distribuição das forças entre os elementos seja pouco afetada pela deformação do piso.
- d) A esbelteza λ do edifício em planta não deve ser superior a 4, onde:

$$\lambda = \frac{L_{máx}}{L_{min}}$$
(2.23)

Em que, $L_{máx}$ e L_{min} representam a maior e a menor dimensão do edifício em planta, respetivamente, medidas em direções ortogonais.

e) Em cada nível e para cada direção ortogonal de cálculo (x e y), a excentricidade estrutural (e₀) e o raio de torção r devem verificar as seguintes condições:

$$\begin{cases} e_{ox} \le 0.30 \times r_x \\ e_{oy} \le 0.30 \times r_y \end{cases}$$
(2.24)

$$\begin{cases} r_x \ge l_s \\ r_y \ge l_s \end{cases}$$
(2.25)

Onde:

- ✓ e_{ox} Distância entre centro de rigidez e o centro de gravidade, medida segundo a direção *x*, perpendicular à direção de cálculo considerada;
- ✓ e_{oy} Distância entre centro de rigidez e o centro de gravidade, medida segundo a direção *y*, perpendicular à direção de cálculo considerada;
- ✓ r_x Raio de torção que corresponde à raiz quadrada da relação entre a rigidez de torção e a rigidez lateral na direção *y*;

- ✓ r_y Raio de torção que corresponde à raiz quadrada da relação entre a rigidez de torção e a rigidez lateral na direção *x*;
- ✓ l_s Raio de giração da massa do piso em planta.
- f) O centro de rigidez nos edifícios com apenas um piso é definido como o centro de rigidez lateral de todos os elementos sísmicos primários. O raio de torção r é determinado pela raiz quadrada da relação entre a rigidez de torção global em relação ao centro de rigidez global e a rigidez lateral numa direção, atendendo a todos os elementos sísmicos primários na direção considerada, ou seja:

$$\begin{cases} r_{\chi} = \sqrt{\frac{K_{\Theta}}{K_{Y}}} \\ r_{Y} = \sqrt{\frac{K_{\Theta}}{K_{X}}} \end{cases}$$
(2.26)

Sendo:

- K_X Rigidez de translação segundo o eixo x;
- K_v Rigidez de translação segundo o eixo y;
- K_{Θ} Rigidez de torção.

A rigidez de torção e a rigidez global podem ser calculadas tendo em atenção a equação de equilíbrio que é dada pelas seguintes expressões:

$$\begin{cases} F = K \times U \\ M = K \times \theta \end{cases}$$
(2.27)

No que concerne ao raio de giração foi considerada a seguinte expressão:

$$l_s = \sqrt{\frac{I_p}{m}}$$
(2.28)

Em que:

- ✓ I_p Momento polar de inércia em relação ao centro de massa do piso;
- ✓ m Massa do piso.

Caso a planta do piso seja aproximadamente retangular e admitindo que as massas estão distribuídas uniformemente pelo piso, o parâmetro l_s pode ser determinado através da seguite expressão [9]:

$$l_s = \sqrt{\frac{(a^2 + b^2)}{12}}$$
(2.29)

Considerou-se o edifício dividido em duas frações: Poente e Nascente, atendendo ao desnível entre as respetivas lajes de cobertura. Uma vez analisados os aspetos relativos à regularidade em planta anteriormente referidos, chegou-se aos resultados apresentados na Tabela 2.8.

Fração	L _{max} (m)	L _{min} (m)	λ
Poente	16,96	4,98	3,41
Nascente	16,96	5,00	3,39

Tabela 2.8 – Esbelteza (λ) do edifício

Sendo assim, o edifício em estudo cumpre a condição d) do ponto 2.5.2.1, uma vez que a esbelteza (λ) é inferior a 4. Para a determinação das excentricidades de cada fração do edifício, foram calculadas as coordenadas do centro de massa e do centro de rigidez representados na Tabela 2.9 e na Figura 2.9.

Tabela 2.9 - Raio de giração do piso, coordenadas do centro de massa (C.M) e do centro de rigidez

Fração l _s (m)	1. (m)	C.M.		C.R.		$e_{ox}(m)$	e _{ov} (m)
	x (m)	y (m)	x (m)	y (m)		Coy (III)	
Poente	5,68	9,31	3,07	6,84	2,53	2,47	0,54
Nascente	5,10	10,14	8,64	10,14	10,73	0,00	2,09

(C.R), valor da excentricidade estrutural do edifício

Figura 2.9 - Posição do gravidade e do centro de rigidez da estrutura

Na Figura 2.9, os pontos CG_i e CR_i correspondem respetivamente ao centro de gravidade e ao centro de rigidez, de cada fração *i*, em que *i* representa a fração a nascente ou a poente. O cálculo do centro de rigidez de cada fração encontra-se no Anexo 5.2.

De modo a calcular a rigidez de translação e rotação, foram aplicadas forças e momentos ao modelo no centro de rigidez de cada fração, permitindo obter o deslocamento provocado por cada força e a rotação provocada pelo momento. Deste modo foi possível determinar o raio de giração através da expressão (2.26) do presente documento, e obter os resultados presentes na Tabela 2.10 e na Figura 2.11.

Fração	$F_x(kN)$	$U_{x}(m)$	$F_y(kN)$	$U_y(m)$	M _z (kN.m)	θ_{z} (rad)
Poente	1000	1,58E-02	1000	1,68E-02	1000	2,20E-04
Nascente	1000	1,86E-02	1000	2,27E-02	1000	3,20E-04

Tabela 2.10 – Determinação dos deslocamentos e rotação impostos à estrutura

Tabela 2.11 – Determinação da rigidez de translação e rotação

Fração	$l_s(m)$	$K_x(k/m)$	K _y (kN/m)	$K_{e}(kN/m)$	r _x (m)	r _y (m)	0,3.r _x (m)	0,3.r _y (m)
Poente	5,68	6,29E+04	5,92E+04	4,55E+06	8,76	8,50	2,63	2,55
Nascente	5,10	5,35E+04	4,39E+04	3,13E+06	8,44	7,64	2,53	2,29

Uma vez analisadas a Tabela 2.10 e a Tabela 2.11 e tendo e conta a condição e) do ponto 2.4.2.1, chegou-se a conclusão que o edifício é regular em planta.

2.5.2.2 Regularidade em altura

De acordo com a cláusula 4.2.3.2 do EC8-1 um edifício é considerado regular em altura se cumprir os seguintes requisitos:

- a) Em cada piso a massa e a rigidez manterem-se constantes, ou se apresentarem variações que sejam variações graduais, desde a base até o topo do edifício.
- b) Quando o edifício apresenta recuos aplicam-se os seguintes requisitos adicionais:
 - ✓ Se os recuos forem sucessivos e mantiverem uma simetria axial, em qualquer piso o recuo não deve exceder os 20% da dimensão em planta no nível inferior na direção do recuo. Nesta situação podem existir dois casos, que se distinguem entre si pela localização do recuo, como se pode observar na Figura 2.10.

Figura 2.10 – Critérios de regularidade em altura para os casos a) e b) [7]

✓ Caso exista apenas um recuo localizado nos 15% inferiores da altura total do sistema estrutural principal, como se pode ver na Figura 2.11, o recuo não deve exceder os 50 % da dimensão em planta do nível inferior. Neste caso a estrutura da zona da base localizada no interior da projecção vertical dos pisos superiores deverá ser calculada para resistir no mínimo a 75% da força horizontal que se desenvolve nesta zona de um edifício semelhante sem alargamento da base.

Figura 2.11 – Critérios de regularidade em altura para o caso c) [7]

✓ Se os recuos não forem simétricos, a soma dos recuos em cada face não deve exceder os 30% da dimensão em planta ao nível do primeiro piso, e cada recuo não deve ser superior a 10 % da dimensão em planta do nível inferior, como se pode observar na seguinte figura (Figura 2.12).

Figura 2.12 – Critérios de regularidade em altura para recuos não simétricos [7]

Uma vez que o edifício em questão apresenta um recuo com aproximadamente metade da dimensão em planta na direcção y, não é verificada a regularidade em altura.

2.5.3 Elementos Sísmicos Primários e Secundários

A cláusula 4.2.2 do EC8-1 estabelece que os elementos estruturais podem ser classificados em dois tipos, que se distinguem entre si pela capacidade de resistir à ação sísmica. O primeiro tipo corresponde aos elementos sísmicos primários, que consistem em elementos projectados para resistir à ação sísmica, tendo em conta as regras especificas do EC8-1. Já o segundo tipo diz respeito aos elementos sísmicos secundários, que são elementos que não fazem parte do sistema resistente as ações sísmicas.

Na prática, é vantajoso considerar todos os elementos estruturais com capacidade de dissipação de energia como sendo primários, mobilizando assim toda a estrutura para

resistir à ação sísmica [9]. Por este facto, no edifício em estudo todos os elementos sísmicos foram considerados como primários.

2.5.4 Coeficiente de Comportamento

O EC8-1 define o coeficiente de comportamento como sendo o fator que se utiliza para efeitos de cálculo, com o objetivo de reduzir as forças obtidas numa análise linear, de forma a ter em conta a resposta não linear de uma estrutura. Está associado o material e ao sistema estrutural.

Segundo a cláusula 5.2.2.2(1)P do EC8-1 o coeficiente de comportamento é obtido tendo em conta a seguinte expressão:

$$q = q_0 \times k_w \ge 1.5 \tag{2.30}$$

Sendo:

- ✓ q_0 Valor básico do coeficiente de comportamento, estabelecido em função do tipo de sistema estrutural e da regularidade em altura.
- ✓ K_w Coeficiente que reflete o modo de rotura predominante nos sistemas estruturais de paredes, que segundo a cláusula 5.2.2.2(11)P assume o valor unitário para sistemas porticados.

O valor básico do coeficiente de comportamento depende da classe de ductilidade do sistema. Na cláusula 5.2.1 do EC8-1 estabelecem-se três tipos de classes de ductilidade: Classe de Ductilidade Baixa (DCL – Ductility Class Low), Classe de Ductilidade Média (DCM - Ductility Class Medium) e Classe de Ductilidade Alta (DCH - Ductility Class High).

As estruturas com Classe de Ductilidade Baixa apresentam uma baixa capacidade de dissipação de energia e a sua conceção deve fundamentar-se apenas nas exigências de dimensionamento e pormenorização presentes no EC2 (Cláusula 5.2.1(2)P do EC8-1). Para este tipo de estruturas o coeficiente de comportamento varia entre os 1,5 e 2, sendo este ultimo valor aplicado a estruturas metálicas [10].

As Classes de Ductilidade Média e Classe de Ductilidade Alta são caracterizadas por uma alta capacidade de dissipação de energia, sendo esta capacidade superior nas estruturas DCH. Deste modo as estruturas DCH permitem adotar um coeficiente de comportamento maior que nas estruturas com DCM.

No edifício em estudo considerou-se a DCM, uma vez que a zona em que se encontra localizado o edifício não é de baixa sismicidade, e visto ainda a DCH ser menos utilizada que a DCM [10].

Para sistemas porticados de classe DCM, a cláusula 5.2.2.2(2)P do EC8-1 estabelece que o valor base do coeficiente de comportamento pode ser determinado através da seguinte expressão:

$$q_0 = 3.0. \frac{\alpha_u}{\alpha_1}$$
 (2.31)

Sendo:

- ✓ α_u Valor pelo qual se multiplica a ação sísmica horizontal para que se formem rótulas plásticas num número de secções suficiente para provocar a instabilidade global da estrutura, mantendo as outras ações de cálculo constantes.
- ✓ α_1 − Valor pelo qual se multiplica a ação sísmica horizontal para ser atingida pela primeira vez a resistência à flexão em qualquer elemento da estrutura, mantendo-se constantes as outras ações de cálculo.

Por sua vez, a cláusula 5.2.2.2(5)P a) do EC8-1 estabelece que no estudo de edifícios com apenas um piso pode-se considerar o coeficiente $\alpha_u/\alpha_1 = 1,1$.

Tendo em conta os requisitos supracitados foi possível calcular o coeficiente de comportamento, apresentado na Tabela 2.12.

Tabela 2.12 – Determinação do coeficiente de comportamento

α_u/α_1	q_{o}	0,8.q _o ⁵	k _w	q
1,1	3,3	2,64	1,00	2,64

⁵ O valor básico do coeficiente de comportamento foi reduzido a 80% pelo facto do edifício não ser regular em altura, tal como estipula a cláusula 5.2.2.2(3)P do EC8-1.

2.5.5 Espectros de resposta de cálculo

Após a determinação do coeficiente de comportamento e os restantes valores necessários para a determinação do espectro de resposta de cálculo, definidos na Tabela 2.13, procede-se à determinação dos espectros de resposta para ambos os tipos de ação, cuja representação se encontra na Figura 2.13.

Tabela 2.13 – Parâmetros que definem o espectro de resposta de cálculo

Ação Sísmica	Zona Sísmica	a_{gr} (m/s ²)	S	$T_{B}(s)$	$T_{C}(s)$	$T_{D}(s)$
Tipo 1	1,3	1,50	1,50	0,10	0,60	2,00
Tipo 2	2,3	1,70	1,46	0,10	0,25	2,00

Figura 2.13 – Espectros de resposta para ação sísmica do tipo 1 e 2

Os valores das acelerações representadas na Figura 2.13 encontram-se de forma detalhada no Anexo 5.3, para ambas as ações sísmicas.

2.5.6 Efeitos acidentais de torção

Visto que existe uma incerteza relativa à localização das massas e à variação espacial do movimento sísmico, a cláusula 4.3.2(1)P do EC8-1 prevê que o centro de massa calculado em cada piso *i*, deve ser deslocado em cada direção com uma extremidade acidental e_{ai} , determinada através da seguinte expressão:

$$e_{ai} = \pm 0.05 \times L_i \tag{2.32}$$

Sendo L_i a dimensão do piso na direção perpendicular à direção da ação sísmica.

Estes efeitos acidentais de torção são aplicados em cada piso com o mesmo sentido, de acordo com a cláusula 4.3.3.3(1) do EC8-1 a partir das seguintes expressões:

$$M_{ai} = e_{ai} \times F_i \tag{2.33}$$

$$F_i = F_b \times \frac{z_i \cdot m_i}{\sum z_i m_i}$$
(2.34)

$$F_b = S_d(T_1) \times m \times \lambda \tag{2.35}$$

Onde:

- ✓ M_{ai} Momento torsor de eixo vertical aplicado no piso *i*;
- ✓ e_{ai} Excentricidade acidental;
- ✓ F_i Força horizontal atuante no piso *i*,
 - F_b Força de corte sísmica na base;
 - z_i, z_j Altura das massas m_i e m_j acima do nível de aplicação da ação sísmica (fundação ou nível superior de uma cave rígida);
 - m_i Massas dos pisos (ton).
 - $S_d(T_1)$ Ordenada do espectro de cálculo para o período T_1 ;

- T₁ Período de vibração fundamental do edifício para o movimento lateral na direção considerada.
- λ Fator de correção cujo valor é igual a λ = 1 caso o edifício tenha apenas um piso, de acordo com a cláusla 4.3.3.2.2(1)P.

Uma vez analisadas as condições anteriormente referidas, foi possível chegar aos seguintes resultados apresentados na Tabela 2.14 e na Tabela 2.15 para cada tipo de ação sísmica.

Ação sísmica	Direção	T ₁ (s)	$S_d(m/s^2)$	m (ton)	λ	$F_b(kN)$	F _i (kN)
Tipo 1	х	0,514	2,131			492,783	492,783
	у	0,552	2,131	221 200	1.00	492,783	492,783
Tipo 2	Х	0,514	1,148	251,280	1,00	265,455	265,455
	у	0,552	1,073			248,242	248,242

Tabela 2.14 – Determinação da força horizontal atuante no piso

Tabela 2.15 – Determinação do momento torsor acidental

Ação sísmica	Direção	L _i (m)	±e _{ai} (m)	F _i . eai	M _{max} (kN.m)	
Tipe 1	Х	4,980	0,249	122,703	417 880	
11po 1	У	16,960	0,848	417,880	417,880	
Tine 2	Х	4,980	0,249	66,098	210 500	
1 ipo 2	у	16,960	0,848	210,509	210,309	

Pelo facto do edifício ter apenas um piso é possível verificar, na Tabela 2.14 e na Tabela 2.15, que o valor da força horizontal atuante no piso é igual ao valor da força de corte sísmica na base. Os momentos torsores acidentais são iguais para ambas as frações, uma vez que estas apresentam dimensões aproximadamente iguais.

Após o cálculo dos momentos torsores acidentais, foi feita a aplicação no modelo, dos mesmos momentos no centro de rigidez de cada fração.

2.5.7 Efeitos de Segunda Ordem

As estruturas de betão armado podem estar sujeitas a efeitos adicionais de ações resultantes da deformação da estrutura (cláusula 5.8.1 do EC2). A cláusula 4.4.2.2 do EC8-1 prevê que os efeitos de segunda ordem possam ser desprezados caso se verifique a seguinte condição:

$$\theta = \frac{P_{tot} \times d_r}{V_{tot} \times h} \le 0,10$$
(2.36)

Onde:

- ✓ θ Coeficiente de sensibilidade ao deslocamento relativo entre pisos; ´
- ✓ P_{tot} Valor total da carga gravítica acima do piso considerado (incluindo este);
- ✓ d_r Valor de cálculo do deslocamento relativo entre pisos consecutivos, avaliando a diferença entre os deslocamentos laterais médios no topo (d_s) no topo e na base do piso considerado (tendo em conta os efeitos acidentais de torção), calculados de acordo com a seguinte expressão (cláusula 4.3.4 do EC8-1):

$$d_s = q_d \times d_e \tag{2.37}$$

Onde:

- q_d Coeficiente de comportamento em deslocamento, que se admite igual a q;
- d_e Deslocamento de um mesmo ponto da estrutura, determinado através de uma análise linear baseada no espectro de resposta de cálculo.

Por sua vez, o EC8-1 na cláusula 4.4.2.2 define que caso $0,1 < \theta \le 0,2$ os esforços sísmicos devem ser multiplicados por um fator igual a $\frac{1}{(1-\theta)}$, e que o valor do coeficiente θ não deve ser superior a 0,3.

Visto que os valores dos deslocamentos entre os dois níveis de laje são aproximadamente iguais, o cálculo do parâmetro θ foi efetuado tendo apenas em

consideração o nível mais elevado. Os resultados obtidos apresentam-se na Tabela 2.16 e na Tabela 2.17.

Ação sísmica tipo	q_{d}	d _{ex}	d_{ey}	d _{sx}	d_{sy}
1	2,64	0,015207	0,018	0,040	0,047
2	2,64	0,008	0,009	0,022	0,024

Tabela 2.16 – Determinação dos deslocamentos relativos do edifício

Tabela 2.17 – Cálculo do valor de θ do edifício

Ação sísmica tipo	P _{tot}	$V_{\text{tot }x}$	$V_{\text{tot y}}$	d _{rx}	d_{ry}	h	$\Theta_{\rm X}$	θy
1	3332,090	492,783	492,783	0,040	0,047	4,990	0,054	0,063
2	2939,150	265,455	248,242	0,022	0,024	4,990	0,049	0,056

Como se pode verificar na Tabela 2.16 e da Tabela 2.17, os efeitos de segunda ordem podem ser dispensados, uma vez que em cada direção de ambas as ações sísmicas verifica-se a condição (2.36) do presente documento.

2.6 Verificação dos estados limites

O EC8-1 na cláusula 2.2.1 estabelece que para que sejam satisfeitas as condições fundamentais de desempenho, abordadas no ponto 2.3.2, devem ser verificados os Estados Limites Últimos e Estados Limites de Utilização.

Um dos aspetos fulcrais do dimensionamento de estruturas do EC8-1 é o "Capacity Design". Este método também conhecido por cálculo pela capacidade real, segundo a cláusula 1.5.1(1) do EC8-1, corresponde a uma filosofia de dimensionamento que tem como objetivo garantir que os pilares e as vigas tenham capacidade de dissipação de energia quando submetidos a grandes deformações, evitando mecanismos de rotura por esforço transverso, do tipo frágil.

2.6.1 Estados Limites Últimos

De acordo com a cláusula 4.4.2 do EC8-1, para que sejam verificados os Estados Limites Últimos é necessário ter em consideração as seguintes condições:

✓ Condição de resistência

Para todos os elementos estruturais os esforços atuantes devem ser inferiores aos esforços resistentes, não esquecendo, caso necessário, os efeitos de segunda ordem.

✓ Condição de ductilidade global e local

Em todos os nós das vigas sísmicas primárias ou secundárias com os pilares sísmicos primários, deve satisfazer-se a seguinte condição:

$$\sum M_{Rc} \ge 1.3 \sum M_{Rb} \tag{2.38}$$

Onde:

- $\sum M_{Rc}$ Soma dos valores de cálculo dos momentos resistentes dos pilares ligados ao nó;
- $\sum M_{Rb}$ Soma dos valores de cálculo dos momentos resistentes das vigas ligadas ao nó.

Esta última condição também é conhecida por princípio do pilar forte – viga fraca, que consiste em obrigar a formação das rótulas nas vigas, evitando assim a chamada rotura do piso flexível, fenómeno que pode ser observado na Figura 2.14 [14].

Figura 2.14 – Rotura do piso flexível [14]

Segundo o EC8, este critério é dispensado nas seguintes situações:

- ✓ Edifícios com apenas um piso (cláusula 4.4.2.3(4));
- ✓ Último piso dos edifícios (cláusula 4.4.2.3(6));
- ✓ No piso inferior dos edifícios de dois pisos, se em qualquer pilar o esforço normal reduzido v_d for inferior a 0,3 (cláusula 5.2.3.3(2)).

O edifício em estudo dispensa a verificação do critério do pilar forte – viga fraca, visto que a edifício tem apenas um piso.

2.6.1.1 Vigas

Um elemento estrutural pode ser classificado como viga, caso esteja sujeito principalmente a cargas transversais [15], sendo que o esforço normal reduzido de compressão, $v_d = \frac{N_{Ed}}{A_c f_{cd}}$, não deve ser superior a 0,1.

Onde:

- ✓ N_{Ed} Esforço normal atuante;
- ✓ A_c Área da secção de um elemento de betão;

✓ f_{cd} – Valor de cálculo da tensão de rotura do betão à compressão.

Seguidamente, apresentam-se as disposições construtivas previstas nas normas (EC2 e EC8-1) mais relevantes.

2.6.1.1.1 Armadura Longitudinal

De acordo com a cláusula 9.2.1.1 do EC2, a área de armadura longitudinal nas vigas deve ser inferior a 4% da área da secção transversal (A_c), que por sua vez deve ser superior à área obtida através da seguinte expressão:

$$A_{s,min} = 0.26 \times \frac{f_{ctm}}{f_{yk}} \times b_t \times d$$
(2.39)

Onde:

- ✓ f_{ctm} Tensão média de resistência à tração do betão;
- ✓ f_{yk} Tensão caraterística do aço;
- ✓ b_t Largura média da zona comprimida.

O EC8-1 na cláusula 5.4.3.1.2 preconiza que nas zonas críticas da viga a taxa de armadura na zona tracionada (ρ) deve ser superior ao valor de ρ_{min} dado pela seguinte expressão:

$$\rho_{min} = 0.5 \left(\frac{f_{ctm}}{f_{yk}} \right) \tag{2.40}$$

Por outro lado a mesma cláusula prevê que o valor da taxa ρ seja inferior ao valor de ρ_{max} igual a:

$$\rho_{max} = \rho' + \frac{0,0018}{\mu_{\phi} \times \varepsilon_{sy,d}} \times \frac{f_{cd}}{f_{yd}}$$
(2.41)

Onde:

- ✓ ρ' Taxa de armadura da zona comprimida;
- ✓ μ_{ϕ} Fator de ductilidade em curvatura.

O valor do fator μ_{ϕ} , segundo a cláusula 5.2.3.4(3) não deve ser inferior às seguintes expressões:

$$\mu_{\phi} = 2q_o - 1 \tag{2.42}$$

$$\mu_{\phi} = 1 + 2 \times (q_o - 1) \times \frac{T_c}{T_1}$$
(2.43)

Para a estrutura em análise, o cálculo do fator μ_{ϕ} apresenta-se na Tabela 2.18.

Direção	T ₁ (s)	T _c (s)	\mathbf{q}_0	μ_{ϕ}
Х	0,51	0,60	2,64	4,83
У	0,55	0,60	2,64	4,57

Tabela 2.18 - Determinação do fator de ductilidade em curvatura

De modo a evitar roturas por aderência, a cláusula 5.6.2.2(2)P institui limites para os diâmetros dos varões da armadura longitudinal das vigas que atravessam os nós pilarviga d_{bL} , em que estes limites são dados através das seguintes expressões:

✓ Para nós viga-pilar interiores:

$$\frac{d_{bL}}{h_c} \le \frac{7.5 \times f_{ctm}}{\gamma_{Rd} \times f_{yd}} \times \frac{1 + 0.8 \times \nu_d}{1 + 0.75 \times k_D \times \rho' / \rho_{max}}$$
(2.44)

✓ Para nós viga-pilar exteriores:

$$\frac{d_{bL}}{h_c} \le \frac{7.5 \times f_{ctm}}{\gamma_{Rd} \times f_{yd}} \times (1 + 0.8 \times \nu_d)$$
(2.45)

Em que:

- h_c Largura do pilar na direção paralela aos varões;
- *k_D* Coeficiente que reflete a classe de ductilidade, igual a 2/3 para a classe DCM;

• γ_{Rd} – Coeficiente de incerteza do modelo relativo ao valor de cálculo das resistências, considerado igual a 1,0 para a classe DCM.

Caso não seja possível verificar as condições anteriores, o EC8-1 na cláusula 5.6.2.1(3) estabelece que possam ser usadas as disposições complementares para que se garanta a amarração das armaduras longitudinais ilustradas na Figura 2.15.

Figura 2.15 – Disposições complementares para a amarração nos nós viga-pilar exteriores [7]

O cálculo dos diâmetros d_{bL} das armaduras das vigas da estrutura encontram-se no Anexo 5.6 do presente documento.

2.6.1.1.2 Armadura transversal

A armadura transversal é limitada, segundo a cláusula 9.2.3(5) do EC2, pelos valores mínimos dados pelas seguintes expressões:

$$\rho_{min} = \frac{\left(0,08 \times \sqrt{f_{ck}}\right)}{f_{yk}} \tag{2.46}$$

$$\rho_w = \frac{A_{sw}}{s \times b_w \times sin(\alpha)} \leftrightarrow \frac{A_{sw}}{s} = \rho_w \times b_w \times sin(\alpha)$$
(2.47)

42

Em que:

- ✓ ρ_w Taxa de armadura de esforço transverso;
- ✓ A_{sw} Área de armadura de esforço transverso ao longo do comprimento *s*;
- ✓ s Espaçamento das armaduras de esforço transverso, medido ao longo do eixo longitudinal da viga;
- ✓ b_w Largura da alma da viga;
- ✓ α Ângulo entre as armaduras de esforço transverso e o eixo longitudinal da viga.

No que diz respeito aos espaçamentos das armaduras transversais, o EC2 institui nas cláusulas 9.2.2(6) e 9.2.2(8) valores máximos de espaçamentos dos estribos ao longo do eixo da viga ($s_{l,max}$), e de espaçamentos transversais entre ramos de estribos ($s_{t,max}$), dados pelas seguintes expressões:

$$s_{l,max} = 0.75 \times d \times (1 + \cot(\alpha))$$
(2.48)

$$s_{t,max} = 0.75 \times d \le 600 \ mm$$
 (2.49)

O EC2 na cláusula 6.2.3(3) define que nos elementos com armaduras de esforço transverso por estribos verticais, o valor do esforço transverso resistente é dado pelo menor dos valores obtidos através das seguintes expressões:

$$V_{Rd.s} = \frac{A_{sw}}{s} \times z \times f_{ywd} \times cot(\theta)$$
(2.50)

$$V_{Rd.max} = \frac{\alpha_{cw} \times b_w \times z \times \nu_1 \times f_{cd}}{\cot(\theta) + tg(\theta)}$$
(2.51)

Onde:

- ✓ A_{sw} Área de armadura de esforço transverso ao longo do comprimento *s*;
- \checkmark *s* Espaçamento da armadura de esforço transverso;

- ✓ *z* − Braço interno da secção da viga, que pode ser calculado por $z = 0.9 \times d$, em que *d* corresponde à distância entre o centro de gravidade das armaduras tracionadas e a fibra mais comprimida da secção;
- ✓ f_{ywd} Valor de cálculo da tensão de cedência das armaduras de esforço transverso;
- ✓ θ Ângulo que define a inclinação das escoras, 1 cot(θ) ≤ 2,5, admitindo-se θ = 45°;
- ✓ α_{cw} Coeficiente que tem em conta o estado de tensão do betão comprimido, que toma o valor de α_{cw} = 1 para estruturas sem pré-esforço.
- ✓ v_1 Coeficiente de redução da resistência do betão fendilhado por transverso.

O valor de v_1 , de acordo com a cláusula 6.2.2(6) do EC2 pode ser obtido por:

$$\nu_1 = 0.6 \times \left[1 - \frac{f_{ck}}{250} \right] \tag{2.52}$$

De modo a que haja um confinamento adequado, o EC8-1 na cláusula 5.4.3.1.2 estabelece as seguintes condições para as zonas críticas das armaduras transversais:

- a) O diâmetro das cintas (d_{bw}) que contribuem as armaduras de confinamento não deve ser inferior a 6 mm;
- b) O espaçamento, em milímetros, das armaduras de confinamento não deve exceder o valor dado pela seguinte expressão:

$$s = min\{h_w/4; 24 \times d_{bw}; 225; 8 \times d_{bL}\}$$
(2.53)

c) A primeira armadura transversal não deve ser colocada a mais de 50 mm da secção de extremidade da viga, como ilustra a Figura 2.16.

Figura 2.16 – Armaduras transversais nas zonas críticas das vigas [7]

2.6.1.1.3 "Capacity Design" nas vigas

No que diz respeito aos esforços transversos nas vigas, a cláusula 5.4.2.2 do EC8-1 estabelece que estes devem ser calculados com base na filosofia de cálculo baseada na capacidade real, já abordada no capítulo 2.6, tendo como base o equilíbrio da viga sob ação de:

- a) A carga transversal atuante na viga para a situação de projeto sísmica;
- b) O cálculo dos momentos resistentes nas extremidades da viga $(M_{i,d})$, associados a formação de rótulas plásticas, podem ser calculados tendo em conta a seguinte expressão:

$$M_{i,d} = \gamma_{Rd} \times M_{Rb,i} \times min\left(1, \frac{\sum M_{Rc}}{\sum M_{Rb}}\right)$$
(2.54)

Sendo:

- ✓ γ_{Rd} Coeficiente de sobrerresistência por endurecimento do aço, considerado igual a 1,0 para as estruturas da classe DCM;
- ✓ $M_{Rb,i}$ Valor de cálculo do momento resistente da viga na extremidade *i* no sentido do momento fletor sísmico para o sentido da ação sísmica;
- ✓ $\sum M_{Rc}$ e $\sum M_{Rb}$ Soma dos valores de cálculo dos momentos resistentes dos pilares e vigas respetivamente, no nó em estudo. O valor de $\sum M_{Rc}$ deverá corresponder aos esforços axiais do pilar para a situação de projeto sísmica para o sentido considerado da ação sísmica.

Figura 2.17 – Valores de cálculo pela capacidade real dos esforços transversos nas vigas [7]

Segundo [9] pode-se considerar conservativamente que os momentos nas extremidades são iguais aos momentos resistentes nas vigas, ou seja:

$$M_{i,d} = M_{Rb} \tag{2.55}$$

Tendo em conta a Figura 2.17 e a expressão (2.55), o cálculo do esforço transverso máximo nas secções das extremidades das vigas pode ser obtido através da seguinte expressão:

$$V_{Ed} \cong \frac{M_1 + M_2}{l_{cl}} + \frac{q_{cqp} \times L}{2}$$
(2.56)

Em que:

- ✓ $M_1 e M_2$ Momentos resistentes nas extremidades das vigas;
- ✓ q_{cqp} Carregamento uniforme para a combinação quase-permanente de ações;
- ✓ l_{cl} Comprimento livre da viga.

Admitindo que as armaduras da viga encontram-se em cedência, o momento resistente pode ser calculado através das seguintes expressões:

$$x = \frac{A_s \times f_{yd}}{0.8 \times b \times f_{cd}}$$
(2.57)

$$M_{Rd} = A_s \times f_{yd} \times (d - 0.4 \times x)$$
(2.58)

As armaduras longitudinais e transversais das vigas são apresentadas no Anexo 5.4 e no Anexo 5.8. Atítulo de exemplo, efetua-se a análise detalhada apenas da viga V4, que corresponde a uma viga exterior, como se pode observar na Figura 2.18.

Figura 2.18 - Localização da viga V4

Tendo em conta a armadura longitudinal obtida através do programa de cálculo automático adotou-se, para a viga V4, as seguintes áreas de armadura (Tabela 2.19).

Troço	Zona	Área de ari	madura-Mo	odelo (cm ²)	Área de armadura adotada (cm ²)			
		Esq.	Vão	Dta.	Esq.	Vão	Dta.	
D0 D10	superior	6,83	6,83	7,8	8,04	8,04	12,06	
1 9-1 10	inferior	6,83	6,83	6,83	8,04	8,04	8,04	
D10 D11	superior	10,18	6,83	10,19	12,06	8,04	12,06	
F 10-F 11	inferior	6,83	6,83	6,83	8,04	8,04	8,04	
P11-P12	superior	7,72	6,83	6,83	12,06	8,04	8,04	
	inferior	6,83	6,83	6,83	8,04	8,04	8,04	

Tabela 2.19 – Áreas de armadura longitudinal da viga V4

Uma vez determinadas as armaduras longitudinais, e admitindo que estas se encontram em cedência, procedeu-se ao cálculo da posição da linha neutra e do momento resistente das secções da viga em estudo (Tabela 2.20), de acordo com as expressões (2.57) e (2.58) do presente documento.

Viga	Troço	Zona	Posição	da linha ne	eutra (m)	Momento Resistente (kN.m)			
			Esq.	Vão	Dta.	Esq.	Vão	Dta.	
	P9_P10	superior	0,09	0,07	0,12	232,37	188,03	318,57	
	1)-1 10	inferior	0,07	0,07	0,07	188,03	188,03	188,03	
V4	P10-	superior	0,12	0,07	0,12	318,57	188,03	318,57	
	P11	inferior	0,07	0,07	0,07	188,03	188,03	188,03	
	P11-	superior	0,12	0,07	0,07	318,57	188,03	188,03	
	P12	inferior	0,07	0,07	0,07	188,03	188,03	188,03	

Tabela 2.20 – Posição da linha neutra e momento resistente na viga V4

Analisando a Figura 2.17, tendo em conta os momentos resistentes nas extremidades das vigas e o esforço transverso provocado apenas pela combinação quase-permanente de ações, na Tabela 2.21, efetuou-se o cálculo do esforço transverso máximo nas secções das extremidades das vigas de acordo com a expressão (2.56).

Viga	Troço	Zona	$l_{cl}(m)$	M _{Rd}	M _{Rd} (k.m)		V _{comb.qp} (kN)		V _{Ed.cálculo} (kN)	
				Esq.	Dta.	Esq.	Dta.	Esq.	Dta.	
P9-P10	D0 D10	superior	5.08	232,37	318,57	12 18	60,64	112,48	145 35	
	r 7- r 10	inferior	5,98	188,03	188,03	42,10			145,55	
V/	D10 D11	superior	5.00	318,57	318,57	44,60	44,05	145,92	145,37	
V 4	F10-F11	inferior	5,00	188,03	188,03					
	D11 D12	superior	5.08	318,57	188,03	60,69	40.42	1.45.40	105 22	
	F11-F12	inferior	5,98	188,03	188,03		42,43	143,40	105,52	

Tabela 2.21 - Determinação dos esforços transversos condicionantes na viga V4

Uma vez obtidos os valores dos esforços transversos condicionantes, nas Tabelas Tabela 2.22 eTabela 2.23 determinou-se o esforço transverso resistente nas zonas críticas na viga V4, através da aplicação das expressões (2.57) e (2.58), tendo em conta o espaçamento máximo s, cujos valores são apresentados no Anexo 5.7.

Tabela 2.22 – Determinação do esforço transverso resistente máximo da viga V4

Viga	$\alpha_{\rm cw}$	b _w (m)	d (m)	z (m)	v ₁ (m)	f _{cd} (Mpa)	θ (°)	V _{Rd.max} (kN)
V4	1	0,3	0,7	0,63	0,54	16,67	45	850,67

Tabela 2.23 - Determinação do esforço transverso resistente da viga V4

Viga	Troço	A _{sw} /s (cm ² /m)	z (m)	f _{ywd} (Mpa)	θ (°)	V _{Rd,s} (kN)
V4	P9-P10	8,04	0,63	348	45	176,27
	P10-P11	8,04	0,63	348	45	176,27
	P11-P12	8,04	0,63	348	45	176,27

O valor do espaçamento *s*, foi calculado com base na expressão (2.53). Analisando a Tabela 2.22 e a Tabela 2.23 é possível observar que o esforço transverso resistente é inferior ao seu valor máximo ($V_{Rd.max}$), e por sua vez maior que o esforço transverso atuante, verificando assim a segurança ao esforço transverso da viga.

O cálculo da capacidade real foi efetuado igualmente para as restantes vigas. Como se pode observar na Figura 2.19, o esforço transverso resistente é superior ao esforço transverso atuante em todas as vigas, verificando assim a segurança das mesmas ao eforço transverso. Os valores exatos dos esforços transversos actuante e resistente de cada viga encontram-se, respetivamente, no Anexo 5.10 e no Anexo 5.13.

Figura 2.19 - Verificação da segunça das vigas ao esforço transverso

2.6.1.2 Pilares

De acordo com as cláusulas 5.1.2 e 5.4.3.2.1 do EC8-1, é considerado um pilar sísmico primário o elemento estrutural que suporta outros elementos, com relação comprimento/espessura não superior a 4, e com o valor do esforço normal reduzido inferior ou igual a 0,65 e superior a 0,1.

a) Armadura longitudinal

Segundo as cláusulas 9.5.2(1) e 9.5.2(2) do EC2, os varões da armadura longitudinal dos pilares devem apresentar um diâmetro superior a 8 mm, cuja área total deve ser superior à área obtida através da seguinte expressão:

$$A_{s,min} = \frac{0.1 \times N_{Ed}}{f_{yd}} \ge 0.002 \times A_c$$
(2.59)

Relativamente à armadura longitudinal máxima, o EC2 na cláusula 9.5.2(3) estabelece o limite de $0,04 \times A_c$ para fora das zonas sobreposição de armaduras e $0,08 \times A_c$ para as zonas de emenda por sobreposição. A cláusula 5.4.3.2.2(1)P do EC8-1 limita ainda mais esta armadura máxima, estabelecendo que deva estar entre 1% e 4% da área da secção transversal.

2.6.1.2.1 Armadura transversal

As armaduras transversais de acordo com a cláusula 9.5.3(1) do EC2, não deve possuir um diâmetro inferior a 6 mm ou a um quarto do diâmetro dos varões longitudinais.

Segundo a cláusula 9.5.3(6) do EC2 cada varão ou conjunto de varões longitudinal colocado num canto do pilar deve ser travado através de armaduras transversais, sendo que nas zonas comprimidas nenhum varão deverá situar-se a mais de 150 mm de um varão travado.

No que concerne ao espaçamento das armaduras transversais, o EC2 na cláusula 9.5.3(3) estabelece um valor máximo de espaçamento ($s_{cl,max}$) dado pela seguinte expressão:

$$s_{cl,max} = \min \{20 \times d_{bL}; b; 400mm\}$$
 (2.60)

Sendo:

- ✓ d_{bL} Diâmetro mínimo dos varões longitudinais;
- ✓ b Menor dimensão do pilar.

Relativamente às zonas críticas dos pilares, o EC8-1 na cláusula 5.4.3.2.2(4) institui que o comprimento de mesmas zonas (l_{cr}) deve ser determinado recorrendo a seguinte expressão:

$$l_{cr} = \max\left\{h_c; \frac{l_{cl}}{6}; 0,45m\right\}$$
 (2.61)

Em que:

- ✓ h_c Maior dimensão da secção do pilar (em metros);
- ✓ l_{cl} Comprimento livre do pilar.

A cláusula 5.4.3.2.2(5) da mesma norma define que será necessário considerar toda a altura do pilar como zona crítica caso se verifique a seguinte condição:

$$\frac{l_{cl}}{h_c} < 3 \tag{2.62}$$

Por sua vez a cláusula 5.9(3) do EC8-1 define que para os pilares travados por alvenaria de um úinico lado (por exemplo, os pilares de canto), a altura total do pilar deverá ser considerada como zona crítica.

Nas zonas críticas, a cláusula 5.4.3.2.2(10)P do EC8-1 estabelece que o espaçamento máximo entre cintas deve respeitar a seguinte expressão:

$$s \le \min\left\{\frac{b_o}{2}; \ 175 \ mm; 8 \times d_{bL}\right\}$$
 (2.63)

Onde:

- ✓ b_o Dimensão mínima do núcleo confinado;
- ✓ d_{bL} Diâmetro mínimo dos varões longitudinais.

A conceção adequada da armadura transversal é fundamental no comportamento dos pilares. A falta de cintagem nos pilares pode ter graves consequências, indicada pelo mecanismo que se pode observar na Figura 2.20, caracterizado pela rotura por esmagamento do betão por falta de cintagem.

Figura 2.20 - Rotura por esmagamento do betão - falta de cintagem [16]

2.6.1.2.2 Armadura de confinamento

Caso seja atingida uma extensão no betão superior a 0,0035 em qualquer ponto da secção transversal, a cláusula 5.4.3.2.2(7) do EC8-1 enuncia que a perda de resistência devida ao destacamento do betão deve ser compensada através do confinamento do núcleo de betão. Para que este requisito seja satisfeito, a cláusula 9.4.3.2.2(8) da mesma norma estabelece que a armadura de confinamento nas zonas críticas dos pilares deve satisfazer a seguinte condição:

$$\alpha \times \omega_{\omega d} \ge 30 \times \mu_{\varphi} \times \nu_{d} \times \varepsilon_{sy,d} \times \frac{b_{c}}{b_{o}} - 0,035$$
(2.64)

Sendo:

✓ $\omega_{\omega d}$ – Taxa volumétrica de cintas nas zonas críticas;

$$\omega_{\omega d} = \frac{\text{volume das cintas}}{\text{volume do núcleo de betão}} \times \frac{f_{yd}}{f_{cd}}$$
(2.65)

- ✓ μ_{ω} Valor necessário do fator de ductilidade;
- ✓ v_d Esforço normal reduzido de cálculo para a situação de projeto sísmica;
- ✓ $\varepsilon_{sy,d}$ Valor de cálculo da extensão de cedência à tração do aço;

- ✓ b_c Largura da secção transversal do pilar;
- ✓ b_o Largura do núcleo confinado;
- ✓ α Coeficiente de eficácia, sendo α = $α_n × α_s$ com:

$$\alpha_n = 1 - \sum_n \frac{b_i^2}{6 \times b_o \times h_o}$$
(2.66)

$$\alpha_n = \frac{1 - s/2b_o}{1 - s/2h_o}$$
(2.67)

Em que:

- α_n Quociente entre a área efetiva confinada e a área no interior das cintas no plano horizontal que contem as cintas;
- α_s Quociente entre a área da secção efetivamente confinada a meia distância entre cintas e a área no interior das cintas;
- n Número total de varões longitudinais abraçados lateralmente por cintas ou ganchos;
- b_i Distância entre varões consecutivos;
- *s* Espaçamento entre cintas.
- Os restantes parâmetros podem ser observados na Figura 2.21.

Figura 2.21 – Confinamento do núcleo de betão dos pilares [7]

A cláusula 5.4.3.2.2(9) do EC8-1 estabelece que o valor de $\omega_{\omega d}$ deve ser superior a 0,08 na zona crítica dos pilares. Por outro lado, a cláusula 5.4.3.2.2(12)P da mesma norma define que a armadura da secção transversal nas zonas críticas pode ser determinada de acordo com o EC2, caso o valor do esforço normal reduzido para a situação de projeto sísmica seja inferior a 0,2, e se o valor do coeficiente de comportamento (*q*) for inferior a 2.

2.6.1.2.3 "Capacity Design" nos pilares

De acordo com a cláusula 5.4.2.3(1)P do EC8-1, os valores de cálculo do esforço transverso nos pilares sísmicos primários podem ser determinados segundo a regra de cálculo do "Capacity Design", abordada no capítulo 2.6. Deve ser considerado o equilíbrio do pilar sujeito a momentos nas extremidades $M_{i,d}$, associados a formação de rótulas plásticas, que podem ser obtidos através da seguinte expressão:

$$M_{i,d} = \gamma_{Rd} \times M_{Rc,i} \times min\left(1, \frac{\sum M_{Rc}}{\sum M_{Rb}}\right)$$
(2.68)

Sendo:

- ✓ i = 1 ou 2, correspondentes às secções de extremidade do pilar, que se podem observar na Figura 2.22
- ✓ γ_{Rd} Coeficiente de sobrerresistência por endurecimento do aço e o confinamento do betão na zona de compressão da secção, considerado igual a 1,1 para as estruturas da classe DCM.
- ✓ $M_{Rc,i}$ Valor de cálculo do momento resistente do pilar na extremidade *i* no sentido do momento fletor sísmico para o sentido da ação sísmica;

Figura 2.22 – Valores de cálculo pela capacidade real dos esforços transversos nos pilares [7]

Tal como acontece nas vigas, a expressão anterior conservativamente pode ser calculada de uma forma simplificada [9], ou seja:

$$M_{i,d} = \gamma_{Rd} \times M_{Rb} \tag{2.69}$$

Assim sendo, a força de corte no pilar pode ser determinada através da seguinte expressão:

$$V_{Ed} \cong \frac{M_1 + M_2}{l_{cl}} \tag{2.70}$$

Em que:

✓ M_1 e M_2 - Momentos nas secções de extremidade do pilar associados a formação de rótulas plásticas.

A determinação da linha neutra e dos momentos resistentes pode ser efetuada através das seguintes expressões (tendo em atenção a Figura 2.23) [17]:

$$x = \frac{N + (A_{s1} - A_{s2}) \times f_{yd}}{0.8 \times b \times f_{cd}}$$
(2.71)

$$F_c + F_s = N + F \tag{2.72}$$

$$M_{Rd} = \left[A_{s1} \times \left(d_1 - \frac{h}{2}\right) + A_{s2} \times \left(\frac{h}{2} - d_2\right)\right] \times f_{yd} + 0.8 \times x \times b \times f_{cd} \times \left(\frac{h}{2} - 0.4 \times x\right)$$
(2.73)

Figura 2.23 – Disposição dos esforços na secção transversal

Onde:

- ✓ x Altura comprimida da secção;
- ✓ N Esforço axial na secção;
- ✓ A_{s1} Armadura tracionada;
- ✓ A_{s1} Armadura comprimida;
- ✓ d_1 Distância entre a fibra mais comprimida da secção e o eixo da armadura tracionada;
- ✓ d_2 Distância entre a fibra mais comprimida da secção e o eixo da armadura comprimida.

Um dos aspetos importantes do cálculo pela capacidade real é evitar a rotura por esforço transverso antes da formação das rótulas plásticas, como ilustra a Figura 2.24.

Figura 2.24 – Rotura frágil por esforço transverso [14]

As armaduras longitudinais e transversais dos pilares são indicadas no Anexo 5.14 e no Anexo 5.18. A título de exemplo, efetuou-se apenas a análise detalhada dos pilares P6 e P9, sendo o P6 um pilar interior e P9 um pilar de canto, como se pode observar na Figura 2.25.

Figura 2.25 – Localização dos pilares P6 e P9

Em primeiro lugar determinou-se com recurso ao programa de cálculo automático a área da armadura longitudinal. De seguida procedeu-se a disposição das armaduras (Tabela 2.24) de acordo com as condições de espaçamentos e armaduras máximas abordadas no ponto 2.6.1.2 a).

Pilar	A _s Modelo (cm ² /m)	As Adotado (cm ² /m	ı)
P6.1	34,13	$4\emptyset 25 + 8\emptyset 16$	35,72
P6.2	28,18	$4\emptyset 25 + 8\emptyset 16$	35,72
P9	32,90	$12\emptyset 16 + 4\emptyset 20$	36,68

Tabela 2.24 – Áreas de armadura longitudinal dos pilares P6 e P9

Tal como a armadura longitudinal, os valores das armaduras transversais foram igualmente retirados do programa de cálculo automático. Em seguida, na Tabela 2.25 adotaram-se novos valores respeitando as regras presentes no ponto 2.6.1.2 2.6.1.2.1.

	A _s /s Modelo (cm ² /m)		Direçã	io X	Direção Y			
Pilar			A _s /s Adotade	o (cm ² /m)	A _s /s Adotado (cm ² /m)			
	Direção X Y		Cintas Exteriores Cintas Interiores		Cintas Exteriores	Cintas Interiores		
P6.1	1,80	0,00	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r		
P6.2	14,21	19,21	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r		
P9	0,00	0,00	Ø10 // 0,10,2r	Ø8 // 0,10,2r	Ø10 // 0,10,2r	-		

Tabela 2.25 – Áreas de armadura transversal dos pilares P6 e P9

Uma vez obtidos os valores das armaduras longitudinais do programa de cálculo automático, determinou-se a posição da linha neutra dos pilares em estudo (Tabela 2.26) de acordo com a expressão (2.71).

Pilar	Direção	A _{s1} (cm ²)	$A_{s2} (cm^2)$	b (m)	f _{yd} (MPa)	f _{cd} (MPa)	x ₁ (m)	x ² (m)
P6.1	Х	13,84	13,84	0,30	348	16,67	0,074	0,076
	у	13,84	13,84	0,30	348	16,67	0,074	0,076
D6 2	х	13,84	13,84	0,30	348	16,67	0,043	0,044
P0.2	у	13,84	13,84	0,30	348	16,67	0,043	0,044
Р9	X	8,29	8,29	0,30	348	16,67	0,032	0,038
	у	16,33	16,33	0,70	348	16,67	0,014	0,016

Tabela 2.26 – Posição da linha neutra dos pilares P6 e P9

Analisando a Figura 2.22 e a expressão (2.73) e tendo em conta a posição da linha neutra, foram calculados os momentos resistentes nas extremidades dos respetivos pilares (Tabela 2.27).

Tabela 2.27 – Determinação dos momentos resistentes nas extremidades dos pilares	P6 e	e P	9
--	------	-----	---

Pilar	Direção	h (m)	d (m)	d ₁ (m)	M _{Rc,1} (kN.m)	M _{Rc,2} (kN.m)	γRd	M1 (kN.m)	M ₂ (kN.m)
DC 1	Х	0,30	0,25	0,05	131,911	132,679	1,1	145,102	145,946
F0.1	у	0,30	0,25	0,05	131,911	132,679	1,1	145,102	145,946
D6 0	Х	0,30	0,25	0,05	119,111	119,422	1,1	131,022	131,365
P0.2	у	0,30	0,25	0,05	119,111	119,422	1,1	131,022	131,365
Р9	Х	0,70	0,65	0,05	216,124	224,554	1,1	237,737	247,009
	у	0,30	0,25	0,05	132,098	135,711	1,1	145,308	149,282

Tendo em conta os momentos resistentes nas extremidades dos pilares, e conhecendo o comprimento livre dos pilares e os valores dos momentos resistentes M_i , calculou-se então o esforço transverso condicionante nos pilares (Tabela 2.28) consoante a expressão (2.70).

Pilar	Pilar Direção		M ₁ (kN.m)	M ₂ (kN.m)	V _{Ed} (kN)
D6 1	Х	3,59	131,911	145,946	77,398
F0.1	У	3,59	131,911	145,946	77,398
D6 2	Х	1,40	119,111	131,365	178,911
F0.2	у	1,40	119,111	131,365	178,911
DO	Х	4,99	216,124	247,009	92,812
r9	у	4,99	132,098	149,282	56,389

Tabela 2.28 – Determinação do esforço transverso condicionante dos pilares P6 e P9

Após o cálculo do espaçamento máximo das armaduras transversais dos pilares, apresentados no Anexo 5.17, calculou-se, na Tabela 2.29 e na Tabela 2.30, os valores do esforço transverso resistente nos pilares e seus valores máximos.

Tabela 2.29 – Determinação do esforço resistente dos pilares P6 e P9

Pilar	Direção	A _{sw} (cm ² /m)	z (m)	f _{ywd} (MPa)	θ (°)	V _{Rd} (kN)
P6.1	Х	34,28	0,23	348	45	268,412
	у	34,28	0,23	348	45	268,412
D6 2	Х	34,28	0,23	348	45	268,412
P0.2	у	34,28	0,23	348	45	268,412
DO	X	25,76	0,59	348	45	524,422
19	у	15,70	0,23	348	45	122,931

Tabela 2.30 - Determinação do esforço transverso resistente máximo nos pilares P6 e P9

Pilar	Direção	α_{cw}	b _w (m)	z (m)	v ₁ (m)	f _{cd} (Mpa)	θ (°)	V _{Rd.max} (kN)
D6 1	Х	1,00	0,30	0,23	0,54	16,67	45	303,81
P0.1	у	1,00	0,30	0,23	0,54	16,67	45	303,81
D6 2	Х	1,00	0,30	0,23	0,54	16,67	45	303,81
P6.2	у	1,00	0,30	0,23	0,54	16,67	45	303,81
DO	X	1,00	0,30	0,59	0,54	16,67	45	789,91
r9	у	1,00	0,70	0,23	0,54	16,67	45	708,89

Analisando a Tabela 2.29 e a Tabela 2.30, pode-se constatar que o esforço transverso resistente é inferior ao seu valor máximo ($V_{Rd.max}$), e por sua vez maior que o esforço transverso atuante, verificando assim a segurança dos pilares ao esforço transverso.

Tal como nas vigas, o cálculo da capacidade real foi efetuado igualmente para os restantes pilares. Como se pode observar na Figura 2.26, o esforço transverso resistente é superior ao esforço transverso atuante em todos os pilares, verificando assim a segurança dos mesmos ao eforço transverso.

Figura 2.26 - Verificação da segunça dos pilares ao esforço transverso

No que diz respeito às armaduras de confinamento das zonas críticas dos pilares, foi verificada a condição (2.64) para o pilar P9, que apresenta as seguintes caraterísticas (Tabela 2.31).

Vd	s (m)	b _c (m)	b _o (m)	h _c (m)	h _o (m)	f _{yd} (MPa)	f _{cd} (MPa)	€ _{sy,d}
0,04	0,10	0,70	0,62	0,30	0,22	348	16,67	0,00174

Tabela 2.31 – Dados gerais e caraterísticas do pilar P9

$$\alpha_n = \left(1 - \frac{10 \times 0.2^2}{6 \times 0.62 \times 0.22}\right) = 0.609$$

$$\alpha_s = \left(1 - \frac{0,10}{2 \times 0,62}\right) \times \left(1 - \frac{0,10}{2 \times 0,22}\right) = 1,190$$

$$\alpha = 0,609 \times 1,190 = 0,725$$

$$30 \times \mu_{\varphi} \times \nu_d \times \varepsilon_{sy,d} \times \frac{b_c}{b_o} - 0,035 = -0,022^{-6}$$

 $\omega_{\omega d} = \frac{1,68 * 0,79 \times 10^{-4} + 0,88 \times 0,51 \times 10^{-4}}{0,22 \times 0,62 \times 0,1} \times \frac{348 \times 10^3}{16,67 \times 10^3} = 0,272 \ge -0,022$

Como se pode verificar, é cumprida a condição (2.64). O mesmo acontece com os outros pilares, cujas verificações se encontram no Anexo 5.24.

2.6.2 Estados Limites de Utilização

No que diz respeito aos estados limites de utilização, também conhecidos como estados limites de serviço, o EC2 define que deve ser verificado o controlo da deformação. Por outro lado, o EC8-1 exige a verificação da condição de limitação de danos.

2.6.2.1 Controlo de deformações

O requisito de controlo de deformação tem como objetivo limitar as deformações que ocorrem nos pisos das estruturas ao nível das lajes, de maneira a assegurar o correto funcionamento. De acordo com a cláusula 7.4.1(3) do EC2, este requisito visa também garantir a integridade dos elementos não estruturais.

⁶ O valor deste produto é negativo pelo fato do esforço normal reduzido ser muito baixo.

A cláusula 7.4.1(4) do EC2, define que a deformação de um piso está limitada a L/250 para a Combinação Quase-Permanente de Ações, onde L corresponde ao comprimento do vão da laje. Por outro lado a cláusula 7.4.1(5) do da mesma norma limita a deformação para L/500. A primeira verificação tem como objetivo evitar uma deformabilidade elevada e garantir um aspeto adequado. Por sua vez, a segunda verificação permite assegurar que após a fase construtiva, os deslocamentos não provocam a fendilhação dos materiais não estruturais [17].

As condições supracitadas foram verificadas para as zonas com maiores deslocamentos em ambos os níveis de laje. Estas zonas estão representadas na Figura 2.27 pelos pontos 1, 2 e 3, cujos deslocamentos foram retirados do programa de cálculo automático.

Figura 2.27 - Deslocamentos da laje para a Combinação Quase-Permanente de Ações

Em primeiro lugar foram retirados os momentos resultantes da Combinação Quase-Permanente, que são apresentados na Tabela 2.32. A zona correspondente ao ponto nº1 situa-se na consola do nível mais baixo da laje, pelo que o momento em causa foi analisado na secção de encastramento.

Ponto	M _{qp} (kN.m)
1	8,63
2	13,25
3	15,90

Tabela 2.32 – Momentos para a Combinação Quase-Permanente de Ações

O momento de fendilhação (M_{cr}) pode ser calculado tendo em conta as seguintes expressões [9]:

$$M_{cr} = f_{ctm} \times \frac{I_I}{x}$$
(2.74)

$$I_{I} = \frac{b \times h^{3}}{12} + b \times \left(x - \frac{h}{2}\right)^{2} + \alpha \times A_{s} \times (d - x)^{2} + A_{s}' \times (x - a)^{2}$$
(2.75)

$$\alpha = \frac{E_s}{E_{c,eff}} \tag{2.76}$$

$$E_{c,eff} = \frac{E_{c,m}}{\left(1 + \varphi(\infty, t_0)\right)}$$
(2.77)

Sendo:

- ✓ I_I Momento de inércia da secção não fendilhada;
- ✓ b Largura da secção;
- ✓ h Altura da secção;
- \checkmark x Posição da linha neutra;
- ✓ d Altura útil;
- ✓ α Coeficiente de homogeneização;
- ✓ A_s Armadura de tração;
- ✓ A'_s Armadura de compressão;
- ✓ E_s Valor de cálculo do módulo de elasticidade do aço em cedência;
- ✓ $E_{c,eff}$ Módulo de elasticidade efetivo do betão;
- ✓ $E_{c,m}$ Módulo de elasticidade secante do betão.

Tendo em conta as expressões (2.76) e (2.77) calculou-se o coeficiente de homogeneização, apresentado na Tabela 2.33.

E _{c,m} (Gpa)	φ	E _s (Gpa)	$E_{c,eff}$ (Gpa)	α (m)
30,5	2,5	200	8,71	22,95

Tabela 2.33 – Determinação do coeficiente de homogeneização

Uma vez determinado o coeficiente α calculou-se então o valor do momento de inércia da secção não fendilhada (Tabela 2.34).

Caraterísticas secção da laje por metro	Ponto 1	Ponto 2	Ponto 3	
b (m)	1	1	1	
h (m)	0,22	0,22	0,22	
x (m)	0,11	0,11	0,11	
α (m)	8,71	22,95	22,95	
A_s (cm ²)	8,04	5,00	5,00	
$A_{s}'(cm^2)$	8,04	5,00	5,00	
a (m)	0,03	0,03	0,03	
d (m)	0,19	0,19	0,19	
$I_{I}(m^{4})$	0,001	0,001	0,001	

Tabela 2.34 – Momento de Inércia da Secção não Fendilhada das trés zonas

Após a obtenção do momento de inércia da secção não fendilhada e da posição da linha neutra, determinou-se o valor do momento de fendilhação de acordo com a expressão (2.74) (Tabela 2.35).

Zona nº	f _{ctm} (Mpa)	$I_{I}(m^{4})$	x (m)	M _{cr} (k.m)
1	2,6	0,001	0,11	23,093053
2	2,6	0,001	0,11	24,445166
3	2,6	0,001	0,11	24,445166

Tabela 2.35 – Determinação dos momentos de fendilhação

Visto que o momento de fendilhação é superior ao momento quase-permanente nas três zonas, conclui-se que não existe fendilhação na laje. Por este motivo é apenas tido em consideração o estado 1.

Quanto ao deslocamento em longo prazo (Tabela 2.36), este foi determinado tendo em conta a seguinte expressão:

$$\delta_{\infty} = \delta_1 \times \frac{E_c}{E_{c,eff}} \tag{2.78}$$

Onde:

- ✓ δ_{∞} Flecha a longo prazo, considerando as caraterísticas da secção não fendilhada;

Ponto	$\delta_{I}(m)$	E _{c,m} (Gpa)	E _{c,eff} (Gpa)	$\delta_{\infty,qp}$ (m)
1	0,0006	30,5	8,71	0,0021
2	0,0020	30,5	8,71	0,0070
3	0,0026	30,5	8,71	0,0091

Tabela 2.36 - Defornada a longo prazo

Assim sendo verificou-se o requisito presente na cláusula 7.4.1(4) do EC2 anteriormente descrito, calculando a relação L/250 na Tabela 2.37.

L (m)	L/250
6,65	0,0266
6,65	0,0266
5,00	0,0200

Tabela 2.37 - Verificação da deformação

A limitação da deformação final a L/500 do vão não se aplica, uma vez que não há elementos não estruturais sobre a laje (como por exemplo: paredes de alvenaria). Uma vez que o valor das flechas de L/250, segundo a Tabela 2.37, é superior ao valor da flecha em longo prazo, verifica-se então o Estado Limte de Utilização.

2.6.2.2 Limitação de danos

O EC8-1 na cláusula 4.3.3 estabelece o requisito de limitação de danos que, por sua vez, se encontra relacionado com as verificações relativas ao Estado Limite de Serviço. Este requisito tem como objetivo limitar os deslocamentos relativos entre pisos, assegurando a integridade dos elementos estruturais e não estruturais de um edifício durante a ocorrência de um sismo [9].

O material de preenchimento mais utilizado em Portugal é o tijolo, que corresponde a um material frágil (16). Uma vez que o edifício em questão apresenta paredes alvenaria, a cláusula 4.3.3(1) do EC8-1 estabelece que os deslocamentos relativos entre pisos devem cumprir com a seguinte condição:

$$d_r v \le 0,005 \times h \tag{2.79}$$

Sendo:

- ✓ d_r Valor de cálculo do deslocamento entre pisos (determinado com base no ponto 2.5.7);
- ✓ h Altura entre pisos;
- ✓ v Coeficiente de redução da ação sísmica, que segundo EC8-1 toma o valor de 0,4 para a Ação Sísmica do Tipo 1 e o valor de 0,55 para a Ação Sísmica do Tipo 2.

Uma vez analisados os conceitos acima enunciados, e como já referido no ponto 2.5.7 os dois níveis de laje têm pouca diferença nos deslocamentos. Assim sendo, os valores de d_r foram calculados apenas para o nível de laje mais elevado e são apresentados na Tabela 2.38.

Ação Sísmica	h (m)	$d_{r,x}(m)$	$d_{r,y}(m)$	ν	$d_{r,x}*v$	$d_{r,y}*v$	0,005*h
Tipo 1	4,99	0,040	0,047	0,40	0,0161	0,0187	0,0250
Tipo 2	4,99	0,022	0,024	0,55	0,0121	0,0131	0,0250

Tabela 2.38 – Deslocamentos relativos condicionantes do edifício

Tendo em conta a Tabela 2.38 e a condição (2.79) pode-se verificar que a estrutura em análise cumpre com o requisito de limitação de danos.

3 VERIFICAÇÃO SEGUNDO EUROCÓDIGO 8 - PARTE 3

Neste capítulo verifica-se a segurança do edifício em questão de acordo com os pressupostos do EC8-3, tendo em conta o dimensionamento feito no capítulo anterior.

3.1 Requisitos de desempenho estrutural

Os requisitos fundamentais de desempenho estrutural referem-se ao estado de dano da estrutura, definidos na cláusula 2.1 do EC8-3 através da verificação dos seguintes estados limites:

✓ Estado Limite de Colapso Eminente (ELCE):

No ELCE, a estrutura encontra-se extremamente danificada, com pouca resistência e rigidez residuais. Os elementos verticais ainda apresentam capacidade de suportar cargas verticais, mas os elementos não estruturais já atingiram o colapso. A estrutura está próxima do colapso e provavelmente não resistiria a outro sismo, mesmo que se tratasse de um sismo com intensidade moderada.

✓ Estado Limite de Danos Significativos (ELDS):

No ELDS, a estrutura apresenta-se severamente danificada, com alguma resistência e rigidez residuais. Os elementos verticais apresentam capacidade de suportar cargas verticais e os elementos não estruturais encontram-se danificados. A estrutura é ainda capaz de suportar um sismo de intensidade reduzida. A reparação neste tipo de estruturas é pouco viável economicamente.

✓ Estado Limite de Limitação de Danos (ELLD):

No ELLD, a estrutura encontra-se ligeiramente danificada. Os elementos estruturais também pouco danificados, mas mantêm as suas características de rigidez e resistência. Os elementos não estruturais apresentam fendilhação dispersa, com uma reparação económica. A estrutura não necessita de quaisquer medidas de reparação.

De acordo com a cláusula 2.1 (2) do EC8-3, o ELCE está mais próximo do colapso real do que o Estado Limite de Não Colapso definido pelo EC8-1, pelo que corresponde a exploração total da capacidade de deformação dos elementos estruturais. O Estado Limite de Não Colapso do EC8-1 é similar ao ELDS definido pelo EC8-3.

Os níveis de proteção adequados são alcançados selecionando um período de retorno para a ação sísmica, para cada um dos Estados Limites. Os períodos de retornos são definidos no Anexo Nacional de cada país, mas o EC8- Parte 3 indica na cláusula 2.1(3)P que para edifícios novos em geral podem considerar-se os seguintes períodos de retorno para cada um dos Estados Limites:

- ✓ Estado Limite de Colapso Eminente: 2475 anos, correspondendo a uma probabilidade de excedência de 2% em 50 anos;
- ✓ Estado Limite de Danos Significativos: 475 anos, correspondendo a uma probabilidade de excedência de 10% em 50 anos;
- ✓ Estado limite de Limitação de Danos: 225 anos, correspondendo a uma probabilidade de excedência de 20 % em 50 anos.

Para o dimensionamento da estrutura em estudo foi considerado um período de retorno de 475 anos com uma probabilidade de excedência de 10 % para o Estado Limite Último.

3.2 Informação para a avaliação estrutural

De acordo com a cláusula 3.1 do EC8-3 na avaliação da resistência sísmica de edifícios existentes, os dados da estrutura em estudo devem ser recolhidos a partir de documentação específica da estrutura em questão, normas utilizadas no projeto, investigações de campo e na maior parte dos casos ensaios in situ e/ou laboratoriais. A avaliação destes dados deve basear-se em diferentes fontes de modo a minimizar as incertezas.

A informação para a avaliação estrutural deve envolver os seguintes pontos:

- ✓ Regularidade estrutural de acordo com o EC8-1, abordada no ponto 2.5.2 do presente documento;
- ✓ Tipo de fundações da estrutura e tipo de solo de acordo com o EC8-1;
- ✓ Dimensões e caraterísticas dos elementos estruturais;
- ✓ Propriedades e estado de conservação dos materiais que constituem a estrutura;
- ✓ Identificação de defeitos nos materiais e pormenorização inadequada;
- ✓ Critérios de dimensionamento sísmico utilizado no projeto original;
- ✓ Identificação da classe de importancia de acordo com a cláusula 4.2.5 do EC8-1;
- ✓ Reavaliação das ações impostas tendo em conta a utilização do edifício;
- ✓ Informação sobre a extensão e tipo de danos na estrutura, caso haja, incluindo as medidas de reparação anteriores.

A Tabela 3.1 apresenta os diferentes fatores de confiança (CF- "*Confidance Fator*") a utilizar, que dependem da quantidade e qualidade da informação adquirida através dos pontos anteriores. Quanto maior for o nível de conhecimento menor é o fator de confiança.

Tabela 3.1 - Níveis de conhecimento, correspondentes métodos de análise e fator de

Nível de	Coometria	Detalhe	Matariais	Análico	FC
conhecimento	Geometria	Detaine	Water lais	Ananse	re
KL1		Projecto	Valores de defeito		
(Knowldge		estrutural e	de acordo com as		
Limited)		inspecão in-	normas em vigor e	Linear	1,35
Conhecimento		situ limitada	ensaios in-situ		
Limitado			limitados		
KL2 ("Normal Knowldge") Conhecimento Normal	Desenhos originais, inspeção visual limitada ou completa	Desenhos originais incompletos e inspeção in- situ limitada ou mais extensa	Especificações de dimensionamento do projeto original e ensaios in-situ limitados ou mais extensos	Todas	1,2
KL3 ("Full Knowldge") Conhecimento Completo		Desenhos originais completos e inspeção in- situ limitada ou mais extensa	Relatórios dos testes originais e ensaios in-situ limitados ou mais extensos	Todas	1,0

confiança[18][3]

A avaliação do edifício baseia-se no dimensionamento efetuado anteriormente, portanto o nível de conhecimento é completo, adotando-se assim um fator de confiança igual a 1.

3.3 Verificação da segurança de acordo com o EC8-Parte 3

A verificação da segurança dos elementos sísmicos de acordo com o EC8-3 consiste em comparar as capacidades dos elementos (C_i – "Capacity") e as exigências impostas pela combinação sísmica (D_i – "Demand").

Tanto as capacidades como as exigências são determinadas de forma diferente, caso o elemento seja frágil ou dúctil. No que diz respeito às capacidades, os elementos dúcteis devem ser quantificados, para os estados limites, em termos de deformação e os elementos frágeis em termos de resistência, tendo sempre em conta o fator de confiança apropriado [18][3].

Quanto às exigências, os elementos dúcteis são verificados em termos de deformações, nos extremos dos pilares e vigas, obtidas diretamente da análise. Por sua vez, nos elementos frágeis, as exigências são determinadas por meio de equações de equilíbrio, tendo também em consideração o fator de confiança apropriado [18].

Além das verificações aos Estados Limites de Utilização e Últimos presentes no EC8-1, para os métodos de análise linear, a Parte 3 do EC8 acrescenta o cálculo da relação $\rho_i = D_i/C_i$. Para todos os elementos cuja razão ρ_i seja superior a 1, deve verificar-se se a relação ρ_{max}/ρ_{min} está compreendida no intervalo entre 2 e 3. Em que ρ_{max} e ρ_{min} representam, respetivamente, o valor máximo e o valor mínimo da razão entre a exigência e a capacidade dos elementos sísmicos primários [19][20].

Esta última condição encontra-se na cláusula 4.4.2 (1) do EC8-3, e tem como objetivo garantir que todos os elementos dúcteis têm comportamentos semelhantes e que se encontrem a funcionar em regime plástico, com formação de rótulas plásticas em períodos de tempo não muito afastados [19]. Caso a condição 4.4.2(1) não se verifique, deve-se recorrer a outro método de análise. Na Tabela 3.2 apresentam-se os critérios de verificação dos Estados Limites em função das exigências de desempenho.

Elementos		ELLD	ELDS	ELCE
Dúcteis	Primários	$ heta_E \leq heta_y$	$\theta_E \leq \theta_{um}$	
Frágil	Primários	Verificar apenas se os Est Limitação de Danos significativos forem os t verificados	ados Limites de e de Danos ínicos a serem	$V_{E,CD} \le V_{Rd-EC8-3}$

Tabela 3.2 - Critérios de verificação dos estados limites segundo o EC8 - Parte 3 [18][3]

Sendo:

- ✓ θ_E Valor das exigências em deformação (retirados da análise);
- ✓ θ_y Valor das deformações de cedência;
- ✓ θ_{um} Valor das capacidades em deformações últimas;
- ✓ $V_{E,CD}$ Valor de esforço transverso obtido pela análise segundo o "Capacity Design";
- ✓ $V_{Rd-EC8-3}$ Resistência ao esforço transverso do elemento de um elemento com carregamento cíclico e após a cedência por flexão ser atingida.

Para a verificação da segurança ao ELCE, teve de se calcular o coeficiente de importância (γ_I), que multiplica a ação sísmica, uma vez que o ELCE tem um período de retorno diferente ao da ação sísmica utilizada no dimensionamento do edifício. De acordo com a cláusula 2.1 do EC8-1, o coeficiente de importância é dado pela seguinte expressão [19]:

$$\gamma_I = \left(\frac{P_L}{P_{LR}}\right)^{-1/k} \tag{3.1}$$

Em que:

- ✓ P_L Probabilidade de excedência da ação sísmica;
- ✓ P_{LR} –Probabilidade de excedência de referência da ação sísmica;
- \checkmark k Constante que depende da sismicidade e pode ser considerada igual a 3.

3.3.1 Avaliação da capacidade de deformação dos pilares e vigas

Para os elementos sujeitos a flexão, a capacidade resistente pode ser avaliada comparando deformações de cedência (θ_y) ou deformações últimas (θ_{um}) . As deformações θ_y estão relacionadas com o Estado Limite de Limitação de Danos, para dois tipos de sismos diferentes (abordados no ponto 3.1), enquanto que as deformações θ_{um} estão relacionadas com o Estado Limite de Colapso Eminente.

> Deformações de cedência (θ_{y})

De acordo com a cláusula A.3.2.4(2) do EC8 – Parte 3, para os pilares e vigas o valor de θ_{v} é dado pela seguinte expressão:

$$\theta_y = \phi_y \times \frac{L_v + a_v \times z}{3} + 0,00135 \times \left(1 + 1,15 \times \frac{h}{L_v}\right) + \frac{\varepsilon_y}{d - d'} \times \frac{d_b \times f_y}{6 \times \sqrt{f_c}}$$
(3.2)

Sendo:

- ✓ ϕ_{y} Curvatura de cedência na extremidade do elemento;
- ✓ L_v Razão momento/esforço transverso da extremidade do elemento;
- ✓ *z* Braço interno da secção dado por *z* = $0.9 \times d$;
- ✓ h Altura da secção transversal;
- ✓ ε_y Deformação de cedência dada por $\varepsilon_y = f_y/E_s$;
- ✓ d Distância à armadura de tração;
- ✓ d' Distância à armadura de compressão;
- ✓ d_b Diâmetro da armadura longitudinal;
- ✓ f_y Tensão de cedência do aço, em MPa;
- ✓ f_c Tensão de cedência do betão, em MPa;
- ✓ a_v Variação do diagrama de momento fletor, que toma o valor de a_v = 1 se o momento M_v for superior ao produto $L_v V_{Rd,c}$, caso contrário assume-se a_v = 0.

A curvatura de cedência na extremidade do elemento \emptyset_y pode ser obtida de forma aproximada por $\varepsilon_{sy}/0,45d$ ou $\varepsilon_{sy}/0,4h$ no caso dos pilares, e por $1,5\varepsilon_{sy}/d$ para as vigas (15).

No que diz respeito ao valor do esforço transverso resistente $V_{Rd,c-EC2}$, a cláusula 6.2.2(1) do EC2 estipula que este deve ser calculado tendo em conta as seguintes expressões:

$$V_{Rd,c-EC2} = \left[C_{Rd,c} \times k \times (100 \times \rho_1 \times f_{ck})^{1/3} + k_1 \times \sigma_{cp}\right] \times b_w \times d$$
(3.3)

$$k = 1 + \sqrt{\frac{200}{d}} \le 2,0 \text{ com } d \text{ em mm};$$
 (3.4)

$$\rho_1 = \frac{A_{s1}}{b_w \times d} \le 0.02 \tag{3.5}$$

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} < 0.2 \times f_{cd} \tag{3.6}$$

Sendo:

- ✓ ρ_1 Taxa de armadura longitudinal;
- ✓ f_{ck} Valor caraterístico da tensão de rotura do betão à compressão;
- ✓ σ_{cp} Tensão de compressão no betão devida a um esforço normal;
- ✓ b_w Largura da secção transversal da área tracionada;
- ✓ d Altura útil da secção transversal;
- ✓ A_{s1} Área da armadura de tração representada na Figura 6.3 do EC2;
- ✓ N_{Ed} Esforço normal na secção devido às ações aplicadas;
- ✓ A_c Área da secção transversal de betão em mm².

> Deformações últimas (θ_{um})

As deformações θ_{um} , de acordo com a cláusula A.3.2.2(1) do EC8-3, podem ser determinadas tendo em consideração a seguinte expressão:

$$\theta_{um} = \left[\frac{1}{\gamma_{el}} \times 0,016 \times (0,3^{v}) \times \left[\frac{max(0,01;\omega')}{max(0,01;\omega)} \times f_{c}\right]^{0,225} \times \left(\frac{L_{v}}{h}\right)^{0,35} \times 25^{\left(\alpha \times \rho_{sx} \times \frac{f_{yd}}{f_{c}}\right)} \times (1,25^{100 \times \rho_{d}})\right]$$
(3.7)

Onde:

- ✓ γ_{el} Fator de redução, igual a 1,5 para os elementos sísmicos primários e a 1,0 para os elementos sísmicos secundários;
- ✓ v Esforço normal reduzido;
- ✓ ω Taxa mecânica de armadura de tração;
- ✓ ω' Taxa mecânica de armadura de compressão;
- ✓ f_c Resistência à compressão do betão em MPa, dividido pelo fator de confiança;
- ✓ f_{yd} Resistência de cedência dos estribos em MPa, dividido pelo fator de confiança;
- ✓ h Altura da secção transversal;
- ✓ α Coeficiente de eficácia, em que $\alpha = \alpha_n \times \alpha_s$, em que α_n e α_s encontram-se definidos nas Expressões (2.66) e (2.67) do presente documento;
- ✓ ρ_{sx} Percentagem de armadura transversal paralela à direção x, dada por:

$$\rho_{sx} = \frac{A_{sx}}{b_w \times s_h}$$

- ✓ s_h Espaçamento entre estribos;
- ✓ ρ_d Percentagem de armadura transversal de reforço, caso exista, em cada direção diagonal.

3.3.1.1 Avaliação da capacidade nos pilares

Neste ponto é apresentada apenas a capacidade de deformação do pilar P9. Em primeiro lugar determinaram-se as taxas de armadura mecânica de tração e compressão para o Pilar P9 (Tabela 3.3).

Tabela 3.3 – Taxa mecânica de armadura de tração e compressão do Pilar P9

Pilar	Direção	A _s (cm ² /m)	$\begin{array}{c} A_{s} \\ (cm^{2}/m) \end{array}$	A _c (cm ²)	f _y (MPa)	f _c (MPa)	ω	ω'
Р9	Х	8,29	8,29	2100	348	16,67	0,082	0,082
	У	16,33	16,33	2100	348	16,67	0,162	0,162

Os valores de f_c e f_{yd} apresentados na Tabela 3.3 são afetados pelo fator de confiança, que neste caso específico é igual a 1, ou seja, os valores mantêm-se iguais.

Em seguida, na Tabela 3.4 determina-se a capacidade de deformação do Pilar P9 de acordo com a expressão (3.7), tendo em conta o valor da razão momento/esforço transverso da extremidade do pilar.

Tabela 3.4 – Determinação da capacidade de deformação do Pilar P9

Pilar	Direção	Yel	ν	ω	ω'	$L_{v}(m)$	h (m)	α	ρ_s	θ_{um}
Р9	Х	1,5	0,044	0,082	0,082	0,471	0,70	0,72	0,028	0,064
	у	1,5	0,044	0,162	0,162	1,214	0,30	0,72	0,023	0,097

O cálculo da percentagem de armadura transversal ρ_{sx} são apresentados no Anexo 6.9, e os valores do esforço normal reduzido e do coeficiente α foram calculados no capítulo anterior.

A comparação das exigências de deformações (θ_{sd}) do pilar (retiradas do programa de cálculo automático) com as capacidades de deformação últimas(θ_{um}), para o ELDS é apresentada na Tabela 3.5

Tabela 3.5 – Exigências e capacidades de deformação do pilar P9 para o ELDS

Pilar	Direção	θ_{sd}	0,75*θ _{um}
Р9	Х	0,004	0,048
	у	0,004	0,073

No que diz respeito ao ELCE foi necessário calcular o coeficiente de importância γ_I de acordo com a expressão (3.1)(Tabela 3.6), podendo assim fazer a comparação das exigências de deformações (θ_{sd}) com as capacidades de deformação últimas(θ_{um}) do pilar, apresentada na Tabela 3.7.

P_L	P _{LR}	k	$\gamma_{\rm I}$
0,02	0,10	3	1,71

Tabela 3.6 – Determinação do coeficiente de importância yı

Tabela 3.7 – Exigências e capacidades de deformação do pilar P9 para o ELCE

Pilar	Direção	$\theta_{sd} * \gamma_1$	θ_{um}
Р9	Х	0,006	0,064
	у	0,007	0,097

Analisando os diferentes valores de deformações apresentados na Tabela 3.5 e na Tabela 3.7, conclui-se que o pilar P9 verifica a segurança ao ELDS e ao ELCE, respetivamente, uma vez que satisfaz os requisitos apresentados na Tabela 3.2.

Os restantes pilares do edifício têm o mesmo comportamento que o pilar P9, como se pode observar na Figura 3.1 e na Figura 3.2, em que todos verificam a segurança aos dois estados limites. Os valores das deformações de ambos os gráficos encontram-se no Anexo 6.11 e no Anexo 6.12.

Figura 3.1 – Exigências e capacidades de deformação dos pilares do edifício para o ELCE

Figura 3.2 - Exigências e capacidades de deformação dos pilares do edifício para o ELDS

3.3.1.2 Avaliação da capacidade nas vigas

Tal como acontece nos pilares, neste ponto é apresentada apenas a capacidade de deformação de apenas uma viga (V4).

Em primeiro lugar determinaram-se as taxas de armadura mecânica de tração e compressão para a viga V4 (Tabela 3.8 e Tabela 3.9).

Viga	Troço	A _s (cm ² /m)	A _s (cm ² /m)	A _c (cm ²)	fy (MPa)	f _c (MPa)	ω	
		Esq.	Dta.				Esq.	Dta.
V4	P9-P10	8,04	12,06	2250	348	16,67	0,075	0,112
	P10-P11	12,06	12,06	2250	348	16,67	0,112	0,112
	P11-P12	12,06	8,04	2250	348	16,67	0,112	0,075

Tabela 3.8 - Taxa mecânica de armadura de tração da Viga V4
Viga	Troço	A's' (cm ² /m)	A's' (cm ² /m)	A_{c}	f_y	f _c	a)'
U	3	Esq.	Dta.	(cm ²)	(MPa)	(MPa)	Esq.	Dta.
	P9-P10	8,04	8,04	2250	348	16,67	0,075	0,075
V4	P10-P11	8,04	8,04	2250	348	16,67	0,075	0,075
	P11-P12	8,04	8,04	2250	348	16,67	0,075	0,075

Tabela 3.9 - Taxa mecânica de armadura de compressão da Viga V4

Os valores de f_c e f_{yd} apresentados na Tabela 3.8 e na Tabela 3.9 são afetados pelo fator de confiança, que neste caso é igual a 1, então, os valores mantêm-se iguais.

A seguir, na Tabela 3.10 é calculada a capacidade de deformação da viga V4 de acordo com a expressão (3.7).

Tabela 3.10 - Determinação da capacidade de deformação da Viga V4

Vigo	Tropo	V		h (m)	θι	ım
viga	110ç0	Yel	V	II (III)	Esq.	Dta.
	P9-P10	1,5	0,000	0,75	0,024	0,025
V4	P10-P11	1,5	0,000	0,75	0,025	0,025
	P11-P12	1,5	0,000	0,75	0,025	0,023

As comparações das exigências de deformações (θ_{sd}) da viga com as capacidades de deformação últimas(θ_{um}), para o ELDS e para o ELCE são apresentadas, na Tabela 3.11 e na Tabela 3.12, respetivamente. O cálculo do coeficiente de importância γ_I foi referido no ponto 3.3.1.1.

Tabela 3.11 – Exigências e capacidades de deformação da viga V4 para o ELDS

Viga	Troço	$\theta_{sd,esq} * \gamma_I$	$\theta_{um,esq}$	$\theta_{sd,dta}{}^*\gamma_I$	$\theta_{um,dta}$
	P9-P10	0,010	0,024	0,010	0,025
V4	P10-P11	0,010	0,025	0,010	0,025
	P11-P12	0,010	0,025	0,010	0,023

Viga	Troço	$\theta_{sd,esq}*\gamma_1$	$\theta_{um,esq}$	$\theta_{sd,dta} * \gamma_l$	$\theta_{um,dta}$
	P9-P10	0,010	0,024	0,010	0,025
V4	P10-P11	0,010	0,025	0,010	0,025
	P11-P12	0,010	0,025	0,010	0,023

Tabela 3.12 – Exigências e capacidades de deformação do viga V4 para o ELCE

Analisando os diferentes valores de deformações apresentados na Tabela 3.11 e na Tabela 3.12, conclui-se que o pilar P9 verifica a segurança ao ELDS e ao ELCE, uma vez que satisfazem os requisitos apresentados na Tabela 3.2.

As restantes vigas do edifício têm o mesmo comportamento que a viga V4, como se pode observar na Figura 3.3 e na Figura 3.4, em que todos verificam a segurança aos dois estados limites. Os valores das deformações de ambos os gráficos encontram-se no Anexo 6.19 e no Anexo 6.20.

Figura 3.3 – Exigências e capacidades de deformação das vigas do edifício para o ELDS

Figura 3.4 – Exigências e capacidades de deformação das vigas do edifício para o ELCE

Por outro lado foi possível verificar que tanto os pilares como as vigas encontram-se em regime plástico, visto que as exigências de deformações (θ_{sd}) encontram-se entre a deformação de cedência (θ_y) e a deformação últimas(θ_{um}), tal como ilustra a Figura 3.5.

Figura 3.5 – Gráfico de exigência/capacidade

3.3.2 Avaliação da capacidade resistente dos pilares ao corte

Segundo a cláusula A3.3.1(1) do EC8-3, nos elementos de betão armado sujeitos a corte, deve verificar-se o esforço transverso resistente cíclico ($V_{Rd-EC8-3}$), para o Estado Limite de Colapso Eminente através da seguinte expressão:

$$V_{Rd-ECB-3} = \frac{1}{\gamma_{el}} \begin{bmatrix} \frac{h-x}{2L_V} \times min(N; 0.55A_c f_c) + (1 - 0.05min(5; \mu_{\Delta}^{pl})) \times \\ \left[0.16max(0.5; 100\rho_{tot}) \times (1 - 0.16min(5; \frac{L_V}{h})) \times \sqrt{fc} \times A_c + V_W \right] \end{bmatrix}$$
(3.8)

Sendo:

- ✓ γ_{el} Fator de redução, igual a 1,15 para os elementos sísmicos primários e 1,0 para os elementos sísmicos secundários;
- ✓ h Altura da secção transversal;
- ✓ L_V Razão momento/esforço transverso da extremidade do elemento;
- \checkmark N Esforço normal na secção devido às ações aplicadas em MN;
- ✓ A_c Área da secção transversal de betão;
- ✓ f_c Resistência à compressão do betão em MPa, dividido pelo fator de confiança;
- ✓ μ_{Δ}^{pl} Exigência de ductilidade em deslocamento que de acordo com (3) é dada por: $\mu_{\Delta}^{pl} = (\theta - \theta_y)/\theta_y$;
- ✓ ρ_{tot} Taxa de armadura longitudinal;
- ✓ V_W Contribuição da armadura para resistência ao esforço transverso.

De acordo com a cláusula A3.3.1(3) do EC8-3, na secção de extremidade dos pilares em que a relação L_V/h é inferior a 2, a resistência ao corte $V_{Rd-EC8-3}$ tem de ser inferior ao valor do esforço transverso devido ao esmagamento do betão ($V_{R-EC8-3,max}$) dado pela seguinte expressão:

$$V_{Rd,max-EC8-3} = \begin{bmatrix} \frac{4}{7} \times (1 - 0.02min(5; \mu_{\Delta}^{pl})) \times (1 + 1.35 \times \frac{N}{A_c f_c}) \end{bmatrix} \\ \begin{bmatrix} (1 + 0.45 \times (100\rho_{tot})) \times \sqrt{min(40; f_c)} \times b_w \times z \times sen(2\delta) \end{bmatrix}$$
(3.9)

O ângulo δ representa o ângulo entre a diagonal e o eixo da coluna sendo $tan(\delta) = \frac{h}{2L_V}$.

Em primeiro lugar foi determinado o valor do esforço transverso resistente $V_{Rd,c-EC2}$ do pilar P9(Tabela 3.13).

Tabela 3.13 – Esforço transverso resistente VR,c do Pilar P9

Pilar	Direção	C _{Rd,c}	k	ρ1	f _{ck} (MPa)	k1	σ _{cp} (MPa)	b _w (m)	d (m)	V _{Rd,c-EC2} (kN)
DO	Х	0,12	1,55	0,004	25	0,15	0,73	0,30	0,65	21,499
F9	у	0,12	1,89	0,009	25	0,15	0,73	0,70	0,25	19,336

O cálculo dos parâmetros $k e \sigma_{cp}$ apresentados na Tabela 3.13 encontram-se no Anexo 6.2.

Uma vez calculado o esforço transverso resistente $V_{R,c-EC2}$, encontrou-se o valor do parâmetro a_v e em seguida, na Tabela 3.14, apresentam-se as deformações de cedência θ_y para as direções x e y.

Pilar	Direção	φy	L _v (m)	av	z (m)	h (m)	d (m)	d' (m)	d _b (mm)	f _y (MPa)	f _c (MPa)	θ_y
DO	Х	0,003	0,47	1	0,59	0,70	0,65	0,65	20	348	16,67	0,005
F9	у	0,007	1,21	1	0,23	0,30	0,25	0,25	20	348	16,67	0,005

Tabela 3.14 – Deformações de cedência do Pilar P9

Na Tabela 3.14, o valor de a_v do pilar P9 é igual a 1 pelo fato do momento M_y ser superior ao produto $L_v V_{R,c}$. O cálculo da curvatura de cedência na extremidade (ϕ_y) de cada pilar encontra-se no Anexo 6.6.

Uma vez encontradas as deformações de cedência do pilar em cada direção, calculou-se então o parâmetro μ_{Δ}^{pl} (Tabela 3.15).

Pilar	Direção	θ_{sd}	θ_{y}	$\mu_{\Delta}{}^{pl}$
DO	Х	0,004	0,005	0,33
19	у	0,004	0,005	0,27

Tabela 3.15 - Exigência de ductilidade em deslocamento do Pilar P9

Tendo em conta o valor de μ_{Δ}^{pl} , na Tabela 3.16 determinou-se o valor do esforço transverso resistente cíclico ($V_{R-EC8-3}$) do pilar P9 de acordo com a expressão (3.8).

Tabela 3.16 – Esforço transverso resistente cíclico $V_{R-EC8-3}$ do pilar P9

Pilar	Direção	γel	h (m)	$L_{v}(m)$	x (m)	N (MN)	A _c (m)	fc (Mpa)	$\mu_{\Delta}{}^{pl}$	ρ_{tot}	V _{Rd-EC8-3} (kN)
DO	Х	1,15	0,70	0,471	0,038	0,15	0,21	16,67	0,33	0,017	276,76
17	У	1,15	0,30	1,214	0,016	0,15	0,21	16,67	0,27	0,017	88,05

A Tabela 3.17 apresenta a comparação do esforço transverso atuante obtido na análise segundo o "Capacity Design" ($V_{E,CD}$) com o esforço transverso resistente cíclico ($V_{R-ECB-3}$).

Tabela 3.17 - Verificação da segurança ao ELCE do pilar P9

Pilar	Direção	$V_{ed}*\gamma_{I}\left(kN\right)$	V _{Rd-EC8-3} (kN)
DO	Х	158,709	276,76
P9	У	96,425	88,05

Tendo em conta a Tabela 3.2 e a Tabela 3.17, conclui-se que o pilar P9 não verifica a segurança ao ELCE na direção y, visto que o valor de $V_{E,CD}$ é superior ao valor de $V_{R-ECB-3}$. A segurança a este estado limite é apenas verificada em ambas direções nos pilares P5.1 e P7.1 como se pode observar na Figura 3.7.

Figura 3.6 - Verificação da segurança ao esforço transverso para o ELCE dos pilares do edifício

Depois de verificar nas extremidade do pilar se relação L_V/h era inferior a 2, na Tabela 3.18 calculou-se o valor de $V_{R-EC8-3,max}$ do pilar P9.

Tabela 3.18 – Esforço tranverso devido ao esmagamento do betão (VRd-EC8-3,max) do pilar P9

Pilar	Direção	$L_{v}(m)$	h (m)	L _v /h	b _w (m)	z (m)	V _{Rd-EC8-3,máx} (kN)
DO	х	0,471	0,70	0,67	0,30	0,59	640,70
P9	у	1,214	0,30	4,05	-	-	-

Analisando a Tabela 3.17 e a Tabela 3.18 conclui-se que o pilar P9 está de acordo com a condição definida pela A3.3.1(3) do EC8-3, visto que $V_{R-EC8-3} < V_{R-EC8-3,max}$. Os restantes pilares também verificam esta condição, como se pode observar na Figura 3.7

Figura 3.7 - Comparação do V_{Rd-EC8-3} com V_{Rd-EC8-3,max}

4 CONCLUSÕES

Como qualquer área do saber, a engenharia civil está em constante evolução, sendo especialmente estimulada pela investigação e experiência humana. Esta evolução refletiu-se nos últimos anos na evolução de normas para projetos de estruturas resistentes aos sismos, desde o RSCCS até aos mais recentes Eurocódigos.

Na primeira parte desta dissertação procedeu-se ao dimensionamento de um edifício de acordo com as normas mais recentes, os Eurocódigos, tendo-se verificado a importância da contabilização da ação sísmica e ainda a relevância e necessidade de contemplar vários aspetos, desde a análise do projeto de arquitetura até à pormenorização das armaduras, para o dimensionamento adequado de uma estrutura.

Uma das particularidades interessantes do edifício em estudo corresponde ao fato de apresentar um desnível na laje de cobertura. Por esta razão, em determinadas situações a estrutura foi analisada como se tivesse dois pisos, visto que cada nível de laje apresenta um comportamento independente do outro.

Depois de efetuadas todas as verificações preconizadas pelo EC8-3, foi possível cumprir o objetivo proposto neste trabalho, ou seja, a aplicação da parte 3 do EC8 na avaliação da segurança ao sismo de um edifício existente e projetado de acordo com a parte 1 do Eurocódigo 8. Desta forma, este trabalho contemplou uma aplicação abrangente do Eurocódigo 8 a uma estrutura de betão armado, quer em termos de dimensionamento estrutural, quer em termos de avaliação da segurança aos sismos da estrutura inicialmente projetada.

No que diz respeito à Parte 3 do EC8, os pilares e vigas do edifício verificaram a segurança aos Estados Limites, exceto a segurança ao esforço transverso. Na aplicação desta parte do EC8, uma das dificuldades foi a inexistência de um anexo nacional com os Estados Limites recomendados e a definição da respetiva intensidade da ação sísmica a considerar.

4.1 Trabalhos futuros

Como trabalho futuro recomenda-se o estudo do edifício sem o degrau na laje e/ou a análise não linear do mesmo edifício.

BIBLIOGRAFIA

 Costa, S. "Avaliação da Vulnerabilidade Sísmica do Parque Edificado da Avenida Dr. Lourenço Peixinho - Aveiro", Dissertação para obtenção do grau de Mestre em Egenharia Civil, FEUP, 2008.

 Silva M.J., Candeias P., Coelho E. "Estudo Comparativo sobre o Dimensionamento de Edifícios de Betão Armado: Uma Análise sobre a Regulamentação Portuguesa em vigor e Novos Eurocódigos", Trabalho no âmbito de um pós-doutoramento, LNEC, 2012.

3. Silva, P. "Reforço Sísmico de Edifícios de Betão Armado", Dissertação para a obtenção do Grau de Mestre em Engenharia Civil, IST, Lisboa,2007.

4. NP EN 1990 - Eurocódigo 0." Bases para o Projecto de Estruturas", CEN, 2009.

5. NP EN 1991-1-1 - Eurocódigo 1 ." Acções em Estruturas, Parte 1-1 : Acções Gerais - Pesos Volúmicos, Pesos Próprios, Sobrecargas em Edifícios ",CEN,2009.

6. NP EN 1992-1-1 - Eurocódigo 8 ." Projecto de Estruturas para Resistência aos Sismos, Parte 1-1: Regras Gerais e Regras para Edifícios", CEN, 2010.

7. NP EN 1998-1-1 - Eurocódigo 8 ." Disposições para Projecto de Estruturas Sismo-Resistentes, Parte 1-1 . Regras Gerais, Acções Sísmicas e Requisitos Gerais para as Estruturas", CEN, 2010.

8. Santos, P. S. "Projecto de Estruturas de um Edifício dimensionado de acordo com os Eurocódigos EC1, EC2 e EC8", Dissertação para obtenção do Grau de Mestre em Engenharia Civil, IST, 2010.

 Candeias, M. "Projecto de Fundações e Estrutura de um Edificio destinado a Pavilhão Gimnodesportivo", Projecto para obtenção do grau mestre, em Engenharia Civil;. Lisboa, ISEL, 2011.

10. Lopes, M. Sismos e Edifícios. Amadora : Edições Orion, 2008.

11. CSI, SAP2000 V-15, 2013, Integrate Finite Element Analysis and Design of Structures Basic Analysis Reference Manual, Computers an Structures, Inc., Berkeley, California, EUA.

12. Portugal, Computers & Structures Inc. SAP2000, Integrated Soluction for Structural Analysis & Design, Formação Base.

13. Bhatt, C. "Análise Sísmica de Edifícios de Betão Armado segundo o Eurocódigo 8 -Análises Lineares e não Lineares", Dissertação para obtenção do Grau de Mestre em Engenharia Civil, IST, Lisboa, 2007.

14. Jacinto, L. "Dimensionamento Sísmico de Edifícios de Betão Segundo o EC8-1";.s.l. : Área Departamental de Engenharia Civil, ISEL, Lisboa, 2013.

15. Romãozinho, M. "Dimensionamento para a Acção do EC8, Análise das Prescrições da EN 1998-1 Aplicadas a Estruturas de Edifícios de Betão Armado com Recurso a um Exemplo prático", Dissertação para obtenção do grau de Mestre em Engenharia Civil, IST, Lisboa, 2008.

16. Costa, A. OE - Seminário - Aplicação do Eurocódigo 8 ao Projecto de Edifícios.
"Projecto de Estruturas para Resistência aos Sismos - Regras Específicas para Edifícios de Betão". Lisboa : OE, 2011.

17. Santos, P. "Dimensionamento para a Acção do EC8, Análise das Prescrições da EN 1998-1 Aplicadas a Estruturas de Edifícios de Betão Armado com Recurso a um Exemplo prático", Dissertação para obtenção do grau de Mestre em Engenharia Civil, IST, Lisboa, 2008.

18. EN 1998-3 - "Eurocode 8 - Dedign of Structures for Earthquake Resistance, Part 3 - Assessment and Retrofitting of Buildings", CEN, 2005.

19. Appleton J., Saraiva J.P. "Avaiação da Capacidade Sísmica de Edifícios de Betão Armado de acordo com o Eurocódigo 8 - Parte 3", 4^a Jornadas Portuguesas de Engenharia de Estruturas, 2006.

20. Coelho E., Carvalho E.C., Silva M.J. "Reparação e Reforço Sísmico de Estruturas no Eurocódigo 8",2004.

ANEXOS

Índice de anexos

Anexo 1.1 – Dimensões dos elementos estruturais do edifício
Anexo 1.2 – Centro de rigidez do edifício
Anexo 1.3 – Espectros de resposta
Anexo 1.4 – Armaduras longitudinais das vigas
Anexo 1.5 – Taxas de armaduras de tração e compressão das vigas
Anexo 1.6 – Diâmetro das armaduras de reforço 101
Anexo 1.7 – Espaçamentos máximos das armaduras transversais e longitudinais nas
vigas
Anexo 1.8 – Armadura transversal nas vigas 103
Anexo 1.9 – Posição da linha neutra e momento resistente nas vigas 104
Anexo 1.10 – Determinação dos esforços transversos condicionantes nas vigas 105
Anexo 1.11 – Espaçamento da armadura de esforço transverso nas vigas 106
Anexo 1.12 – Determinação do esforço transverso resistente máximo nas vigas 106
Anexo 1.13 – Determinação do esforço transverso resistente da viga 107
Anexo 1.14 – Armadura longitudinal nos pilares 108
Anexo 1.15 – Área da secção mínima de armaduras 108
Anexo 1.16 – Extensão da zona crítica dos pilares 109
Anexo 1.17 – Espaçamento da armadura de esforço transverso nos pilares 109
Anexo 1.18 – Armadura transversal nos pilares 110
Anexo 1.19 – Posição da linha neutra dos pilares 111
Anexo 1.20 – Determinação dos momentos resistentes nas extremidades dos pilares 112
Anexo 1.21 – Determinação do esforço transverso condicionante dos pilares 113
Anexo 1.22 – Determinação do esforço resistente dos pilares 114
Anexo 1.23 – Determinação do esforço transverso resistente máximo nos pilares 115
Anexo 1.24 – Armaduras de confinamento das zonas críticas dos pilares 116
Anexo 2.1 – Razão momento/esforço transverso da extremidade dos pilares 124
Anexo 2.2 – Cálculo da constante k e do taxa da armadura longitudinal dos pilares 125
Anexo 2.3 – Cálculo do valor do esforço transverso resistente VR,c 126
Anexo 2.4 – Cálculo de vmin nos pilares 127
Anexo 2.5 – Cálculo do valor do esforço transverso resistente VR,cmin 128
Anexo 2.6 – Cálculo da curvatura de cedência na extremidade dos pilares

Anexo 2.7 – Cálculo da deformação de cedência nos pilares 130
Anexo 2.8 – Taxa mecânica de armadura de tração e compressão dos pilares 131
Anexo 2.9 – Cálculo da percentagem de armadura transversal psx 132
Anexo 2.10 – Cálculo da capacidade de deformação dos pilares 133
Anexo 2.11 - Exigências e capacidades de deformação dos pilares do edifício para o
ELDS
Anexo 2.12 - Exigências e capacidades de deformação dos pilares do edifício para o
ELCE
Anexo 2.13 – Razão momento/esforço transverso da extremidade dos pilares 136
Anexo 2.14 – Taxa mecânica de armadura de tração das vigas do edifício 137
Anexo 2.15 – Taxa mecânica de armadura de compressão das vigas do edifício 138
Anexo 2.16 – Cálculo da percentagem de armadura transversal ρs 139
Anexo 2.17 – Cálculo da deformação de cedência das vigas 140
Anexo 2.18 – Cálculo da capacidade de deformação última das vigas 141
Anexo 2.19 - Exigências e capacidades de deformação das vigas do edifício para o
ELDS
Anexo 2.20 - Exigências e capacidades de deformação das vigas do edifício para o
ELCE
Anexo 2.21 – Exigência de ductilidade em deslocamento dos pilares 144
Anexo 2.22 – Esforço transverso resistente cíclico $VR - EC8 - 3$ dos pilares
Anexo 2.23 – Esforço tranverso devido ao esmagamento do betão (VRd-EC8-3,max) do
pilar P9
Anexo 2.24 – Projeto de Arquitetura Erro! Marcador não definido.
Anexo 2.25 – Projeto de Estruturas Erro! Marcador não definido.

5 Anexo 1 – Cálculos justificativos do dimensionamento do edifício

Anexo 5.1 – Dimensões dos elementos estruturais do edifício

Pilar	a (m)	b (m)	h (m)
P1	0,30	1,10	3,59
P2	0,70	0,30	3,59
P3	0,70	0,30	3,59
P4	0,30	0,70	3,59
P5.1	0,30	0,70	3,59
P5.2	0,30	0,70	1,40
P6.1	0,30	0,30	3,59
P6.2	0,30	0,30	1,40
P7.1	0,30	0,30	3,59
P7.2	0,30	0,30	1,40
P8.1	0,30	0,70	3,59
P8.2	0,30	0,70	1,40
P9	0,30	0,70	4,99
P10	0,70	0,30	4,99
P11	0,70	0,30	4,99
P12	0,30	0,70	4,99

Dimensão dos pilares

Dimensão das vigas

Viga	a (m)	h (m)	L (m)
V1	0,30	0,75	16,96
V2	0,30	0,60	16,96
V3	0,30	0,40	16,96
V4	0,30	0,75	16,96
V5	0,30	0,40	4,98
V6	0,30	0,40	4,98
V7	0,30	0,40	4,98
V8	0,30	0,40	4,98
V9	0,30	0,40	5,00
V10	0,30	0,40	5,00
V11	0,30	0,40	5,00
V12	0,30	0,40	5,00

Anexo 5.2 – Centro de rigidez do edifício

Fração poente

Pilar	a(m)	b(m)	Ix(m ⁴)	xi(m)	Ix.xi	Iy(m ⁴)	yi(m)	Iy.yi
P5	0,30	0,70	0,00858	0	0	0,00158	4,98	0,007844
P6	0,30	0,30	0,00068	5,98	0,00404	0,00068	4,98	0,003362
P7	0,30	0,30	0,00068	10,98	0,00741	0,00068	4,98	0,003362
P8	0,30	0,70	0,00858	16,96	0,14543	0,00158	4,98	0,007844
P9	0,30	0,70	0,00858	0	0	0,00158	9,98	0,015719
P10	0,70	0,30	0,00158	5,98	0,00942	0,00858	9,98	0,085579
P11	0,70	0,30	0,00158	10,98	0,01729	0,00858	9,98	0,085579
P12	0,30	0,70	0,00858	16,96	0,14543	0,00158	9,98	0,015719
$\Sigma =$	-	-	0,03880	-	0,32902	0,02480	-	0,225004
	Xcr=	8,48				X _{CG} =	10,14	
	Ycr=	9,073				X _{CG} =	8,64	

Fração nascente

Pilar	a(m)	b(m)	Ix(m ⁴)	xi(m)	Ix.xi	Iy(m ⁴)	yi(m)	Iy.yi
P1	0,30	1,10	0,033275	0	0	0,00248	0	0
P2	0,70	0,30	0,001575	5,98	0,00942	0,00858	0	0
P3	0,70	0,30	0,001575	10,98	0,01729	0,00858	0	0
P4	0,30	0,70	0,008575	16,96	0,14543	0,00158	0	0
P5	0,30	0,70	0,008575	0	0	0,00158	4,98	0,0078435
P6	0,30	0,30	0,000675	5,98	0,00404	0,00068	4,98	0,0033615
P7	0,30	0,30	0,000675	10,98	0,00741	0,00068	4,98	0,0033615
P8	0,30	0,70	0,008575	16,96	0,14543	0,00158	4,98	0,0078435
$\Sigma =$	-	-	0,0635	-	0,32902	0,0257	-	0,02241
	Xcr=	5,181				X _{CG} =	9,31	
	Ycr=	0,872				Y _{CG} =	3,07	

Anexo 5.3 – Espectros de resposta

Ação sísmica tipo 1

Ação Sísmica Tipo 1					
a _g = 1,5					
S _{max} =	1,6				
S=	1,5				
$T_B =$	0,2				
T _C =	0,6				
T _D =	2				
q=	2,64				

Т	S _d
0,00	1,50
0,02	1,56
0,04	1,63
0,05	1,66
0,06	1,69
0,07	1,72
0,08	1,75
0,09	1,78
0,10	2,13
0,20	2,13
0,25	2,13
0,30	2,13
0,40	2,13
0,50	2,13
0,60	2,13
0,70	1,83
0,80	1,60
0,90	1,42
1,00	1,28
1,10	1,16
1,20	1,07
1,30	0,98
1,40	0,91
1,50	0,85
1,60	0,80
1,70	0,75
1,80	0,71
1,90	0,67
2,00	0,64
2,50	0,41
3,00	0,30
3,50	0,30
4,00	0,30

Ação sísmica tipo 2

Ação Sísmica Tipo 2						
a _g =	1,7					
S _{max} =	1,5					
S=	1,46					
$T_B =$	0,1					
T _C =	0,25					
T _D =	2					
q=	2,64					

Т	Sd
0,000	1,655
0,020	1,794
0,040	1,933
0,050	2,003
0,060	2,072
0,070	2,142
0,080	2,211
0,090	2,281
0,100	2,350
0,200	2,350
0,250	2,350
0,300	1,959
0,400	1,469
0,500	1,175
0,600	0,979
0,700	0,839
0,800	0,734
0,900	0,653
1,000	0,588
1,100	0,534
1,200	0,490
1,300	0,452
1,400	0,420
1,500	0,392
1,600	0,367
1,700	0,346
1,800	0,340
1,900	0,340
2,000	0,340
2,500	0,340
3,000	0,340
3,500	0,340
4,000	0,340

Anexo 5.4 – Armaduras longitudinais das vigas

Vice	Tracco	Zono	E	lsquerda			Vão		Direita		
viga	Tioço	Zona	A_s (cm ²)	As adotado	(cm^2)	$A_s(cm^2)$	As adotado (ci	m²)	$A_s(cm^2)$	As adotado	(cm^2)
	D1 D7	superior	6,83	4Ø16	8,04	6,83	4Ø16	8,04	9,55	6Ø16	12,06
	F 1-F 2	inferior	6,83	4Ø16	8,04	6,83	4Ø16	8,04	6,83	4Ø16	8,04
V 1	D2 D2	superior	11,03	6Ø16	12,06	6,83	4Ø16	8,04	11,53	6Ø16	12,06
* 1	12-13	inferior	6,83	4Ø16	8,04	6,83	4Ø16	8,04	6,83	4Ø16	8,04
	D2 D4	superior	9,50	6Ø16	12,06	6,83	4Ø16	8,04	6,83	4Ø16	8,04
	P3-P4	inferior	6,83	4Ø16	8,04	6,83	4Ø16	8,04	6,83	4Ø16	8,04
	P5_P6	superior	6,20	4Ø16	8,04	5,39	3Ø16	6,03	5,39	3Ø16	6,03
	15-10	inferior	5,39	3Ø16	6,03	5,39	3Ø16	6,03	5,39	3Ø16	6,03
V2	D6 D7	superior	5,39	3Ø16	6,03	5,39	3Ø16	6,03	5,39	3Ø16	6,03
v 2	10-17	inferior	5,39	3Ø16	6,03	5,39	3Ø16	6,03	5,39	3Ø16	6,03
	D7 D9	superior	5,39	3Ø16	6,03	5,39	3Ø16	6,03	6,09	3Ø16	6,03
	P/-P8	inferior	5,39	3Ø16	6,03	5,39	3Ø16	6,03	5,39	4Ø16	8,04
	D5 D6	superior	3,85	4Ø12	4,52	3,46	4Ø12	4,52	4,05	4Ø12	4,52
	P3-P0	inferior	3,46	4Ø12	4,52	3,46	4Ø12	4,52	3,46	4Ø12	4,52
V2	P6-P7	superior	3,46	4Ø12	4,52	3,46	4Ø12	4,52	3,46	4Ø12	4,52
V 3		inferior	3,46	4Ø12	4,52	3,46	4Ø12	4,52	3,46	4Ø12	4,52
	P7-P8	superior	3,87	4Ø12	4,52	3,46	4Ø12	4,52	3,69	4Ø12	4,52
		inferior	3,46	4Ø12	4,52	3,46	4Ø12	4,52	3,46	4Ø12	4,52
	D0 D10	superior	6,83	4Ø16	8,04	6,83	4Ø16	8,04	7,80	6Ø16	12,06
	P9-P10	inferior	6,83	4Ø16	8,04	6,83	4Ø16	8,04	6,83	4Ø16	8,04
V/	P10-	superior	10,18	6Ø16	12,06	6,83	4Ø16	8,04	10,19	6Ø16	12,06
v 4	P11	inferior	6,83	4Ø16	8,04	6,83	4Ø16	8,04	6,83	4Ø16	8,04
	P11-	superior	7,72	6Ø16	12,06	6,83	4Ø16	8,04	6,83	4Ø16	8,04
	P12	inferior	6,83	4Ø16	8,04	6,83	4Ø16	8,04	6,83	4Ø16	8,04
\mathbf{V} 5	D1 D5	superior	14,96	5Ø20	15,70	5,63	3Ø20	9,42	16,54	6Ø20	18,84
٧J	r 1-r J	inferior	7,17	4Ø16	8,04	3,46	3Ø16	6,03	7,17	4Ø16	8,04
V6	P2_P6	superior	4,96	5Ø12	5,65	3,46	4Ø12	4,52	4,93	5Ø12	5,65
•0	12-10	inferior	3,46	4Ø12	4,52	3,46	4Ø12	4,52	3,46	4Ø12	4,52
2<< <z< td=""><td>P3_P7</td><td>superior</td><td>5,28</td><td>5Ø12</td><td>5,65</td><td>3,46</td><td>4Ø12</td><td>4,52</td><td>5,09</td><td>5Ø12</td><td>5,65</td></z<>	P3_P7	superior	5,28	5Ø12	5,65	3,46	4Ø12	4,52	5,09	5Ø12	5,65
V7	13-17	inferior	3,46	4Ø12	4,52	3,46	4Ø12	4,52	3,46	4Ø12	4,52
V8	P4-P8	superior	15,21	5Ø20	15,70	5,78	3Ø20	9,42	14,98	5Ø20	15,70
,0	1 + 1 0	inferior	4,09	4Ø12	4,52	4,33	4Ø12	4,52	6,28	4Ø12	6,78
V9	P5-P9	superior	10,38	4Ø16	8,04	3,46	3Ø16	6,03	6,59	4Ø16	8,04
,,	15-17	inferior	4,34	4Ø12	4,52	3,46	4Ø12	4,52	4,34	4Ø12	4,52
V10	P6-P10	superior	3,56	4Ø12	4,52	3,56	4Ø12	4,52	3,56	4Ø12	4,52
, 10	10110	inferior	3,46	4Ø12	4,52	3,46	4Ø12	4,52	3,46	4Ø12	4,52

Vice Trees	Traca	Zono	Esquerda				Vão			Direita		
Viga Troço		Zona	A_s (cm ²)	$A_{s adotado}$	(cm^2)	$A_s(cm^2)$	A _{s adotado} (cm ²)		$A_s(cm^2)$	As adotado	(cm^2)	
V /1.1	D7 D11	superior	3,56	4Ø12	4,52	3,56	4Ø12	4,52	3,56	4Ø12	4,52	
V I I	P/-P11	inferior	3,46	4Ø12	4,52	3,46	4Ø12	4,52	3,46	4Ø12	4,52	
V12	P8-P12	superior	5,93	3Ø12 + 2Ø16	7,41	3,56	1Ø12 + 2Ø16	5,15	6,83	3Ø12 + 2Ø16	7,41	
		inferior	4,28	4Ø12	4,52	3,46	4Ø12	4,52	4,66	5Ø12	5,65	

Anexo 5.5 – Taxas de armaduras de tração e compressão das vigas

Vigo	Traca	Zona	A _{s ado}	_{ptado} (cm	1 ²)	ρ			
viga	TTOÇO	Zona	Esquerda	Meio	Direita	Esquerda	Meio	Direita	
	P1_P2	superior	8,04	8,04	12,06	0,0036	0,0036	0,0054	
	1 1-1 2	inferior	8,04	8,04	8,04	0,0036	0,0036	0,0036	
V1	P2-P3	superior	12,06	8,04	12,06	0,0054	0,0036	0,0054	
	1215	inferior	8,04	8,04	8,04	0,0036	0,0036	0,0036	
	D2 D4	superior	12,06	8,04	8,04	0,0054	0,0036	0,0036	
	1 3-1 4	inferior	8,04	8,04	8,04	0,0036	0,0036	0,0036	
	P5-P6	superior	8,04	6,03	6,03	0,0045	0,0034	0,0034	
	1510	inferior	6,03	6,03	6,03	0,0034	0,0034	0,0034	
V2	P6-P7	superior	6,03	6,03	6,03	0,0034	0,0034	0,0034	
• 2	10-17	inferior	6,03	6,03	6,03	0,0034	0,0034	0,0034	
	P7-P8	superior	6,03	6,03	6,03	0,0034	0,0034	0,0034	
		inferior	6,03	6,03	8,04	0,0034	0,0034	0,0045	
	P5-P6	superior	4,52	4,52	4,52	0,0038	0,0038	0,0038	
	1510	inferior	4,52	4,52	4,52	0,0038	0,0038	0,0038	
V3	P6-P7	superior	4,52	4,52	4,52	0,0038	0,0038	0,0038	
15	1017	inferior	4,52	4,52	4,52	0,0038	0,0038	0,0038	
	P7-P8	superior	4,52	4,52	4,52	0,0038	0,0038	0,0038	
	1/10	inferior	4,52	4,52	4,52	0,0038	0,0038	0,0038	
	P9-P10	superior	8,04	8,04	12,06	0,0036	0,0036	0,0054	
	1 / 1 10	inferior	8,04	8,04	8,04	0,0036	0,0036	0,0036	
V4	P10-P11	superior	12,06	8,04	12,06	0,0054	0,0036	0,0054	
		inferior	8,04	8,04	8,04	0,0036	0,0036	0,0036	
	P11_P12	superior	12,06	8,04	8,04	0,0054	0,0036	0,0036	
	111-112	inferior	8,04	8,04	8,04	0,0036	0,0036	0,0036	

Viga	Troco	Zona	$A_{s ado}$	_{ptado} (cm	1 ²)		ρ			
v iga	ΠΟÇΟ	Zona	Esquerda	Meio	Direita	Esquerda	Meio	Direita		
W 5	D1 D5	superior	15,7	9,42	18,84	0,0131	0,0079	0,0157		
۷3	P1-P3	inferior	8,04	6,03	8,04	0,0067	0,0050	0,0067		
VC	D2 D6	superior	5,65	4,52	5,65	0,0047	0,0038	0,0047		
vo	P2-P0	inferior	4,52	4,52	4,52	0,0038	0,0038	0,0038		
N7	D2 D7	superior	5,65	4,52	5,65	0,0047	0,0038	0,0047		
V /	P3-P/	inferior	4,52	4,52	4,52	0,0038	0,0038	0,0038		
VO	D4 D9	superior	15,7	9,42	15,7	0,0131	0,0079	0,0131		
V 8	P4-P8	inferior	4,52	4,52	6,78	0,0038	0,0038	0,0057		
VO	D5 D0	superior	8,04	6,03	8,04	0,0067	0,0050	0,0067		
۷9	P3-P9	inferior	4,52	4,52	4,52	0,0038	0,0038	0,0038		
V 10	DC D10	superior	4,52	4,52	4,52	0,0038	0,0038	0,0038		
V10	P6-P10	inferior	4,52	4,52	4,52	0,0038	0,0038	0,0038		
1711	D7 D11	superior	4,52	4,52	4,52	0,0038	0,0038	0,0038		
V11	P/-P11	inferior	4,52	4,52	4,52	0,0038	0,0038	0,0038		
V10	D0 D12	superior	7,41	5,15	7,41	0,0062	0,0043	0,0062		
V12 P	P8-P12	inferior	4,52	4,52	5,65	0,0038	0,0038	0,0047		

Viga			Nós E	xteriores	9			Nós ir	nteriores	
U	Pilar	ν_{d}	hc	ρ'	ρ_{max}	d _{bL} (mm)	Pilar	ρ'	ρ_{max}	d _{bL} (mm)
	P1	0,059	0,3	0,004	0,014	15	-	-	-	-
371	P2	0,088	0,7	0,004	0,014	35	_	-	-	-
V I	P3	0,094	0,7	0,004	0,014	35	-	-	-	-
	P4	0,057	0,3	0,004	0,014	15	-	-	-	-
W2	P5.1	0,079	0,3	0,003	0,014	15	P61	0,003	0,0136	18
٧Z	P8.1	0,062	0,3	0,003	0,014	15	P71	0,003	0,0136	18
W3	P5.2	0,040	0,3	0,004	0,014	14	P62	0,004	0,0140	17
۷3	P8.2	0,039	0,3	0,004	0,014	14	P72	0,004	0,0140	17
	P9	0,036	0,3	0,004	0,014	14	-	-	-	-
374	P10	0,062	0,7	0,004	0,014	34	-	-	-	-
V4	P11	0,061	0,7	0,004	0,014	34	-	-	-	-
	P12	0,040	0,3	0,004	0,014	15	-	-	-	-
W 5	P1	0,059	1,1	0,007	0,017	50	-	-	-	-
۷3	P5.2	0,079	0,7	0,007	0,017	32	_	-	-	_
V6	P2	0,088	0,3	0,004	0,014	15	P61	0,004	0,0140	18
V7	P3	0,094	0,3	0,004	0,014	15	P71	0,004	0,0140	18
170	P4	0,057	0,7	0,006	0,016	32	-	-	-	-
٧٥	P8.1	0,062	0,7	0,004	0,014	34	-	-	-	-
VO	P5.2	0,040	0,7	0,004	0,014	34	-	-	-	-
V9	P9	0,036	0,7	0,004	0,014	34	-	-	-	-
V10	P10	0,062	0,3	0,004	0,014	15	P62	0,004	0,0140	18
V11	P11	0,061	0,3	0,004	0,014	15	P72	0,004	0,0140	18
V12	P8.2	0,039	0,7	0,005	0,015	33	-	-		-
	P12	0,040	0,7	0,004	0,014	34	_	-		-

Anexo 5.6 – Diâmetro das armaduras de reforço

			S _{1,max}	S _{t,max}
Viga	$h_w(m)$	d (m)	(m)	(m)
V1	0,750	0,700	0,525	0,525
V2	0,600	0,550	0,413	0,413
V3	0,400	0,350	0,263	0,263
V4	0,750	0,700	0,525	0,525
V5	0,400	0,350	0,263	0,263
V6	0,400	0,350	0,263	0,263
V7	0,400	0,350	0,263	0,263
V8	0,400	0,350	0,263	0,263
V9	0,400	0,350	0,263	0,263
V10	0,400	0,350	0,263	0,263
V11	0,400	0,350	0,263	0,263
V12	0,400	0,350	0,263	0,263

Anexo 5.7 – Espaçamentos máximos das armaduras transversais e longitudinais nas vigas

Anexo 5.8 -	- Armadura	transversal	nas vigas
-------------	------------	-------------	-----------

		Zona Críti	Zona Crítica		Esquerda			Vão			Direita		Zona Críti	ca
Viga	Troço	$A_{s adoptado} (cm^{2}/m) \begin{vmatrix} A_{s} \\ (cm^{2}/m) \end{vmatrix} A_{s adoptado} (cm^{2}/m)$		² /m)	As (cm ² /m)	A _{s adoptado} (cn	n ² /m)	$\begin{array}{c} A_{s} \\ (cm^{2}/m) \end{array}$	As adoptado (cm ² /m)		As adoptado (cm ² /m)			
	P1-P2	Ø8//0,125,2r	8,04	5,85	Ø8//0,15,2r	6,67	4,94	Ø8//0,15,2r	6,67	6,33	Ø8//0,15,2r	6,67	Ø8//0,125,2r	8,04
V1	P2-P3	Ø8//0,125,2r	8,04	6,60	Ø8//0,15,2r	6,67	5,45	Ø8//0,15,2r	6,67	6,74	Ø8//0,125,2r	8,04	Ø8//0,125,2r	8,04
	P3-P4	Ø8//0,125,2r	8,04	6,53	Ø8//0,15,2r	6,67	4,24	Ø8//0,15,2r	6,67	4,42	Ø8//0,15,2r	6,67	Ø8//0,125,2r	8,04
	P5-P6	Ø8//0,125,2r	8,04	4,55	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	4,36	Ø8//0,20,2r	5,02	Ø8//0,125,2r	8,04
V2	P6-P7	Ø8//0,125,2r	8,04	4,23	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	4,29	Ø8//0,20,2r	5,02	Ø8//0,125,2r	8,04
	P7-P8	Ø8//0,125,2r	8,04	4,41	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	4,22	Ø8//0,20,2r	5,02	Ø8//0,125,2r	8,04
	P5-P6	Ø8//0,10,2r	10,06	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	Ø8//0,10,2r	10,06
V3	P6-P7	Ø8//0,10,2r	10,06	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	Ø8//0,10,2r	10,06
	P7-P8	Ø8//0,10,2r	10,06	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	Ø8//0,10,2r	10,06
	P9-P10	Ø8//0,15,2r	8,04	5,52	Ø8//0,15,2r	6,67	4,38	Ø8//0,20,2r	5,02	5,39	Ø8//0,15,2r	6,67	Ø8//0,15,2r	6,67
V4	P10-P11	Ø8//0,15,2r	8,04	5,76	Ø8//0,15,2r	6,67	4,84	Ø8//0,20,2r	5,02	5,73	Ø8//0,15,2r	6,67	Ø8//0,15,2r	6,67
	P11-P12	Ø8//0,15,2r	8,04	5,38	Ø8//0,15,2r	6,67	4,31	Ø8//0,20,2r	5,02	4,53	Ø8//0,15,2r	6,67	Ø8//0,15,2r	6,67
V5	P1-P5	Ø8//0,10,2r	10,06	7,61	Ø8//0,125,2r	8,04	6,54	Ø8//0,20,2r	5,02	7,77	Ø8//0,125,2r	8,04	Ø8//0,10,2r	10,06
V6	P2-P6	Ø8//0,10,2r	10,06	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	4,24	Ø8//0,20,2r	5,02	Ø8//0,10,2r	10,06
V7	P3-P7	Ø8//0,10,2r	10,06	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	4,18	Ø8//0,20,2r	5,02	Ø8//0,10,2r	10,06
V8	P4-P8	Ø8//0,10,2r	10,06	7,09	Ø8//0,125,2r	8,04	6,30	Ø8//0,15,2r	6,67	7,17	Ø8//0,125,2r	8,04	Ø8//0,10,2r	10,06
V9	P5-P9	Ø8//0,10,2r	10,06	5,19	Ø8//0,15,2r	6,67	4,76	Ø8//0,20,2r	5,02	5,9	Ø8//0,15,2r	6,67	Ø8//0,10,2r	10,06
V10	P6-P10	Ø8//0,10,2r	10,06	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	4,16	Ø8//0,20,2r	5,02	Ø8//0,10,2r	10,06
V11	P7-P11	Ø8//0,10,2r	10,06	0,00	Ø8//0,20,2r	5,02	0,00	Ø8//0,20,2r	5,02	4,18	Ø8//0,20,2r	5,02	Ø8//0,10,2r	10,06
V12	P8-P12	Ø8//0,10,2r	10,06	5,76	Ø8//0,15,2r	6,67	5,35	Ø8//0,15,2r	6,67	6,45	Ø8//0,15,2r	6,67	Ø8//0,10,2r	10,06

Vigo	Troco	Zona		ρ		Posi	ção da l eutra (m	inha	Mom	Momento Resistente (kN.m)			
viga	TIOÇO	Zolla	Fsa	Vão	Dta	Fsa	Vão	Dta	Fsa	Vão	Dta		
		superior	10.04	× a0	14.06	0.00	0.07	0.12	232 360	188.028	318 566		
	P1-P2	inforior	10,04 8 04	8.04	8.04	0,09	0,07	0,12	188.028	188,028	188.028		
		superior	0,04	8.04	0,04	0,07	0,07	0,07	318 566	188,028	318 566		
V1	P2-P3	inferior	8.04	8.04	8.04	0,12	0,07	0,12	188.028	188,028	188.028		
		superior	14.06	8.04	10.04	0.12	0,07	0,07	318 566	188.028	232 360		
	P3-P4	inferior	8.04	8.04	8.04	0,12	0,07	0,07	188.028	188,028	188 028		
		superior	10.04	6.03	8.03	0,07	0.05	0.07	179 961	111 012	145 887		
	P5-P6	inferior	6.03	6.03	6.03	0,09	0,05	0.07	111 012	111,012	145,887		
		superior	8.03	6.03	8.03	0,05	0.05	0.07	1/15 887	111,012	1/15 887		
V2	P6-P7	inferior	6.03	6.03	6.03	0.05	0,05	0.05	111 012	111,012	111 012		
		superior	0,03 8,03	6.03	6.03	0,03	0,05	0,05	111,012	111,012	111,012		
	P7-P8	inforior	6,03	6.03	8.04	0,07	0,05	0,03	143,007	111,012	146.050		
		superior	6.52	4.52	6,04	0,05	0,03	0,07	74 266	52 580	74 266		
	P5-P6	inforior	4.52	4,52	0,52	0,00	0,04	0,00	52 580	52,580	52 580		
			4,52	4,52	4,52	0,04	0,04	0,04	74 266	52,580	74 266		
V3	P6-P7	inforior	0,52	4,52	0,52	0,00	0,04	0,00	74,200	52,580	74,200		
			4,52	4,52	4,52	0,04	0,04	0,04	74.266	52,580	52,580		
	P7-P8	superior	0,52	4,52	4,32	0,00	0,04	0,04	74,200	52,580	52,580		
			4,52	4,32	4,32	0,04	0,04	0,04	32,380	100 000	32,380		
	P9-P10	superior	10,04 8.04	8,04	14,00	0,09	0,07	0,12	199 029	100,020	199.029		
	P10-		8,04	8,04	8,04	0,07	0,07	0,07	219 566	100,020	219 566		
V4	P10- P11	superior	14,00	8,04	14,00	0,12	0,07	0,12	318,300	188,028	318,300		
	111 D11	interior	8,04	8,04	8,04	0,07	0,07	0,07	188,028	188,028	188,028		
	P11- P12	superior	14,00	8,04	8,04	0,12	0,07	0,07	318,300	188,028	188,028		
	F12	inferior	8,04	8,04	8,04	0,07	0,07	0,07	188,028	188,028	188,028		
V5	P1-P5	superior	1/,/0	9,42	18,84	0,15	0,08	0,10	1//,053	103,991	186,494		
		inferior	8,04	6,03	8,04	0,07	0,05	0,07	90,100	69,043	90,100		
V6	P2-P6	superior	/,65	4,52	5,65	0,07	0,04	0,05	86,091	52,580	64,952		
		inferior	4,52	4,52	4,52	0,04	0,04	0,04	52,580	52,580	52,580		
V7	P3-P7	superior	/,65	4,52	5,65	0,07	0,04	0,05	86,091	52,580	64,952		
		inferior	4,52	4,52	4,52	0,04	0,04	0,04	52,580	52,580	52,580		
V8	P4-P8	superior	17,70	9,42	15,70	0,15	0,08	0,14	1//,653	103,991	161,381		
		inferior	4,52	4,52	6,78	0,04	0,04	0,06	52,580	52,580	//,015		
V9	P5-P9	superior	10,04	6,03	8,04	0,09	0,05	0,07	110,082	69,043	90,100		
		inferior	4,52	4,52	4,52	0,04	0,04	0,04	52,580	52,580	52,580		
V10	P6-P10	superior	6,52	4,52	4,52	0,06	0,04	0,04	/4,266	52,580	52,580		
		interior	4,52	4,52	4,52	0,04	0,04	0,04	52,580	52,580	52,580		
V11	P7-P11	superior	6,52	4,52	4,52	0,06	0,04	0,04	74,266	52,580	52,580		
		interior	4,52	4,52	4,52	0,04	0,04	0,04	52,580	52,580	52,580		
V12	P8-P12	superior	9,41	5,15	7,41	0,08	0,04	0,06	103,892	59,516	83,606		
		inferior	4,52	4,52	5,65	0,04	0,04	0,05	52,580	52,580	64,952		

Anexo 5.9 – Posição da linha neutra e momento resistente nas vigas

Viga	Troco	Γ roco Zona $I_{1}(m)$ M_{Rd} (kN.m)		kN.m)	$V_{\text{comb.q}}$	p (kN)	V _{Ed.cálculo} (kN)		
v iga	TIOÇO	Zolia		Esq.	Dta.	Esq.	Dta.	Esq.	Dta.
	P1_P2	superior	5.08	232,37	318,57	63 / 5	74 88	133 75	150 50
	11-12	inferior	5,70	188,03	188,03	05,45	/4,00	155,75	157,57
V1	P7_P3	superior	5.00	318,57	318,57	58 55	61 67	159.87	162.99
V I	12-13	inferior	5,00	188,03	188,03	50,55	01,07	157,07	102,77
	P3_P/	superior	5.08	318,57	232,37	79 12	54 25	16/ 13	124 55
	15-14	inferior	5,70	188,03	188,03	79,42	54,25	104,15	124,33
	P5-P6	superior	5.98	179,96	145,89	39 77	39.23	88.43	82 19
	1510	inferior	5,70	111,01	111,01	37,11	57,25	00,15	02,17
V2	P6-P7	superior	5.00	145,89	145,89	32 48	33 44	83.86	84 82
v 2	10-17	inferior	5,00	111,01	111,01	52,40	55,77	03,00	04,02
	P7-P8	superior	5.98	145,89	111,01	40 74	35 35	89 56	72 48
	1/10	inferior	5,70	111,01	146,06	+0,7+	55,55	07,50	72,40
	P5-P6	superior	5 98	74,27	74,27	25 84	31 24	47.05	52.45
	1510	inferior	5,70	52,58	52,58	23,04	51,24	47,05	52,45
V3	P6-P7	superior	5.00	74,27	74,27	25.67	25.90	51.04	51 27
V3 P0-P7	inferior	5,00	52,58	52,58	23,07	23,70	51,04	51,27	
P7_P8	superior	5.08	74,27	52,58	28 19	24.12	19.40	<i>4</i> 1 71	
P/-P8	inferior	5,70	52,58	52,58	28,19	24,12	47,40	41,71	
P0_P1	D0 D10	superior	5.08	232,37	318,57	42 18	60.64	112 48	145 35
	1 /-1 10	inferior	5,98	188,03	188,03	42,10	00,04	112,40	145,55
V/	P10-	superior	5.00	318,57	318,57	44.60	44.05	1/15 92	145 37
V T	P11	inferior	5,00	188,03	188,03	44,00	44,00	145,72	,
	P11-	superior	5.98	318,57	188,03	60.69	42 43	145 40	105 32
	P12	inferior	5,70	188,03	188,03	00,07	42,43	145,40	103,32
V5	P1_P5	superior	4 98	177,65	186,49	24.00	26.51	77 77	82.05
15	1115	inferior	4,70	90,10	90,10	24,00	20,31	,,,,,	02,05
V6	P2-P6	superior	4 98	86,09	64,95	20.85	26.73	48 70	50 33
10	1210	inferior	4,70	52,58	52,58	20,05	20,75	40,70	50,55
V7	P3-P7	superior	4 98	86,09	64,95	21.22	27 48	49.07	51.08
• /	1517	inferior	1,50	52,58	52,58	21,22	27,10	19,07	51,00
V8	P4-P8	superior	4 98	177,65	161,38	20.07	21 40	71 21	64 36
10	1110	inferior	1,50	52,58	77,01	20,07	21,10	/1,21	01,50
V9	P5-P9	superior	5.00	110,08	90,10	18 48	25 84	51.01	54 38
	1017	inferior	2,00	52,58	52,58	10,10	20,01	51,01	5 1,50
V10	P6-P10	superior	5.00	74,27	52,58	22.42	29,81	47,79	50,84
. 10	10110	inferior	2,00	52,58	52,58	22,12	27,01	,	50,01
V11	P7-P11	superior	5.00	74,27	52,58	22.09	29.58	47.46	50.61
, 11	.,	inferior	2,00	52,58	52,58	_2,07	_>,50	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20,01
V12	P8-P12	superior	5.00	103,89	83,61	18 38	25.61	52.15	52.85
12	10112	inferior	2,00	52,58	64,95	10,00	-2,01	22,10	.2,00

Anexo 5.10 – Determinação dos esforços transversos condicionantes nas vigas

Viga	h _w (mm)	d _{bw} (mm)	225mm	d _{bL} (mm)	s(m)
V1	750	8	225m	16	0,13
V2	600	8	225m	16	0,13
V3	400	8	225m	12	0,10
V4	750	8	225m	20	0,16
V5	400	8	225m	20	0,10
V6	400	8	225m	12	0,10
V7	400	8	225m	12	0,10
V8	400	8	225m	16	0,10
V9	400	8	225m	16	0,10
V10	400	8	225m	12	0,10
V11	400	8	225m	12	0,10
V12	400	8	225m	16	0,10

Anexo 5.11 – Espaçamento da armadura de esforço transverso nas vigas

Anexo 5.12 – Determinação do esforço transverso resistente máximo nas vigas

Viga	α_{cw}	b _w (m)	d (m)	z (m)	v ₁ (m)	f _{cd} (Mpa)	θ (°)	V _{Rd.max} (kN)
V1	1	0,30	0,70	0,63	0,54	16,67	45	850,67
V2	1	0,30	0,55	0,495	0,54	16,67	45	668,38
V3	1	0,30	0,35	0,315	0,54	16,67	45	425,34
V4	1	0,30	0,70	0,63	0,54	16,67	45	850,67
V5	1	0,30	0,35	0,315	0,54	16,67	45	425,34
V6	1	0,30	0,35	0,315	0,54	16,67	45	425,34
V7	1	0,30	0,35	0,315	0,54	16,67	45	425,34
V8	1	0,30	0,35	0,315	0,54	16,67	45	425,34
V9	1	0,30	0,35	0,315	0,54	16,67	45	425,34
V10	1	0,30	0,35	0,315	0,54	16,67	45	425,34
V11	1	0,30	0,35	0,315	0,54	16,67	45	425,34
V12	1	0,30	0,35	0,315	0,54	16,67	45	425,34

Viga	Troço	A _{sw} /s (cm ² / m)	z (m)	f _{ywd} (Mpa)	θ (°)	V _{Rd,s} (kN)
	P1-P2	8,04	0,63	348	45	176,27
V1	P2-P3	8,04	0,63	348	45	176,27
	P3-P4	8,04	0,63	348	45	176,27
	P5-P6	8,04	0,50	348	45	138,50
V2	P6-P7	8,04	0,50	348	45	138,50
	P7-P8	8,04	0,50	348	45	138,50
	P5-P6	10,06	0,32	348	45	110,28
V3	P6-P7	10,06	0,32	348	45	110,28
	P7-P8	10,06	0,32	348	45	110,28
	P9-P10	8,04	0,63	348	45	176,27
V4	P10-P11	8,04	0,63	348	45	176,27
	P11-P12	8,04	0,63	348	45	176,27
V5	P1-P5	10,06	0,32	348	45	110,28
V6	P2-P6	10,06	0,32	348	45	110,28
V7	P3-P7	10,06	0,32	348	45	110,28
V8	P4-P8	10,06	0,32	348	45	110,28
V9	P5-P9	10,06	0,32	348	45	110,28
V10	P6-P10	10,06	0,32	348	45	110,28
V11	P7-P11	10,06	0,32	348	45	110,28
V12	P8-P12	10,06	0,32	348	45	110,28

Anexo 5.13 – Determinação do esforço transverso resistente da viga

	A _s Modelo (cm ² /m)	A _s Adotado (cm ² /m)		ρ
P1	53,61	$22\emptyset 16 + 4\emptyset 20$	56,78	0,017
P2	55,26	18Ø20	56,52	0,027
P3	66,12	$6\emptyset20 + 10\emptyset25$	67,94	0,032
P4	43,16	18Ø20	56,52	0,027
P5.1	51,81	18Ø20	56,52	0,027
P5.2	21,00	18Ø20	56,52	0,027
P6.1	34,13	$4\emptyset 25 + 8\emptyset 16$	35,72	0,040
P6.2	28,18	$4\emptyset 25 + 8\emptyset 16$	35,72	0,040
P7.1	34,91	$4\emptyset 25 + 8\emptyset 16$	35,72	0,040
P7.2	31,39	$4\emptyset 25 + 8\emptyset 16$	35,72	0,040
P8.1	53,36	18Ø20	56,52	0,027
P8.2	24,02	18Ø20	56,52	0,027
P9	32,90	$12\emptyset 16 + 4\emptyset 20$	36,68	0,017
P10	52,40	18Ø20	56,52	0,027
P11	53,41	18Ø20	56,52	0,027
P12	33,97	$12\emptyset 16 + 4\emptyset 20$	36,68	0,017

Anexo 5.14 – Armadura longitudinal nos pilares

Anexo 5.15 – Área da secção mínima de armaduras

Pilar	N _{Ed} (kN)	$0,1^*N_{\text{Ed}}/f_{\text{yd}}$	0,002*Ac	$A_{s,mim}$ (cm ² /m)
P1	357,66	1,028	6,60	6,60
P2	326,33	0,938	4,20	4,20
P3	348,55	1,002	4,20	4,20
P4	220,18	0,633	4,20	4,20
P5.1	275,06	0,790	4,20	4,20
P5.2	138,89	0,399	4,20	4,20
P6.1	303,91	0,873	1,80	1,80
P6.2	174,20	0,501	1,80	1,80
P7.1	308,52	0,887	1,80	1,80
P7.2	172,60	0,496	1,80	1,80
P8.1	215,53	0,619	4,20	4,20
P8.2	136,38	0,392	4,20	4,20
P9	153,78	0,442	4,20	4,20
P10	243,99	0,701	4,20	4,20
P11	237,96	0,684	4,20	4,20
P12	166,90	0,480	4,20	4,20

Pilar	$h_{c}(m)$	$l_{cl}/6$ (m)	0,45 m	l _c /h _c	Extensão da zona crítica	$l_{cr}(m)$
P1	1,10	0,60	0,45	3,26	Total	3,59
P2	0,70	0,60	0,45	5,13	Parcial	0,70
P3	0,70	0,60	0,45	5,13	Parcial	0,70
P4	0,70	0,60	0,45	5,13	Total	3,59
P5.1	0,70	0,60	0,45	5,13	Total	3,59
P5.2	0,70	0,23	0,45	2,00	Total	1,40
P6.1	0,30	0,60	0,45	11,97	Parcial	0,60
P6.2	0,30	0,23	0,45	4,67	Parcial	0,45
P7.1	0,30	0,60	0,45	11,97	Parcial	0,60
P7.2	0,30	0,23	0,45	4,67	Parcial	0,45
P8.1	0,70	0,60	0,45	5,13	Total	3,59
P8.2	0,70	0,23	0,45	2,00	Total	1,40
P9	0,70	0,83	0,45	7,13	Total	4,99
P10	0,70	0,83	0,45	7,13	Parcial	0,83
P11	0,70	0,83	0,45	7,13	Parcial	0,83
P12	0,70	0,83	0,45	7,13	Parcial	4,99

Anexo 5.16 – Extensão da zona crítica dos pilares

Anexo 5.17 – Espaçamento da armadura de esforço transverso nos pilares

Pilar	b _o /2 (mm)	175 mm	8*d _{bL} (mm)	s (m)
P1	110	175	128	0,11
P2	110	175	160	0,11
P3	110	175	160	0,11
P4	110	175	160	0,11
P5.1	110	175	160	0,11
P5.2	110	175	160	0,11
P6.1	110	175	160	0,11
P6.2	110	175	160	0,11
P7.1	110	175	160	0,11
P7.2	110	175	160	0,11
P8.1	110	175	160	0,11
P8.2	110	175	160	0,11
P9	110	175	128	0,11
P10	110	175	160	0,11
P11	110	175	160	0,11
P12	110	175	160	0,11

		_	Direç	ão X	Direção Y		
Pilar	A_s/s Mode	$lo (cm^2/m)$	A _s /s Adotad	lo (cm ² /m)	A _s /s Adotado (cm ² /m)		
	Direção X	Direção Y	Cintas Exteriores	Cintas Interiores	Cintas Exteriores	Cintas Interiores	
P1	4,98	0,00	Ø8 // 0,10,2r	Ø6 // 0,10,4r	Ø8 // 0,10,2r	-	
P2	9,03	0,00	Ø10 // 0,075,2r	-	Ø10 // 0,075,2r	Ø6 // 0,075,4r	
P3	8,86	0,00	Ø10 // 0,075,2r	-	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P4	0,00	5,89	Ø10 // 0,10,2r	Ø8 // 0,10,4r	Ø10 // 0,10,2r	-	
P5.1	8,96	0,00	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P5.2	6,67	0,00	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P6.1	1,80	0,00	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P6.2	14,21	19,21	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P7.1	1,80	0,00	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P7.2	19,08	15,27	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P8.1	0,00	8,81	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P8.2	0,00	7,11	Ø10 // 0,075,2r	Ø8 // 0,075,2r	Ø10 // 0,075,2r	Ø8 // 0,075,2r	
P9	0,00	0,00	Ø10 // 0,10,2r	Ø8 // 0,10,2r	Ø10 // 0,10,2r	-	
P10	0,00	0,00	Ø10 // 0,10,2r	_	Ø10 // 0,10,2r	Ø8 // 0,10,4r	
P11	0,00	0,00	Ø10 // 0,10,2r	_	Ø10 // 0,10,2r	Ø8 // 0,10,4r	
P12	0,00	0,00	Ø10 // 0,10,2r	Ø8 // 0,10,2r	Ø10 // 0,10,2r	-	

Anexo 5.1	8 – Armadura	transversal	nos pilares
-----------	--------------	-------------	-------------

		Direç	ão X		Direção Y				
Pilar	A _s /s	Adotad	$lo (cm^2/m)$		A _s /	s Adotad	$lo (cm^2/m)$		
	Cintas Exterio	ores	Cintas Interio	ores	Cintas Exterio	res	Cintas Interiores		
P1	Ø8 // 0,10,2r	10,06	Ø6 // 0,10,4r	16,8	Ø8 // 0,10,2r	10,06	-	-	
P2	Ø10 // 0,075,2r	20,94	-	-	Ø10 // 0,075,2r	20,94	Ø6 // 0,075,4r	14,92	
P3	Ø10 // 0,075,2r	20,94	-	-	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P4	Ø10 // 0,10,2r	15,70	Ø8 // 0,10,4r	20,12	Ø10 // 0,10,2r	15,70	-	-	
P5.1	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P5.2	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P6.1	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P6.2	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P7.1	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P7.2	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P8.1	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P8.2	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	Ø10 // 0,075,2r	20,94	Ø8 // 0,075,2r	13,34	
P9	Ø10 // 0,10,2r	15,70	Ø8 // 0,10,2r	10,06	Ø10 // 0,10,2r	15,70	-	-	
P10	Ø10 // 0,10,2r	15,70	-	-	Ø10 // 0,10,2r	15,70	Ø8 // 0,10,4r	20,12	
P11	Ø10 // 0,10,2r	15,70	-	-	Ø10 // 0,10,2r	15,70	Ø8 // 0,10,4r	20,12	
P12	Ø10 // 0,10,2r	15,70	Ø8 // 0,10,2r	10,06	Ø10 // 0,10,2r	15,70	-	-	

Pilar	Direção	$\begin{array}{c} A_{s1} \\ (cm^2) \end{array}$	$\begin{array}{c} A_{s2} \\ (cm^2) \end{array}$	b (m)	f _{yd} (MPa)	f _{cd} (MPa)	x ₁ (m)	x ₂ (m)
D1	Х	8,29	8,29	0,30	348	16,67	0,082	0,089
P1	У	26,38	26,38	1,10	348	16,67	0,022	0,024
DJ	Х	25,12	25,12	0,70	348	16,67	0,033	0,035
F2	у	9,42	9,42	0,30	348	16,67	0,077	0,082
D2	Х	29,06	29,06	0,70	348	16,67	0,035	0,037
F3	У	14,73	14,73	0,30	348	16,67	0,082	0,087
D 4	Х	9,42	9,42	0,30	348	16,67	0,050	0,055
Г4	у	25,12	25,12	0,70	348	16,67	0,021	0,024
D5 1	Х	12,56	12,56	0,30	348	16,67	0,064	0,069
F3.1	У	21,98	21,98	0,70	348	16,67	0,027	0,029
D5 2	Х	12,56	12,56	0,30	348	16,67	0,033	0,035
F J.2	у	21,98	21,98	0,70	348	16,67	0,014	0,015
D6 1	х	13,84	13,84	0,30	348	16,67	0,074	0,076
F 0.1	У	13,84	13,84	0,30	348	16,67	0,074	0,076
D6 2	х	13,84	13,84	0,30	348	16,67	0,043	0,044
10.2	У	13,84	13,84	0,30	348	16,67	0,043	0,044
P7 1	х	13,84	13,84	0,30	348	16,67	0,075	0,077
17.1	у	13,84	13,84	0,30	348	16,67	0,075	0,077
D7 2	х	13,84	13,84	0,30	348	16,67	0,042	0,043
F 7.2	У	13,84	13,84	0,30	348	16,67	0,042	0,043
DQ 1	х	12,56	12,56	0,30	348	16,67	0,049	0,054
1 0.1	У	21,98	21,98	0,70	348	16,67	0,021	0,023
DQ 2	х	12,56	12,56	0,30	348	16,67	0,033	0,034
F 0.2	У	21,98	21,98	0,70	348	16,67	0,014	0,015
DO	х	8,29	8,29	0,30	348	16,67	0,032	0,038
F 9	У	16,33	16,33	0,70	348	16,67	0,014	0,016
D 10	х	25,12	25,12	0,70	348	16,67	0,023	0,026
1 10	у	9,42	9,42	0,30	348	16,67	0,054	0,061
D11	x	25,12	25,12	0,70	348	16,67	0,023	0,025
Г I I	У	9,42	9,42	0,30	348	16,67	0,053	0,059
D12	X	8,29	8,29	0,30	348	16,67	0,035	0,042
Γ1∠	У	16,33	16,33	0,70	348	16,67	0,015	0,018

Anexo 5.19 – Posição da linha neutra dos pilares

Pilar	Direção	h (m)	d (m)	d ₁ (m)	M _{Rc,1} (kN.m)	M _{Rc,2} (kN.m)	γ _{Rd}	M ₁ (kN.m)	M ₂ (kN.m)
D1	х	1,10	1,05	0,05	457,356	472,415	1,1	503,091	519,657
r I	У	0,30	0,25	0,05	229,659	233,766	1,1	252,624	257,142
D	Х	0,30	0,25	0,05	216,777	219,222	1,1	238,455	241,144
ΓZ	У	0,70	0,65	0,05	294,555	300,258	1,1	324,010	330,284
D2	Х	0,30	0,25	0,05	246,927	249,335	1,1	271,620	274,268
P3	У	0,70	0,65	0,05	411,791	417,409	1,1	452,970	459,149
D4	Х	0,70	0,65	0,05	262,777	268,906	1,1	289,055	295,796
Г4	У	0,30	0,25	0,05	203,158	205,785	1,1	223,474	226,363
D5 1	Х	0,70	0,65	0,05	345,049	350,960	1,1	379,554	386,055
PJ.1	У	0,30	0,25	0,05	188,465	190,998	1,1	207,312	210,098
D5 2	X	0,70	0,65	0,05	306,902	308,936	1,1	337,592	339,829
Г <i>Э</i> .2	У	0,30	0,25	0,05	172,116	172,988	1,1	189,328	190,287
D6 1	Х	0,30	0,25	0,05	131,911	132,679	1,1	145,102	145,946
F0.1	У	0,30	0,25	0,05	131,911	132,679	1,1	145,102	145,946
D6 2	Х	0,30	0,25	0,05	119,111	119,422	1,1	131,022	131,365
F0.2	У	0,30	0,25	0,05	119,111	119,422	1,1	131,022	131,365
D7 1	Х	0,30	0,25	0,05	132,327	133,088	1,1	145,560	146,397
Γ/.1	У	0,30	0,25	0,05	132,327	133,088	1,1	145,560	146,397
07.0	Х	0,30	0,25	0,05	118,925	119,238	1,1	130,818	131,162
P7.2	У	0,30	0,25	0,05	118,925	119,238	1,1	130,818	131,162
DQ 1	х	0,70	0,65	0,05	326,897	333,044	1,1	359,587	366,348
F 0.1	У	0,30	0,25	0,05	180,685	183,320	1,1	198,754	201,652
0 0	х	0,70	0,65	0,05	306,089	308,126	1,1	336,698	338,939
P0.2	У	0,30	0,25	0,05	171,768	172,641	1,1	188,945	189,905
DO	х	0,70	0,65	0,05	216,124	224,554	1,1	237,737	247,009
F9	У	0,30	0,25	0,05	132,098	135,711	1,1	145,308	149,282
D10	х	0,30	0,25	0,05	205,471	208,883	1,1	226,018	229,771
F 10	У	0,70	0,65	0,05	268,174	276,134	1,1	294,991	303,748
D11	Х	0,30	0,25	0,05	204,678	208,103	1,1	225,146	228,913
r11	У	0,70	0,65	0,05	266,322	274,314	1,1	292,954	301,746
D10	Х	0,70	0,65	0,05	220,361	228,725	1,1	242,397	251,598
P12	У	0,30	0,25	0,05	133,914	137,498	1,1	147,305	151,248

Anexo 5.20 – Determinação dos momentos resistentes nas extremidades dos pilares

Pilar	Direção	$l_{c1}(m)$	M ₁ (kN.m)	M ₂ (kN.m)	V _{Ed} (kN)
D.	X	3,59	503,091	519,657	284,888
PI	v	3,59	229,659	257,142	135,599
Da	X	3,59	216,777	241,144	127,555
P2	y	3,59	n) M_1 (kN.m) M_2 (kN.m)9503,091519,6579229,659257,1429216,777241,1449294,555330,2849246,927274,2689411,791459,1499262,777295,7969203,158226,3639345,049386,0559188,465210,0980306,902339,8290172,116190,2879131,911145,9469131,911145,9460119,111131,3650119,111131,3659132,327146,3979132,327146,3979132,327146,3979132,327146,3970118,925131,1620118,925131,1620306,089338,9390171,768189,9059216,124247,0099132,098149,2829205,471229,7719268,174303,7489204,678228,9139266,322301,7469220,361251,598	330,284	174,050
D2	X	3,59	246,927	274,268	145,180
P3	у	3,59	411,791	459,149	242,602
D4	X	3,59	262,777	295,796	155,591
P4	у	3,59	203,158	226,363	119,644
D5 1	X	3,59	345,049	386,055	203,650
P3.1	у	3,59	188,465	210,098	111,020
D5 0	х	1,40	306,902	339,829	461,951
P3.2	у	1,40	172,116	190,287	258,859
D6 1	X	3,59	131,911	145,946	77,398
F0.1	У	3,59	131,911	145,946	77,398
P6.2	Х	1,40	119,111	131,365	178,911
	У	1,40	119,111	131,365	178,911
D7 1	Х	3,59	132,327	146,397	77,639
г/.1	У	3,59	132,327	146,397	77,639
D7 2	Х	1,40	118,925	131,162	178,634
r /.2	У	1,40	118,925	659257,142777241,144555330,284927274,268791459,149777295,796158226,363049386,055465210,098902339,829116190,287911145,946111131,365111131,365327146,397327146,397925131,162997366,348685201,652089338,939768189,905124247,009098149,282471229,771174303,748678228,913322301,746361251,598914151,248	178,634
DQ 1	Х	3,59	326,897	366,348	193,105
F 0.1	x $3,59$ y $3,59$ x $3,59$ y $3,59$ x $1,40$ y $1,40$ x $3,59$ y $3,59$ y $3,59$ x $1,40$ x $3,59$ y $3,59$ y $3,59$ x $1,40$ x $3,59$ y $3,59$ x $1,40$ y $1,40$ y $1,40$ y $1,40$ y $4,99$ y $4,99$ <td>180,685</td> <td>201,652</td> <td>106,501</td>	180,685	201,652	106,501	
D8 2	х	1,40	306,089	338,939	460,734
1 0.2	у	1,40	171,768	189,905	258,338
DO	х	4,99	216,124	247,009	92,812
19	у	4,99	132,098	149,282	56,389
P10	X	4,99	205,471	229,771	87,223
110	у	4,99	268,174	303,748	114,614
P11	Х	4,99	204,678	228,913	86,892
111	у	4,99	266,322	301,746	113,841
P12	Х	4,99	220,361	251,598	94,581
112	у	4,99	133,914	151,248	57,147

Anexo 5.21 – Determinação do esforço transverso condicionante dos pilares

Pilar	Direção	A_{sw} (cm ² /m)	z (m)	f _{ywd} (MPa)	θ (°)	V _{Rd} (kN)
D1	Х	35,82	0,95	348	45	1177,977
Ρ1	у	26,54	0,23	348	45	207,808
D2	Х	20,94	0,23	348	45	163,960
Υ2	у	$\begin{array}{c c} A_{sw} (cm^2/m) \\ \hline 35,82 \\ \hline 26,54 \\ \hline 20,94 \\ \hline 26,54 \\ \hline 20,94 \\ \hline 31,00 \\ \hline 35,82 \\ \hline 15,70 \\ \hline 26,54 \\ \hline 41,06 \\ \hline 26,54 \\ \hline 41,06 \\ \hline 31,00 \\$	0,59	348	45	540,301
D2	Х	20,94	0,23	348	45	163,960
РЭ	у	31,00	0,59	348	45	631,098
D4	X	35,82	0,59	348	45	729,224
P4	у	15,70	0,23	348	45	122,931
D5 1	Х	26,54	0,59	348	45	540,301
P3.1	у	41,06	0,23	348	45	321,500
D5 0	Х	26,54	0,59	348	45	540,301
P3.2	у	41,06	0,23	348	45	321,500
DC 1	X	31,00	0,23	348	45	242,730
P6.1	у	31,00	0,23	348	45	242,730
	X	31,00	0,23	348	45	242,730
P6.2 —	у	31,00	0,23	348	45	242,730
D7 1	X	31,00	0,23	348	45	242,730
P7.1	у	31,00	0,23	348	45	242,730
D7 0	X	31,00	0,23	348	45	242,730
P1.2	у	31,00	0,23	348	45	242,730
D0 1	X	26,54	0,59	348	45	540,301
P8.1	у	20,94	0,23	348	45	163,960
	Х	26,54	0,59	348	45	540,301
P8.2	у	41,06	0,23	348	45	321,500
DO	Х	25,76	0,59	348	45	524,422
РУ	у	15,70	0,23	348	45	122,931
D10	Х	15,70	0,23	348	45	122,931
P10	у	35,82	0,59	348	45	729,224
D11	X	15,70	0,23	348	45	122,931
PII	у	35,82	0,59	348	45	729,224
D10	X	25,76	0,59	348	45	524,422
P12	у	15,70	0,23	348	45	122,931

Anexo 5.22 – Determinação do esforço resistente dos pilares

Pilar	Direção	A _{sw} (cm ² /m)	z (m)	f _{ywd} (MPa)	θ (°)	V _{Rd} (kN)
D1	X	26,86	0,945	348	45	883,318
F I	У	35,86	0,225	348	45	280,784
D2	х	20,94	0,225	348	45	163,960
ΓZ	У	35,86	0,585	348	45	730,038
D2	х	20,94	0,225	348	45	163,960
13	У	34,28	0,585	348	45	697,872
D /	Х	35,82	0,585	348	45	729,224
Γ4	У	15,70	0,225	348	45	122,931
D5 1	х	34,28	0,585	348	45	697,872
F J.1	У	34,28	0,225	348	45	268,412
D5 2	Х	34,28	0,585	348	45	697,872
F J.2	У	34,28	0,225	348	45	268,412
D6 1	Х	34,28	0,225	348	45	268,412
P0.1	У	34,28	0,225	348	45	268,412
D6 2	Х	34,28	0,225	348	45	268,412
F 0.2	У	34,28	0,225	348	45	268,412
D7 1	х	34,28	0,225	348	45	268,412
r /.1	У	34,28	0,225	348	45	268,412
D7 2	х	34,28	0,225	348	45	268,412
17.2	У	34,28	0,225	348	45	268,412
DQ 1	Х	34,28	0,585	348	45	697,872
F 0.1	У	20,94	0,225	348	45	163,960
D8 2	х	34,28	0,585	348	45	697,872
F 0.2	У	34,28	0,225	348	45	268,412
DO	х	25,76	0,585	348	45	524,422
F9	У	15,70	0,225	348	45	122,931
D10	x	15,70	0,225	348	45	122,931
F 10	У	35,82	0,585	348	45	729,224
D11	x	15,70	0,225	348	45	122,931
Г 1 1	У	35,82	0,585	348	45	729,224
D12	X	25,76	0,585	348	45	524,422
F12	у	15,70	0,225	348	45	122,931

Anexo 5.23 – Determinação do esforço transverso resistente máximo nos pilares

Anexo 5.24 – Armaduras de confinamento das zonas críticas dos pilares

✓ Pilar P1

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	αn	α_{s}	α
0,10	0,26	1,10	1,02	0,30	0,22	0,81	1,23	0,99

f _{yd} (MPa)	f _{cd} (MPa)	Volcintas	Volnúcleo	$\omega_{\omega d}$
348	16,67	3,10E-04	2,24E-02	0,288

μ_{ϕ}	ν_d	E _{sy,d}	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0.035$	$\alpha^*\omega_{\omega d}$
4,83	0,07	0,00174	-0,017	0,286

✓ Pilar P2

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	$h_{c}(m)$	h _o (m)	α _n	α_{s}	α
0,10	0,24	0,70	0,62	0,30	0,22	0,71	1,19	0,84

f _{yd} (MPa)	f _{cd} (MPa)	Volcintas	Vol _{núcleo}	$\omega_{\omega d}$
348	16,67	2,12E-04	1,36E-02	0,325

μ_{ϕ}	ν_{d}	€ _{sy,d}	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0,035$	$\alpha^*\omega_{\omega d}$
4,83	0,09	0,00174	-0,008	0,273
✓ Pilar P3

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	$h_{c}(m)$	$h_{o}\left(m ight)$	α _n	α_{s}	α
0,10	0,32	0,70	0,62	0,30	0,22	0,61	1,19	0,72

f _{yd} (MPa)	f _{cd} (MPa)	Vol _{cintas}	Vol _{núcleo}	$\omega_{\omega d}$
348	16,66667	1,78E-04	1,36E-02	0,272

μ_{ϕ}	Vd	Esy,d	$30^{*}\mu_{\phi}^{*}\nu_{d}^{*}\epsilon_{sy,d}^{*}(b_{c}/b_{o})$ -0,035	$\alpha^*\omega_{\omega d}$
4,83	0,10	0,00174	-0,007	0,197

✓ Pilar P4

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	αn	α_{s}	α
0,10	0,24	0,70	0,62	0,30	0,22	0,71	1,19	0,84

f _{yd} (MPa)	fcd (MPa)	Volcintas	Volnúcleo	$\omega_{\omega d}$
348	16,66667	2,12E-04	1,36E-02	0,325

μ_{ϕ}	ν_d	E _{sy,d}	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0.035$	$\alpha^*\omega_{\omega d}$
4,83	0,06	0,00174	-0,017	0,273

✓ Pilar P5.1

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	α _n	α_{s}	α
0,10	0,27	0,70	0,62	0,30	0,22	0,67	1,19	0,80

f _{yd} (MPa)	f _{cd} (MPa)	Vol _{cintas}	Vol _{núcleo}	$\omega_{\omega d}$
348	16,66667	3,84E-04	1,36E-02	0,588

μ_{ϕ}	Vd	£ _{sy,d}	$30^*\mu_{\phi}^*\nu_d^*\epsilon_{sy,d}^*(b_c/b_o)-0,035$	$\alpha^*\omega_{\omega d}$
4,83	0,04	0,00174	-0,024	0,472

✓ Pilar P5.2

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	$h_{o}(m)$	α _n	α_{s}	α
0,10	0,27	0,70	0,62	0,30	0,22	0,67	1,19	0,80

f _{yd} (MPa)	f _{cd} (MPa)	Vol _{cintas}	Vol _{núcleo}	$\omega_{\omega d}$
348	16,66667	3,84E-04	1,36E-02	0,588

μ_{ϕ}	Vd	$\epsilon_{sy,d}$	$30^{*}\mu_{\phi}^{*}\nu_{d}^{*}\epsilon_{sy,d}^{*}(b_{c}/b_{o})$ -0,035	$\alpha^*\omega_{\omega d}$
4,83	0,04	0,00174	-0,024	0,472

✓ Pilar P6.1

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	α _n	α_{s}	α
0,10	0,05	0,30	0,22	0,30	0,22	0,82	1,00	0,82

f _{yd} (MPa)	f _{cd} (MPa)	Vol _{cintas}	Vol _{núcleo}	$\omega_{\omega d}$
348	16,66667	1,28E-04	4,84E-03	0,552

μ_{ϕ}	Vd	Esy,d	$30^{*}\mu_{\phi}^{*}\nu_{d}^{*}\epsilon_{sy,d}^{*}(b_{c}/b_{o})$ -0,035	$\alpha^*\omega_{\omega d}$
4,83	0,20	0,00174	0,034640434	0,451

✓ Pilar P6.2

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	αn	α_{s}	α
0,10	0,05	0,30	0,22	0,30	0,22	0,82	1,00	0,82

f _{yd} (MPa)	fcd (MPa)	Volcintas	Volnúcleo	$\omega_{\omega d}$
348	16,66667	1,28E-04	4,84E-03	0,552

μ_{ϕ}	ν_{d}	€ _{sy,d}	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0,035$	$\alpha^*\omega_{\omega d}$
4,83	0,20	0,00174	0,034640434	0,451

✓ Pilar P7.1

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	α _n	α_{s}	α
0,10	0,05	0,30	0,22	0,30	0,22	0,82	1,00	0,82

f _{yd} (MPa)	f _{cd} (MPa)	Vol _{cintas}	Vol _{núcleo}	$\omega_{\omega d}$
348	16,66667	1,28E-04	4,84E-03	0,552

μ_{ϕ}	Vd	Esy,d	$30^{*}\mu_{\phi}^{*}\nu_{d}^{*}\epsilon_{sy,d}^{*}(b_{c}/b_{o})$ -0,035	$\alpha^*\omega_{\omega d}$
4,83	0,21	0,00174	0,035696807	0,451

✓ Pilar P7.2

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	αn	α_{s}	α
0,10	0,05	0,30	0,22	0,30	0,22	0,82	1,00	0,82

f _{yd} (MPa)	fcd (MPa)	Volcintas	Volnúcleo	$\omega_{\omega d}$
348	16,66667	1,28E-04	4,84E-03	0,552

μ_{ϕ}	ν_{d}	€ _{sy,d}	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0,035$	$\alpha^*\omega_{\omega d}$
4,83	0,21	0,00174	0,035696807	0,451

✓ Pilar P8.1

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	$h_{c}(m)$	h _o (m)	α_n	α_{s}	α
0,10	0,27	0,70	0,62	0,30	0,22	0,67	1,19	0,80

f _{yd} (MPa)	f _{cd} (MPa)	Vol _{cintas}	Vol _{núcleo}	$\omega_{\omega d}$
348	16,66667	3,84E-04	1,36E-02	0,588

μ_{ϕ}	Vd	Esy,d	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0.035$	$\alpha^*\omega_{\omega d}$
4,83	0,06	0,00174	-0,017	0,472

✓ Pilar P8.2

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	αn	α_{s}	α
0,10	0,27	0,70	0,62	0,30	0,22	0,67	1,19	0,80

f _{yd} (MPa)	fcd (MPa)	Volcintas	Volnúcleo	$\omega_{\omega d}$
348	16,66667	3,84E-04	1,36E-02	0,588

μ_{ϕ}	ν_d	E _{sy,d}	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0.035$	$\alpha^*\omega_{\omega d}$
4,83	0,06	0,00174	-0,017	0,472

✓ Pilar P9

s (m)	$\Sigma(b_i^2)$	b _c (m)	$b_{o}\left(m ight)$	$h_{c}(m)$	$h_{o}\left(m ight)$	α _n	α_{s}	α
0,10	0,32	0,70	0,62	0,30	0,22	0,609	1,190	0,725

f _{yd} (MPa)	f _{cd} (MPa)	Vol _{cintas}	Vol _{núcleo}	$\omega_{\omega d}$
348	16,66667	1,78E-04	1,36E-02	0,272

μ_{ϕ}	Vd	Esy,d	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0,035$	$\alpha^*\omega_{\omega d}$
4,83	0,04	0,00174	-0,022	0,197

✓ Pilar P10

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	αn	α_{s}	α
0,10	0,24	0,70	0,62	0,30	0,22	0,71	1,19	0,84

f _{yd} (MPa)	f _{cd} (MPa)	Volcintas	Volnúcleo	$\omega_{\omega d}$
348	16,66667	2,12E-04	1,36E-02	0,325

μ_{ϕ}	Vd	Esy,d	$30*\mu_{\phi}*v_{d}*\epsilon_{sy,d}*(b_c/b_o)-0.035$	$\alpha^*\omega_{\omega d}$
4,83	0,07	0,00174	-0,015	0,273

✓ Pilar P11

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	$h_{c}(m)$	h _o (m)	α_n	α_{s}	α
0,10	0,24	0,70	0,62	0,30	0,22	0,71	1,19	0,84

f _{yd} (MPa)	f _{cd} (MPa)	Vol _{cintas}	Vol _{núcleo}	$\omega_{\omega d}$
348	16,66667	2,12E-04	1,36E-02	0,325

μ_{ϕ}	Vd	E _{sy,d}	$30*\mu_{\phi}*\nu_{d}*\epsilon_{sy,d}*(b_c/b_o)-0,035$	$\alpha^*\omega_{\omega d}$
4,83	0,07	0,00174	-0,016	0,273

✓ Pilar P12

s (m)	$\Sigma(b_i^2)$	b _c (m)	b _o (m)	h _c (m)	h _o (m)	αn	α_{s}	α
0,10	0,32	0,70	0,62	0,30	0,22	0,61	1,19	0,72

f _{yd} (MPa)	f _{cd} (MPa)	Volcintas	Volnúcleo	$\omega_{\omega d}$
348	16,66667	1,78E-04	1,36E-02	0,272

μ_{ϕ}	Vd	Esy,d	$30^{*}\mu_{\phi}^{*}\nu_{d}^{*}\epsilon_{sy,d}^{*}(b_{c}/b_{o})$ -0,035	$\alpha^*\omega_{\omega d}$
4,83	0,05	0,00174	-0,021	0,197

6 Anexo 2 - Cálculos justificativos da verificação segundo o Eurocódigo 8

Parte 3

Pilar	Direção	M _{Rd} (kN.m)	V _{Rd} (kN)	$L_{v}(m)$
D1	Х	519,657	883,318	0,588
PI	У	257,142	280,784	0,916
DO	х	241,144	163,960	1,471
P2	У	330,284	730,038	0,452
D2	х	274,268	163,960	1,673
F3	у	459,149	697,872	0,658
D 4	Х	295,796	729,224	0,406
P4	у	226,363	122,931	1,841
D5 1	х	386,055	697,872	0,553
г <i>З</i> .1	у	210,098	268,412	0,783
D5 2	Х	339,829	697,872	0,487
F3.2	У	190,287	268,412	0,709
D6 1	х	145,946	268,412	0,544
P0.1	у	145,946	268,412	0,544
D6 7	х	131,365	268,412	0,489
F0.2	У	131,365	268,412	0,489
D7 1	х	146,397	268,412	0,545
F/.1	У	146,397	268,412	0,545
D7 2	Х	131,162	268,412	0,489
Г/. <i>2</i>	У	131,162	268,412	0,489
DQ 1	Х	366,348	697,872	0,525
F 0.1	У	201,652	163,960	1,230
DQ 7	Х	338,939	697,872	0,486
F 0.2	У	189,905	268,412	0,708
DO	X	247,009	524,422	0,471
F 7	у	149,282	122,931	1,214
P10	X	229,771	122,931	1,869
110	у	303,748	729,224	0,417
P11	X	228,913	122,931	1,862
111	У	301,746	729,224	0,414
P12	X	251,598	524,422	0,480
114	y	151,248	122,931	1,230

Anexo 6.1 – Razão momento/esforço transverso da extremidade dos pilares

Pilar	Direção	d (m)	$b_{w}(m)$	A_{sl} (cm ² /m)	k	ρ_1
D1	X	1,05	0,30	8,29	1,44	0,003
ΓI	У	0,25	1,10	26,38	1,89	0,010
DO	х	0,25	0,70	25,12	1,89	0,014
ΓZ	У	0,65	0,30	9,42	1,55	0,005
D2	х	0,25	0,70	29,06	1,89	0,017
ГJ	У	0,65	0,30	14,73	1,55	0,008
D/	х	0,65	0,30	9,42	1,55	0,005
Г4	У	0,25	0,70	25,12	1,89	0,014
D5 1	х	0,65	0,30	12,56	1,55	0,006
FJ.1	У	0,25	0,70	21,98	1,89	0,013
D5 2	х	0,65	0,30	12,56	1,55	0,006
г <i>Э.2</i>	у	0,25	0,70	21,98	1,89	0,013
D6 1	х	0,25	0,30	13,84	1,89	0,018
F0.1	У	0,25	0,30	13,84	1,89	0,018
D6 2	х	0,25	0,30	13,84	1,89	0,018
F0.2	У	0,25	0,30	13,84	1,89	0,018
D7 1	х	0,25	0,30	13,84	1,89	0,018
P7.1	У	0,25	0,30	13,84	1,89	0,018
D7 2	х	0,25	0,30	13,84	1,89	0,018
P7.2	У	0,25	0,30	13,84	1,89	0,018
D9 1	х	0,65	0,30	12,56	1,55	0,006
P0.1	У	0,25	0,70	21,98	1,89	0,013
D9 2	х	0,65	0,30	12,56	1,55	0,006
F 0.2	у	0,25	0,70	21,98	1,89	0,013
DO	х	0,65	0,30	8,29	1,55	0,004
ГУ	У	0,25	0,70	16,33	1,89	0,009
D 10	Х	0,25	0,70	25,12	1,89	0,014
F10	У	0,65	0,30	9,42	1,55	0,005
D11	Х	0,25	0,70	25,12	1,89	0,014
r I I	У	0,65	0,30	9,42	1,55	0,005
D10	Х	0,65	0,30	8,29	1,55	0,004
F12	У	0,25	0,70	16,33	1,89	0,009

Anexo 6.2 – Cálculo da constante k e do taxa da armadura longitudinal dos pilares

Pilar	Direção	C _{Rd,c}	k	ρ_1	f _{ck} (MPa)	k ₁	σ _{cp} (MPa)	b (m)	d (m)	V _{Rd,c} (kN)
D1	х	0,12	1,44	0,003	25	0,15	1,08	0,30	1,05	51,312
ГІ	у	0,12	1,89	0,010	25	0,15	1,08	1,10	0,25	44,888
DJ	Х	0,12	1,89	0,014	25	0,15	1,55	0,70	0,25	40,922
ΓZ	у	0,12	1,55	0,005	25	0,15	1,55	0,30	0,65	45,537
D2	Х	0,12	1,89	0,017	25	0,15	1,66	0,70	0,25	43,707
F.5	у	0,12	1,55	0,008	25	0,15	1,66	0,30	0,65	48,645
D4	х	0,12	1,55	0,005	25	0,15	1,05	0,30	0,65	30,751
P4	у	0,12	1,89	0,014	25	0,15	1,05	0,70	0,25	27,654
D5 1	х	0,12	1,55	0,006	25	0,15	1,31	0,30	0,65	38,404
P.3.1	у	0,12	1,89	0,013	25	0,15	1,31	0,70	0,25	34,508
D5 0	Х	0,12	1,55	0,006	25	0,15	0,66	0,30	0,65	19,437
P3.2	у	0,12	1,89	0,013	25	0,15	0,66	0,70	0,25	17,487
D6 1	Х	0,12	1,89	0,018	25	0,15	3,38	0,30	0,25	38,050
P0.1	у	0,12	1,89	0,018	25	0,15	3,38	0,30	0,25	38,050
D6 2	х	0,12	1,89	0,018	25	0,15	1,94	0,30	0,25	21,836
F0.2	у	0,12	1,89	0,018	25	0,15	1,94	0,30	0,25	21,836
D7 1	Х	0,12	1,89	0,018	25	0,15	3,43	0,30	0,25	38,626
r/.1	у	0,12	1,89	0,018	25	0,15	3,43	0,30	0,25	38,626
D7 2	Х	0,12	1,89	0,018	25	0,15	1,92	0,30	0,25	21,636
P7.2	у	0,12	1,89	0,018	25	0,15	1,92	0,30	0,25	21,636
DQ 1	Х	0,12	1,55	0,006	25	0,15	1,03	0,30	0,65	30,112
F 0.1	у	0,12	1,89	0,013	25	0,15	1,03	0,70	0,25	27,067
D0 2	Х	0,12	1,55	0,006	25	0,15	0,65	0,30	0,65	19,088
F 0.2	у	0,12	1,89	0,013	25	0,15	0,65	0,70	0,25	17,173
DO	Х	0,12	1,55	0,004	25	0,15	0,73	0,30	0,65	21,499
ГУ	у	0,12	1,89	0,009	25	0,15	0,73	0,70	0,25	19,336
D10	Х	0,12	1,89	0,014	25	0,15	1,16	0,70	0,25	30,630
F 10	у	0,12	1,55	0,005	25	0,15	1,16	0,30	0,65	34,068
D11	Х	0,12	1,89	0,014	25	0,15	1,13	0,70	0,25	29,876
rII	у	0,12	1,55	0,005	25	0,15	1,13	0,30	0,65	33,228
D10	Х	0,12	1,55	0,004	25	0,15	0,79	0,30	0,65	23,327
r12	у	0,12	1,89	0,009	25	0,15	0,79	0,70	0,25	20,976

Anexo 6.3 – Cálculo do valor do esforço transverso resistente VR,c

Pilar	Direção	k	f _{ck} (MPa)	ν_{min}
D1	Х	1,44	16,67	2,855
PI	у	1,89	16,67	3,279
D2	Х	1,89	16,67	3,279
P2	у	1,55	16,67	2,970
D2	Х	1,89	16,67	3,279
F3	у	1,55	16,67	2,970
D4	х	1,55	16,67	2,970
Г4	у	1,89	16,67	3,279
D5 1	х	1,55	16,67	2,970
FJ.1	у	1,89	16,67	3,279
D5 2	Х	1,55	16,67	2,970
FJ.2	у	1,89	16,67	3,279
D6 1	х	1,89	16,67	3,279
P0.1	у	1,89	16,67	3,279
D6 7	х	1,89	16,67	3,279
F0.2	у	1,89	16,67	3,279
D7 1	Х	1,89	16,67	3,279
F/.1	у	1,89	16,67	3,279
D7 2	х	1,89	16,67	3,279
r/.2	у	1,89	16,67	3,279
D9 1	х	1,55	16,67	2,970
F 0.1	у	1,89	16,67	3,279
D9 2	х	1,55	16,67	2,970
F0.2	у	1,89	16,67	3,279
DO	х	1,55	16,67	2,970
19	у	1,89	16,67	3,279
P 10	X	1,89	16,67	3,279
F 10	у	1,55	16,67	2,970
D11	Х	1,89	16,67	3,279
r 1 1	у	1,55	16,67	2,970
D12	X	1,55	16,67	2,970
F12	у	1,89	16,67	3,279

Anexo 6.4 – Cálculo de vmin nos pilares

Pilar	Direção	ν_{min}	k_1	σ _{cp} (MPa)	b (m)	d (m)	V _{Rd,c min} (kN)
D1	Х	2,8551	0,15	1,08	0,30	1,05	2,9063
r I	у	3,2788	0,15	1,08	1,10	0,25	3,3235
D2	х	3,2788	0,15	1,55	0,70	0,25	3,3196
ΓZ	у	2,9703	0,15	1,55	0,30	0,65	3,0157
D2	Х	3,2788	0,15	1,66	0,70	0,25	3,3223
гэ	у	2,9703	0,15	1,66	0,30	0,65	3,0188
D4	х	2,9703	0,15	1,05	0,30	0,65	3,0009
P4	У	3,2788	0,15	1,05	0,70	0,25	3,3063
D5 1	х	2,9703	0,15	1,31	0,30	0,65	3,0086
P3.1	У	3,2788	0,15	1,31	0,70	0,25	3,3131
D5 0	Х	2,9703	0,15	0,66	0,30	0,65	2,9896
P3.2	У	3,2788	0,15	0,66	0,70	0,25	3,2961
D6 1	х	3,2788	0,15	3,38	0,30	0,25	3,3168
P0.1	У	3,2788	0,15	3,38	0,30	0,25	3,3168
D6 2	х	3,2788	0,15	1,94	0,30	0,25	3,3005
P0.2	У	3,2788	0,15	1,94	0,30	0,25	3,3005
D7 1	х	3,2788	0,15	3,43	0,30	0,25	3,3173
P7.1	У	3,2788	0,15	3,43	0,30	0,25	3,3173
D7 2	х	3,2788	0,15	1,92	0,30	0,25	3,3003
P7.2	У	3,2788	0,15	1,92	0,30	0,25	3,3003
D0 1	х	2,9703	0,15	1,03	0,30	0,65	3,0003
P0.1	У	3,2788	0,15	1,03	0,70	0,25	3,3057
0 0	х	2,9703	0,15	0,65	0,30	0,65	2,9893
P0.2	У	3,2788	0,15	0,65	0,70	0,25	3,2958
DO	х	2,9703	0,15	0,73	0,30	0,65	2,9917
P9	У	3,2788	0,15	0,73	0,70	0,25	3,2980
D10	х	3,2788	0,15	1,16	0,70	0,25	3,3093
P10	У	2,9703	0,15	1,16	0,30	0,65	3,0042
D11	х	3,2788	0,15	1,13	0,70	0,25	3,3085
PII	У	2,9703	0,15	1,13	0,30	0,65	3,0034
D12	Х	2,9703	0,15	0,79	0,30	0,65	2,9935
P12	у	3,2788	0,15	0,79	0,70	0,25	3,2996

Anexo 6.5 – Cálculo do valor do esforço transverso resistente VR,cmin

Pilar	Direção	d (m)	Øy
D1	х	1,05	0,0017
11	у	0,25	0,0070
D2	Х	0,25	0,0070
12	у	0,65	0,0027
D3	Х	0,25	0,0070
15	у	0,65	0,0027
P/	х	0,65	0,0027
14	У	0,25	0,0070
D5 1	Х	0,65	0,0027
1 3.1	у	0,25	0,0070
P5 2	х	0,65	0,0027
1 3.2	у	0,25	0,0070
P6 1	Х	0,25	0,0070
10.1	у	0,25	0,0070
P6 2	Х	0,25	0,0070
10.2	у	0,25	0,0070
D7 1	Х	0,25	0,0070
Γ/.1	у	0,25	0,0070
D7 2	Х	0,25	0,0070
17.2	у	0,25	0,0070
DQ 1	Х	0,65	0,0027
1 0.1	у	0,25	0,0070
DQ 7	Х	0,65	0,0027
F 0.2	у	0,25	0,0070
DO	X	0,65	0,0027
F 9	у	0,25	0,0070
P 10	X	0,25	0,0070
110	у	0,65	0,0027
D11	X	0,25	0,0070
Г I I	у	0,65	0,0027
D12	X	0,65	0,0027
F12	у	0,25	0,0070

Anexo 6.6 – Cálculo da curvatura de cedência na extremidade dos pilares

Pilar	Direção	ϕ_y	L _v (m)	a _v	z (m)	h (m)	d (m)	d' (m)	d _b (mm)	f _y (MPa)	f _c (MPa)	θ_y
D1	х	0,002	0,59	1	0,95	1,10	1,05	1,05	20	348	16,67	0,006
r1	у	0,007	0,92	1	0,23	0,30	0,25	0,25	20	348	16,67	0,005
D7	Х	0,007	1,47	1	0,23	0,30	0,25	0,25	20	348	16,67	0,006
ΓZ	у	0,003	0,45	1	0,59	0,70	0,65	0,65	20	348	16,67	0,005
D3	Х	0,007	1,67	1	0,23	0,30	0,25	0,25	25	348	16,67	0,006
15	У	0,003	0,66	1	0,59	0,70	0,65	0,65	25	348	16,67	0,005
D /	Х	0,003	0,41	1	0,59	0,70	0,65	0,65	20	348	16,67	0,006
14	У	0,007	1,84	1	0,23	0,30	0,25	0,25	20	348	16,67	0,006
D5 1	Х	0,003	0,55	1	0,59	0,70	0,65	0,65	20	348	16,67	0,005
1 J.1	У	0,007	0,78	1	0,23	0,30	0,25	0,25	20	348	16,67	0,004
D5 2	Х	0,003	0,49	1	0,59	0,70	0,65	0,65	20	348	16,67	0,005
1 J.2	у	0,007	0,71	1	0,23	0,30	0,25	0,25	20	348	16,67	0,004
P6 1	Х	0,007	0,54	1	0,23	0,30	0,25	0,25	16	348	16,67	0,004
10.1	У	0,007	0,54	1	0,23	0,30	0,25	0,25	16	348	16,67	0,004
P6 2	X	0,007	0,49	1	0,23	0,30	0,25	0,25	16	348	16,67	0,004
10.2	У	0,007	0,49	1	0,23	0,30	0,25	0,25	16	348	16,67	0,004
P7 1	х	0,007	0,55	1	0,23	0,30	0,25	0,25	16	348	16,67	0,004
1 /.1	У	0,007	0,55	1	0,23	0,30	0,25	0,25	16	348	16,67	0,004
P7 2	х	0,007	0,49	1	0,23	0,30	0,25	0,25	16	348	16,67	0,004
17.2	У	0,007	0,49	1	0,23	0,30	0,25	0,25	16	348	16,67	0,004
P8 1	X	0,003	0,52	1	0,59	0,70	0,65	0,65	20	348	16,67	0,005
1 0.1	У	0,007	1,23	1	0,23	0,30	0,25	0,25	20	348	16,67	0,005
P8 2	X	0,003	0,49	1	0,59	0,70	0,65	0,65	20	348	16,67	0,005
10.2	У	0,007	0,71	1	0,23	0,30	0,25	0,25	20	348	16,67	0,004
P9	х	0,003	0,47	1	0,59	0,70	0,65	0,65	20	348	16,67	0,005
17	У	0,007	1,21	1	0,23	0,30	0,25	0,25	20	348	16,67	0,005
P10	х	0,007	1,87	1	0,23	0,30	0,25	0,25	20	348	16,67	0,007
110	У	0,003	0,42	1	0,59	0,70	0,65	0,65	20	348	16,67	0,006
P11	х	0,007	1,86	1	0,23	0,30	0,25	0,25	20	348	16,67	0,007
1 1 1	У	0,003	0,41	1	0,59	0,70	0,65	0,65	20	348	16,67	0,006
P12	X	0,003	0,48	1	0,59	0,70	0,65	0,65	20	348	16,67	0,005
112	У	0,007	1,23	1	0,23	0,30	0,25	0,25	20	348	16,67	0,005

Anexo 6.7 – Cálculo da deformação de cedência nos pilares

Pilar	Direção	$\begin{array}{c} A_{s} \\ (cm^{2}/m) \end{array}$	$\begin{array}{c} A_{s} \\ (cm^{2}/m) \end{array}$	A _c (cm ²)	f _y (MPa)	f _c (MPa)	ω	ω'	α
D1	Х	8,29	8,29	3300	348	16,67	0,052	0,052	0,99
L I	У	26,38	26,38	3300	348	16,67	0,167	0,167	0,99
D2	Х	25,12	25,12	2100	348	16,67	0,250	0,250	0,84
Γ∠	У	9,42	9,42	2100	348	16,67	0,094	0,094	0,84
D2	Х	29,06	29,06	2100	348	16,67	0,289	0,289	0,72
F.5	У	14,73	14,73	2100	348	16,67	0,146	0,146	0,72
D 4	х	9,42	9,42	2100	348	16,67	0,094	0,094	0,84
Г4	У	25,12	25,12	2100	348	16,67	0,250	0,250	0,84
D5 1	Х	12,56	12,56	2100	348	16,67	0,125	0,125	0,80
г <i>З</i> .1	У	21,98	21,98	2100	348	16,67	0,219	0,219	0,80
D5 2	Х	12,56	12,56	2100	348	16,67	0,125	0,125	0,80
FJ.2	У	21,98	21,98	2100	348	16,67	0,219	0,219	0,80
D6 1	Х	13,84	13,84	900	348	16,67	0,321	0,321	0,82
F0.1	У	13,84	13,84	900	348	16,67	0,321	0,321	0,82
D6 2	Х	13,84	13,84	900	348	16,67	0,321	0,321	0,82
F0.2	У	13,84	13,84	900	348	16,67	0,321	0,321	0,82
D7 1	Х	13,84	13,84	900	348	16,67	0,321	0,321	0,82
г/.1	У	13,84	13,84	900	348	16,67	0,321	0,321	0,82
D7 2	Х	13,84	13,84	900	348	16,67	0,321	0,321	0,82
P7.2	У	13,84	13,84	900	348	16,67	0,321	0,321	0,82
D0 1	X	12,56	12,56	2100	348	16,67	0,125	0,125	0,80
P 8.1	У	21,98	21,98	2100	348	16,67	0,219	0,219	0,80
D0 2	X	12,56	12,56	2100	348	16,67	0,125	0,125	0,80
P8.2	У	21,98	21,98	2100	348	16,67	0,219	0,219	0,80
DO	Х	8,29	8,29	2100	348	16,67	0,082	0,082	0,72
P9	У	16,33	16,33	2100	348	16,67	0,162	0,162	0,72
D10	х	25,12	25,12	2100	348	16,67	0,250	0,250	0,84
r10	У	9,42	9,42	2100	348	16,67	0,094	0,094	0,84
D11	x	25,12	25,12	2100	348	16,67	0,250	0,250	0,84
r11	У	9,42	9,42	2100	348	16,67	0,094	0,094	0,84
D10	x	8,29	8,29	2100	348	16,67	0,082	0,082	0,72
r12	У	16,33	16,33	2100	348	16,67	0,162	0,162	0,72

Anexo 6.8 – Taxa mecânica de armadura de tração e compressão dos pilares

Pilar	Direção	A _s (cm ² /m)	b (m)	s _h (m)	ρ_s
D1	Х	8,29	0,30	0,100	0,0276
PI	У	26,38	1,10	0,100	0,0240
D2	Х	25,12	0,70	0,075	0,0478
P2	у	9,42	0,30	0,075	0,0419
D2	Х	29,06	0,70	0,075	0,0554
P3	У	14,73	0,30	0,075	0,0655
D4	Х	9,42	0,30	0,100	0,0314
P4	у	25,12	0,70	0,100	0,0359
D5 1	Х	12,56	0,30	0,075	0,0558
P3.1	У	21,98	0,70	0,075	0,0419
D5 2	Х	12,56	0,30	0,075	0,0558
P3.2	У	21,98	0,70	0,075	0,0419
D4 1	Х	13,84	0,30	0,075	0,0615
P0.1	у	13,84	0,30	0,075	0,0615
D6 2	Х	13,84	0,30	0,075	0,0615
P0.2	У	13,84	0,30	0,075	0,0615
D7 1	Х	13,84	0,30	0,075	0,0615
P7.1	у	13,84	0,30	0,075	0,0615
D7 2	Х	13,84	0,30	0,075	0,0615
P7.2	У	13,84	0,30	0,075	0,0615
D0 1	Х	12,56	0,30	0,075	0,0558
F 0.1	У	21,98	0,70	0,075	0,0419
DQ 2	Х	12,56	0,30	0,075	0,0558
F0.2	У	21,98	0,70	0,075	0,0419
DO	Х	8,29	0,30	0,100	0,0276
F9	У	16,33	0,70	0,100	0,0233
D10	Х	25,12	0,70	0,100	0,0359
F10	у	9,42	0,30	0,100	0,0314
D11	Х	25,12	0,70	0,100	0,0359
F11	у	9,42	0,30	0,100	0,0314
D10	Х	8,29	0,30	0,100	0,0276
F 12	У	16,33	0,70	0,100	0,0233

Anexo 6.9 – Cálculo da percentagem de armadura transversal psx

Pilar	Direção	γ_{el}	ν	ω	ω'	$L_{v}(m)$	h (m)	α	ρ_s	θ_{um}
D1	Х	1,5	0,065	0,052	0,052	0,588	1,10	0,99	0,028	0,094
PI	У	1,5	0,065	0,167	0,167	0,916	0,30	0,99	0,024	0,136
D2	Х	1,5	0,093	0,250	0,250	1,471	0,30	0,84	0,048	0,465
P2	У	1,5	0,093	0,094	0,094	0,452	0,70	0,84	0,042	0,163
D2	Х	1,5	0,100	0,289	0,289	1,673	0,30	0,72	0,055	0,481
P5	у	1,5	0,100	0,146	0,146	0,658	0,70	0,72	0,065	0,422
D4	Х	1,5	0,063	0,094	0,094	0,406	0,70	0,84	0,031	0,090
P4	У	1,5	0,063	0,250	0,250	1,841	0,30	0,84	0,036	0,266
D5 1	Х	1,5	0,079	0,125	0,125	0,553	0,70	0,80	0,056	0,341
P5.1	У	1,5	0,079	0,219	0,219	0,783	0,30	0,80	0,042	0,244
D5 2	Х	1,5	0,040	0,125	0,125	0,487	0,70	0,80	0,056	0,342
P5.2	У	1,5	0,040	0,219	0,219	0,709	0,30	0,80	0,042	0,247
D6 1	Х	1,5	0,203	0,321	0,321	0,544	0,30	0,82	0,062	0,566
P0.1	У	1,5	0,203	0,321	0,321	0,544	0,30	0,82	0,062	0,566
D6 2	Х	1,5	0,116	0,321	0,321	0,489	0,30	0,82	0,062	0,605
P0.2	у	1,5	0,116	0,321	0,321	0,489	0,30	0,82	0,062	0,605
D7 1	Х	1,5	0,206	0,321	0,321	0,545	0,30	0,82	0,062	0,564
P7.1	У	1,5	0,206	0,321	0,321	0,545	0,30	0,82	0,062	0,564
D7 2	Х	1,5	0,115	0,321	0,321	0,489	0,30	0,82	0,062	0,605
P7.2	у	1,5	0,115	0,321	0,321	0,489	0,30	0,82	0,062	0,605
DQ 1	Х	1,5	0,062	0,125	0,125	0,525	0,70	0,80	0,056	0,342
P8.1	У	1,5	0,062	0,219	0,219	1,230	0,30	0,80	0,042	0,292
D9 2	Х	1,5	0,039	0,125	0,125	0,486	0,70	0,80	0,056	0,342
P8.2	У	1,5	0,039	0,219	0,219	0,708	0,30	0,80	0,042	0,247
DO	Х	1,5	0,044	0,082	0,082	0,471	0,70	0,72	0,028	0,064
P9	У	1,5	0,044	0,162	0,162	1,214	0,30	0,72	0,023	0,097
D10	Х	1,5	0,070	0,250	0,250	1,869	0,30	0,84	0,036	0,265
P10	у	1,5	0,070	0,094	0,094	0,417	0,70	0,84	0,031	0,091
D11	Х	1,5	0,068	0,250	0,250	1,862	0,30	0,84	0,036	0,265
Г I I	у	1,5	0,068	0,094	0,094	0,414	0,70	0,84	0,031	0,090
D10	Х	1,5	0,048	0,082	0,082	0,480	0,70	0,72	0,028	0,064
r12	У	1,5	0,048	0,162	0,162	1,230	0,30	0,72	0,023	0,097

Anexo 6.10 – Cálculo da capacidade de deformação dos pilares

Pilar	Direção	$\theta_{sd} {}^{*} \gamma_{I}$	θ_{um}
D1	Х	0,006	0,094
P1	у	0,008	0,136
DJ	Х	0,006	0,465
P2	у	0,007	0,163
D2	х	0,006	0,481
F 3	у	0,008	0,422
D/	Х	0,006	0,090
Г 4	у	0,009	0,266
D5 1	х	0,007	0,341
FJ.1	у	0,008	0,244
D5 2	Х	0,018	0,342
Г J.2	у	0,023	0,247
D6 1	Х	0,007	0,566
10.1	у	0,007	0,566
D6 2	Х	0,018	0,605
10.2	У	0,022	0,605
D7 1	Х	0,007	0,564
1 /.1	у	0,008	0,564
D7 7	Х	0,018	0,605
17.2	У	0,023	0,605
DQ 1	Х	0,007	0,342
1 0.1	У	0,009	0,292
P8 2	Х	0,018	0,342
1 0.2	У	0,026	0,247
ΡQ	Х	0,006	0,064
17	У	0,007	0,097
P10	Х	0,006	0,265
110	У	0,006	0,091
P11	Х	0,006	0,265
1 1 1	У	0,006	0,090
P12	Х	0,006	0,064
112	у	0,007	0,097

Anexo 6.11 – Exigências e capacidades de deformação dos pilares do edifício para o ELDS

Pilar	Direção	θ_{sd}	0,75*θ _{um}
D1	х	0,004	0,070
PI	у	0,005	0,102
DO	х	0,004	0,349
P2	У	0,004	0,123
D2	х	0,004	0,361
F3	У	0,004	0,317
D 4	Х	0,004	0,068
Г4	У	0,005	0,200
D5 1	х	0,004	0,256
FJ.1	У	0,005	0,183
D5 2	Х	0,010	0,256
FJ.2	у	0,014	0,185
D6 1	Х	0,004	0,424
F0.1	У	0,004	0,424
D6 7	Х	0,010	0,454
F 0.2	у	0,013	0,454
D7 1	Х	0,004	0,423
Г/.1	У	0,004	0,423
D7 2	х	0,010	0,454
Г /.2	у	0,013	0,454
DØ 1	Х	0,004	0,256
Po.1	У	0,005	0,219
DQ 7	х	0,010	0,256
F 0.2	У	0,015	0,185
DO	X	0,004	0,048
Г У	у	0,004	0,073
D10	X	0,004	0,199
F 10	у	0,004	0,068
D11	X	0,004	0,199
r I I	у	0,004	0,068
D10	X	0,004	0,048
F12	у	0,004	0,073

Anexo 6.12 – Exigências e capacidades de deformação dos pilares do edifício para o ELCE

Viga	Troco	M _{Rd} (1	kN.m)	$V_{\rm r}$ (kN)	L _v ((m)
viga	ΠΟÇΟ	Esq.	Dta.	V Rd,s(KIV)	Esq.	Dta.
	P1-P2	232,369	318,566	176,27	1,32	1,81
V1	P2-P3	318,566	318,566	176,27	1,81	1,81
	P3-P4	318,566	232,369	176,27	1,81	1,32
	P5-P6	179,961	145,887	138,50	1,30	1,05
V2	P6-P7	145,887	145,887	138,50	1,05	1,05
	P7-P8	145,887	111,012	138,50	1,05	0,80
	P5-P6	74,266	74,266	110,28	0,67	0,67
V3	P6-P7	74,266	74,266	110,28	0,67	0,67
	P7-P8	74,266	52,580	110,28	0,67	0,48
	P9-P10	232,369	318,566	176,27	1,32	1,81
V4	P10-P11	318,566	318,566	176,27	1,81	1,81
	P11-P12	318,566	188,028	176,27	1,81	1,07
V5	P1-P5	177,653	186,494	110,28	1,61	1,69
V6	P2-P6	86,091	64,952	110,28	0,78	0,59
V7	P3-P7	86,091	64,952	110,28	0,78	0,59
V8	P4-P8	177,653	161,381	110,28	1,61	1,46
V9	P5-P9	110,082	90,100	110,28	1,00	0,82
V10	P6-P10	74,266	52,580	110,28	0,67	0,48
V11	P7-P11	74,266	52,580	110,28	0,67	0,48
V12	P8-P12	103,892	83,606	110,28	0,94	0,76

Anexo 6.13 – Razão momento/esforço transverso da extremidade dos pilares

Vice	Troco	A_s (cm ² /m)	A_s (cm ² /m)	A _c	f_y	f_c	(ΰ
viga	Troço	Esq.	Dta.	Dta. (cm^2) (MPa) (MPa) $Esq.$ I12,06225034816,670,0750,12,06225034816,670,1120,8,04225034816,670,1120,6,03180034816,670,0930,6,03180034816,670,0700,6,03180034816,670,0700,4,52120034816,670,0790,4,52120034816,670,0790,4,52120034816,670,0790,12,06225034816,670,1120,8,04225034816,670,1120,18,84120034816,670,2730	Dta.			
	P1-P2	8,04	12,06	2250	348	16,67	0,075	0,112
V1	P2-P3	12,06	12,06	2250	348	16,67	0,112	0,112
	P3-P4	12,06	8,04	2250	348	16,67	0,112	0,075
	P5-P6	8,04	6,03	1800	348	16,67	0,093	0,070
V2	P6-P7	6,03	6,03	1800	348	16,67	0,070	0,070
	P7-P8	6,03	6,03	1800	348	16,67	0,070	0,070
	P5-P6	4,52	4,52	1200	348	16,67	0,079	0,079
V3	P6-P7	4,52	4,52	1200	348	16,67	0,079	0,079
	P7-P8	4,52	4,52	1200	348	16,67	0,079	0,079
	P9-P10	8,04	12,06	2250	348	16,67	0,075	0,112
V4	P10-P11	12,06	12,06	2250	348	16,67	0,112	0,112
	P11-P12	12,06	8,04	2250	348	16,67	0,112	0,075
V5	P1-P5	15,70	18,84	1200	348	16,67	0,273	0,328
V6	P2-P6	5,65	5,65	1200	348	16,67	0,098	0,098
V7	P3-P7	5,65	5,65	1200	348	16,67	0,098	0,098
V8	P4-P8	15,70	15,70	1200	348	16,67	0,273	0,273
V9	P5-P9	8,04	8,04	1200	348	16,67	0,140	0,140
V10	P6-P10	4,52	4,52	1200	348	16,67	0,079	0,079
V11	P7-P11	4,52	4,52	1200	348	16,67	0,079	0,079
V12	P8-P12	7,41	7,41	1200	348	16,67	0,129	0,129

Anexo 6.14 – Taxa mecânica de armadura de tração das vigas do edifício

Viga	Troço	A_s' (cm ² /m)	A_s' (cm ² /m)	Ac	$\mathbf{f}_{\mathbf{y}}$	f_c	0)'
1.284	11030	Esq.	Dta.	(cm^2)	(MPa)	(MPa)	Esq.	Dta.
	P1-P2	8,04	8,04	2250	348	16,67	0,075	0,075
V1	P2-P3	8,04	8,04	2250	348	16,67	0,075	0,075
	P3-P4	8,04	8,04	2250	348	16,67	0,075	0,075
	P5-P6	6,03	6,03	1800	348	16,67	0,070	0,070
V2	P6-P7	6,03	6,03	1800	348	16,67	0,070	0,070
	P7-P8	6,03	8,04	1800	348	16,67	0,070	0,093
	P5-P6	4,52	4,52	1200	348	16,67	0,079	0,079
V3	P6-P7	4,52	4,52	1200	348	16,67	0,079	0,079
	P7-P8	4,52	4,52	1200	348	16,67	0,079	0,079
	P9-P10	8,04	8,04	2250	348	16,67	0,075	0,075
V4	P10-P11	8,04	8,04	2250	348	16,67	0,075	0,075
	P11-P12	8,04	8,04	2250	348	16,67	0,075	0,075
V5	P1-P5	8,04	8,04	1200	348	16,67	0,140	0,140
V6	P2-P6	4,52	4,52	1200	348	16,67	0,079	0,079
V7	P3-P7	4,52	4,52	1200	348	16,67	0,079	0,079
V8	P4-P8	4,52	6,78	1200	348	16,67	0,079	0,118
V9	P5-P9	4,52	4,52	1200	348	16,67	0,079	0,079
V10	P6-P10	4,52	4,52	1200	348	16,67	0,079	0,079
V11	P7-P11	4,52	4,52	1200	348	16,67	0,079	0,079
V12	P8-P12	4,52	5,65	1200	348	16,67	0,079	0,098

Anexo 6.15 – Taxa mecânica de armadura de compressão das vigas do edifício

Viga	Troco	A_s' (cm ² /m)	A_s' (cm ² /m)	b (m)	s _b (m)	ρ	0 _s
1.284	11030	Esq.	Dta.	0 (11)	511 (111)	Esq.	Dta.
	P1-P2	8,04	8,04	0,3	0,125	0,021	0,021
V1	P2-P3	8,04	8,04	0,3	0,125	0,021	0,021
	P3-P4	8,04	8,04	0,3	0,125	0,021	0,021
	P5-P6	6,03	6,03	0,3	0,125	0,016	0,016
V2	P6-P7	6,03	6,03	0,3	0,125	0,016	0,016
	P7-P8	6,03	8,04	0,3	0,125	0,016	0,021
	P5-P6	4,52	4,52	0,3	0,100	0,015	0,015
V3	P6-P7	4,52	4,52	0,3	0,100	0,015	0,015
	P7-P8	4,52	4,52	0,3	0,100	0,015	0,015
	P9-P10	8,04	8,04	0,3	0,150	0,018	0,018
V4	P10-P11	8,04	8,04	0,3	0,150	0,018	0,018
	P11-P12	8,04	8,04	0,3	0,150	0,018	0,018
V4	P1-P5	8,04	8,04	0,3	0,100	0,027	0,027
V5	P2-P6	4,52	4,52	0,3	0,100	0,015	0,015
V6	P3-P7	4,52	4,52	0,3	0,100	0,015	0,015
V7	P4-P8	4,52	6,78	0,3	0,100	0,015	0,023
V8	P5-P9	4,52	4,52	0,3	0,100	0,015	0,015
V9	P6-P10	4,52	4,52	0,3	0,100	0,015	0,015
V10	P7-P11	4,52	4,52	0,3	0,100	0,015	0,015
V11	P8-P12	4,52	5,65	0,3	0,100	0,015	0,019

Anexo 6.16 – Cálculo da percentagem de armadura transversal ps

Viga	Troco	Ø	L _v	(m)	я	Z	h	d	d'	d _b	$\mathbf{f}_{\mathbf{y}}$	$\mathbf{f}_{\mathbf{c}}$	6	y
v iga	Ποξο	Øy	Esq	Dta	$a_{\rm V}$	(m)	(m)	(m)	(m)	(mm)	(MPa)	(MPa)	Esq	Dta
	P1-P2	0,002	1,32	1,81	1	0,63	0,75	0,70	0,70	20	348	16,67	0,004	0,004
V1	P2-P3	0,002	1,81	1,81	1	0,63	0,75	0,70	0,70	20	348	16,67	0,004	0,004
	P3-P4	0,002	1,81	1,32	1	0,63	0,75	0,70	0,70	20	348	16,67	0,004	0,004
	P5-P6	0,003	1,30	1,05	1	0,50	0,60	0,55	0,55	20	348	16,67	0,004	0,004
V2	P6-P7	0,003	1,05	1,05	1	0,50	0,60	0,55	0,55	25	348	16,67	0,004	0,004
	P7-P8	0,003	1,05	0,80	1	0,50	0,60	0,55	0,55	25	348	16,67	0,004	0,004
	P5-P6	0,005	0,67	0,67	1	0,32	0,40	0,35	0,35	20	348	16,67	0,004	0,004
V3	P6-P7	0,005	0,67	0,67	1	0,32	0,40	0,35	0,35	20	348	16,67	0,004	0,004
	P7-P8	0,005	0,67	0,48	1	0,32	0,40	0,35	0,35	20	348	16,67	0,004	0,004
	P9-P10	0,002	1,32	1,81	1	0,63	0,75	0,70	0,70	20	348	16,67	0,004	0,004
V4	P10-P11	0,002	1,81	1,81	1	0,63	0,75	0,70	0,70	20	348	16,67	0,004	0,004
	P11-P12	0,002	1,81	1,07	1	0,63	0,75	0,70	0,70	20	348	16,67	0,004	0,004
V5	P1-P5	0,005	1,61	1,69	1	0,32	0,40	0,35	0,35	16	348	16,67	0,005	0,005
V6	P2-P6	0,005	0,78	0,59	1	0,32	0,40	0,35	0,35	16	348	16,67	0,004	0,004
V7	P3-P7	0,005	0,78	0,59	1	0,32	0,40	0,35	0,35	16	348	16,67	0,004	0,004
V8	P4-P8	0,005	1,61	1,46	1	0,32	0,40	0,35	0,35	16	348	16,67	0,005	0,005
V9	P5-P9	0,005	1,00	0,82	1	0,32	0,40	0,35	0,35	16	348	16,67	0,004	0,004
V10	P6-P10	0,005	0,67	0,48	1	0,32	0,40	0,35	0,35	16	348	16,67	0,004	0,004
V11	P7-P11	0,005	0,67	0,48	1	0,32	0,40	0,35	0,35	16	348	16,67	0,004	0,004
V12	P8-P12	0,005	0,94	0,76	1	0,32	0,40	0,35	0,35	16	348	16,67	0,004	0,004

Anexo 6.17 – Cálculo da deformação de cedência das vigas

Vigo	Troco	N.	N	h (m)	θ	um
viga	Ποξυ	¥el	v	II (III)	Esq.	Dta.
	P1-P2	1,5	0,000	0,75	0,024	0,025
V1	P2-P3	1,5	0,000	0,75	0,025	0,025
	P3-P4	1,5	0,000	0,75	0,025	0,024
	P5-P6	1,5	0,000	0,60	0,025	0,024
V2	P6-P7	1,5	0,000	0,60	0,024	0,024
	P7-P8	1,5	0,000	0,60	0,024	0,024
	P5-P6	1,5	0,000	0,40	0,024	0,024
V3	P6-P7	1,5	0,000	0,40	0,024	0,024
	P7-P8	1,5	0,000	0,40	0,024	0,021
	P9-P10	1,5	0,000	0,75	0,024	0,025
V4	P10-P11	1,5	0,000	0,75	0,025	0,025
	P11-P12	1,5	0,000	0,75	0,025	0,023
V4	P1-P5	1,5	0,000	0,40	0,028	0,027
V5	P2-P6	1,5	0,000	0,40	0,024	0,022
V6	P3-P7	1,5	0,000	0,40	0,024	0,022
V7	P4-P8	1,5	0,000	0,40	0,025	0,026
V8	P5-P9	1,5	0,000	0,40	0,024	0,023
V9	P6-P10	1,5	0,000	0,40	0,024	0,021
V10	P7-P11	1,5	0,000	0,40	0,024	0,021
V11	P8-P12	1,5	0,000	0,40	0,024	0,024

Anexo 6.18 – Cálculo da capacidade de deformação última das vigas

Viga	Troço	$\theta_{sd,esq}$	$\theta_{um,esq}$ *0,75	$\theta_{sd,dta}$	$\theta_{um,dta}$ *0,75
V1	P1-P2	0,006	0,018	0,006	0,019
	P2-P3	0,006	0,019	0,006	0,019
	P3-P4	0,006	0,019	0,006	0,018
	P5-P6	0,006	0,019	0,006	0,018
V2	P6-P7	0,006	0,018	0,006	0,018
	P7-P8	0,006	0,018	0,006	0,018
	P5-P6	0,006	0,018	0,006	0,018
V3	P6-P7	0,006	0,018	0,006	0,018
	P7-P8	0,006	0,018	0,006	0,016
V4	P9-P10	0,006	0,018	0,006	0,019
	P10-P11	0,006	0,019	0,006	0,019
	P11-P12	0,006	0,019	0,006	0,017
V4	P1-P5	0,006	0,021	0,006	0,021
V5	P2-P6	0,006	0,018	0,006	0,016
V6	P3-P7	0,006	0,018	0,006	0,016
V7	P4-P8	0,006	0,019	0,006	0,020
V8	P5-P9	0,006	0,018	0,006	0,017
V9	P6-P10	0,006	0,018	0,006	0,016
V10	P7-P11	0,006	0,018	0,006	0,016
V11	P8-P12	0,006	0,018	0,006	0,018

Anexo 6.19 – Exigências e capacidades de deformação das vigas do edifício para o ELDS

Viga	Troço	$\theta_{\rm sd,esg} * \gamma_1$	$\theta_{um,esq}$	$\theta_{sd,dta}*\gamma_1$	$\theta_{um,dta}$
	P1-P2	0,010	0,024	0,010	0,025
V 1	P2-P3	0,010	0,025	0,010	0,025
	P3-P4	0,010	0,025	0,010	0,024
	P5-P6	0,010	0,025	0,010	0,024
V2	P6-P7	0,010	0,024	0,010	0,024
	P7-P8	0,010	0,024	0,010	0,024
	P5-P6	0,010	0,024	0,010	0,024
V3	P6-P7	0,010	0,024	0,010	0,024
	P7-P8	0,010	0,024	0,010	0,021
	P9-P10	0,010	0,024	0,010	0,025
V4	P10-P11	0,010	0,025	0,010	0,025
	P11-P12	0,010	0,025	0,010	0,023
V4	P1-P5	0,010	0,028	0,010	0,027
V5	P2-P6	0,010	0,024	0,010	0,022
V6	P3-P7	0,010	0,024	0,010	0,022
V7	P4-P8	0,010	0,025	0,010	0,026
V8	P5-P9	0,010	0,024	0,010	0,023
V9	P6-P10	0,010	0,024	0,010	0,021
V10	P7-P11	0,010	0,024	0,010	0,021
V11	P8-P12	0,010	0,024	0,010	0,024

Anexo 6.20 – Exigências e capacidades de deformação das vigas do edifício para o ELCE

Pilar	Direção	θ_{sd}	θ_{y}	$\mu_{\Delta}{}^{pl}$
P1 -	Х	0,004	0,006	0,41
	у	0,005	0,005	0,02
D	Х	0,004	0,006	0,38
P2	у	0,004	0,005	0,20
D2	Х	0,004	0,006	0,43
P3	у	0,004	0,005	0,04
D4	Х	0,004	0,006	0,39
P4	у	0,005	0,006	0,23
D5 1	Х	0,004	0,005	0,23
P3.1	у	0,005	0,004	0,02
D5 2	Х	0,010	0,005	1,00
P3.2	у	0,014	0,004	2,10
D6 1	Х	0,004	0,004	0,10
P0.1	у	0,004	0,004	0,02
P6.2	Х	0,010	0,004	1,45
	у	0,013	0,004	2,03
P7.1	Х	0,004	0,004	0,10
	у	0,004	0,004	0,04
D7 2	Х	0,010	0,004	1,45
r/.2	у	0,013	0,004	2,14
DQ 1	Х	0,004	0,005	0,24
P8.1	у	0,005	0,005	0,04
D0 2	Х	0,010	0,005	1,00
ro.2	у	0,015	0,004	2,48
DO	Х	0,004	0,005	0,33
F9	у	0,004	0,005	0,27
D10	Х	0,004	0,007	0,46
F 10	у	0,004	0,006	0,36
D11	X	0,004	0,007	0,46
F 11	у	0,004	0,006	0,34
D12	Х	0,004	0,005	0,32
F 12	у	0,004	0,005	0,18

Anexo 6.21 – Exigência de ductilidade em deslocamento dos pilares

Pilar	Direção	Yel	h (m)	L _v (m)	x (m)	N (MN)	A _c (m)	fc (Mpa)	$\mu_{\Delta}{}^{pl}$	ρ_{tot}	V _{Rd-EC8-3} (kN)
P1	Х	1,15	1,10	0,588	0,089	0,36	0,33	16,67	0,41	0,017	555,97
	У	1,15	0,30	0,916	0,024	0,36	0,33	16,67	0,02	0,017	211,64
D7	Х	1,15	0,30	1,471	0,035	0,33	0,21	16,67	0,38	0,027	93,46
ГΖ	У	1,15	0,70	0,452	0,082	0,33	0,21	16,67	0,20	0,027	478,90
D2	х	1,15	0,30	1,673	0,037	0,35	0,21	16,67	0,43	0,032	99,34
13	У	1,15	0,70	0,658	0,087	0,35	0,21	16,67	0,04	0,032	468,41
D 4	х	1,15	0,70	0,406	0,055	0,22	0,21	16,67	0,39	0,027	437,87
P4	у	1,15	0,30	1,841	0,024	0,22	0,21	16,67	0,23	0,027	77,85
D5 1	Х	1,15	0,70	0,553	0,069	0,28	0,21	16,67	0,23	0,027	413,77
FJ.1	У	1,15	0,30	0,783	0,029	0,28	0,21	16,67	0,02	0,027	228,15
D5 0	X	1,15	0,70	0,487	0,035	0,14	0,21	16,67	1,00	0,027	353,58
P5.2	У	1,15	0,30	0,709	0,015	0,14	0,21	16,67	2,10	0,027	202,96
DC 1	X	1,15	0,30	0,544	0,076	0,30	0,09	16,67	0,10	0,040	197,77
P0.1	У	1,15	0,30	0,544	0,076	0,30	0,09	16,67	0,02	0,040	198,40
P6.2	X	1,15	0,30	0,489	0,044	0,17	0,09	16,67	1,45	0,040	178,73
	У	1,15	0,30	0,489	0,044	0,17	0,09	16,67	2,03	0,040	174,44
D7 1	Х	1,15	0,30	0,545	0,077	0,31	0,09	16,67	0,10	0,040	197,96
P/.1	У	1,15	0,30	0,545	0,077	0,31	0,09	16,67	0,04	0,040	198,40
D7 0	X	1,15	0,30	0,489	0,043	0,17	0,09	16,67	1,45	0,040	178,56
P7.2	У	1,15	0,30	0,489	0,043	0,17	0,09	16,67	2,14	0,040	173,39
D0 1	х	1,15	0,70	0,525	0,054	0,22	0,21	16,67	0,24	0,027	394,45
P0.1	У	1,15	0,30	1,23	0,023	0,22	0,21	16,67	0,04	0,027	131,32
00 2	Х	1,15	0,70	0,486	0,034	0,14	0,21	16,67	1,00	0,027	352,51
P0.2	У	1,15	0,30	0,708	0,015	0,14	0,21	16,67	2,48	0,027	199,04
DO	Х	1,15	0,70	0,471	0,038	0,15	0,21	16,67	0,33	0,017	276,76
P9	У	1,15	0,30	1,214	0,016	0,15	0,21	16,67	0,27	0,017	88,05
P10	х	1,15	0,30	1,869	0,026	0,24	0,21	16,67	0,46	0,027	78,29
	у	1,15	0,70	0,417	0,061	0,24	0,21	16,67	0,36	0,027	447,99
D11	Х	1,15	0,30	1,862	0,025	0,24	0,21	16,67	0,46	0,027	78,00
F 1 1	у	1,15	0,70	0,414	0,059	0,24	0,21	16,67	0,34	0,027	445,93
D10	х	1,15	0,70	0,48	0,042	0,17	0,21	16,67	0,32	0,017	282,07
P12	у	1,15	0,30	1,23	0,018	0,17	0,21	16,67	0,18	0,017	87,62

Anexo 6.22 – Esforço transverso resistente cíclico $V_{R-EC8-3}$ dos pilares

Pilar	Direção	$L_{v}(m)$	h (m)	L _v /h	b _w (m)	z (m)	δ (rad)	V _{R-EC8-3,máx} (kN)
D1	Х	0,588	1,10	0,53	0,30	0,95	0,7517631	1098,38
PI	У	0,916	0,30	3,05	1,10	0,23	0,1623493	
D 2	Х	1,471	0,30	4,90	0,70	0,23	0,1016376	
P2	у	0,452	0,70	0,65	0,30	0,59	0,6584455	854,47
D2	Х	1,673	0,30	5,58	0,70	0,23	0,0894323	
P3	У	0,658	0,70	0,94	0,30	0,59	0,4888979	821,92
D4	Х	0,406	0,70	0,58	0,30	0,59	0,7119079	838,37
P4	у	1,841	0,30	6,14	0,70	0,23	0,0812809	
D5 1	Х	0,553	0,70	0,79	0,30	0,59	0,5641135	783,34
P5.1	У	0,783	0,30	2,61	0,70	0,23	0,1893385	
D5 0	Х	0,487	0,70	0,70	0,30	0,59	0,6232052	770,48
FJ.2	У	0,709	0,30	2,36	0,70	0,23	0,2085102	
D6 1	Х	0,544	0,30	1,81	0,30	0,23	0,2691723	248,59
P0.1	у	0,544	0,30	1,81	0,30	0,23	0,2691723	249,03
P6.2	Х	0,489	0,30	1,63	0,30	0,23	0,2973995	240,10
	У	0,489	0,30	1,63	0,30	0,23	0,2973995	237,27
P7.1	Х	0,545	0,30	1,82	0,30	0,23	0,2683839	248,74
	У	0,545	0,30	1,82	0,30	0,23	0,2683839	249,05
D7 0	Х	0,489	0,30	1,63	0,30	0,23	0,297833	240,11
P7.2	У	0,489	0,30	1,63	0,30	0,23	0,297833	236,70
DQ 1	Х	0,525	0,70	0,75	0,30	0,59	0,5880462	783,32
F 0.1	у	1,230	0,30	4,10	0,70	0,23	0,1213635	
D0 2	Х	0,486	0,70	0,69	0,30	0,59	0,6244491	770,45
F0.2	у	0,708	0,30	2,36	0,70	0,23	0,2089171	
DO	Х	0,471	0,70	0,67	0,30	0,59	0,6390579	640,70
Г 9	У	1,214	0,30	4,05	0,70	0,23	0,1229001	
D10	Х	1,869	0,30	6,23	0,70	0,23	0,0800806	
110	у	0,417	0,70	0,60	0,30	0,59	0,6988147	842,34
D11	Х	1,862	0,30	6,21	0,70	0,23	0,0803795	
1 1 1	у	0,414	0,70	0,59	0,30	0,59	0,7020734	841,87
P12	X	0,480	0,70	0,69	0,30	0,59	0,6302702	640,33
P12	У	1,230	0,30	4,10	0,70	0,23	0,1213179	

Anexo 6.23 – Esforço tranverso devido ao esmagamento do betão (VRd-EC8-3,max) do pilar P9

7 Anexo 3 – Peças desenhadas

Desenho nº	Designação
1	Planta do edifício
2	Alçados Poente e Norte
3	Cortes A-A e B-B
4	Cortes C-C e D-D
5	Cortes E-E e F-F
6	Corte G-G
7	Localização dos pilares e vigas
8	Betão Armado – Pilares (1/2)
9	Betão Armado – Pilares (2/2)
10	Betão Armado – Vigas (1/2)
11	Betão Armado – Vigas (2/2)