
INSTITUTO SUPERIOR DE ENGENHARIA DE
LISBOA

Área Departamental de Engenharia de Electrónica e
Telecomunicações e de Computadores

Mestrado em Engenharia de Electrónica e Telecomunicações
(Perfil de Telecomunicações)

Many-Core Approach to 2D-DCT Calculation
Using an FPGA

Wilson Alexandre Borges Mália
(Licenciado em Engenharia Electrónica e Telecomunicações e de Computadores)

Trabalho Final de Mestrado para Obtenção do Grau de

Mestre em Engenharia de Electrónica e Telecomunicações

Orientador: Professor Doutor Mário Pereira Véstias
Júri:
Presidente: Professora Doutora Paula Maria Garcia Louro Antunes
Vogais: Professor Doutor José Manuel Peixoto do Nascimento

Professor Doutor Mário Pereira Véstias

December 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Científico do Instituto Politécnico de Lisboa

https://core.ac.uk/display/47133742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Nowadays the need for more computing capacity has increased exponentially, re-

quiring embedded systems to evolve and find new solutions. Due to technology

limitation the single-core unavoidably was replaced by multi-core alternatives. Be-

side platforms like the Field-Programmable Gate Array(FPGA) provide great op-

portunities, it is often seen mathematical algorithms done by dedicated single-core

solutions. This thesis introduces an embedded many-core architecture responsible

for a 2D Discrete Cosine Transform(2D-DCT) calculation, with the goal of giving

a viable alternative to the current implementations.

During this work it was necessary to develop a Network-on-a-chip, that cre-

ates the communication infrastructure responsible for connecting the dedicated

cores. By analysing the 2D-DCT it was possible to implement a module that is

flexible enough to enable algorithm parallelism. Each dedicated core is capable of

calculating individual DCT coefficients, meaning that many-core architecture can

be scaled in order to obtain different configurations, that vary in performance or

resources consumption.

Resumo

Hoje em dia a necessidade computacional cresce exponencialmente, requerendo

com que os sistemas embebidos estejam em constante evolução de forma a apre-

sentar novas soluções. Devido a limitações tecnológicas o uso de um core sim-

ples foi inevitavelmente ultrapassado pelas alternativas que optam por imple-

mentações multi-core. Apesar de plataformas como a Field-Programmable Gate

Array(FPGA) nos presentearem com grandes oportunidades, ainda se verifica a

existência de resoluções de algoritmos matemáticos ainda recorrerem a solução

dedicadas com apenas um core.

Neste documento vai-se introduzir um sistema embebido com arquitectura

many-core para cálculo da Transformada discreta de cosseno bi-dimensional(2D-

DCT), como alternativa viável às implementações actuais.

No decorrer deste trabalho foi necessário desenvolver uma Network-On-a-

Chip(NoC), que vai criar a infraestrutura de comunicação responsável por ligar

os vários módulos dedicados. Ao analise a 2D-DCT foi possível implementar um

modulo suficientemente flexível que permita alcançar o paralelismo deste algo-

ritmo. Cada core dedicado é capaz de calcular coeficientes individuais da DCT,

fazendo com que a arquitectura many-core possa ser escalável com o objectivo de

obter diferentes configurações, variando na performance e consumo de recursos.

Acknowledgments

I would like to thank my parents for providing me the opportunity and means to

achieve my goals. They gave everything they could to ensure that I would thrive

even facing difficulties and in the end here am I still proudly fighting.

I also would like to thank my brother for being a role model, because for how

hard something hits, he always had the strength to keep pushing.

During my journey I’ve had the luck to find someone that filled my heart with

passion and comfort boosting the towards fulfilling this goal. Even when I’m lazy,

she had the patience to motivate me and I’m eternally grateful for that.

Last but not the least, I would like to remember every colleague, from student

to professor, that accompanied me every step of the way, that challenged, teach

and, in the end, made me a better person. Thank you all.

Acronyms

ASIC Application-specific integrated circuit

BRAM Block of RAM

DCT Discrete Cosine Transform

DSP Digital Signal Processing

FIFO First In First Out

FPGA Field-Programmable Gate Array

FSL Fast Simplex Link

LUT Look-Up Table

NoC Network-On-a-Chip

PLL Phased-Locked Loops

SoC System-on-a-chip

UART Universal asynchronous receiver/transmitter

Contents

Abstract . i

Resumo (Portuguese) . iii

Acknowledgments . v

Acronyms . vii

Contents . xi

List of Figures . xiv

List of Tables . xv

1 Introduction . 1

1.1 Problem Overview . 2

1.2 Related Work and Motivation . 3

1.3 Goals and Contributions . 3

1.4 Thesis Outline . 4

2 Mathematical Background . 5

2.1 Discrete Cosine Transform . 6

2.2 Multi Dimensional DCT . 8

2.3 Decompose DCT for multi core approach . 13

3 System Architecture . 17

3.1 Overview . 18

3.2 Control . 19

3.3 Communication . 23

3.3.1 Router . 25

3.4 Calculus . 28

3.4.1 Coefficient Calculation . 29

3.4.2 Communication/Control . 34

4 Results . 37

4.1 Theoretic Analysis . 38

4.2 Experimental Results . 39

4.2.1 Performance . 40

4.2.2 Resources . 45

5 Discussion . 49

6 Conclusions . 53

7 Future work . 55

7.1 Processor . 55

7.2 Communication . 56

7.3 Dedicated Core . 56

A DCT Dedicated Core . 59

A.1 Moderator . 63

A.2 Coefficient . 67

A.3 Angle . 74

x

A.4 Cosine . 75

A.5 Fractional Multiplier . 78

A.6 Sum . 79

B NoC . 81

B.1 FSL Manager . 88

B.2 Moderator . 90

C Microblaze code . 95

C.1 NoC . 97

C.1.1 C file . 97

C.1.2 H file . 99

C.2 DCT . 100

C.2.1 C file . 100

C.2.2 H file . 100

D System description . 103

References . 113

xi

List of Figures

2.1 Cosine basis functions . 7

2.2 DCT over a cosine with the same frequency as the second basic

function . 8

2.3 Multi dimensional basis functions . 10

2.4 Multi dimensional DCT over an image resembling a basic function . 11

2.5 Bi-dimensional DCT over a realistic image . 12

2.6 Image compression over a realistic image . 13

3.1 Block diagram of the system . 18

3.2 Microblaze peripherals diagram . 20

3.3 Configuration of each dedicated 2D DCT core 21

3.4 Image sent in broadcast to every element in the network 21

3.5 Reception of the calculated 2D DCT coefficients 22

3.6 Point to point communication architecture . 23

3.7 Shared bus communication architecture . 23

3.8 Hierarchical bus communication architecture . 24

3.9 Crossbar communication architecture . 24

3.10 NoC communication architecture . 25

3.11 Router block diagram . 26

3.12 Router header composition . 26

3.13 FSL Manager behaviour diagram . 27

3.14 Moderator access sequence . 28

3.15 DCT dedicated core block diagram . 29

3.16 DCT core pipeline diagram . 30

3.17 Cosine samples with absolute values . 32

3.18 Representation of the angle’s two most significant bits value 32

3.19 Representation of the number of bits required in order to keep

precision(1/16) . 33

3.20 Signal value according to the two MSB . 33

3.21 DCT communication block’s workflow . 35

4.1 Test bench used for the tests . 37

4.2 Atlys resources and interfaces . 40

xiv

List of Tables

4.1 Single core results . 41

4.2 Single core results with calculated time constraints 43

4.3 DCT calculation with different number of cores 43

4.4 Many cores results with calculated time constraints 44

4.5 NoC resources consumption . 45

4.6 DCT resources consumption . 46

4.7 Test bench resources consumption . 47

5.1 Resource utilization of the Optimized Fast 2D-DCT hardware

accelerator on the Xilinx XC2VP30 FPGA . 50

1

Introduction

The computational applications greed for more performance and require new in-

novative solutions that are able to satisfy the goals.

The increase of throughput collided with hardware limitation, since it became

harder to achieve higher frequencies using only one processor.

This originated new concurrent systems that would allow the load distribution

throughout multiple processors, reducing the need of higher frequencies.

With the evolution of semiconductors it was possible to increase the resources

density in embedded systems and technologies as Application-specific integrated

circuit(ASIC) and Field-Programmable Gate Array(FPGA) allowed the imple-

mentation of system-on-a-chip(SoC) that comprises multi-cores, with less area in-

volved.

Beside this evolution, there were several solutions that kept its implementation

based in a single-core architecture.

This thesis presents a scalable many-core architecture with the purpose of show-

ing the capacity and advantages that can be obtained by creating parallelism in

tasks that still thrive as single-core approach. It is worth to mention that there is

a distinction between a multi-core and a many-core architecture, the first one is an

incremental approach of migrating designs that were already in small computers

into a single chip. In the second one, the key is the scalability, the designs tend to

comprise a lot more cores that should be optimize for parallel processing[1].

There are many application that could be analysed, however as a prove of

concept it was chosen the image processing area, in particular the study of the

2D-DCT algorithm.

1.1 Problem Overview

The final result of a 2D-DCT is cumulative and it depends in every computed op-

eration. The reason why most of current implementations use a single-core archi-

tecture might be because there is still to be developed or proven that a many-core

architecture can pay-off.

To implement a scalable many-core architecture it is important to decompose

the 2D-DCT, in order to obtain parallelism. By doing so it is possible to develop

a dedicated core that is going to be responsible for the calculus of each portion.

This component beside aiming towards performance, due to the fact that the

idea is to disseminate this element in the system, it is important that it represents

a low resource footprint.

The communication architecture determine in most cases, the performance of

the whole system, the way every element interconnects to each other is relevant

and will dictate how everything works, but this has to be done in a way that

avoids the performance to be dominated by the communication. The Network-On-

a-Chip(NoC) architecture provides several advantages, however creating one from

its basis can represent a considerable challenge. There are various authors that

investigated the phenomenons and issues around this mechanism and should be

taken into consideration [2][3].

2

1.2 Related Work and Motivation

After analysed several works, it is possible to verify that most of them still rely in

a single core approach.

A fast 2D-DCT hardware accelerator is studied in [4], consists in a single seven

stages 1D-DCT pipeline able to alternate the computation for the even and odd

coefficients. It also optimizes transpose operation by using special memories.

In work [5] authors have shown that by exploitation of parallelism and pipelining

it is possible to develop a DCT implementation that operates at 25 frames per

second.

Regarding approaches based in a many core architecture, the study [6] makes

use of a programmable interconnected infrastructure, that offers scalability and

deterministic communication between each core. One of the benchmarks used to

validate this architecture was the bi-dimensional DCT.

The idea of breaking up the 2D-DCT and separate each coefficient in order to

be calculated separately is somewhat different then the other approaches that were

analysed. Using an FPGA as a blank canvas, it is possible to develop a scalable

system that can be adjusted not only for solving this particular algorithm, but to

be generic enough to be used for other purposes.

1.3 Goals and Contributions

The main goals and contribution of this work are:

• Implement an hardware architecture based on a many-core approach, appealing

to a NoC communication architecture, that allows 2D-DCT calculation;

• Analyse the DCT algorithm and adapt it to a parallel calculus;

• Design the elementary processing elements and the router that will allow their

interconnection;

3

• Profile the architecture to identify limitations and gather information regarding

resources consumption, performance and flexibility;

• Implement a realistic scenario using a FPGA.

1.4 Thesis Outline

The remainder of this document is organized the following way:

• Mathematical Background introduces the mathematical operations behind

DCT and demonstrates the steps required to achieve a parallel implementation

• System Architecture describes every module responsible that integrates in

the system architecture. From the dedicated core, responsible for the DCT

calculation, to the router that allows a network on chip, guaranteeing the con-

nectivity to all cores

• Results present the achievements of the implemented architecture, it is anal-

ysed in performance and resource consumption

• Discussion compare and interpret the results, by analysing other solutions and

pointing out their strengths and limitations

• Conclusion make an overview of the developed architecture, considering the

expectations and results obtained

• Future Work analysis the limitations detected during the implementation and

approach them with possible solution in order to reduce their effect or enhance

the architecture

4

2

Mathematical Background

The Discrete Cosine Transform converts a signal from the spatial to the frequency

domain.

This conversion is achieved by quantifying the importance of different cosine

frequencies in a finite sequence of data. It means that it is possible to reconstruct

the signal through the sum of the different cosines with each amplitude accordingly.

The DCT and the Discrete Fourier Transform are related algorithms, the only

difference is that the first one uses only real numbers.

This transform has several applications from science to engineering. It allows

the numerical solution of partial differential equations, as the reduction of data

needed to describe an image, by acquiring the spatial frequency components and

discarding the less important ones, that represent the higher frequencies of the

image. Since the energy is more concentrated in the lower frequencies, it is achieved

a compression without compromissing the data. Normally this technique is done

by breaking the image in several contiguous blocks.

This document focused on the DCT over an image, not with the purpose of

compressing it, however it is a possible application.

In order to understand what is behind a data compression, it is required to

know the several steps to calculate a DCT. This chapter introduces the DCT, as

well as the multi dimensional DCT, and how to decompose it in a smaller form,

that is going to be used in the multi core approach.

2.1 Discrete Cosine Transform

As mentioned before, the DCT can be described as the correlation of different

cosine frequencies over a stream of data, f(x). The cosine samples are depend in

the position of the data sample, x, the frequency number, u and the size of the

stream, N , as seen in the following equation.

X(u) =
N−1∑
x=0

f(x) cos(π(2x+ 1)u
2N), u = 0, ..., N − 1 (2.1)

Some authors further multiply the resultant matrix by α(u). This is done with

the purpose of normalize the matrix, this way the inverse of the DCT can be

computed by simply transpose the matrix.

Normally the value of the α(u) is define the following way:

α(u) =


√

1
N
, u = 0√

2
N
, u 6= 0

(2.2)

In order to simplify the computation of the DCT equation this factor will be

omitted in the developed work.

Now lets focus in the main component of the function, in this case, the cosine.

As a proof of concept lets assume we are analysing a signal with N = 8 samples.

If we represent the several variations that occur, we obtain eight different cosine

functions, shown in figure 2.1.

The cosines represented in the figure are all orthogonal to each other. This

means that they are unique and if multiplied one another, the sum of all resulting

samples would be zero.

6

Figure 2.1. Cosine basis functions

This guarantees that none of the basis functions can be represented by combin-

ing others, making the relation between cosine frequency and final coefficient also

unique.

Since this functions are immutable, to fasten calculation, they can be pre-

computed, reducing the mathematical operations.

Until now we have analysed the basis functions, leading us to the conclusion

that the only thing that changes is f(x).

It’s not transparent but the information given by the DCT is no more no less

then a stream of coefficients that represent the level of correlation of the cosine

basis functions with the input data. For a more visual example lets consider the

figure 2.2, where the input signal is similar to the cosine given by u = 2.

7

Figure 2.2. DCT over a cosine with the same frequency as the second basic function

The more similar the input data is with the cosine, the more perfect is the corre-

lation between them. In this case, after the DCT is calculated, the only coefficient

present is the one associated to the cosine which frequency is u = 2.

2.2 Multi Dimensional DCT

To be able to apply the same algorithm over a bi-dimensional data source(e.g. an

image), it is necessary to study the 2D-DCT.

This technique is commonly used in image compression. By converting the

image to its frequency spectra, it is possible to evaluate what components can

be discarded, while maintaining a perceptible image. The lower coefficients have

most of the image energy. So they are essential to maintain the content, while the

higher frequency when discarded represents a loss of detail, resulting in an image

compression.

Since the image is a bi-directional blocks of data, to obtain the resultant matrix

it is necessary to multiply either horizontal and vertical cosine frequencies, with

8

respective u and v indexes. Each pixel f(x,y) can be index by its position marked

by x and y values, as seen in the equation 2.3.

X(u,v) =
N−1∑
x=0

N−1∑
y=0

f(x,y) cos(π(2x+ 1)u
2N) cos(π(2y + 1)v

2N) (2.3)

For u, v = 0, ..., N − 1.

To accomplished the 2D-DCT, first the cosine frequencies are correlated hori-

zontally and the result is again processed vertically. The resultant matrix has the

same size of the image that suffered the process.

The cosines used to perform the decomposition are known as basis functions

and it is possible to calculate them previously.

This functions can be obtained with the following equation.

β(u,v,x,y) = cos(π(2x+ 1)u
2N) cos(π(2y + 1)v

2N) (2.4)

It is very similar to the one presented for the single DCT. However, to perform

the 2-D correlation requires the insertion of a vertical cosine.

This equation is going to generate basis function that resemble to striped figures

with different tones. The figure 2.3 allows a visual interpretation of this functions.

9

Figure 2.3. Multi dimensional basis functions

The stripes can help to understand each component, the horizontal frequencies

produce a variation along the image length and the vertical component influence

along the image height.

It is possible to see that the frequency increases along the coefficients, just like

the single DCT, the right edge corner represents the multiplication of the higher

coefficients. The first coefficient represent the DC component and the first row and

column show the influence of a single cosine.

In figure 2.4 it is shown a 2D-DCT over an image resembling the basic function

at (1, 1) position.

10

Figure 2.4. Multi dimensional DCT over an image resembling a basic function

This image has the same goal as the presented for the single DCT. If we try to

correlate an image equal to a basic function, this is going to lead to a resultant

2D-DCT with only one coefficient. Considering a more realistic scenario, we have

the following image and its DCT.

11

Figure 2.5. Bi-dimensional DCT over a realistic image

The most significant coefficients are the lower coefficients. As mentioned before,

this is the basis for image compression, if a quantization of the DCT coefficients is

applied to the DCT matrix, it would reduce the amount of information needed to

represent a perceptible image. Figure 2.6 show the result of applying a threshold

to the bi-dimensional DCT calculate, removing coefficients lower then a certain

value.

12

Figure 2.6. Image compression over a realistic image

2.3 Decompose DCT for multi core approach

Before it’s possible to conceive a hardware architecture, it is important to analyse

the DCT algorithm and understand what can be done to improve or fasten the

calculation performance.

The approach that is often used is known as the row column method. It is

the same as mentioned before, where it’s calculated an horizontal DCT, followed

by a vertical one over the data acquired in the first one. It is a simple method,

but it lacks of flexibility, because the only way to improve it, is by increasing

the efficiency of the pipeline behind the calculus. A bi-dimensional DCT of an

8 × 8 image can be unfold into 4096 different operation, each one symbolizes the

variations of pixel and frequencies, since there are 64 pixels and each coefficient is

13

obtained by one (u, v) combination. To simplify the future analysis, lets consider

that the measuring unit is an ’operation’ and the image size corresponds to a block

with N × N pixels. This way the generic calculation method can be seen in the

following equation.

Operationspixels = N ∗N

Operationsfrequencies = N ∗N

Total = Operationspixels ∗Operationsfrequencies = N4

(2.5)

The solution that is going to be addressed focus in the unique basis functions,

represented in the equation 2.4. Instead of calculating the multi dimensional DCT

in a row, we are going to split it by frequency. This is possible to achieve since the

DCT result is the sum of the several frequency contribution.

It seems that we are degrading the performance, but when we split the equa-

tion, it open the possibility of parallel calculation. The latency to calculate a single

frequency is exactly the same as before, however this way we can calculate simul-

taneous frequencies, lowering the number of iteration.

Operationspixels = N ∗N

Operationsfrequencies = N ∗N
Numberofparallelfrequencies

Total = Operationspixels ∗Operationsfrequencies
Numberofparallelfrequencies

= N4

Numberofparallelfrequencies

(2.6)

In the best case scenario, if we had all frequencies calculated simultaneously, it

would take the same amount of time as calculation for only one frequency.

14

To achieve this goal, the frequencies are predefined or preconfigured, leading to

the following example:

X(0,0) =
N−1∑
x=0

N−1∑
y=0

f(x,y)

X(1,1) =
N−1∑
x=0

N−1∑
y=0

f(x,y) cos(π(2x+ 1)
2N) cos(π(2y + 1)

2N)

.

.

.

X(N−1,N−1) =
N−1∑
x=0

N−1∑
y=0

f(x,y) cos(π(2x+ 1)N − 1
2N) cos(π(2y + 1) ∗N − 1

2N)

(2.7)

Each equation seen in 2.7 is calculated simultaneously.

15

3

System Architecture

There are some questions that have to be answered before starting any imple-

mentation. How can we connect every element? How should the architecture be

managed? How to integrate the DCT calculation in the system?

After analysing the DCT algorithm and the need of parallelism, the approach

that is going to be used is a many-core architecture.

Unlike a multi-processor architecture, this one is going to be established with

dedicated cores responsible for calculating DCT coefficients. By developing cores

with a focused goal, it reduces the resources utilization and overhead compared

with a generic processor or other generic core.

Each core gives the possibility of being parametrized, allowing them to calculate

different coefficients by changing their designated frequencies. This makes possible

to adapt the cores to calculate any frequency.

Taking this feature into consideration, the system can be scaled, increased or

shortened, in order to achieve more efficiency or utilize less resources. Consider the

following line of thoughts.

• One many-core system with eight dedicated cores;

• The DCT of an 8×8 image leads to 8×8 coefficients, in other words, it is nec-

essary to re-utilize the cores eight times until achieving a full DCT;

• If the system had sixty-four cores, each one could be fully dedicated to one co-

efficient, avoiding the need of re-utilizing them, improving the system efficiency

by sacrificing resources.

For how fast a dedicated core is, it relies in the communication architecture

and its performance to fulfil what is promised. For this system it is going to be

implemented a network on chip(NoC). This infrastructure allows the introduction

of one or more router elements, that will work together in order to transport any

information from one point to another. With this kind of architecture, it is easier

to scale the system by integrating more routers. Since each router its limited to

a number of connected cores, the network load is going to be dispersed by every

element, maintaining the performance.

3.1 Overview

The architecture is going to be divided in three different blocks: communication,

calculus and control(See figure 3.1).

Figure 3.1. Block diagram of the system

18

In the figure, the main purpose of the control module is to distribute data

to the dedicated cores, retrieve the respective results and compile them into one

multidimensional DCT.

The communication block is composed by the NoC. It provides the ability to

communicate data from the microblaze to the other elements and back. It allows

flexibility to increase the network, since a router can be attached to another and

expand the number of available module slots.

The third block is where the fragmented 2-D DCT is calculated. To be able

to give the architecture a wide range of configurations, it is intended that this

module enables a dynamic set of parameter, allowing to change the frequencies to

be calculated and the limits of the image or a partial.

The following sections will explain with more detail each block and its imple-

mentation.

3.2 Control

The root of everything begins in the control module. This is where the architecture

behaviour is going to be determined.

This element is implemented with a microblaze, a microprocessor provided by

Xilinx. This choice was made only by convenience, since it was already integrated

in the tools provided to develop the system. However there are many soft processors

available that could attained the same purpose[7].

The microblaze is responsible for every management detail in this implementa-

tion. Its purpose is to assign a job to each DCT core in the network, acquire the

several coefficients and gather everything in a coherent block.

In figure 3.2 it’s possible to see how this module is integrated in the system.

19

Figure 3.2. Microblaze peripherals diagram

The processor is connected to the Universal asynchronous receiver/transmit-

ter(UART) and a block of RAM(BRAM) trough a common bus and the NoC

communication is established with fast simplex links(FSLs). The FSL is a unidi-

rectional point-to-point FIFO based communication.

The UART is the entry point of the system, allowing it to be used externally

by a computer or another device that communicates via the same interface. This

communication port is where the image data is acquired for further processing

in the dedicated cores. While the data is received, it will be held in a dedicated

memory block.

Afterwards, each DCT core is going to be configured with specific parameters,

that determine the coefficient to be calculated, as seen in 3.3.

20

Figure 3.3. Configuration of each dedicated 2D DCT core

Since every core is properly configured with its respective frequency and image

limits, the next step relies in sending a stream of data with the image information.

Instead of sending this data individually, similar to the configuration step, it’s

broadcasted to all elements. This mechanism reduces the latency of the commu-

nication since it is sent only one image to all cores in the network, instead of

repeating the process for each one.

This phase is represented in figure 3.4.

Figure 3.4. Image sent in broadcast to every element in the network

21

The cores receive the stream and treat it accordingly. Due to the fact that

each DCT module has an internal pipeline that fastens the process, soon after

everything is sent, they are ready to respond with the calculated coefficient(each

one represented with a different color in the figure 3.5).

Figure 3.5. Reception of the calculated 2D DCT coefficients

Once the processor receives each coefficient, he is going to be responsible for

the their organization in the final block.

As said before, it is possible to configure the dedicated cores to calculate a

partial result of the image, in this case the Microblaze is going to ensure that

the result is summed with the previous value that could be already in the same

position in the final block.

To finalize, the calculated block is sent back to the computer or external device,

ending a 2D DCT image calculation.

22

3.3 Communication

To backup every data transaction required by the processor, the decision regarding

the communication architecture has great impact on the overall performance. Some

of most used communication architectures are:

• Point-to-point - every module is directly connected to the others just like in

figure 3.6. It represents the architecture with less latency. However, depending

in the system size or core number, the complexity can become a bottleneck to

this solution;

Figure 3.6. Point to point communication architecture

• Shared Bus - each core is connected to a bus, allowing them to communicate

to any core connected to the bus, as seen in figure 3.7. It is a more flexible

solution then the previous, but if the system complexity increases, it struggles

with bandwidth efficiency, since the bus can only be used by one core at a time;

Figure 3.7. Shared bus communication architecture

23

• Hierarchical bus - Bus segments are connected via a bridge, as shown in figure

3.8. Protocol and structures can be varied in different bus segments and each

segment may be dedicated to specific functions. The partitioning can further al-

low optimization of local bus architecture and the communication performance;

Figure 3.8. Hierarchical bus communication architecture

• Crossbar - with this architecture each source can send data to the target directly,

similar to what is shown in figure 3.9. It implements a NoC stage in order to

manage the connection from end-to-end.

This approach allows more than one connection at a time, unless the same

destination is already being used[8];

Figure 3.9. Crossbar communication architecture

• NoC - This communication architecture provides a more scalable solution, the

complexity of a network can be split into several routers and it can be ac-

cessed by every core simultaneously. Figure 3.10 shows a diagram of this kind

of architecture.

24

Figure 3.10. NoC communication architecture

The use of each architecture is not exclusive, they all can be used at the same

time, but this approach is more likely to be seen in dedicated architectures.

For this architecture it is going to be implemented a NoC, allowing a flexible

solution that will maximize the communication performance even if the system

comprises many cores.

The first step towards a NoC is to implement a router able to manage all

communication in one of the network node.

3.3.1 Router

This module behaviour is similar to a multiplexer, according to the information

received in a port, the data is going to be redirected to the desired destination.

Each router has four ports and each one can have another module or core connected

via a Fast Simplex Link, FSL.

25

Figure 3.11. Router block diagram

To fully understand how this module works, it is important to take into consid-

eration that, just like many communication systems, the data package is composed

by a preamble that provides the required information to allow the router to send

the data to the specified destination. When a package arrives in the router, it is

composed by one or more headers.

Figure 3.12. Router header composition

When a header reaches the router it is consumed. It gives the necessary infor-

mation about how many more chunks of data are coming and to which port the

data is going to be sent. Normally a message has one header for each router it is

going to pass, this information needs to be provided by the core that originated

the message.

The module responsible for dealing with the package and decompose the header

is the FSL Manager.

26

FSL Manager

The FSL manager, just like the name indicates, is going to manage every data that

arrives through the FSL. When the package arrives, the preamble is split from the

message, then it is analysed and lead to a permission request to the moderator

responsible for the desired destination.

Figure 3.13. FSL Manager behaviour diagram

It is also responsible for every detail in the FSL communication, like the fol-

lowing:

• Wait for every portion of data that is associated to the current package;

• Ensure that the output FSL is not overrun, risking that it overflows the queue;

• Respect the read and write protocol of the FSL.

Arbiter

The router behaves like a multiplexer, connecting an input to the desired output.

After the FSL manager decodes the preamble and make a request to a specific

moderator, it is established the final link.

27

It may seem a simple task, but since it is a concurrent resource, this moderator

is also responsible for controlling the access. A bad access implementation can lead

to a consequence known as resource starvation.

Resource starvation often occurs in multi-tasking system, when one or more

tasks keep the resource constantly occupied, while other tasks are unable to do so.

To avoid this to happen, it is implemented an access policy, based on a round

robin pattern similar to the one in figure 3.14. This will guarantee that the same

client, in this case a FSL manager, will only be able to use the same connection,

after the moderator checks for other pending requests. Meaning that it will attend

to every FSL managers one after another, avoiding that one as all the attention of

this resource.

Figure 3.14. Moderator access sequence

3.4 Calculus

The main goal of this thesis is to calculate the 2D DCT in a multi core approach.

This could be done in several manners. One of the most simple ways to achieve

this purpose would be using processors, programmed to calculate the desired al-

gorithm.

It is a solution that would lead to a functional architecture, however it lacks in

performance and resource consumption optimization. A processor is not made to

28

be a calculus dedicated core, leading to a higher latency compared to a dedicated

one. With that in mind, it is necessary to implement a core that can be attached

to the developed NoC and capable of giving the best performance possible towards

calculating the DCT.

This core can be divided in two major blocks: communication and coefficient

calculation, as seen in figure 3.15.

Figure 3.15. DCT dedicated core block diagram

3.4.1 Coefficient Calculation

As said before, this module is not responsible for the whole 2D DCT, but for

one of its coefficients. That’s the reason why it is required to be pre-configured,

however it gives the flexibility to change the coefficient assigned, thus being able

to be re-purposed.

This section was developed using a pipeline architecture in order to obtain a

more proficient core. The several pipeline levels can be divided as follows:

• Angle;

• Cosine;

• Multiplication;

• Sum;

29

Each component is responsible for performing the operations needed to calculate

the already mentioned 2D-DCT, equation 2.4.

It is easier to analyse the stages by taking into consideration the figure 3.16,

that shows each level in more detail.

Figure 3.16. DCT core pipeline diagram

On each level it was taken into consideration several details to attain perfor-

mance issues. Since the 2D DCT calculation is the main purpose of the core and the

most demanding task, the latency should be reduced at maximum. Lets consider

the two most prominent examples, where we can see the level of detail achieved to

obtain better time constraints.

Angle Calculation

This pipe level was optimized by using numeric properties that reduce calculus,

by converting them into a logic operation. By minimizing the complexity, the

algorithm latency is reduced, in pair with resources consumption.

The multiplication of any number by its base, is the same as a left shift. Consider

the following example in a base ten scenario.

30

2 ∗ 10 = 20⇔ 2 << 1 = 20 (3.1)

If the number is a power, the exponent of it, is equivalent to the number of

shift.

2 ∗ 1000 = 2 ∗ 103 = 2000⇔ 2 << 3 = 2000 (3.2)

The analysis was made considering a base ten, but the angle calculation is made in

binary, base two. This way, the numerator in the angle calculation can be simplified

by a shift, a sum by one and a multiplication. Since the first bit is zero due to

the shift, it’s the same as introducing a ′1′ bit in the right side of the x value and

multiplying u. In the denominator we have a similar case. To further simplify the

division, it was sacrificed some flexibility and made the value N a number that

is a power two related. Like with the multiplication, the division leads to a right

shift.

Cosine

The cosine is a complex function and to acquire a value during a mathematical

operation would simply increase the latency.

To avoid that latency and improve the performance, it was pre-calculated sam-

ples of the cosine between [0;π].

The next step was to obtain the absolute value of the calculated samples, this

way its easier to obtain the value of any angle, by adjusting the number signal

according to the angle quadrant.

31

Figure 3.17. Cosine samples with absolute values

The calculated angle as a value that ranges from [0; 2π[, so the two most sig-

nificant bits represent 180o and 90o.

Figure 3.18. Representation of the angle’s two most significant bits value

As said before, the lookup table ranges the value [0;π], so it is required a

conversion between the angle and the index value of the table. In order to perform

this conversion without losing precision, the cosine expression should be evaluated

for its lower value. This value is achieved when x or y = 1:

cos(π(2x+ 1)u
2N) = cos(π

2N)↔ θ = 1
2N (3.3)

Since a division of a power of 2 is similar to a right shift, the amount of bits used

for the conversion should be equal to the same amount of bits used to represent

32

1
2N . Considering N = 8, the value is 1

16 = 0.0625, which requires 4bits to be

represented(see figure 3.19).

Figure 3.19. Representation of the number of bits required in order to keep
precision(1/16)

In this case, the lookup table has 16 entries.

To achieve that specification, the MSB was discarded and used only for signal

determination. This way we have an angle that complies with the index needed.

Next step is to calculate the cosine signal. It can be obtained as represented in the

following figure 3.20

Figure 3.20. Signal value according to the two MSB

It’s easier to understand the entire picture through the next equation.

33

(+/−) ∗ cos(θ[0;π])⇔ (θ180o ⊕ θ90o) ∗ cos(θ[0;π]) (3.4)

The final value is acquired using a lookup table to convert the angle to the

absolute cosine value, afterwards, simultaneously the signal is calculated using the

two MSB. This way it was possible to achieve a latency of one clock cycle.

3.4.2 Communication/Control

In every network there are required rules to allow every end device, in this case

end core, to receive a message with viable information to be used. Since the DCT

dedicated core is connected to a network moderator like the router, it needs to

implemented an interface that complies with all the rules. The communication

block is responsible to attend this specifications, dealing either with the input and

the output from/to the router.

The data received is going to inform the module of what it should do, this pack-

ages can contain new configuration parameters(frequency, image limits) or pixels

to enter the DCT calculation pipeline. In a normal work cycle, after configured

every parameter in the core and every pixel of the image as been treated, the re-

sult is gathered, encapsulated in a network package format and sent to the control

unit, in this case the Microblaze.

34

Figure 3.21. DCT communication block’s workflow

35

4

Results

After implementing the system, it is tested on different scenarios, in order to obtain

results that prove or refute the idea established around the parallelism in the DCT

calculation.

The test bench that is going to be used can be seen in figure 4.1. The system

is composed by a Microblaze connected to a router and three dedicated modules.

All elements can communicate with each other via the NoC, using the router as

the mediator.

Figure 4.1. Test bench used for the tests

With this layout it is only possible to have four elements connected, but if it

was necessary to increase the system size, that would be possible by connecting

more routers. This way it would exist more available slots for dedicated cores.

Since each network mediator works independently from the others, the increase

of network complexity wouldn’t affect the node performance as much as in other

communication architectures.

This chapter is split into two major section, first one intends to explain the

preconceived expectations around the developed architecture, it’s a baseline that

allows a more critical interpretation of the experimental tests.

The second part is going to expose the results obtained by deploying the sys-

tem in a real scenario. It will shows the performance benchmarks and resources

consumption.

It is important to mention that beside the already mentioned Xilinx tools, used

during the system development and deployment, it was also used Matlab. It is

important to have a comparison method that can guarantee result verification.

4.1 Theoretic Analysis

Similar to what was told during the Mathematical background chapter, creating

parallelism in the DCT algorithm, allows a system to outperform a single threaded

architecture. By calculating coefficients simultaneously this is going to reduce the

time required to achieve the final result.

This way it is expected to see that the final time spent calculating the DCT

with one core is going to divide for each extra core existent in the system. The

results can be seen in the following table, that connects the number of cores with

the 2D-DCT calculation time, ∆DCT .

∆DCT = ∆DCT1core

Ncores

(4.1)

38

The performance factor can be the most prominent, however it is important

to analyse this solution by its resource consumption. It is expected to obtain an

inverse result to what was seen in the previous table, the resources should increase

with a multiplicity similar to the number of core in the system.

4.2 Experimental Results

The results depend on what hardware is used to deploy this architecture, since the

main goal is to integrate it on a FPGA, it is important to give the full detail about

that base.

The FPGA used was a Spartan-6 XC6SLX45, it is optimized for high-performance

logic and offers the following characteristics:

• 6,822 slices each containing four 6-input LUTs and eight flip-flops;

• 2.1Mbits of fast block RAM;

• 4 clock tiles (8 DCMs and 4 Phased-Locked Loops(PLLs));

• 6 PLLs;

• 58 DSP slices;

• 500MHz+ clock speeds.

Since during the hardware implementation some components were limited to

100MHz clock frequency, it was decided to use this value for the entire system,

instead of using the board’s 500MHz clock, to avoid unforeseen synchronization

problems with all elements.

This FPGA makes part of a Digilent board called Atlys, that provide a lot of

other interfaces that can be useful for debug or user interface, such as USB-UART.

This make possible the acquisition of data that is going to be used to analyse the

system performance.

39

Figure 4.2. Atlys resources and interfaces

4.2.1 Performance

In order to obtain enough information to compare with the theoretic analysis and

determine more accurately how the system performs, the results were divided in

two steps, single and many-core.

The first one has all information regarding to the time constraints achieved by

only one core. This measures were taken using different data sizes, this way it is

possible to correlate the number of pixels with the time that took to acquire the

result.

The second step consists in a many core analysis, where it is possible to deter-

mine if the DCT parallelism achieves the desired impact, reducing the time spent

calculating for each extra core in the system.

40

For every following tests, consider a frame with an 8x8 resolution.

Single Core

Each dedicated core can be defined to calculate one DCT coefficient, but to un-

derstand the singular performance of each element it is important to run several

tests in order to obtain a more accurate benchmark.

The following tests consists in sending packets with different number of pixels

and calculate the partial coefficient that is associated with the data sent. The

results obtained can be seen in the following table:

Table 4.1. Single core results

Scenario Number of pixels Total time
1 Pixel 1 1,830µs
1 Line 8 2,6789µs
Half Frame 32 6,789µs
Full Frame 64 11,899µs

It is possible to see that there isn’t a perfect multiplicity in the results, the

relation between the first and last row should be R1 = R4
64 , being Rn the row index

in the table.

It’s worth to notice that the result represent more than the calculation time, it

takes into account the delay in data processing, transmission and reception. This

can temper the values doesn’t match with the expectations.

Due to the fact that almost every step that occurs inside the system is outside

the monitoring range, the impact of each activity can’t be acquired directly. How-

ever, considering the different measures, it is possible to estimate the impact of

the Microblaze in the final result.

The latency introduced by the processor corresponds to the time that takes

to build the configuration header for the dedicated module, with the definition of

41

each parameter. Afterwards, each pixel sent to the FSL is going to be simulta-

neously treated by the router. This data transmission offset can be considered as

communication overhead instead of processing time.

Knowing this it is possible to assume that the latency introduced by the Mi-

croblaze is a constant, ∆µblaze, and the only variable in equation is the pixel num-

ber, Npx, that is going to directly affect the transmission and calculation time,

∆calc&com.

Considering the described system architecture, the most important constraints

regard to the communication and calculation time. The Microblaze is only respon-

sible for supporting the architecture and could be replaced in order to reduce the

impact of its latency in the final result.

In sum, the total coefficient time, ∆coeff , can be represented as the following

equation:

∆coeff = ∆µblaze +Npx ∗∆calc&com (4.2)

Taking the first and last line by example, it is possible to calculate the weight

of each parcel.


1.830µs = ∆µblaze +∆calc&com

11.899µs = ∆µblaze + 64∆calc&com

⇔


∆µblaze = 1.6702µs

∆calc&com = 0.1598µs
(4.3)

By isolating the Microblaze influence from the rest of the result, the values

appear to be more like what was anticipated, as seen in the following table.

42

Table 4.2. Single core results with calculated time constraints

Scenario Npx ∆calc&com ∆µblaze ∗Npx∆calc&com
1 Pixel 1 0.1598µs 1.830µs
1 Line 8 1.2784µs 2.9486µs
Half Frame 32 5.1136µs 6.7838µs
Full Frame 64 10.2288µs 11.899µs

Many Core

After a more detailed analysis over the dedicated core, it’s time to verify the

system behaviour when calculating a full DCT. The following table shows the

values obtained for each test, where the variable in question is the number of

dedicated cores used.

Table 4.3. DCT calculation with different number of cores
Ncores ∆DCT ∆coeff

1 758,719µs 11.84µs
2 422,690µs 6.6µs
3 335,890µs 5.23µs

It is possible to see that the ratio ∆t
coefficient

obtained with one core matches the

result in the last line of the Table 4.1.

Similar to what was seen in the previous section, the result don’t match with

the expectations. With two and three cores should be, respectively, a half and one

third of the time.

Even in a great scale, it is possible to see the influence of the time spent in

package pre processing. In order to obtain more representative results, consider

the calculated ∆µblaze and ∆calc&com values. The Microblaze processing took about

1.6702µs for one coefficient. A full DCT is composed by 64 coefficients, leading to

an accumulated offset of 106.89µs.

43

Since every data is sent simultaneously to every core, the impact is the same

even if the number of dedicated cores change. The time that takes to calculate the

DCT can be represented the following way.

∆DCT = Ncoeff (∆µblaze ∗
Npx∆calc&com

Ncores

) (4.4)

In order to acquire the impact of each parcel, consider a full DCT scenario(Npx =

Ncoeff = 64), with the ∆DCT obtained in the first and third line of the Table 4.3.


758.719µs = 64(∆µblaze ∗ 64∆calc&com)

335.89µs = 64(∆µblaze ∗ 64∆calc&com

3)
⇔


∆µblaze = 1.998µs

∆calc&com = 0.154µs
(4.5)

It is possible to notice some similarities with the single core calculations for

one coefficient. The communication time is approximately equal as it should, since

every data that circulates in the network goes to each core simultaneously.

The time spent processing data in the Microblaze it is higher, however in this

test each coefficient that arrives is verified from which core it came and gathered

in the final frame that has the final DCT.

With this values it is possible to compile a new table, that shows the results

with the calculated portions.

Table 4.4. Many cores results with calculated time constraints

Ncores Ncoeff Npx ∆DCT ∆DCT −∆µblaze

1 64 64 758.719µs 630.847µs
2 64 64 443.264µs 315.392µs
3 64 64 335.89µs 208.018µs

44

It is merely symbolic, because the data acquired via calculation is not 100%

accurate, however it shows that even with some approximation, the time that

took to calculate the DCT without the influence of the processor matches the

expectation.

∆DCTL2
−∆µblaze '

∆DCTL1
−∆µblaze

2 ↔ ∆DCTL3
−∆µblaze '

∆DCTL1
−∆µblaze

3
(4.6)

4.2.2 Resources

The developed architecture intends to be flexible enough to adjust the system

size in order to match with the desired specifications. It is important to know the

impact of each core in the overall resources. This evaluation is going to be made

taking into consideration four key resources: Flip-flops, LUTs(Look-up tables),

DSP(Digital signal processing) and RAM blocks(BRAM). It is going to be analysed

the maximum frequency possible for each core.

Starting with the main element in the NoC communication architecture, the

router, it is possible to see in the Table 4.5, the consumption of this core element

in the Atlys board.

Table 4.5. NoC resources consumption

The router works like a multiplexer and an encoder, it was expected to consume

a small amount of resources, leaving a small footprint in the FPGA. Since each

45

router is able to connected four other cores, it’s safe to assume that even in a

large system, the impact would be reduced. After synthesised, this core presents

a frequency constraint of 257.185 MHz. The signal transition within the circuit

isn’t instantaneous. In order to have every signal stabilized each clock cycle, the

maximum propagation speed cannot exceed this frequency value.

The 2D-DCT dedicated core performs complex mathematical operations, re-

quiring more resources in order to achieve its goal.

Table 4.6. DCT resources consumption

It is possible to see in Table 4.6 the impact caused in the FPGA. The main

reason is the several multiplication that occur inside and the table that contains

the pre-calculated cosine. The complexity also as an impact in the frequency con-

straint, resulting in a maximum of 105.702 MHz Even with a more considerable

amount of resources consumed, it is possible to increase the system size with a

great number of this cores until filling all the capacity.

During all the tests it was used the test bench seen in figure 4.1. This scenario

has the weight of the Microblaze and auxiliary BRAM, leading to extra resources

consumed as seen in the Table 4.7.

46

Table 4.7. Test bench resources consumption

As expected the higher percentage lies in the BRAM consumption, because the

code that runs inside the processor is stored in local memory.

47

5

Discussion

The developed architecture intended to optimize an algorithm by splitting it in

several calculation streams. Each stream can be parallelized in order to be executed

simultaneously to others and achieve a faster result.

The algorithm used to prove this concept was the 2D-DCT, a complex mathe-

matical algorithm that is often used in image processing.

It was possible to verify that by increasing the parallelism, the result acquisition

occurred faster. Even achieving an increase of performance, it didn’t directly met

with the expectations. The overhead introduced by the processor and the initial

configuration of each dedicated core tempered with the total time that takes to

calculate the full 2D-DCT. By isolating the impact of each component, it was

possible to see that the result was more similar then it appeared to be, resulting

in a time multiplicity where two dedicated cores outperform one by two times and

the same logic for three cores.

Since this architecture is versatile, there are many configurations possible that

imply different use cases. The low-end system, composed with only one dedicated

core, presents a small resource footprint, meaning that even low density embedded

systems are able to use this architecture and achieve the same goal, in exchange

of performance.

An high-end system is going to approach the number of dedicated cores in the

network to the number of coefficients, improving performance by occupying more

area.

There are several works around the 2D-DCT algorithm in order to achieve

higher throughput, but besides the final algorithm solution there aren’t much

more similarities. Most of the implementation focus in a single core architecture,

responsible for the complete calculus. This approach presents big advantages by

comparison to the parallelism solution, since it concentrates the optimizations

in a single core, avoiding the need of a communication infrastructure. However

it reduces the flexibility and scalability of the solution and it becomes harder

to overcome current architectures since most of the single core approaches have

already been analysed.

For example, lets consider the pipelined Fast 2D-DCT Accelerator [4], men-

tioned during the introduction. By implementing a pipelined fast DCT and de-

composing the algorithm in two single DCTs, they are able to achieve the final

result in 80 clock cycles, with a 107 MHz clock, leading to a ∆DCT = 0.75µs. This

mark is far better then the presented in the previous chapter, but in exchange of

FPGA resources consumption. It is mentioned that they have an occupation 2.5

times higher then the IP core provided by Xilinx.

Table 5.1. Resource utilization of the Optimized Fast 2D-DCT hardware accelerator
on the Xilinx XC2VP30 FPGA

50

Even using a different chip, it is possible to compare the resources consumption

from the Table 4.6 and Table 5.1. There is a significant difference between this two

implementations.

Considering the occupation versus performance, in comparison with the three

dedicated core solution, their implementation presents better result, but less flex-

ibility then being able to adjust amount of cores. If the multiplicity verifies it self,

when implementing a 64 DCT core system, it would to be expected to achieve a

mark of 9.86µs, without the Microblaze influence. With 64 elements in the system,

they would overwhelm the FPGA resources, in specific the DSPs.

In sum, it is important to analyse each architecture and understand where

they fit. When the 2D-DCT is decomposed and parallelized as described in this

document, it presents a solution which base consists in a generic network that

can be readjusted in order to achieve the requirements and reused with other

algorithms.

It is important to mention a "hidden" feature that the 2D-DCT parallelism

provides. The DCT algorithm is often used in JPEG image compression. This

is done by removing less important coefficients, reducing the image resolution,

therefore less data. The coefficients that are removed or ignored can be chosen

through different techniques that imply a quantization over the resultant 2D-DCT.

In the last technique, calculating a full DCT with the purpose of discarding

part of its information, it seems very inefficient compared to being able to only

calculate certain coefficients.

With an 2D-DCT parallelism architecture it is possible to process an image and

filter the desired coefficients, instead of performing the full algorithm.

51

6

Conclusions

The world became more demanding and required that the technology followed the

same steps.

The processor evolved in a way that led to a physical and economical barrier,

it became harder to achieve better performances due to hardware cost and limita-

tion. This forced the introduction of new technologies and architectures based in

cooperative systems with multiple processing units.

The idea behind this solution is logic, by creating parallelism, instead of using

brute force with one high-end core, the task is split and distributed by several

elements, achieving similar or better results then with the previous system.

Following this logic, this document intends to mirror this behaviour, but based

in complex mathematical algorithms. The algorithm adopted was the 2D-DCT

since it often use in image compression and it is significantly demanding to be

calculated.

Most of the solutions presented are based in a dedicated single core, that nor-

mally has a great throughput in exchange of high resource consumption. The 2D-

DCT can be calculated resorting to two 1D-DCTs, using this architecture demands

that the task is fully performed by only one core.

The proposed solution intended to take this algorithm into the next level. De-

composing the 2D-DCT, it was possible to achieve the same result by calculating

every DCT coefficient in different dedicated cores. Since each core works indepen-

dently, with this parallelism it is possible to acquire multiple coefficients simulta-

neously. This led to a scalable system that interconnects every endpoint via a NoC

communication architecture.

This communication grid guarantees a growth sustainability, presenting the

system with expandable and relatively low latency infrastructure.

When this architecture was introduced in a System-on-Chip using a FPGA

it was possible to develop multiple scenarios with different number of dedicated

cores. In every test, the main goal was to verify multiplicity between the total

latency, but it appeared that the Microblaze that fed the network was introducing

an undesirable offset. After some analysis it was possible to reach into a conclusion.

When the offset is removed from the equation, the calculation latency revealed

to be proportionally decreasing when increasing the number of dedicated cores in

the network.

It is possible to acknowledge that a single core solution can still retrieve a great

performance, however parallelizing the tasks opens new possibilities, allowing a

more flexible solution that can be tuned considering the application requirements.

Beside the results obtained leaning to the continuous use of a single dedicated

core, there is one aspect that this architecture overpower the other. By having the

possibility of calculate specific coefficients, the task of performing image compres-

sion, resorting to a coefficient filter, can be done without the need of obtaining the

complete 2D-DCT.

Overall, it was implemented an architecture that provides a scalable infrastruc-

ture, with the intend of parallelizing tasks or algorithms to boost performance

and simultaneously giving a reduced resources footprint, depending on the system

configuration.

54

7

Future work

During this thesis it was possible to achieve the main goal, however there are some

points to take into consideration in order to improve this architecture in the future.

This chapter focus in describing what can been done to achieve better results

with this architecture.

7.1 Processor

In order to calculate the DCT, it was required to have some entry point of the data

and it was used the Microblaze, in order to reduced the time spent developing a

core that could communicate with an external program or device.

During the tests this option revealed an unconsidered consequence, because it

introduced an offset into the final results.

After some analysis, there were two different approaches that could solve or

minimize this problem. The first one, and less intrusive, is to increase the processor

complexity and improve the code quality in order to obtain better performance.

This measure should reduce the impact, but this one would still considerable.

The second solution and more efficient would require the implementation of a

dedicated core. This module would met every requirements and since it is dedicated

to a specific task, every clock cycle would be optimized. Receive data to store in

memory, stream the image to the network, receive the coefficients and put them

together to be sent back.

7.2 Communication

The glue to all the cores in the network is the NoC. The router can be used to

communicate in several ways, from unicast, for core configuration and coefficient

retrieval, to multicast or broadcast, for image sending.

The last feature is presented with a faulty condition, because it is only possi-

ble to perform a broadcast in a specific node/router, making impossible to create

a bigger network and keep the same behaviour. It is important to give more in-

telligence to this core, in order to be able to identify a broadcast message and

propagate it to the other router that it may be connected.

7.3 Dedicated Core

The heart of all calculation is made inside the DCT dedicated core and here every

operation counts in order to achieve a compromise between performance and re-

sources consumption. Inside each module there is a look-up table that associates

the angle with the respective cosine value. However to acquire the angle to be

converted it requires the use of several operations that include multiplications.

The cosine frequencies can be orthogonal to each others, however this doesn’t

that they can’t be related. In fact there are several samples coincide in different

frequencies.

The idea is to analyse this relations and verify the possibility of reducing the

consumed memory in the look-up table by replacing the cos(π(2x+1)u
2N) operation

for a multiplexer able to relate (x, u) with a final value.

56

This wouldn’t only reduce the computation cycles, but also the resources con-

sumed.

57

A

DCT Dedicated Core

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

entity dct i s

generic (

ID : i n t e g e r := 0 ;

N : i n t e g e r := 3 ;

PIXEL_SIZE : i n t e g e r := 8 ;

PARAM_SIZE : i n t e g e r := 10 ;

CONFIG_SIZE : i n t e g e r := 4 ;

LOAD_X_POS : i n t e g e r := 31 ;

LOAD_Y_POS : i n t e g e r := 30 ;

LOAD_FREQ_POS : i n t e g e r := 29 ;

RESET_COEFF_POS : i n t e g e r := 28

) ;

Port (

−− NoC Bus

FSL_Clk : in s td_log i c ;

FSL_Rst : in s td_log i c ;

FSL_S_Read : out s td_log i c ;

FSL_S_Data : in s td_log ic_vector (0 to 31) ;

FSL_S_Exists : in s td_log i c ;

FSL_M_Write : out s td_log i c ;

FSL_M_Data : out s td_log ic_vector (0 to 31) ;

FSL_M_Full : in s td_log i c

) ;

end dct ;

architecture Behaviora l of dct i s

component moderator

Generic (

ID : i n t e g e r := 0 ;

PIXEL_SIZE : i n t e g e r := 8 ;

PARAM_SIZE : i n t e g e r := 10 ;

CONFIG_SIZE : i n t e g e r := 4 ;

LOAD_X_POS : i n t e g e r := 31 ;

LOAD_Y_POS : i n t e g e r := 30 ;

LOAD_FREQ_POS : i n t e g e r := 29 ;

RESET_COEFF_POS : i n t e g e r := 28

) ;

Port (

c l o ck : in s td_log i c ;

r e s e t : in s td_log i c ;

−− NoC Bus

FSL_S_Read : out s td_log i c ;

FSL_S_Data : in s td_log ic_vector (0 to 31) ;

FSL_S_Exists : in s td_log i c ;

FSL_M_Write : out s td_log i c ;

FSL_M_Data : out s td_log ic_vector (0 to 31) ;

FSL_M_Full : in s td_log i c ;

−− C o e f f i c i e n t c a l c u l u s

coe f f_ready : in s td_log i c ;

coe f f_enab l e : out s td_log i c ;

c o e f f_ r e s e t : out s td_log i c ;

p i x e l : out s td_log ic_vector (PIXEL_SIZE − 1 downto 0) ;

parameterA : out s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

parameterB : out s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

load_x : out s td_log i c ;

load_y : out s td_log i c ;

60

load_freq : out s td_log i c ;

c o e f f : in s td_log ic_vector (23 downto 0)

) ;

end component ;

component c o e f f i c i e n t

Generic (

N : i n t e g e r := 3 ;

PIXEL_SIZE : i n t e g e r := 8 ;

PARAM_SIZE : i n t e g e r := 10

) ;

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

p i x e l : in s td_log ic_vector (PIXEL_SIZE − 1 downto 0) ;

parameterA : in s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

parameterB : in s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

load_x : in s td_log i c ;

load_y : in s td_log i c ;

load_freq : in s td_log i c ;

ready : out s td_log i c ;

c o e f f : out s td_log ic_vector (23 downto 0)

) ;

end component ;

signal coe f f_c l o ck : s td_log i c ;

−−−−−−−−−−−−−−− FSL BUS

signal FSL_S_Read_internal : s td_log i c ;

signal FSL_S_Data_internal : s td_log ic_vector (31 downto 0) ;

signal FSL_S_Exists_internal : s td_log i c ;

signal FSL_M_Write_internal : s td_log i c ;

signal FSL_M_Data_internal : s td_log ic_vector (31 downto 0) ;

signal FSL_M_Full_internal : s td_log i c ;

−−−

signal enable : s td_log i c ;

signal ready : s td_log i c ;

61

signal r e que s tP i x e l : s td_log i c ;

signal c l e a r : s td_log i c ;

signal hasPixe l : s td_log i c ;

signal parameterA : s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

signal parameterB : s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

signal load_x : s td_log i c ;

signal load_y : s td_log i c ;

signal load_freq : s td_log i c ;

signal high_low : s td_log i c ;

signal p i x e l : s td_log ic_vector (7 downto 0) ;

signal c o e f f : s td_log ic_vector (23 downto 0) ;

begin

FSL_M_Data <= FSL_M_Data_internal ;

moderator_unit : moderator

generic map(

ID => ID

)

port map(

c l o ck => FSL_Clk ,

r e s e t => FSL_Rst ,

−− NoC Bus

FSL_S_Read => FSL_S_Read ,

FSL_S_Data => FSL_S_Data ,−−_internal ,

FSL_S_Exists => FSL_S_Exists ,

FSL_M_Write => FSL_M_Write ,

FSL_M_Data => FSL_M_Data_internal ,

FSL_M_Full => FSL_M_Full ,

−− C o e f f i c i e n t c a l c u l u s

coe f f_ready => ready ,

coe f f_enab l e => enable ,

c o e f f_ r e s e t => c l ea r ,

p i x e l => pixe l ,

62

parameterA => parameterA ,

parameterB => parameterB ,

load_x => load_x ,

load_y => load_y ,

load_freq => load_freq ,

c o e f f => c o e f f

) ;

c o e f f_un i t : c o e f f i c i e n t

generic map(

N => N

)

port map(

c l o ck => FSL_Clk ,

enable => enable ,

r e s e t => c l ea r ,

p i x e l => pixe l ,

parameterA => parameterA ,

parameterB => parameterB ,

load_x => load_x ,

load_y => load_y ,

load_freq => load_freq ,

ready => ready ,

c o e f f => c o e f f

) ;

end Behaviora l ;

A.1 Moderator

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE . s td_log i c_ar i th . a l l ;

entity moderator i s

Generic (

63

ID : i n t e g e r := 0 ;

PIXEL_SIZE : i n t e g e r := 8 ;

PARAM_SIZE : i n t e g e r := 10 ;

CONFIG_SIZE : i n t e g e r := 4 ;

LOAD_X_POS : i n t e g e r := 31 ;

LOAD_Y_POS : i n t e g e r := 30 ;

LOAD_FREQ_POS : i n t e g e r := 29 ;

RESET_COEFF_POS : i n t e g e r := 28

) ;

Port (

c l o ck : in s td_log i c ;

r e s e t : in s td_log i c ;

−− NoC Bus

FSL_S_Read : out s td_log i c ;

FSL_S_Data : in s td_log ic_vector (0 to 31) ;

FSL_S_Exists : in s td_log i c ;

FSL_M_Write : out s td_log i c ;

FSL_M_Data : out s td_log ic_vector (0 to 31) ;

FSL_M_Full : in s td_log i c ;

−− C o e f f i c i e n t c a l c u l u s

coe f f_ready : in s td_log i c ;

coe f f_enab l e : out s td_log i c ;

c o e f f_ r e s e t : out s td_log i c ;

p i x e l : out s td_log ic_vector (PIXEL_SIZE − 1 downto 0) ;

parameterA : out s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

parameterB : out s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

load_x : out s td_log i c ;

load_y : out s td_log i c ;

load_freq : out s td_log i c ;

c o e f f : in s td_log ic_vector (23 downto 0)

) ;

end moderator ;

64

architecture Behaviora l of moderator i s

type STATE_TYPE i s (Id l e , Write_Header , Write_Data) ;

signal txState : STATE_TYPE;

signal newData : s td_log i c ;

signal f s l_bu f : s td_log ic_vector (0 to 31) ;

signal f s l_buf_inv : s td_log ic_vector (31 downto 0) ;

signal coe f fReg : s td_log ic_vector (23 downto 0) ;

function reverse_any_vector (a : in s td_log ic_vector)

return s td_log ic_vector i s

variable r e s u l t : s td_log ic_vector (a ’RANGE) ;

al ias aa : s td_log ic_vector (a ’REVERSE_RANGE) i s a ;

begin

for i in aa ’RANGE loop

r e s u l t (i) := aa (aa ’ high − i) ;

end loop ;

return r e s u l t ;

end ; −− f unc t i on reverse_any_vector

begin

process (c lock , r e s e t)

begin

i f r e s e t = ’1 ’ then

newData <= ’ 0 ’ ;

f s l_bu f <= (others => ’ 0 ’) ;

e l s i f c lock ’ event and c l o ck = ’1 ’ then

newData <= FSL_S_Exists ;

i f FSL_S_Exists = ’1 ’ then

f s l_bu f <= FSL_S_Data ;

else

f s l_bu f <= (others => ’ 0 ’) ;

end i f ;

end i f ;

end process ;

f s l_buf_inv <= reverse_any_vector (f s l_bu f) ;

65

load_x <= fs l_buf_inv (LOAD_X_POS) ;

load_y <= fs l_buf_inv (LOAD_Y_POS) ;

load_freq <= fs l_buf_inv (LOAD_FREQ_POS) ;

c o e f f_ r e s e t <= fs l_buf_inv (RESET_COEFF_POS) ;

coe f f_enab l e <= newData and not (f s l_buf_inv (LOAD_X_POS)

or f s l_buf_inv (LOAD_Y_POS)

or f s l_buf_inv (LOAD_FREQ_POS)

or f s l_buf_inv (RESET_COEFF_POS)) ;

parameterA <= fs l_buf_inv ((PARAM_SIZE − 1) downto 0) ;

parameterB <= fs l_buf_inv ((2∗PARAM_SIZE − 1) downto PARAM_SIZE) ;

p i x e l <= fs l_buf_inv ((PIXEL_SIZE − 1) downto 0) ;

process (c lock , r e s e t)

begin

i f r e s e t = ’1 ’ then

−− Reset S i g n a l s

txState <= Id l e ;

coe f fReg <= (others => ’ 0 ’) ;

−−

e l s i f c lock ’ event and c l o ck = ’1 ’ then

case txState i s

when I d l e =>

i f coe f f_ready = ’1 ’ then

coe f fReg <= c o e f f ;

txState <= Write_Header ;

end i f ;

when Write_Header =>

i f FSL_M_Full = ’0 ’ then

txState <= Write_Data ;

end i f ;

when Write_Data =>

i f FSL_M_Full = ’0 ’ then

txState <= Id l e ;

end i f ;

end case ;

end i f ;

end process ;

66

FSL_M_Data <= X" 00010800 " when (txState = Write_Header) else

CONV_STD_LOGIC_VECTOR(ID , 8) &

reverse_any_vector (coe f fReg)

when (txState = Write_Data) else

(others => ’ 0 ’) ;

FSL_M_Write <= not FSL_M_Full when (txState = Write_Header OR

txState = Write_Data) else

’ 0 ’ ;

FSL_S_Read <= FSL_S_Exists ;

end Behaviora l ;

A.2 Coefficient

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .STD_LOGIC_ARITH.ALL;

use IEEE .STD_LOGIC_UNSIGNED.ALL;

entity c o e f f i c i e n t i s

Generic (

N : i n t e g e r := 3 ;

PIXEL_SIZE : i n t e g e r := 8 ;

PARAM_SIZE : i n t e g e r := 10

) ;

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

p i x e l : in s td_log ic_vector (PIXEL_SIZE − 1 downto 0) ;

parameterA : in s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

parameterB : in s td_log ic_vector (PARAM_SIZE − 1 downto 0) ;

load_x : in s td_log i c ;

load_y : in s td_log i c ;

load_freq : in s td_log i c ;

67

ready : out s td_log i c ;

c o e f f : out s td_log ic_vector (23 downto 0)

) ;

end c o e f f i c i e n t ;

architecture Behaviora l of c o e f f i c i e n t i s

component ang le

Generic (

N : i n t e g e r := 3

) ;

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

pos : in s td_log ic_vector (9 downto 0) ;

f r e q : in s td_log ic_vector (9 downto 0) ;

p i x e l : in s td_log ic_vector (7 downto 0) ;

ready : out s td_log i c ;

p ixe l_buf : out s td_log ic_vector (7 downto 0) ;

rad : out s td_log ic_vector (N+1 downto 0)

) ;

end component ;

component co s i n e

Generic (

N : i n t e g e r := 3

) ;

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

angle_x : in s td_log ic_vector (N+1 downto 0) ;

angle_y : in s td_log ic_vector (N+1 downto 0) ;

p i x e l : in s td_log ic_vector (7 downto 0) ;

ready : out s td_log i c ;

cosine_x : out s td_log ic_vector (9 downto 0) ;

68

cosine_y : out s td_log ic_vector (9 downto 0) ;

p ixe l_buf : out s td_log ic_vector (7 downto 0)

) ;

end component ;

component f r a c t i o n a lMu l t i p l i e r

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

p i x e l : in s td_log ic_vector (7 downto 0) ;

cosine_x : in s td_log ic_vector (9 downto 0) ;

cosine_y : in s td_log ic_vector (9 downto 0) ;

ready : out s td_log i c ;

negat ive : out s td_log i c ;

r e s u l t : out s td_log ic_vector (15 downto 0)

) ;

end component ;

component sum

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

p lus : in s td_log ic_vector (15 downto 0) ;

ope ra t i on : in s td_log i c ;

ready : out s td_log i c ;

r e s u l t : out s td_log ic_vector (23 downto 0)

) ;

end component ;

−−I n t e r n a l

signal opera t i on : s td_log i c ;

signal x_in : s td_log ic_vector (9 downto 0) := (others => ’ 0 ’) ;

signal x_out : s td_log ic_vector (9 downto 0) := (others => ’ 0 ’) ;

signal y_in : s td_log ic_vector (9 downto 0) := (others => ’ 0 ’) ;

69

signal y_out : s td_log ic_vector (9 downto 0) := (others => ’ 0 ’) ;

signal f_w : std_log ic_vector (9 downto 0) := (others => ’ 0 ’) ;

signal f_h : s td_log ic_vector (9 downto 0) := (others => ’ 0 ’) ;

−−Count

signal idx_x : s td_log ic_vector (9 downto 0) := (others => ’ 0 ’) ;

signal idx_y : s td_log ic_vector (9 downto 0) := (others => ’ 0 ’) ;

signal count_ended : s td_log i c ;

−− Ready bus

signal angle_enable : s td_log i c ;

signal angle_ready : s td_log i c ;

signal cos ine_ready : s td_log i c ;

signal mult_ready : s td_log i c ;

signal sum_ready : s td_log i c ;

signal ready_buf : s td_log i c ;

−−P i x e l b u f f e r

signal pixel_angle_buf : s td_log ic_vector (7 downto 0) ;

signal pixe l_cos ine_buf : s td_log ic_vector (7 downto 0) ;

−−Outputs

signal angle_x : s td_log ic_vector (N+1 downto 0) ;

signal angle_y : s td_log ic_vector (N+1 downto 0) ;

signal cosine_x : s td_log ic_vector (9 downto 0) ;

signal cosine_y : s td_log ic_vector (9 downto 0) ;

signal mult : s td_log ic_vector (15 downto 0) ;

signal coe f f_buf : s td_log ic_vector (23 downto 0) ;

begin

angle_enable <= enable and not count_ended ;

angX : ang le

generic map(

N => N

)

port map (

c l o ck => clock ,

enable => angle_enable ,

r e s e t => re s e t ,

pos => idx_x ,

70

f r e q => f_w ,

p i x e l => pixe l ,

ready => angle_ready ,

rad => angle_x ,

p ixe l_buf => pixel_angle_buf

) ;

angY : ang le

generic map(

N => N

)

port map (

c l o ck => clock ,

enable => angle_enable ,

r e s e t => re s e t ,

pos => idx_y ,

f r e q => f_h ,

p i x e l => pixe l ,

ready => open ,

rad => angle_y ,

p ixe l_buf => open

) ;

cos : c o s i n e

generic map(

N => N

)

port map (

c l o ck => clock ,

enable => angle_ready ,

r e s e t => re s e t ,

angle_x => angle_x ,

angle_y => angle_y ,

p i x e l => pixel_angle_buf ,

ready => cosine_ready ,

cosine_x => cosine_x ,

71

cosine_y => cosine_y ,

pixe l_buf => pixe l_cos ine_buf

) ;

mu l t i p l i e r : f r a c t i o n a lMu l t i p l i e r

port map (

c l o ck => clock ,

enable => cosine_ready ,

r e s e t => re s e t ,

p i x e l => pixel_cos ine_buf ,

cosine_x => cosine_x ,

cosine_y => cosine_y ,

ready => mult_ready ,

negat ive => operat ion ,

r e s u l t => mult

) ;

sum_res : sum

port map (

c l o ck => clock ,

enable => mult_ready ,

r e s e t => re s e t ,

p lus => mult ,

ope ra t i on => operat ion ,

ready => sum_ready ,

r e s u l t => coe f f_buf

) ;

−− l oad parameters

process (c l o ck)

begin

i f c lock ’ event and c l o ck = ’1 ’ then

i f load_x = ’1 ’ then

x_in <= parameterA ;

x_out <= parameterB ;

end i f ;

i f load_y = ’1 ’ then

72

y_in <= parameterA ;

y_out <= parameterB ;

end i f ;

i f load_freq = ’1 ’ then

f_w <= parameterA ;

f_h <= parameterB ;

end i f ;

end i f ;

end process ;

process (r e s e t , c l o ck)

begin

i f r e s e t = ’1 ’ then

idx_x <= x_in ;

idx_y <= y_in ;

count_ended <= ’ 0 ’ ;

ready_buf <= ’ 0 ’ ;

c o e f f <= (others => ’ 0 ’) ;

e l s i f c lock ’ event and c l o ck = ’1 ’ then

−− increment index

i f enable = ’1 ’ and count_ended = ’0 ’ then

i f idx_y = y_out and idx_x = x_out then

count_ended <= ’ 1 ’ ;

e l s i f idx_y = y_out then

idx_x <= unsigned (idx_x) + 1 ;

idx_y <= y_in ;

else

idx_y <= unsigned (idx_y) + 1 ;

end i f ;

end i f ;

−− end cond i t ion

i f (count_ended and sum_ready and

not (angle_ready or cos ine_ready or mult_ready)) = ’1 ’ then

ready_buf <= ’ 1 ’ ;

c o e f f <= coe f f_buf ;

else

ready_buf <= ’ 0 ’ ;

end i f ;

73

end i f ;

end process ;

ready <= ready_buf ;

end Behaviora l ;

A.3 Angle

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE . std_logic_unsigned . a l l ;

entity ang le i s

Generic (

N : i n t e g e r := 3

) ;

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

pos : in s td_log ic_vector (9 downto 0) ;

f r e q : in s td_log ic_vector (9 downto 0) ;

p i x e l : in s td_log ic_vector (7 downto 0) ;

ready : out s td_log i c ;

p ixe l_buf : out s td_log ic_vector (7 downto 0) ;

rad : out s td_log ic_vector (N + 1 downto 0)

) ;

end ang le ;

architecture Behaviora l of ang le i s

signal pos_aux : s td_log ic_vector (9 downto 0) ;

signal freq_aux : s td_log ic_vector (9 downto 0) ;

signal numerator : s td_log ic_vector (20 downto 0) ;

signal pixel_clk_edge : s td_log ic_vector (7 downto 0) ;

74

begin

process (c lock , r e s e t)

begin

i f r e s e t = ’1 ’ then

ready <= ’ 0 ’ ;

pos_aux <= (others => ’ 0 ’) ;

freq_aux <= (others => ’ 0 ’) ;

pixel_clk_edge <= (others => ’ 0 ’) ;

e l s i f c lock ’ event and c l o ck = ’1 ’ then

ready <= enable ;

i f enable = ’1 ’ then

pos_aux <= pos ;

freq_aux <= f r eq ;

pixel_clk_edge <= p i x e l ;

end i f ;

end i f ;

end process ;

numerator <= (pos_aux & ’1 ’) ∗ (freq_aux) ;

rad <= numerator (N + 1 downto 0) ;

p ixe l_buf <= pixel_clk_edge ;

end Behaviora l ;

A.4 Cosine

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE . std_log ic_s igned . a l l ;

entity co s i n e i s

Generic (

N : i n t e g e r := 3

) ;

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

75

r e s e t : in s td_log i c ;

angle_x : in s td_log ic_vector (N+1 downto 0) ;

angle_y : in s td_log ic_vector (N+1 downto 0) ;

p i x e l : in s td_log ic_vector (7 downto 0) ;

ready : out s td_log i c ;

cosine_x : out s td_log ic_vector (9 downto 0) ;

cosine_y : out s td_log ic_vector (9 downto 0) ;

p ixe l_buf : out s td_log ic_vector (7 downto 0)

) ;

end co s i n e ;

architecture Behaviora l of co s i n e i s

COMPONENT LUT

PORT (

c lka : IN STD_LOGIC;

r s t a : IN STD_LOGIC;

ena : IN STD_LOGIC;

addra : IN STD_LOGIC_VECTOR(10 DOWNTO 0) ;

douta : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ;

c lkb : IN STD_LOGIC;

r s tb : IN STD_LOGIC;

enb : IN STD_LOGIC;

addrb : IN STD_LOGIC_VECTOR(10 DOWNTO 0) ;

doutb : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

) ;

END COMPONENT;

signal angle_x_in : s td_log ic_vector (10 downto 0) ;

signal angle_y_in : s td_log ic_vector (10 downto 0) ;

signal angle_x_aux : s td_log ic_vector (1 downto 0) ;

signal angle_y_aux : s td_log ic_vector (1 downto 0) ;

signal douta : s td_log ic_vector (7 downto 0) ;

signal doutb : s td_log ic_vector (7 downto 0) ;

signal pixel_clk_edge : s td_log ic_vector (7 downto 0) ;

76

begin

angle_x_in (angle_x_in ’ high downto angle_x_in ’ high − N) <= angle_x (N downto 0) ;

angle_x_in ((angle_x_in ’ high − (N + 1)) downto 0) <= (others => ’ 0 ’) ;

angle_y_in (angle_y_in ’ high downto angle_y_in ’ high − N) <= angle_y (N downto 0) ;

angle_y_in ((angle_y_in ’ high − (N + 1)) downto 0) <= (others => ’ 0 ’) ;

cosineLUT : LUT

PORT MAP (

c lka => clock ,

r s t a => re s e t ,

ena => enable ,

addra => angle_x_in ,

douta => douta ,

c lkb => clock ,

r s tb => re s e t ,

enb => enable ,

addrb => angle_y_in ,

doutb => doutb

) ;

cosine_x (9) <= angle_x_aux (1) xor angle_x_aux (0) ;

cosine_x (8 downto 0) <= " 100000000 " when (CONV_INTEGER(douta) = −1) else

’ 0 ’ & douta ;

cosine_y (9) <= angle_y_aux (1) xor angle_y_aux (0) ;

cosine_y (8 downto 0) <= " 100000000 " when (CONV_INTEGER(doutb) = −1) else

’ 0 ’ & doutb ;

process (c lock , r e s e t)

begin

i f r e s e t = ’1 ’ then

angle_x_aux <= (others => ’ 0 ’) ;

angle_y_aux <= (others => ’ 0 ’) ;

pixel_clk_edge <= (others => ’ 0 ’) ;

ready <= ’ 0 ’ ;

e l s i f c lock ’ event and c l o ck = ’1 ’ then

ready <= enable ;

i f enable = ’1 ’ then

77

pixel_clk_edge <= p i x e l ;

angle_x_aux <= angle_x (N+1 downto N) ;

angle_y_aux <= angle_y (N+1 downto N) ;

end i f ;

end i f ;

end process ;

p ixe l_buf <= pixel_clk_edge ;

end Behaviora l ;

A.5 Fractional Multiplier

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE . std_logic_unsigned . a l l ;

entity f r a c t i o n a lMu l t i p l i e r i s

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

p i x e l : in s td_log ic_vector (7 downto 0) ;

cosine_x : in s td_log ic_vector (9 downto 0) ;

cosine_y : in s td_log ic_vector (9 downto 0) ;

ready : out s td_log i c ;

negat ive : out s td_log i c ;

r e s u l t : out s td_log ic_vector (15 downto 0)

) ;

end f r a c t i o n a lMu l t i p l i e r ;

architecture Behaviora l of f r a c t i o n a lMu l t i p l i e r i s

signal pixel_aux : s td_log ic_vector (7 downto 0) ;

signal cosine_x_aux : s td_log ic_vector (9 downto 0) ;

signal cosine_y_aux : s td_log ic_vector (9 downto 0) ;

signal p i x e l_ f r a c t i on : s td_log ic_vector (31 downto 0) ;

signal c o s i n e s_mu l t i p l i c a t i on : s td_log ic_vector (17 downto 0) ;

78

begin

process (c lock , r e s e t)

begin

i f r e s e t = ’1 ’ then

ready <= ’ 0 ’ ;

pixel_aux <= (others => ’ 0 ’) ;

cosine_x_aux <= (others => ’ 0 ’) ;

cosine_y_aux <= (others => ’ 0 ’) ;

e l s i f c lock ’ event and c l o ck = ’1 ’ then

ready <= enable ;

i f enable = ’1 ’ then

pixel_aux <= p i x e l ;

cosine_x_aux <= cosine_x ;

cosine_y_aux <= cosine_y ;

end i f ;

end i f ;

end process ;

c o s i n e s_mu l t i p l i c a t i on <= cosine_x_aux (8 downto 0) ∗ cosine_y_aux (8 downto 0) ;

p i x e l_ f r a c t i on <= (" 0000000 " & co s i n e s_mu l t i p l i c a t i on (16 downto 8)) ∗ (pixel_aux & " 00000000 ") ;

negat ive <= cosine_x_aux (9) xor cosine_y_aux (9) ;

r e s u l t <= p i x e l_ f r a c t i on (23 downto 8) ;

end Behaviora l ;

A.6 Sum

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE . std_log ic_s igned . a l l ;

entity sum i s

Port (

c l o ck : in s td_log i c ;

enable : in s td_log i c ;

r e s e t : in s td_log i c ;

79

plus : in s td_log ic_vector (15 downto 0) ;

ope ra t i on : in s td_log i c ;

ready : out s td_log i c ;

r e s u l t : out s td_log ic_vector (23 downto 0)

) ;

end sum ;

architecture Behaviora l of sum i s

signal r e s u l t_bu f f e r : s td_log ic_vector (23 downto 0) := (others => ’ 0 ’) ;

begin

process (c lock , r e s e t)

begin

i f r e s e t = ’1 ’ then

ready <= ’ 0 ’ ;

r e s u l t_bu f f e r <= (others => ’ 0 ’) ;

e l s i f c lock ’ event and c l o ck = ’1 ’ then

ready <= enable ;

i f enable = ’1 ’ then

i f opera t i on = ’1 ’ then

r e s u l t_bu f f e r <= re su l t_bu f f e r − (" 00000000 " & plus) ;

else

r e s u l t_bu f f e r <= re su l t_bu f f e r + (" 00000000 " & plus) ;

end i f ;

end i f ;

end i f ;

end process ;

r e s u l t <= re su l t_bu f f e r ;

end Behaviora l ;

80

B

NoC

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

entity noc i s

port

(

NOC_CLK : in s td_log i c ;

NOC_RST : in s td_log i c ;

−− DO NOT EDIT BELOW THIS LINE −−−−−−−−−−−−−−−−−−−−−

−− Bus p r o t o c o l ports , do not add or d e l e t e .

FSLP0_S_Read : out s td_log i c ;

FSLP0_S_Data : in s td_log ic_vector (0 to 31) ;

FSLP0_S_Exists : in s td_log i c ;

FSLP0_M_Write : out s td_log i c ;

FSLP0_M_Data : out s td_log ic_vector (0 to 31) ;

FSLP0_M_Full : in s td_log i c ;

FSLP1_S_Read : out s td_log i c ;

FSLP1_S_Data : in s td_log ic_vector (0 to 31) ;

FSLP1_S_Exists : in s td_log i c ;

FSLP1_M_Write : out s td_log i c ;

FSLP1_M_Data : out s td_log ic_vector (0 to 31) ;

FSLP1_M_Full : in s td_log i c ;

FSLP2_S_Read : out s td_log i c ;

FSLP2_S_Data : in s td_log ic_vector (0 to 31) ;

FSLP2_S_Exists : in s td_log i c ;

FSLP2_M_Write : out s td_log i c ;

FSLP2_M_Data : out s td_log ic_vector (0 to 31) ;

FSLP2_M_Full : in s td_log i c ;

FSLP3_S_Read : out s td_log i c ;

FSLP3_S_Data : in s td_log ic_vector (0 to 31) ;

FSLP3_S_Exists : in s td_log i c ;

FSLP3_M_Write : out s td_log i c ;

FSLP3_M_Data : out s td_log ic_vector (0 to 31) ;

FSLP3_M_Full : in s td_log i c ;

−− Debug i n t e r f a c e −−

DBG : out s td_log ic_vector (7 downto 0)

) ;

end noc ;

architecture Behaviora l of noc i s

COMPONENT f s lManager

PORT(

c l o ck : IN s td_log i c ;

r e s e t : IN s td_log i c ;

FSL_S_Read : OUT s td_log i c ;

FSL_S_Data : IN s td_log ic_vector (0 to 31) ;

FSL_S_Exists : IN s td_log i c ;

FSL_M_Write : OUT s td_log i c ;

FSL_M_Data : OUT s td_log ic_vector (0 to 31) ;

r eques tPortPermis s ion : OUT s td_log ic_vector (0 to 3) ;

r ep lyPortPermis s ion : IN s td_log ic_vector (0 to 3) ;

DBG : out s td_log ic_vector (3 downto 0)

) ;

END COMPONENT;

COMPONENT moderator

PORT(

c l o ck : IN s td_log i c ;

r e s e t : IN s td_log i c ;

FSLP0_M_Write : IN s td_log i c ;

FSLP0_M_Data : IN s td_log ic_vector (0 to 31) ;

FSLP1_M_Write : IN s td_log i c ;

FSLP1_M_Data : IN s td_log ic_vector (0 to 31) ;

FSLP2_M_Write : IN s td_log i c ;

FSLP2_M_Data : IN s td_log ic_vector (0 to 31) ;

82

FSLP3_M_Write : IN s td_log i c ;

FSLP3_M_Data : IN s td_log ic_vector (0 to 31) ;

r eques tPermi s s i on : IN s td_log ic_vector (0 to 3) ;

r ep lyPermis s i on : OUT s td_log ic_vector (0 to 3) ;

FSLX_M_Write : OUT s td_log i c ;

FSLX_M_Data : OUT s td_log ic_vector (0 to 31)

) ;

END COMPONENT;

signal r e s e t : s td_log i c ;

signal c l o ck : s td_log i c ;

signal P0requestPermiss ion : s td_log ic_vector (0 to 3) ;

signal P1requestPermiss ion : s td_log ic_vector (0 to 3) ;

signal P2requestPermiss ion : s td_log ic_vector (0 to 3) ;

signal P3requestPermiss ion : s td_log ic_vector (0 to 3) ;

signal P0replyPermiss ion : s td_log ic_vector (0 to 3) ;

signal P1replyPermiss ion : s td_log ic_vector (0 to 3) ;

signal P2replyPermiss ion : s td_log ic_vector (0 to 3) ;

signal P3replyPermiss ion : s td_log ic_vector (0 to 3) ;

signal Mod0RequestedPermission : s td_log ic_vector (0 to 3) ;

signal Mod1RequestedPermission : s td_log ic_vector (0 to 3) ;

signal Mod2RequestedPermission : s td_log ic_vector (0 to 3) ;

signal Mod3RequestedPermission : s td_log ic_vector (0 to 3) ;

signal Mod0replyPermission : s td_log ic_vector (0 to 3) ;

signal Mod1replyPermission : s td_log ic_vector (0 to 3) ;

signal Mod2replyPermission : s td_log ic_vector (0 to 3) ;

signal Mod3replyPermission : s td_log ic_vector (0 to 3) ;

signal FSLP0_2_Mod_M_Write : s td_log i c ;

signal FSLP0_2_Mod_M_Data : s td_log ic_vector (0 to 31) ;

signal FSLP1_2_Mod_M_Write : s td_log i c ;

signal FSLP1_2_Mod_M_Data : s td_log ic_vector (0 to 31) ;

signal FSLP2_2_Mod_M_Write : s td_log i c ;

signal FSLP2_2_Mod_M_Data : s td_log ic_vector (0 to 31) ;

83

signal FSLP3_2_Mod_M_Write : s td_log i c ;

signal FSLP3_2_Mod_M_Data : s td_log ic_vector (0 to 31) ;

signal FSLManagerP0_DBG : std_log ic_vector (3 downto 0) ;

begin

r e s e t <= NOC_RST;

c l o ck <= NOC_CLK;

P0replyPermiss ion <= (Mod0replyPermission (0) and not FSLP0_M_Full)

& (Mod1replyPermission (0) and not FSLP1_M_Full)

& (Mod2replyPermission (0) and not FSLP2_M_Full)

& (Mod3replyPermission (0) and not FSLP3_M_Full) ;

P1replyPermiss ion <= (Mod0replyPermission (1) and not FSLP0_M_Full)

& (Mod1replyPermission (1) and not FSLP1_M_Full)

& (Mod2replyPermission (1) and not FSLP2_M_Full)

& (Mod3replyPermission (1) and not FSLP3_M_Full) ;

P2replyPermiss ion <= (Mod0replyPermission (2) and not FSLP0_M_Full)

& (Mod1replyPermission (2) and not FSLP1_M_Full)

& (Mod2replyPermission (2) and not FSLP2_M_Full)

& (Mod3replyPermission (2) and not FSLP3_M_Full) ;

P3replyPermiss ion <= (Mod0replyPermission (3) and not FSLP0_M_Full)

& (Mod1replyPermission (3) and not FSLP1_M_Full)

& (Mod2replyPermission (3) and not FSLP2_M_Full)

& (Mod3replyPermission (3) and not FSLP3_M_Full) ;

Mod0RequestedPermission <= P0requestPermiss ion (0) & P1requestPermiss ion (0)

& P2requestPermiss ion (0) & P3requestPermiss ion (0) ;

Mod1RequestedPermission <= P0requestPermiss ion (1) & P1requestPermiss ion (1)

& P2requestPermiss ion (1) & P3requestPermiss ion (1) ;

Mod2RequestedPermission <= P0requestPermiss ion (2) & P1requestPermiss ion (2)

& P2requestPermiss ion (2) & P3requestPermiss ion (2) ;

Mod3RequestedPermission <= P0requestPermiss ion (3) & P1requestPermiss ion (3)

84

& P2requestPermiss ion (3) & P3requestPermiss ion (3) ;

−− I n s t a n t i a t e the fslManagerP0 Unit

fs lManagerP0 : fs lManager PORT MAP (

c l o ck => clock ,

r e s e t => re s e t ,

FSL_S_Read => FSLP0_S_Read ,

FSL_S_Data => FSLP0_S_Data ,

FSL_S_Exists => FSLP0_S_Exists ,

FSL_M_Write => FSLP0_2_Mod_M_Write ,

FSL_M_Data => FSLP0_2_Mod_M_Data,

reques tPortPermis s ion => P0requestPermiss ion ,

r ep lyPortPermis s ion => P0replyPermiss ion ,

DBG => FSLManagerP0_DBG

) ;

−− I n s t a n t i a t e the moderator0 Unit

moderator0 : moderator PORT MAP (

c l o ck => clock ,

r e s e t => re s e t ,

FSLP0_M_Write => FSLP0_2_Mod_M_Write ,

FSLP0_M_Data => FSLP0_2_Mod_M_Data,

FSLP1_M_Write => FSLP1_2_Mod_M_Write ,

FSLP1_M_Data => FSLP1_2_Mod_M_Data,

FSLP2_M_Write => FSLP2_2_Mod_M_Write ,

FSLP2_M_Data => FSLP2_2_Mod_M_Data,

FSLP3_M_Write => FSLP3_2_Mod_M_Write ,

FSLP3_M_Data => FSLP3_2_Mod_M_Data,

r eques tPermi s s i on => Mod0RequestedPermission ,

r ep lyPermis s i on => Mod0replyPermission ,

FSLX_M_Write => FSLP0_M_Write ,

FSLX_M_Data => FSLP0_M_Data

) ;

−− I n s t a n t i a t e the fslManagerP1 Unit

fs lManagerP1 : fs lManager PORT MAP (

c l o ck => clock ,

r e s e t => re s e t ,

FSL_S_Read => FSLP1_S_Read ,

FSL_S_Data => FSLP1_S_Data ,

FSL_S_Exists => FSLP1_S_Exists ,

85

FSL_M_Write => FSLP1_2_Mod_M_Write ,

FSL_M_Data => FSLP1_2_Mod_M_Data,

reques tPortPermis s ion => P1requestPermiss ion ,

r ep lyPortPermis s ion => P1replyPermiss ion ,

DBG => open

) ;

−− I n s t a n t i a t e the moderator1 Unit

moderator1 : moderator PORT MAP (

c l o ck => clock ,

r e s e t => re s e t ,

FSLP0_M_Write => FSLP0_2_Mod_M_Write ,

FSLP0_M_Data => FSLP0_2_Mod_M_Data,

FSLP1_M_Write => FSLP1_2_Mod_M_Write ,

FSLP1_M_Data => FSLP1_2_Mod_M_Data,

FSLP2_M_Write => FSLP2_2_Mod_M_Write ,

FSLP2_M_Data => FSLP2_2_Mod_M_Data,

FSLP3_M_Write => FSLP3_2_Mod_M_Write ,

FSLP3_M_Data => FSLP3_2_Mod_M_Data,

r eques tPermi s s i on => Mod1RequestedPermission ,

r ep lyPermis s i on => Mod1replyPermission ,

FSLX_M_Write => FSLP1_M_Write ,

FSLX_M_Data => FSLP1_M_Data

) ;

−− I n s t a n t i a t e the fslManagerP2 Unit

fs lManagerP2 : fs lManager PORT MAP (

c l o ck => clock ,

r e s e t => re s e t ,

FSL_S_Read => FSLP2_S_Read ,

FSL_S_Data => FSLP2_S_Data ,

FSL_S_Exists => FSLP2_S_Exists ,

FSL_M_Write => FSLP2_2_Mod_M_Write ,

FSL_M_Data => FSLP2_2_Mod_M_Data,

reques tPortPermis s ion => P2requestPermiss ion ,

r ep lyPortPermis s ion => P2replyPermiss ion ,

DBG => open

) ;

−− I n s t a n t i a t e the moderator2 Unit

moderator2 : moderator PORT MAP (

86

c l o ck => clock ,

r e s e t => re s e t ,

FSLP0_M_Write => FSLP0_2_Mod_M_Write ,

FSLP0_M_Data => FSLP0_2_Mod_M_Data,

FSLP1_M_Write => FSLP1_2_Mod_M_Write ,

FSLP1_M_Data => FSLP1_2_Mod_M_Data,

FSLP2_M_Write => FSLP2_2_Mod_M_Write ,

FSLP2_M_Data => FSLP2_2_Mod_M_Data,

FSLP3_M_Write => FSLP3_2_Mod_M_Write ,

FSLP3_M_Data => FSLP3_2_Mod_M_Data,

r eques tPermi s s i on => Mod2RequestedPermission ,

r ep lyPermis s i on => Mod2replyPermission ,

FSLX_M_Write => FSLP2_M_Write ,

FSLX_M_Data => FSLP2_M_Data

) ;

−− I n s t a n t i a t e the fslManagerP3 Unit

fs lManagerP3 : fs lManager PORT MAP (

c l o ck => clock ,

r e s e t => re s e t ,

FSL_S_Read => FSLP3_S_Read ,

FSL_S_Data => FSLP3_S_Data ,

FSL_S_Exists => FSLP3_S_Exists ,

FSL_M_Write => FSLP3_2_Mod_M_Write ,

FSL_M_Data => FSLP3_2_Mod_M_Data,

reques tPortPermis s ion => P3requestPermiss ion ,

r ep lyPortPermis s ion => P3replyPermiss ion ,

DBG => open

) ;

−− I n s t a n t i a t e the moderator3 Unit

moderator3 : moderator PORT MAP (

c l o ck => clock ,

r e s e t => re s e t ,

FSLP0_M_Write => FSLP0_2_Mod_M_Write ,

FSLP0_M_Data => FSLP0_2_Mod_M_Data,

FSLP1_M_Write => FSLP1_2_Mod_M_Write ,

FSLP1_M_Data => FSLP1_2_Mod_M_Data,

FSLP2_M_Write => FSLP2_2_Mod_M_Write ,

FSLP2_M_Data => FSLP2_2_Mod_M_Data,

FSLP3_M_Write => FSLP3_2_Mod_M_Write ,

FSLP3_M_Data => FSLP3_2_Mod_M_Data,

87

r eques tPermi s s i on => Mod3RequestedPermission ,

r ep lyPermis s i on => Mod3replyPermission ,

FSLX_M_Write => FSLP3_M_Write ,

FSLX_M_Data => FSLP3_M_Data

) ;

DBG <= P0replyPermiss ion & FSLManagerP0_DBG;

end Behaviora l ;

B.1 FSL Manager

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use i e e e . numeric_std . a l l ;

use IEEE . std_logic_unsigned . a l l ;

entity f s lManager i s

port (

c l o ck : in s td_log i c ;

r e s e t : in s td_log i c ;

FSL_S_Read : out s td_log i c ;

FSL_S_Data : in s td_log ic_vector (0 to 31) ;

FSL_S_Exists : in s td_log i c ;

FSL_M_Write : out s td_log i c ;

FSL_M_Data : out s td_log ic_vector (0 to 31) ;

−− Permissions

r eques tPortPermis s ion : out s td_log ic_vector (0 to 3) ;

r ep lyPortPermis s ion : in s td_log ic_vector (0 to 3) ;

−− DBG −−

DBG : out s td_log ic_vector (3 downto 0)

) ;

end f s lManager ;

architecture Behaviora l of f s lManager i s

type STATE_TYPE i s (Id l e , Wait_Header , Wait_Data , Write_Data , Read_FSL) ;

signal s t a t e : STATE_TYPE;

88

signal msg_size : s td_log ic_vector (0 to 15) ;

signal hasPermiss ion : s td_log i c ;

signal r eques tPermi s s i on : s td_log ic_vector (0 to 3) ;

signal r ep lyPermis s i on : s td_log ic_vector (0 to 3) ;

begin

process (c lock , r e s e t)

begin −− process The_SW_accelerator

i f r e s e t = ’1 ’ then

−− Reset S i g n a l s

s t a t e <= Id l e ;

r eques tPermi s s i on <= (others => ’ 0 ’) ;

msg_size <= (others => ’ 0 ’) ;

−−

e l s i f c lock ’ event and c l o ck = ’1 ’ then −− Rising c l o c k edge

case s t a t e i s

when I d l e =>

reques tPermi s s i on <= (others => ’ 0 ’) ;

msg_size <= (others => ’ 0 ’) ;

s t a t e <= Wait_Header ;

when Wait_Header =>

i f FSL_S_Exists = ’1 ’ then

−− HEADER FORMAT

−− 0____15_16______19_20______23_24_________27_28__________31

−− | s i z e | NOT USED | dst_port | noc_y_index | noc_x_index |

−− |______|__________|__________|_____________|_____________|

msg_size <= FSL_S_Data(0 to 15) ;

r eques tPermi s s i on <= FSL_S_Data(20 to 23) ;

s t a t e <= Read_FSL ;

end i f ;

when Wait_Data =>

i f FSL_S_Exists = ’1 ’ then

s t a t e <= Write_Data ;

end i f ;

89

when Write_Data =>

i f hasPermiss ion = ’1 ’ then

msg_size <= msg_size − 1 ;

s t a t e <= Read_FSL ;

end i f ;

when Read_FSL =>

i f msg_size = 0 then

s t a t e <= Id l e ;

else

s t a t e <= Wait_Data ;

end i f ;

end case ;

end i f ;

end process ;

r eques tPortPermis s ion <= reques tPermi s s i on ;

r ep lyPermis s i on <= rep lyPortPermis s ion ;

hasPermiss ion <= ’1 ’ when (r ep lyPermi s s i on = reques tPermi s s i on) else

’ 0 ’ ;

FSL_S_Read <= FSL_S_Exists when (s t a t e = Read_FSL) else

’ 0 ’ ;

FSL_M_Write <= hasPermiss ion when (s t a t e = Write_Data) else

’ 0 ’ ;

FSL_M_Data <= FSL_S_Data ;

DBG <= " 1111 " when (s t a t e = IDLE) else

" 0110 " when (s t a t e = WAIT_HEADER) else

" 1001 " when (s t a t e = WAIT_DATA) else

" 1010 " when (s t a t e = WRITE_DATA) else

" 0000 " ;

end Behaviora l ;

B.2 Moderator

90

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

entity moderator i s

port (

−− Moderator primary c l o c k

c l o ck : in s td_log i c ;

r e s e t : in s td_log i c ;

−− START FSL IN DECLARATION (P0)

FSLP0_M_Write : in s td_log i c ;

FSLP0_M_Data : in s td_log ic_vector (0 to 31) ;

−− END FSL OUT DECLARATION

−− START FSL IN DECLARATION (P1)

FSLP1_M_Write : in s td_log i c ;

FSLP1_M_Data : in s td_log ic_vector (0 to 31) ;

−− END FSL OUT DECLARATION

−− START FSL IN DECLARATION (P2)

FSLP2_M_Write : in s td_log i c ;

FSLP2_M_Data : in s td_log ic_vector (0 to 31) ;

−− END FSL OUT DECLARATION

−− START FSL IN DECLARATION (P3)

FSLP3_M_Write : in s td_log i c ;

FSLP3_M_Data : in s td_log ic_vector (0 to 31) ;

−− END FSL OUT DECLARATION

−− START MODERATOR CONTROL SIGNALS DECLARATION

r eques tPermi s s i on : in s td_log ic_vector (0 to 3) ;

r ep lyPermis s i on : out s td_log ic_vector (0 to 3) ;

−− END MODERATOR CONTROL SIGNALS DECLARATION

−− START FSL OUT DECLARATION (out)

FSLX_M_Write : out s td_log i c ;

FSLX_M_Data : out s td_log ic_vector (0 to 31)

−− END FSL OUT DECLARATION

) ;

end moderator ;

91

architecture Behaviora l of moderator i s

signal Locked : s td_log i c := ’ 0 ’ ;

signal has_requests : s td_log i c ;

signal permi s s i ons : s td_log ic_vector (0 to 3) ;

signal wr i t e_s i gna l : s td_log ic_vector (0 to 3) ;

signal sweep_index : NATURAL range 0 to 3 ;

begin

has_requests <= ’0 ’ when (r eques tPermi s s i on = " 0000 ") else

’ 1 ’ ;

wr i t e_s i gna l <= FSLP0_M_Write & FSLP1_M_Write &

FSLP2_M_Write & FSLP3_M_Write ;

r ep lyPermis s i on <= permi s s i ons ;

process (c lock , r e s e t)

begin

i f r e s e t = ’1 ’ then

permi s s i ons <= (others => ’ 0 ’) ;

e l s i f c lock ’ event and c l o ck = ’1 ’ then −− Rising c l o c k edge

permi s s i ons <= (others => ’ 0 ’) ;

pe rmi s s i ons (sweep_index) <= reques tPermi s s i on (sweep_index) ;

i f Locked = ’0 ’ AND has_requests = ’1 ’ then

i f r eques tPermi s s i on (sweep_index) = ’1 ’ then

Locked <= ’ 1 ’ ;

else

sweep_index <= sweep_index + 1 ;

end i f ;

else

i f r eques tPermi s s i on (sweep_index) = ’0 ’ then

Locked <= ’ 0 ’ ;

end i f ;

end i f ;

end i f ;

end process ;

92

FSLX_M_Write <= wr i t e_s i gna l (sweep_index) AND Locked ;

FSLX_M_Data <= (others => ’0 ’) when Locked = ’0 ’ else

FSLP0_M_Data when sweep_index = 0 else

FSLP1_M_Data when sweep_index = 1 else

FSLP2_M_Data when sweep_index = 2 else

FSLP3_M_Data when sweep_index = 3 ;

end Behaviora l ;

93

C

Microblaze code

#include <s td i o . h>

#include " p lat form . h "

#include " dct /dct . h "

#include " noc/noc . h "

#include " xparameters . h "

#include " x s ta tus . h "

#include " xtmrctr . h "

int t ime rOf f s e t ;

XTmrCtr TimerCounter ; /∗ The ins tance o f the Tmrctr Device ∗/

void pr in t (char ∗ s t r) ;

void s imul taneousDi f fFreqTest (){

u32 con f i g [7] ;

u32 dctData [3] ;

x i l_p r i n t f (" Started ␣ t e s t . . . \ n\ r \n\ r ") ;

portNumber port = port1 ;

c on f i g [0] = dctParameters (loadH , 0) ;

c on f i g [1] = dctParameters (loadH | highLow , 0) ;

c on f i g [2] = dctParameters (loadW , 0) ;

c on f i g [3] = dctParameters (loadW | highLow , 0) ;

c on f i g [4] = dctParameters (loadFreq , 0) ;

c on f i g [5] = dctParameters (loadFreq | highLow , 0) ;

c on f i g [6] = dctParameters (resetDct , 0) ;

noc_SndPackage (0 , 0 , port , con f i g , 7) ;

u8 s t a tu s ;

do {

n g e t f s l (dctData [0] , 0) ;

f s l _ i s i n v a l i d (s t a tu s) ;

x i l_p r i n t f (" [dumping␣0x%08x] \ n\ r " , dctData [0]) ;

} while (! s t a tu s) ;

u8 p i x e l = 1 ;

c on f i g [1] = dctP ixe l (p i x e l) ;

noc_SndPackage (0 , 0 , port , con f i g , 1) ;

dctData [0] = readFSL () ;

x i l_p r i n t f (" [c o e f f i c i e n t ␣0x%08x] \ n\ r " , dctData [0]) ;

dctData [1] = readFSL () ;

x i l_p r i n t f (" [c o e f f i c i e n t ␣0x%08x] \ n\ r " , dctData [1]) ;

}

int main ()

{

in i t_p la t fo rm () ;

int s t a tu s = XTmrCtr_Init ia l ize(&TimerCounter , XPAR_MBTIMER_DEVICE_ID) ;

i f (s t a tu s != XST_SUCCESS) {

return XST_FAILURE;

}

XTmrCtr_SetResetValue(&TimerCounter , 0 , 0) ;

XTmrCtr_SetOptions(&TimerCounter , 0 ,

XTC_AUTO_RELOAD_OPTION) ;

XTmrCtr_Reset(&TimerCounter , XPAR_TMRCTR_0_DEVICE_ID) ;

t ime rOf f s e t = XTmrCtr_GetValue(&TimerCounter , XPAR_TMRCTR_0_DEVICE_ID) ;

XTmrCtr_Start(&TimerCounter , XPAR_TMRCTR_0_DEVICE_ID) ;

t ime rOf f s e t = XTmrCtr_GetValue(&TimerCounter , XPAR_TMRCTR_0_DEVICE_ID) − t ime rOf f s e t ;

XTmrCtr_Stop(&TimerCounter , XPAR_TMRCTR_0_DEVICE_ID) ;

x i l_p r i n t f (" Timer␣ t e s t : ␣%d\n\ r \n\ r " , t ime rOf f s e t) ;

s imul taneousDi f fFreqTest () ;

x i l_p r i n t f (" Test ␣ended . . . \ n\ r ") ;

c leanup_platform () ;

96

while (1) ;

return 0 ;

}

C.1 NoC

C.1.1 C file

/∗

∗ noc . c

∗

∗ Created on : 8 de Ago de 2012

∗ Author : WMalia

∗/

#include " noc . h "

u8 nReadFSL(u32 ∗ data) {

u8 s t a tu s ;

n g e t f s l (∗ data , 0) ;

f s l _ i s i n v a l i d (s t a tu s) ;

return s t a tu s ;

}

u32 readFSL () {

u8 s t a tu s ;

u32 data ;

do {

n g e t f s l (data , 0) ;

f s l _ i s i n v a l i d (s t a tu s) ;

} while (s t a tu s) ;

return data ;

}

void writeFSL (u32 data) {

u8 s t a tu s ;

do {

npu t f s l (data , 0) ;

97

f s l _ i s i n v a l i d (s t a tu s) ;

} while (s t a tu s) ;

}

u32 conv_header_2_u32 (u16 s i z e , u8 not_used , portNumber dst_port ,

u8 noc_y_index , u8 noc_x_index) {

Header header ;

header . s i z e = s i z e ;

header . not_used = not_used ;

header . dst_port = dst_port ;

header . noc_y_index = noc_y_index ;

header . noc_x_index = noc_x_index ;

return ∗ ((u32 ∗) &header) ;

}

Header conv_u32_2_header (u32 header) {

return ∗ ((Header ∗) &header) ;

}

int noc_RcvPackage (u32 ∗ data , u32 s i z e) {

u16 index = 0 ;

while (index < s i z e) {

data [index++] = readFSL () ;

}

return s i z e ;

}

void noc_SndPackage (u8 x , u8 y , portNumber port , u32 ∗ data , u16 s i z e) {

u16 index = 0 ;

u32 header = conv_header_2_u32 (s i z e , 0xFF , port , 0xFF , 0xFF) ;

writeFSL (header) ;

while (index < s i z e) {

writeFSL (data [index++]);

}

}

void noc_OpenStream(u8 x , u8 y , portNumber port , u16 s i z e){

u32 header = conv_header_2_u32 (s i z e , 0xFF , port , 0xFF , 0xFF) ;

98

writeFSL (header) ;

}

void noc_SendStreamPacket (u32 data){

writeFSL (data) ;

}

C.1.2 H file

/∗

∗ noc . h

∗

∗ Created on : 8 de Ago de 2012

∗ Author : WMalia

∗/

#ifndef NOC_H_

#define NOC_H_

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ INCLUDES ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

#include " mb_interface . h "

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ MACROS ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

typedef enum portNumber{

por tA l l = 0x0F ,

port0 = 0x08 ,

port1 = 0x04 ,

port2 = 0x02 ,

port3 = 0x01

}portNumber ;

#define START_CODE 0x0A

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ STRUCTURES ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

// HEADER FORMAT

// 0____15_16______19_20______23_24_________27_28__________31

// | s i z e | NOT USED | dst_port | noc_y_index | noc_x_index |

// |______|__________|__________|_____________|_____________|

typedef struct msg_header{

99

u8 noc_x_index : 4 ;

u8 noc_y_index : 4 ;

portNumber dst_port : 4 ;

u8 not_used : 4 ;

u16 s i z e ;

}Header ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗ FUNCTIONS ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

u32 conv_header_2_u32 (u16 s i z e , u8 not_used , portNumber dst_port ,

u8 noc_y_index , u8 noc_x_index) ;

Header conv_u32_2_header (u32 header) ;

int noc_RcvPackage (u32 ∗ data , u32 s i z e) ;

void noc_SndPackage (u8 x , u8 y , portNumber port , u32 ∗ data , u16 s i z e) ;

void noc_OpenStream(u8 x , u8 y , portNumber port , u16 s i z e) ;

void noc_SendStreamPacket (u32 data) ;

#endif /∗ NOC_H_ ∗/

C.2 DCT

C.2.1 C file

/∗

∗ dct . c

∗

∗ Created on : 29 de Mar de 2014

∗ Author : P a t r i c i a

∗/

#include " dct . h "

u32 dctParameters (u32 operat ion , u16 parameter){

return opera t i on | (u32) parameter ;

}

u32 dc tP ixe l (u8 p i x e l){

return (u32) p i x e l ;

}

C.2.2 H file

100

/∗

∗ dct . h

∗

∗ Created on : 29 de Mar de 2014

∗ Author : P a t r i c i a

∗/

#ifndef DCT_H_

#define DCT_H_

#include " . . / noc/noc . h "

typedef enum opera t i on {

loadW = 0x80000000 ,

loadH = 0x40000000 ,

loadFreq = 0x20000000 ,

highLow = 0x10000000 ,

r e se tDct = 0x08000000 ,

newCoeff = 0x00000000

} opera t i on ;

typedef struct{

u8 empty : 8 ;

u32 param2 : 10 ;

u32 param1 : 10 ;

u8 op : 4 ;

}DCTConfig ;

typedef struct{

u32 empty : 20 ;

u32 p i x e l : 8 ;

u8 op : 4 ;

}DCTData ;

u32 dctParameters (u32 operat ion , u16 parameter) ;

u32 dc tP ixe l (u8 p i x e l) ;

#endif /∗ DCT_H_ ∗/

101

D

System description

###

Created by Base System Bui lder Wizard for Xi l inx EDK 14.2 Build EDK_P.28 xd

Mon Apr 21 21 : 30 : 16 2014

Target Board : d i g i l e n t a t l y s Rev C

Family : spartan6

Device : xc6s lx45

Package : csg324

Speed Grade : −3

###

PARAMETER VERSION = 2 . 1 . 0

PORT z i o = zio , DIR = IO

PORT rzq = rzq , DIR = IO

PORT mcbx_dram_we_n = mcbx_dram_we_n , DIR = O

PORT mcbx_dram_udqs_n = mcbx_dram_udqs_n , DIR = IO

PORT mcbx_dram_udqs = mcbx_dram_udqs , DIR = IO

PORT mcbx_dram_udm = mcbx_dram_udm, DIR = O

PORT mcbx_dram_ras_n = mcbx_dram_ras_n , DIR = O

PORT mcbx_dram_odt = mcbx_dram_odt , DIR = O

PORT mcbx_dram_ldm = mcbx_dram_ldm , DIR = O

PORT mcbx_dram_dqs_n = mcbx_dram_dqs_n , DIR = IO

PORT mcbx_dram_dqs = mcbx_dram_dqs , DIR = IO

PORT mcbx_dram_dq = mcbx_dram_dq , DIR = IO , VEC = [1 5 : 0]

PORT mcbx_dram_clk_n = mcbx_dram_clk_n , DIR = O, SIGIS = CLK

PORT mcbx_dram_clk = mcbx_dram_clk , DIR = O, SIGIS = CLK

PORT mcbx_dram_cke = mcbx_dram_cke , DIR = O

PORT mcbx_dram_cas_n = mcbx_dram_cas_n , DIR = O

PORT mcbx_dram_ba = mcbx_dram_ba , DIR = O, VEC = [2 : 0]

PORT mcbx_dram_addr = mcbx_dram_addr , DIR = O, VEC = [1 2 : 0]

PORT RS232_Uart_1_sout = RS232_Uart_1_sout , DIR = O

PORT RS232_Uart_1_sin = RS232_Uart_1_sin , DIR = I

PORT RESET = RESET, DIR = I , SIGIS = RST, RST_POLARITY = 0

PORT GCLK = GCLK, DIR = I , SIGIS = CLK, CLK_FREQ = 100000000

PORT dct_0_DBG_pin = dct_0_DBG, DIR = O, VEC = [7 : 0]

BEGIN proc_sys_reset

PARAMETER INSTANCE = proc_sys_reset_0

PARAMETER HW_VER = 3 . 0 0 . a

PARAMETER C_EXT_RESET_HIGH = 0

PORT MB_Debug_Sys_Rst = proc_sys_reset_0_MB_Debug_Sys_Rst

PORT Dcm_locked = proc_sys_reset_0_Dcm_locked

PORT MB_Reset = proc_sys_reset_0_MB_Reset

PORT Slowest_sync_clk = clk_100_0000MHzPLL0

PORT Interconnect_arese tn = proc_sys_reset_0_Interconnect_aresetn

PORT Ext_Reset_In = RESET

PORT BUS_STRUCT_RESET = proc_sys_reset_0_BUS_STRUCT_RESET

PORT Periphera l_Reset = net_noc_0_NOC_RST_pin

END

BEGIN lmb_v10

PARAMETER INSTANCE = microblaze_0_ilmb

PARAMETER HW_VER = 2 . 0 0 . b

PORT SYS_RST = proc_sys_reset_0_BUS_STRUCT_RESET

PORT LMB_CLK = clk_100_0000MHzPLL0

END

BEGIN lmb_bram_if_cntlr

PARAMETER INSTANCE = microblaze_0_i_bram_ctrl

PARAMETER HW_VER = 3 . 1 0 . a

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007FFF

BUS_INTERFACE SLMB = microblaze_0_ilmb

BUS_INTERFACE BRAM_PORT = microblaze_0_i_bram_ctrl_2_microblaze_0_bram_block

END

BEGIN lmb_v10

PARAMETER INSTANCE = microblaze_0_dlmb

104

PARAMETER HW_VER = 2 . 0 0 . b

PORT SYS_RST = proc_sys_reset_0_BUS_STRUCT_RESET

PORT LMB_CLK = clk_100_0000MHzPLL0

END

BEGIN lmb_bram_if_cntlr

PARAMETER INSTANCE = microblaze_0_d_bram_ctrl

PARAMETER HW_VER = 3 . 1 0 . a

PARAMETER C_BASEADDR = 0x00000000

PARAMETER C_HIGHADDR = 0x00007FFF

BUS_INTERFACE SLMB = microblaze_0_dlmb

BUS_INTERFACE BRAM_PORT = microblaze_0_d_bram_ctrl_2_microblaze_0_bram_block

END

BEGIN bram_block

PARAMETER INSTANCE = microblaze_0_bram_block

PARAMETER HW_VER = 1 . 0 0 . a

BUS_INTERFACE PORTA = microblaze_0_i_bram_ctrl_2_microblaze_0_bram_block

BUS_INTERFACE PORTB = microblaze_0_d_bram_ctrl_2_microblaze_0_bram_block

END

BEGIN microb laze

PARAMETER INSTANCE = microblaze_0

PARAMETER HW_VER = 8 . 4 0 . a

PARAMETER C_INTERCONNECT = 2

PARAMETER C_USE_BARREL = 1

PARAMETER C_USE_FPU = 0

PARAMETER C_DEBUG_ENABLED = 1

PARAMETER C_ICACHE_BASEADDR = 0xa8000000

PARAMETER C_ICACHE_HIGHADDR = 0 x a f f f f f f f

PARAMETER C_USE_ICACHE = 1

PARAMETER C_CACHE_BYTE_SIZE = 8192

PARAMETER C_ICACHE_ALWAYS_USED = 1

PARAMETER C_DCACHE_BASEADDR = 0xa8000000

PARAMETER C_DCACHE_HIGHADDR = 0 x a f f f f f f f

PARAMETER C_USE_DCACHE = 1

PARAMETER C_DCACHE_BYTE_SIZE = 8192

PARAMETER C_DCACHE_ALWAYS_USED = 1

PARAMETER C_FSL_LINKS = 1

PARAMETER C_USE_DIV = 1

BUS_INTERFACE SFSL0 = fsl_mbSlave

105

BUS_INTERFACE M_AXI_DP = ax i 4 l i t e_0

BUS_INTERFACE M_AXI_DC = axi4_0

BUS_INTERFACE M_AXI_IC = axi4_0

BUS_INTERFACE DEBUG = microblaze_0_debug

BUS_INTERFACE DLMB = microblaze_0_dlmb

BUS_INTERFACE ILMB = microblaze_0_ilmb

BUS_INTERFACE MFSL0 = fsl_mbMaster

PORT MB_RESET = proc_sys_reset_0_MB_Reset

PORT CLK = clk_100_0000MHzPLL0

END

BEGIN mdm

PARAMETER INSTANCE = debug_module

PARAMETER HW_VER = 2 . 1 0 . a

PARAMETER C_INTERCONNECT = 2

PARAMETER C_USE_UART = 1

PARAMETER C_BASEADDR = 0x41400000

PARAMETER C_HIGHADDR = 0 x 4 1 4 0 f f f f

BUS_INTERFACE S_AXI = ax i 4 l i t e_0

BUS_INTERFACE MBDEBUG_0 = microblaze_0_debug

PORT Debug_SYS_Rst = proc_sys_reset_0_MB_Debug_Sys_Rst

PORT S_AXI_ACLK = clk_100_0000MHzPLL0

END

BEGIN clock_generator

PARAMETER INSTANCE = clock_generator_0

PARAMETER HW_VER = 4 . 0 3 . a

PARAMETER C_EXT_RESET_HIGH = 0

PARAMETER C_CLKIN_FREQ = 100000000

PARAMETER C_CLKOUT0_FREQ = 600000000

PARAMETER C_CLKOUT0_GROUP = PLL0

PARAMETER C_CLKOUT0_BUF = FALSE

PARAMETER C_CLKOUT1_FREQ = 600000000

PARAMETER C_CLKOUT1_PHASE = 180

PARAMETER C_CLKOUT1_GROUP = PLL0

PARAMETER C_CLKOUT1_BUF = FALSE

PARAMETER C_CLKOUT2_FREQ = 100000000

PARAMETER C_CLKOUT2_GROUP = PLL0

PARAMETER C_CLKOUT0_DUTY_CYCLE = 0.500000

PARAMETER C_CLKOUT0_PHASE = 0

PARAMETER C_CLKOUT1_DUTY_CYCLE = 0.500000

106

PARAMETER C_CLKOUT2_BUF = TRUE

PARAMETER C_CLKOUT2_DUTY_CYCLE = 0.500000

PARAMETER C_CLKOUT2_PHASE = 0

PORT LOCKED = proc_sys_reset_0_Dcm_locked

PORT CLKOUT2 = clk_100_0000MHzPLL0

PORT RST = RESET

PORT CLKOUT0 = clk_600_0000MHzPLL0_nobuf

PORT CLKOUT1 = clk_600_0000MHz180PLL0_nobuf

PORT CLKIN = GCLK

END

BEGIN ax i_inte rconnect

PARAMETER INSTANCE = ax i 4 l i t e_0

PARAMETER HW_VER = 1 . 0 6 . a

PARAMETER C_INTERCONNECT_CONNECTIVITY_MODE = 0

PORT INTERCONNECT_ARESETN = proc_sys_reset_0_Interconnect_aresetn

PORT INTERCONNECT_ACLK = clk_100_0000MHzPLL0

END

BEGIN ax i_inte rconnect

PARAMETER INSTANCE = axi4_0

PARAMETER HW_VER = 1 . 0 6 . a

PORT inte rconnect_ac lk = clk_100_0000MHzPLL0

PORT INTERCONNECT_ARESETN = proc_sys_reset_0_Interconnect_aresetn

END

BEGIN ax i_ua r t l i t e

PARAMETER INSTANCE = RS232_Uart_1

PARAMETER HW_VER = 1 . 0 2 . a

PARAMETER C_BAUDRATE = 115200

PARAMETER C_DATA_BITS = 8

PARAMETER C_USE_PARITY = 0

PARAMETER C_ODD_PARITY = 1

PARAMETER C_BASEADDR = 0x40600000

PARAMETER C_HIGHADDR = 0 x 4 0 6 0 f f f f

BUS_INTERFACE S_AXI = ax i 4 l i t e_0

PORT S_AXI_ACLK = clk_100_0000MHzPLL0

PORT TX = RS232_Uart_1_sout

PORT RX = RS232_Uart_1_sin

END

107

BEGIN axi_s6_ddrx

PARAMETER INSTANCE = MCB_DDR2

PARAMETER HW_VER = 1 . 0 6 . a

PARAMETER C_MCB_RZQ_LOC = L6

PARAMETER C_MCB_ZIO_LOC = C2

PARAMETER C_MEM_TYPE = DDR2

PARAMETER C_MEM_PARTNO = EDE1116AXXX−8E

PARAMETER C_MEM_BANKADDR_WIDTH = 3

PARAMETER C_MEM_NUM_COL_BITS = 10

PARAMETER C_SKIP_IN_TERM_CAL = 0

PARAMETER C_S0_AXI_ENABLE = 1

PARAMETER C_INTERCONNECT_S0_AXI_MASTERS = microblaze_0 .M_AXI_DC & microblaze_0 .M_AXI_IC

PARAMETER C_MEM_DDR2_RTT = 50OHMS

PARAMETER C_S0_AXI_STRICT_COHERENCY = 0

PARAMETER C_INTERCONNECT_S0_AXI_AW_REGISTER = 8

PARAMETER C_INTERCONNECT_S0_AXI_AR_REGISTER = 8

PARAMETER C_INTERCONNECT_S0_AXI_W_REGISTER = 8

PARAMETER C_INTERCONNECT_S0_AXI_R_REGISTER = 8

PARAMETER C_INTERCONNECT_S0_AXI_B_REGISTER = 8

PARAMETER C_S0_AXI_BASEADDR = 0xa8000000

PARAMETER C_S0_AXI_HIGHADDR = 0 x a f f f f f f f

BUS_INTERFACE S0_AXI = axi4_0

PORT z i o = z i o

PORT rzq = rzq

PORT s0_axi_aclk = clk_100_0000MHzPLL0

PORT ui_clk = clk_100_0000MHzPLL0

PORT mcbx_dram_we_n = mcbx_dram_we_n

PORT mcbx_dram_udqs_n = mcbx_dram_udqs_n

PORT mcbx_dram_udqs = mcbx_dram_udqs

PORT mcbx_dram_udm = mcbx_dram_udm

PORT mcbx_dram_ras_n = mcbx_dram_ras_n

PORT mcbx_dram_odt = mcbx_dram_odt

PORT mcbx_dram_ldm = mcbx_dram_ldm

PORT mcbx_dram_dqs_n = mcbx_dram_dqs_n

PORT mcbx_dram_dqs = mcbx_dram_dqs

PORT mcbx_dram_dq = mcbx_dram_dq

PORT mcbx_dram_clk_n = mcbx_dram_clk_n

PORT mcbx_dram_clk = mcbx_dram_clk

PORT mcbx_dram_cke = mcbx_dram_cke

PORT mcbx_dram_cas_n = mcbx_dram_cas_n

PORT mcbx_dram_ba = mcbx_dram_ba

108

PORT mcbx_dram_addr = mcbx_dram_addr

PORT sysclk_2x = clk_600_0000MHzPLL0_nobuf

PORT sysclk_2x_180 = clk_600_0000MHz180PLL0_nobuf

PORT SYS_RST = proc_sys_reset_0_BUS_STRUCT_RESET

PORT PLL_LOCK = proc_sys_reset_0_Dcm_locked

END

BEGIN fs l_v20

PARAMETER INSTANCE = fsl_mbSlave

PARAMETER HW_VER = 2 . 1 1 . e

PARAMETER C_USE_CONTROL = 0

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT SYS_Rst = net_noc_0_NOC_RST_pin

PORT FSL_M_Clk = clk_100_0000MHzPLL0

PORT FSL_S_Clk = clk_100_0000MHzPLL0

END

BEGIN fs l_v20

PARAMETER INSTANCE = fsl_mbMaster

PARAMETER HW_VER = 2 . 1 1 . e

PARAMETER C_USE_CONTROL = 0

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT SYS_Rst = net_noc_0_NOC_RST_pin

PORT FSL_M_Clk = clk_100_0000MHzPLL0

PORT FSL_S_Clk = clk_100_0000MHzPLL0

END

BEGIN fs l_v20

PARAMETER INSTANCE = fs l_dct0Master

PARAMETER HW_VER = 2 . 1 1 . e

PARAMETER C_USE_CONTROL = 0

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT SYS_Rst = net_noc_0_NOC_RST_pin

PORT FSL_M_Clk = clk_100_0000MHzPLL0

PORT FSL_S_Clk = clk_100_0000MHzPLL0

END

BEGIN fs l_v20

PARAMETER INSTANCE = fs l_dc t0S lave

PARAMETER HW_VER = 2 . 1 1 . e

PARAMETER C_USE_CONTROL = 0

109

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT SYS_Rst = net_noc_0_NOC_RST_pin

PORT FSL_M_Clk = clk_100_0000MHzPLL0

PORT FSL_S_Clk = clk_100_0000MHzPLL0

END

BEGIN fs l_v20

PARAMETER INSTANCE = fs l_dct1Master

PARAMETER HW_VER = 2 . 1 1 . e

PARAMETER C_USE_CONTROL = 0

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT SYS_Rst = net_noc_0_NOC_RST_pin

PORT FSL_M_Clk = clk_100_0000MHzPLL0

PORT FSL_S_Clk = clk_100_0000MHzPLL0

END

BEGIN fs l_v20

PARAMETER INSTANCE = fs l_dc t1S lave

PARAMETER HW_VER = 2 . 1 1 . e

PARAMETER C_USE_CONTROL = 0

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT SYS_Rst = net_noc_0_NOC_RST_pin

PORT FSL_M_Clk = clk_100_0000MHzPLL0

PORT FSL_S_Clk = clk_100_0000MHzPLL0

END

BEGIN fs l_v20

PARAMETER INSTANCE = fs l_dct2Master

PARAMETER HW_VER = 2 . 1 1 . e

PARAMETER C_USE_CONTROL = 0

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT SYS_Rst = net_noc_0_NOC_RST_pin

PORT FSL_M_Clk = clk_100_0000MHzPLL0

PORT FSL_S_Clk = clk_100_0000MHzPLL0

END

BEGIN fs l_v20

PARAMETER INSTANCE = fs l_dc t2S lave

PARAMETER HW_VER = 2 . 1 1 . e

PARAMETER C_USE_CONTROL = 0

PORT FSL_Clk = clk_100_0000MHzPLL0

110

PORT SYS_Rst = net_noc_0_NOC_RST_pin

PORT FSL_M_Clk = clk_100_0000MHzPLL0

PORT FSL_S_Clk = clk_100_0000MHzPLL0

END

BEGIN noc

PARAMETER INSTANCE = noc_0

PARAMETER HW_VER = 1 . 0 0 . b

BUS_INTERFACE SFSLP0 = fsl_mbMaster

BUS_INTERFACE MFSLP0 = fsl_mbSlave

BUS_INTERFACE SFSLP1 = fs l_dct0Master

BUS_INTERFACE MFSLP1 = f s l_dc t0S l ave

BUS_INTERFACE SFSLP2 = fs l_dct1Master

BUS_INTERFACE MFSLP2 = f s l_dc t1S l ave

BUS_INTERFACE SFSLP3 = fs l_dct2Master

BUS_INTERFACE MFSLP3 = f s l_dc t2S l ave

PORT NOC_CLK = clk_100_0000MHzPLL0

PORT NOC_RST = net_noc_0_NOC_RST_pin

PORT DBG = noc_0_DBG

END

BEGIN dct

PARAMETER INSTANCE = dct_0

PARAMETER HW_VER = 4 . 0 1 . a

PARAMETER ID = 0

PARAMETER N = 3

BUS_INTERFACE SFSL = f s l_dc t0S l ave

BUS_INTERFACE MFSL = fs l_dct0Master

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT FSL_Rst = net_noc_0_NOC_RST_pin

END

BEGIN dct

PARAMETER INSTANCE = dct_1

PARAMETER HW_VER = 4 . 0 1 . a

PARAMETER ID = 1

PARAMETER N = 3

BUS_INTERFACE SFSL = f s l_dc t1S l ave

BUS_INTERFACE MFSL = fs l_dct1Master

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT FSL_Rst = net_noc_0_NOC_RST_pin

111

END

BEGIN dct

PARAMETER INSTANCE = dct_2

PARAMETER HW_VER = 4 . 0 1 . a

PARAMETER ID = 2

PARAMETER N = 3

BUS_INTERFACE SFSL = f s l_dc t2S l ave

BUS_INTERFACE MFSL = fs l_dct2Master

PORT FSL_Clk = clk_100_0000MHzPLL0

PORT FSL_Rst = net_noc_0_NOC_RST_pin

END

BEGIN axi_timer

PARAMETER INSTANCE = mbTimer

PARAMETER HW_VER = 1 . 0 3 . a

PARAMETER C_ONE_TIMER_ONLY = 1

PARAMETER C_BASEADDR = 0x41c00000

PARAMETER C_HIGHADDR = 0 x 4 1 c 0 f f f f

BUS_INTERFACE S_AXI = ax i 4 l i t e_0

PORT S_AXI_ACLK = clk_100_0000MHzPLL0

END

112

References

1. J. Reinders, “Ask james reinders: Multicore vs. manycore,” [Online]. Available:

http://goparallel.sourceforge.net/ask-james-reinders-multicore-vs-manycore/.

2. R. Marculescu, J. Hu, and U. Ogras, “Key research problems in noc design: a

holistic perspective,” in Hardware/Software Codesign and System Synthesis, 2005.

CODES+ISSS ’05. Third IEEE/ACM/IFIP International Conference on, pp. 69–74,

Sept 2005.

3. S. Pasricha and N. Dutt, On-chip communication architectures: system on chip inter-

connect. Morgan Kaufmann, 2010.

4. A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, and D. Sciuto, “A pipelined fast

2d-dct accelerator for fpga-based socs,” in VLSI, 2007. ISVLSI’07. IEEE Computer

Society Annual Symposium on, pp. 331–336, IEEE, 2007.

5. D. Trainor, J. Heron, and R. Woods, “Implementation of the 2d dct using a xilinx

xc6264 fpga,” in Signal Processing Systems, 1997. SIPS 97-Design and Implementa-

tion., 1997 IEEE Workshop on, pp. 541–550, IEEE, 1997.

6. V. Gunes and T. Givargis, “Xgrid: A scalable many-core embedded processor,” Center

for Embedded Computer Systems, vol. 1, no. 2, p. 1, 2013.

7. P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture of fpga-based

soft processors,” in Proceedings of the 2005 international conference on Compilers,

architectures and synthesis for embedded systems, pp. 202–212, ACM, 2005.

8. D. Bafumba-Lokilo, Y. Savaria, and J.-P. David, “Generic crossbar network on chip

for fpga mpsocs,” in Circuits and Systems and TAISA Conference, 2008. NEWCAS-

TAISA 2008. 2008 Joint 6th International IEEE Northeast Workshop on, pp. 269–272,

IEEE, 2008.

9. S. A. Khayam, “The discrete cosine transform: Theory and application,” 2003.

114

