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Abstract

Liver steatosis is mainly a textural abnormality of the
hepatic parenchyma due to fat accumulation on the hepatic
vesicles. Today, the assessment is subjectively performed by
visual inspection.

Here a classifier based on features extracted from ultra-
sound (US) images is described for the automatic diagnos-
tic of this phatology. The proposed algorithm estimates the
original ultrasound radio-frequency (RF) envelope signal
from which the noiseless anatomic information and the tex-
tural information encoded in the speckle noise is extracted.
The features characterizing the textural information are the
coefficients of the first order autoregressive model that de-
scribes the speckle field.

A binary Bayesian classifier was implemented and the
Bayes factor was calculated. The classification has re-
vealed an overall accuracy of 100%. The Bayes factor
could be helpful in the graphical display of the quantitative
results for diagnosis purposes.

1. Introduction

Disease processes in several different organs have been
shown to be accompanied by changes in ultrasonic scatter-
ing properties [11]. In this sense, the pulse echo data from
different grain types contain distinguishable statistical regu-
larities [10]. The microstructure of the backscattered echoes
is complex, depending on the overall characteristics of the
ultrasound scanner in terms of bandwidth and beamwidth,
on the scattering properties of the propagation path and on
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the attenuation caused by absorption, scattering, and beam
spreading (diffraction effect) [10].

Hepatic steatosis arises when fat exceeds 5% of the total
liver weight and it is caused by failure of normal hepatic fat
metabolism [8]. This fat excess within the hepatocytes leads
to an increasing on the brightness of the US image which
also arises in the fibrosis and cirrhosis cases [8]. Therefore,
the accurate identification of the steatosis is a difficult task.
However, the increasing of hepatocytes size leads to char-
acteristic diffraction patterns, reflected in the speckle field,
that may be used to characterize the steatosis and differen-
ciate from other pathologies.

The steatosis is a diffuse liver disease that usually affect
all parenchyma. However, it may also affect small regions
and in these cases the spatial resolution plays an important
role in the detection and characterization of lesions [5].

The directional properties of the tissue lead to different
directional characteristics on the speckle pattern. In a clas-
sical wavelet analysis of the speckle field, the energy of the
first decomposition horizontal detail field is larger for the
healthy liver and smaller for the steatotic one and the con-
trary in the case of the vertical decomposition [4].

Here, changes on the directional properties of the speckle
field are characterized using an autoregressive (AR) model
and consistency with the previous results described in [4]
by using wavelet analysis is shown.

The objective of this work is to design a classifier for au-
tomatic diagnosis of liver steatosis from US images where
robust autoregressive parameter estimation is used.

2. Problem Formulation

The estimation of the RF envelope and of despeckled
anatomic images is performed using the Bayesian methods
proposed in [6] and [7], respectively. The estimated speckle
field is used to extract the textural features needed for the
automatic diagnosis of the steatosis. The speckle corrupting
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the US images is multiplicative in the sense that its variance
depends on the underlying signal and therefore the image
formation model may be formulated as follows [4]:

y = η
√
f (1)

where f is a pixel intensity of the despeckled image, y is the
pixel intensity of the RF image and η is the corresponding
speckle intensity.

Features were extracted from the first order autoregres-
sive model (AR) coefficients of the texture image, which is
assumed to be a 2D random field x(m,n), where x(m,n)
denotes the value of the random field at the location (m,n).
Then the two dimensional AR model is given by [9]

x(m,n) =
p∑

i=0

q∑
j=0

aijx(m− i, n− j) + u(m,n) (2)

where the coefficients aij must be estimated.
The values of p and q define the order of the model and

a0,0 = 1 . There are several algorithms described in the
literature to compute AR parameters aij [1]. In this work,
the least-squares algorithm is used, according to [1]. To
select the order of the AR model, we use has a criterion the
lowest error probability result in the detection of normal and
steatotic liver, using a binary Bayesian classifier.

A Bayes classifier based on these features, was trained
with data classified in two classes, Normal, ωN , and Fatty,
ωF . It is assumed that the vector of features are multivariate
normal distributed [3,12].

The Bayes factor (B) was used to measure the confidence
level in the classification. In [2] it is suggested the following
categorization:

(BFN) Evidence againstωN

1 to 3 Not worth more
than a bare mention

3 to 20 Positive
20 to 150 Strong
> 150 V ery strong

To access the severity of the steatosis, a map image was
computed. In this image, S = {si,j}, each pixel, si,j , is

si,j =
{
bi,j if bi,j ≥ 1

0 otherwise

where bi,j = P (xi,j |ωF )
P (xi,j |ωN ) is the Bayes factor.

3. Experimental Results

We use the same dataset of [4], corresponding to 20 liver
ultrasound images from 10 patients (5 with fatty livers and

5 with normal livers). Radiologists made the classification
and complementary indicators were obtained from laborato-
rial analysis. From each image, one ROI of 128 by 128 pix-
els along the center line have been selected. The leave-one-
out crossvalidation method was used in the training process
due to the lack of data.

The first goal was to establish the optimal AR order for
classification purposes and then used the AR coefficients
has features. Like in [10], the results displayed in Table 1,
confirm that the low-order AR model can characterize the
classes in study. The error probability (PE) increases with
the order of the model up to the 4th. For higher orders the
PE decreases, e.g., the 6th order have a PE of 20%. Never-
theless, the two best results are the 1st and 2nd order mod-
els where the PE is 0%. These results show a sensitivity and
specificity of 100% in detecting this type of disease, which
is a promising result. The first order AR model is therefore
adopted.

AR Model Error prob. Accuracy prob.
1st order 0% 100%
2nd order 0% 100%
3rd order 25% 75%
4th order 50% 50%
5th order 40% 60%
6th order 20% 80%

Table 1: Results of the Bayesian classifier according to the AR
model order

According to the Figure 1 , we can conclude that the AR
coefficient a has higher values in the pathologic class than
in the normal one, with mean value of 0,5881 and 0,2558,
respectively, and variance of 0,007 and 0,003, respectively.
On the opposite, the AR coefficient c has a lower value in
the pathologic class. This fact is consistent with the values
of the mean and variance for each class: pathologic class -
0,7162 and 0,0012, respectively; normal class - 0,8064 and
0,0009, respectively. Despite the fact that the AR coeffi-
cient b has the higher value of variance (0,0044) in the nor-
mal class, it has a good sensitivity for the changes between
classes. These results are consistent and are according to
[10], where using the 3 features will provide the best classi-
fication outcome.

We believe that the Bayes factor could be helpful in the
graphical display of the quantitative results for diagnosis
purpose, since it gives the medical doctor an idea of how
well the evidence support the fact that it is a steatotic liver
and where are the critical areas within the liver. This was
accomplished by overlapping the original US image and the
map of colors corresponding to the Bayes factor categories.
Figure 2 shows the original US image (a) colored with a
color code extracted from the mapping image S (b).
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Figure 1: Distribution of liver classes (normal and fatty) accord-
ing to the selected features.

 

(a) (b) 

Figure 2: Graphical display of the Bayes factor results. (a) origi-
nal US liver image and (b) overlapping result for diagnosis purpose

4. Conclusions

In this work a textural analysis of the liver parenchyma
is proposed to help in the diagnosis of the steatosis. A first
order autoregressive model is used to describe the speckle
field extracted from the estimated envelope RF signal from
the observed ultrasound image.

The vector of the estimated coefficients, performed with
the least squares method in a window basis, is used to
discriminate healthy and pathologic regions of the hepatic
parenchyma. Additionally, the Bayes factor is mapped in
the original image providing useful information to the med-
ical doctor about the confidence of the classification.

Results obtained from real data have shown the ability
of the method to detect the disease. The main goal is to
put together the estimated AR coefficients computed from
the speckle field with other features, not only textural, to
obtain a reliable classifier/quantification algorithm for the
steatosis.

The major drawback of this study was that the dataset
size was small and further studies are needed before any

definitive conclusions can be made.
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