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f the walls bounding the cells are solid, and their
contents liquids or gases, we are dealing with a solid
foam or a cellular solid. ese are common in nature:
wood, cork, sponge and coral are examples. Mankind

has made use of cellular solids for millennia, as witness
artifacts retrieved from the pyramids of Egypt. More
recently, we have turned to producing our own cellular
solids, tailored to specific purposes.At the simplest level
there are honeycomb-like materials, made up of paral-
lel, prismatic cells, which are used for lightweight
packaging and structural components. More familiar
are the polymeric foams, found in everything from the
humble disposable coffee cups to modern car bumpers
and thermal insulation layers in buildings and refrige-
rated vehicles. Techniques now exist for foaming not
just polymers, but also metals, ceramics and glasses.

Metal foams are finding applications as shock absorbers
in the automotive industry, whereas ceramic and glass
foams, because of their good biocompatibility, can be
ingrown by living tissue, thereby aiding the integration
of dental and bone implants coated with them [1].
On the other hand, a liquid foam consists of a mixture
of two fluids, and yet behaves as a solid if subjected to
only very small stresses. When one of the fluids is air,
the cells are usually called bubbles. Typically the thick-
ness of a wall separating two bubbles is much smaller
than the linear size of a bubble, and the walls can then
be idealised as curved surfaces, which meet on lines,
which in turn meet in vertices. is is the limit of a
perfectly dry, or mathematical, foam. In two-dimensio-
nal (2D) perfectly dry foams we have only lines (cell
walls) which meet in point vertices. Real foams, by
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FOAM
AS A GEomETER

I

Foams are found everywhere: in nature, in
technology, in our home. They are examples
of cellular materials: assemblies or clusters
of cells (from Latin cella: a small compartment
or enclosed region) packed together so that
they fill space without gaps. Foams come
in different kinds. Ordinary liquid foam is
an experimental system that solves some
difficult geometry problems.
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III area and hence their energy. is is opposed by the
pressure difference across the film separating bubbles i
and j, according to Laplace’s equation:

pi – pj = γ ( 1—
R(1)

ij
+ 1—

R(2)
ij ) (1)

where γ is the film tension, pi(pj) is the pressure inside
bubble i(j), and R(1)

ij , R(2)
ij are the radii of curvature of the

surface between bubbles i and j. e rules for the equi-
librium of such a foam are embodied in Plateau’s laws,
discovered experimentally in the second half of the
19th century [3] and later proved [4] to be necessary
conditions for stability. ey are:
1. Films meet three at a time, at 120°-angles, along Pla-

teau borders.
2. No more than four Plateau borders may meet at a

vertex, where the angle between any two of them is
the tetrahedral angle, 109.5°.

3. Film curvatures sum to zero at a vertex (from
Laplace’s law).

In 2D there is one additional rule (which also follows
from Laplace’s law) that the films must be arcs of circle
(since there is only one radius of curvature and this
must be constant).
Unlike a solid foam, a liquid foam is inherently unstable
and will eventually disappear, though there are recorded
instances of foams surviving weeks or even months, if
kept in sheltered conditions. e mechanisms for
foam instability are three:
• Drainage: under gravity, liquid will drain out until an

equilibrium state is reached. is occurs on a times-
cale of the order of one minute.

• Coarsening: diffusion of gas between bubbles causes
some to grow and others to shrink, leading to an
increase in mean bubble size. e timescale is about 10
minutes, but may vary.

• Film rupture: foam films that are too thin and weak
will rupture, and eventually the whole foam will col-
lapse and disappear. e timescale for these processes
is hugely variable.

In what follows we shall be interested in timescales of a
few minutes, for which the foam has had time to drain
dry but gas diffusion is negligible, as is experimentally
borne out by the fact that bubble sizes do not change
appreciably. Under such circumstances, a dry foam can
be seen as a structure that realises a partition of space
into cells of given volumes for a minimal expense of
surface area. When the cells all have the same volume,
this is known as the Kelvin problem – by analogy with
the Kepler problem of how to pack spheres so that they
take up the least amount of space [5]. Kelvin was inte-
rested in using foam as a model for the luminiferous

contrast, all have a finite liquid volume fraction which
can be as high as 30%; these are wet foams (see figure 1).
Most of the liquid resides in the channels along which

films meet, called Plateau borders; in
2D these coincide with the vertices. A
real foam may be called ‘dry’ if its Pla-
teau borders (in 2D) or Plateau
borders and vertices (in 3D) are of
negligible size; this corresponds to a
liquid area (in 2D) or volume (in 3D)
fraction of a few percent [2].
Traditional applications of liquid
foams include drinks such as beer and

sparkling wines; foodstuffs such as whipped cream
and chocolate mousse; household cleaning products
such as oven cleaner and limescale remover; and toile-
tries such as shaving cream. Various industrial
separation processes also utilise the properties of
foams. In fractionation, a solute that is adsorbed at
the bubble surfaces can be removed from solution. In
flotation, metal-rich, hydrophobic particles stay in the
foam, while metal-poor hydrophilic ones drain out.
Fire-fighting foams perform an all-out attack on the
three ingredients necessary to sustain a fire: they
exclude oxygen, lower the temperature, and trap fuel
vapour. Finally, in enhanced oil recovery, foam acts as
a surfactant carrier for flushing oil out of the inter-
stices in reservoirs.
e behaviour of a dry foam with a low-viscosity
liquid phase (e.g., an aqueous foam, as opposed to a
polymeric foam) is dominated by surface tension. e
films tend to contract in order to minimise their surface

� FiG. 1:
A moderately
wet 2D foam

cluster. (Image
by M. Fátima
Vaz, Instituto
Superior Téc-
nico, Lisbon.
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� FiG. 2:
(a) The Kelvin
structure. (b)
The Weaire-
Phelan
structure.
(Images by
Kenneth
Brakke,
Susquehanna
University.)
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� FiG. 3:
The double
bubble.
(a) Unequal
volumes.
(b) Equal vol-
umes. (Images
by J. Sullivan,
TU Berlin.)
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In this article we discuss some of our own recent results
relating to surface minimisation in 2D foams. e general
strategy is to draw competing structures and compare their
energies; these can be worked out analytically in some
cases, more generally numerically by solving a small set of
non-linear algebraic equations that implement Plateau’s
laws. In the spirit of Kelvin, we offer no formal proofs.
Besides contributing towards the solution of an intriguing
(and, in our view, aesthetically pleasing) riddle of discrete
geometry, what do we expect to achieve by this? Many
solid foams, traditionally viewed as a distinct subject, are
actually formed by freezing of vitrifying liquid foams.
e mechanical properties of solid foams, such as their
Young and shear moduli,and their yield strength,are para-
mount in many of their structural applications, and are
known to depend sensitively on their topology [1]. Kno-
wing the topology and geometry of the percursor, liquid
foam composed of cells of given sizes and number of sides
would therefore allow a more accurate prediction,and thus
enable tailoring,of the properties of the final cellular solid.
Other possible applications will be discussed below.

aether of electromagnetic theory, which was motivated
by the need to find a material that would have zero
compression modulus and therefore not support any
longitudinal waves, as it was by then already known
from experiment that electromagnetic waves were
strictly transverse. e structure Kelvin came up with –
a packing of identical 14-sided truncated octahedra, or,
as he called them, orthic tetrakaidecahedra [6] (see
figure 2a) – turned out to be a very good candidate for
the division of space into equal volumes with minimal
partitional area, until it was dethroned by the Weaire-
Phelan, or A15, structure in 1994 [7] (see figure 2b).
Unlike Kelvin’s, this fills space with cells of two different
shapes (but equal volumes), a dodecahedron and a 14-
sided polyhedron. It beats Kelvin’s by a slim 0.3%.
However, there is no formal proof to date that the
Weaire-Phelan structure, which was found by numeri-
cal minimisation of the energy of competing structures,
is the lowest-energy geometry of a 3D foam. Indeed,
formal proofs are very hard to come by in this field.
Consider a related problem, known as the double bubble
conjecture: given two volumes, V1 and V2, what is the
surface that circumscribes these two volumes with the
least surface area? Not until 2002 was this proved to be
two bubbles joined at a single film [8] (see figure 3); if
V1 = V2, the film is flat.
e 2D version of the Kelvin problem concerns the
minimum partition of the plane into regions of equal
area. at it is the tiling by regular hexagons (or honey-
comb) seems obvious, and yet stood as a conjecture
since classical antiquity [9]; its formal proof has been
given only recently by Hales [10].
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It is seen that when cell sizes are very different (i.e., for
small λ), their numbers of sides are also very diffe-
rent. As λ increases the two types of cells become
more similar; for λ>0.645 they are both hexagons, and
we go continuously to the monodisperse honeycomb
limit as λ→1.

mixing vs sorting
What happens if we now allow the cells to de-mix, i.e.,
separate into two regions each composed of cells of
just one size? And what if we are dealing not with an
infinite foam, but with a (more realistic) finite cell clus-
ter? We now need to consider, in addition to the five
minimal tilings of figure 4, the four sorted arrange-
ments of figure 5. Sorting is of course always into two
honeycombs, since each contains only cells all of the
same size.
Besides the‘bulk’energy of each tiling, we must estimate
the energies of the outer boundaries of the clusters, and
of the boundary between clusters of different-sized
cells; the latter we approximate by that of a wall of dis-
locations between mismatched honeycombs. is we
do for each cell area ratio λ and for each number N of
bubbles of each size. Our results are summarised in
figure 6: note the alternation between mixed and sor-
ted states, where the winning sorted arrangement is
always IV in figure 5 (‘partial wetting’ of one honey-
comb by the other).
Smaller clusters want to be mixed because of the high
relative cost of forming interfaces; as N increases,
‘biphasic’ regions appear. However, convergence to
the N→∞ limit [11] is slow, and has not quite been
reached for N=104. Two further remarks are in order.
Firstly, the limit of a monodisperse honeycomb is
again approached continuously as λ→1, as expected
(since in this limit 6+6 and 6161 become indistingui-
shable). Secondly, and more intriguingly, the size of
the ‘biphasic’ regions increases with increasing λ, i.e.,
as the two types of cells become more similar. This
behaviour is opposite to what one normally expects
in a binary mixture, where miscibility is usually favou-
red by particle likeness.
But why should we care whether cells/bubbles mix or
segregate? More recent applications arise in the emer-
ging field of discrete microfluidics [13]. Here one aims to

how to pave a plane with two types of tile?
A straightforward generalisation of the Kelvin problem in
2D is to ask ourselves: What is the minimum-perimeter
partition of the plane into regions (‘cells’ or ‘bubbles’) of
two different areas? Without loss of generality we take the
area of the cell with fewer sides to be unity; the other cell
will then have (non-dimensional) area λ, the ratio of cell
areas. Again we consider perfectly dry foams, i.e., whose
liquid content is close to zero: these obey Plateau’s laws
[3] in 2D, as above, with the only difference that films
(which must be either straight lines or arcs of circle) meet
at 120° angles at vertices. Plateau’s laws are necessary
conditions for perimeter minimisation, but do not uni-
quely determine the (stress-free) geometry of a tiling of
given topology and given cell area ratio λ. In this first
approach we restricted ourselves to periodic tilings with at
most two cells of each area per repeating unit, and such
that all cells of the same area are equivalent (i.e., have the
same neighbourhood). Under these restrictions there is a
finite (and fairly small) number of possible arrange-
ments. Figure 4 shows the five that are minimal, i.e., that
have the lowest energy in some range of λ. eir charac-
teristics are summarised in table 1. We use a simple
notation to label them, e.g., 3191 is a tiling with one 3-
sided cell and one 9-sided cell per repeating unit, etc. In
addition to these, there are four others that are never
minimal: 21101, 22102, 3292 and 6262.

interval of λ minimal tiling

0.645-1 6161

0.268-0.645 5272

0.108-0.268 4181

0.041-0.108 4282

0-0.041 3191

� TABlE 1:
Minimal (i.e.,
lowest-energy)
tilings vs λ [12].
(With kind permis-
sion of The
European Physical
Journal (EPJ).)

� FiG. 4: The five tilings that have minimum perimeter in some range of λ, the cell
area ratio [11].(With kind permission of The European Physical Journal (EPJ).)

� FiG. 5: The four sorted arrangements of honeycombs (I, II, III, IV) of cell sizes 1 and λ
[11]. (With kind permission of The European Physical Journal (EPJ).)
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� FiG. 6:
‘Phase diagram’
of 1:1 cell clus-
ters in the
(N,λ) plane.
(Adapted
from [11].
With kind
permission of
The European
Physical Jour-
nal (EPJ).)
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control the transport and mixing (or sorting) of indivi-
dual droplets of liquids for, e.g., the delivery of minute
quantities of reacting chemicals, as in tests of many dif-
ferent formulations of a novel drug or consumer
product. Ideally one would like to be able to feed diffe-
rent reactants through the same channel(s) in such a
way that they would not react until reaching some spe-
cified locations at specified times. Recent work [14]
suggests that this might be achievable by encapsulating
the chemicals in the bubbles of ordered foam structures
that are then pushed through appropriately designed
channel geometries. At low flow rates where viscous
dissipation is negligible, whether bubbles mix or sort is
governed by surface tension minimisation. In view of
our results, careful selection of bubble sizes could
therefore lead to the bubbles (and chemicals) self-
assembling into the desired configurations, with no
need for outside intervention.

outlook
e work presented here can be extended in a number
of directions.Our analysis of bidisperse tilings of the
plane is admittedly rather restrictive. Ideally one
would like to include a much larger set of possible
arrangements, both periodic and aperiodic.
When addressing the competition between mixing and
sorting Erreur ! Source du renvoi introuvable.we inves-
tigated just the special case of equal numbers of bubbles
of each area. Moreover, we restricted our set of allowed
mixed arrangements to those discussed above. e
more general problem of finding the minimal configu-
ration of clusters of bubbles of areas 1 and λ in any
proportion would lead to the full phase diagram of
‘bubble alloys’. One such diagram has been obtained by
Likos and Henley [15] for a binary mixture of hard
discs (in the N→∞ limit), using a ‘zero-temperature
approach’ which, like ours, neglects the entropy. eir
results for 1:1 clusters are in rough agreement with ours,
the main differences being that they find an interval
where a ‘random tiling’ wins, two intervals where 5272

wins, and they did not consider the 4282 tiling.
We have le out entirely the many issues pertaining to
foams out of equilibrium, namely their rheology. ese
are currently the focus of much research,particulary with
respect to the rigidity loss and flow of wet foams in rela-
tion to their topology. is and the applications to
microfluidics alluded to above will probably be the most
active fields of foam research in the coming years. �

Dedication
is article is dedicated to the memory of M. A. Fortes,
originator and prime mover of the research.

foam aS a geomeTer feaTureS

25


