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Abstract— Liver steatosis is a common disease usually as-
sociated with social and genetic factors. Early detection and
quantification is important since it can evolve to cirrhosis.

Steatosis is usually a diffuse liver disease, since it is globally
affected. However, steatosis can also be focal affecting only some
foci difficult to discriminate. In both cases, steatosis is detected
by laboratorial analysis and visual inspection of ultrasound
images of the hepatic parenchyma. Liver biopsy is the most
accurate diagnostic method but its invasive nature suggest the
use of other non-invasive methods, while visual inspection of
the ultrasound images is subjective and prone to error.

In this paper a new Computer Aided Diagnosis (CAD) system
for steatosis classification and analysis is presented, where the
Bayes Factor, obatined from objective intensity and textural
features extracted from US images of the liver, is computed in
a local or global basis. The main goal is to provide the physician
with an application to make it faster and accurate the diagnosis
and quantification of steatosis, namely in a screening approach.

The results showed an overall accuracy of 93.54% with a
sensibility of 95.83% and 85.71% for normal and steatosis class,
respectively. The proposed CAD system seemed suitable as a
graphical display for steatosis classification and comparison
with some of the most recent works in the literature is also
presented.

I. INTRODUCTION

Fatty liver infiltration, called steatosis, occurs when the

fat content of the hepatocytes increases [1]. Worldwide, the

prevalence of hepatic steatosis has increased, in great part

associated with obesity, insulin resistance and alcohol [2].

Early detection is of major clinical importance, since

steatosis is the first biomarker for the potential development

of cirrhosis and even hepatocellular carcinoma [2].

Liver biopsy remains the reference exam for the evaluation

of hepatic steatosis [2]. The need for biopsy reduction, due

to its invasive nature and the potential of sampling errors, has

led to the development of non-invasive methods for steatosis

diagnosis.

Among the new techniques for liver steatosis assessment,

imaging methods are widely reported in the literature. The

systematic review study of [2] shows that magnetic resonance
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imaging (MRI) performs better than ultrasound (US) and

computed tomography (CT). Nevertheless, drawbacks such

as exam cost and ionizing nature are shown in MRI and CT,

respectively. On the contrary, US shows a non-invasive, low

price, accessible, and non-ionizing nature.

The accumulation of fat in the liver leads to an increase of

brightness and changes on the textural characteristics of the

US images of the liver parenchyma. However, the source of

these changes may be in reflective echoes arising from other

hepatic diseases.

A large spectrum of studies has debated the optimal

and sub-optimal features extracted from US images for

steatosis classification purposes. In this scope, a set of

features extracted from the US liver parenchyma images are

used to detect the steatosis condition. The most common

features described in the literature are based on the first order

statistics [3], [4], co-occurrence matrix [5], wavelet transform

[6], [5], attenuation along the depth [7] and backscattering

[7] parameters and coefficients. Also, in this study, it is

compared the results of four different classifiers: Bayes, k-

nearest neighbor (kNN), Support Vector Machines (SVM):

polynomial and radial-basis kernels.

The development of the CAD system is here presented

based on the feature extraction/selection and classification

from US images. For this reason an improvement in the

usual US examination is attempted in this study. Moreover,

this CAD system is organized has a graphical interface, in

which the classification result is embedded in the original US

image, allowing a local fat analysis of the liver parenchyma.

This paper is organized as follows. Section II formulates

the problem, describes the image acquisition procedures, the

extraction and selection of features and the classifiers used.

Section III describes the experimental tests and presents the

classification results. It is also discussed the results from the

proposed CAD interface system. Section IV concludes the

paper.

II. MATERIALS AND METHODS

In a US pattern recognition problem, it is necessary to as-

sure the objectivity and reproducibility of image acquisition

before feature extraction and classification.

In this sense, an ultrasound machine preset was established

by using a fundamental frequency of 3.5 MHz, image depth

of 18 cm, two focal zones were set at the central portion

of the image (9 cm) and the dynamic range set in 75 dB.

Gain was variable, according to the patient biotype, and
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the depth gain compensation was set to its central position

and kept constant throughout the examinations. US images

were acquired only from the right liver lobe and the same

anatomical landmarks were used, in order to standardize the

acquisition protocol.

Images were stored in the Digital Imaging and Communi-

cations in Medicine (DICOM) format. From each US image,

a region-of-interest (ROI) of approximately 100×100 pixels

along the medial axis was extracted, using as criteria: i)

ROI sample should be visually representative of the liver

parenchyma; ii) major blood vessels and liver ligaments

should be avoid; and iii) the sample should be as superficial

as possible, to avoid US beam distortions.

Two important US features are used in clinical practice:

liver parenchyma echogenicity and its texture. According to

the studies [7], [8], [6], [5], [9], [10], the following features

were extracted. From the echogenicity point of view, the

acoustic attenuation coefficient is studied by means of the

slope of the linear regression of the mean image intensity

along the depth direction (lines).

In this work the attenuation coefficient, m, is estimated by

using the method proposed in [7]. This is addressed as the

following linear regression problem

m̂ = arg min
m

J (X), (1)

where X is the N × M US liver image. The objective

function is

J =

N
∑

l=0

(αl + b − f(l))2, (2)

where f(l) = 1

M

∑M

c=1
xl,c is the average value intensity

of each image line, in the assumption, that depth increases

along each column.

From the textural point of view, two main features cat-

egories were extracted: I) using the wavelet transform, the

vertical, horizontal and diagonal detail components are ex-

tracted, of the first and second Haar wavelet decomposition

[11], and from it the energy and mean are computed; II) the

autoregressive (AR) model coefficients, θ = {a1,1, a1,0, a0,1},

corresponding to the coefficients of the first order 2D AR

model describing the image texture .

In the canonical definition of a 1D p-order AR model each

sample is modeled as a linear combination of the previous p

samples with unknown coefficients, ak [12]

x(l) =

p
∑

i=1

aix(l − i) + r(l) (3)

where the residue signal, r(l), is assumed to be white and

zero mean normal distributed noise. For image applications

the following 2D formulation of the (p, q)-order AR model

is used [13]

x(l, c) =

p
∑

i=0

q
∑

j=0

aijx(c − i, l − j) + r(l, c) (4)

where x(l, c) is the l,cth pixel of the image and a0,0 = 0.

The first order model was adopted, as confirmed by [14].

A total of 36 features are extracted from the ROI US image

and wavelet decomposition components, for each patient.

For comparison purposes, we also extracted the features

suggested by [8], namely the median, standard deviation and

inter-quartile range extracted from each coefficient from the

2 levels of the wavelet packet transform using the Daubechies

3 wavelet and the original ROI.

Four types of classifiers, kNN, Bayes and SVM (polyno-

mial and radial-basis kernel) [15], are tested with three dif-

ferent sub-set of features: i) wavelet-based features proposed

by [8]; ii) using only the acoustic attenuation coefficient, as

used in [9], [10]; and iii) the set of features proposed in this

study, selected by the sequential forward floating selection

method [16].

Different parameterizations were tested: for the kNN, we

tested from k = 1, ..., 9 neighborhood configurations; for the

SVM polynomial kernel the cost (c) ranging from 1,10,50,

100, 150 and degree (d), d = 1, ..., 10; and for SVM with

radial-basis kernel the c parameter with the same range and

the radius (r) from r = 0.2, ..., 10 with steps of 0.2. Only

the best results are shown in this paper.

The classifiers result, according to the three sub-set of

features, are analyzed by means of the overall accuracy (OA),

sensibility (Se) and specificity (Sp) , in a leave-one-out cross-

validation basis. OA is weighted by class frequencies.

After the selection of the best feature set / classifier com-

bination, the Bayes factor is used to quantify the confidence

level of the classification, healthy or steatotic, in a global

and local basis. The Bayes factor is defined as follows,

Λ =
gF (x)

gN (x)
(5)

A confidence map image, S = {Λ(i, j)}, is computed

where each element is obtained from a small window cen-

tered at each (i, j)th pixel. This map aims at to detect foci fat

accumulation locations at the parenchyma and it is displayed

by using a color code image overlapped with the original US

image, diagnose map, D, according with the following law,

d(i, j) =

{

αΛ(i, j + (1 − α)x(i, j) if s(i, j) > 0

x(i, j) otherwise
(6)

where x(i, j) is the original US image and Λ(i, j) is the

Bayes factor at the (i, j)th pixel. α is a weight parameter to

adjust the transparency.

III. EXPERIMENTAL RESULTS

Seventy-five (75) US liver images, obtained from 75

patients, were used in the classification process. Thirty-five

(35) patients had steatotic liver and 40 had normal liver. The

US images were acquired by expert operators in a Hospital

facility. The selected patients had known diagnosis based on

liver biopsy results. The study protocol was approved by the

Ethics Committee of the Hospital, it was explained to the

patients and an informed consent was obtained in each case.

As described three feature sets have been tested with

four different classifiers: A is the feature set proposed by
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TABLE I

BEST ACHIEVED DETECTION RATE (DR) AND OA FOR EACH TESTED

CLASSIFIER WITH THE THREE DIFFERENT FEATURE SET PROPOSED.

Feature Set Classifier
Results

Normal (%) Steatosis (%) OA (%)

A

Bayes 95.83 64.28 88.7

kNN 100 78.57 95.16

SVMpoly 93.75 71.42 88.7

SVMradial 87.5 78.57 85.7

B

Bayes 42.85 64.58 59.67

kNN 71.42 85.41 82.25

SVMpoly 93.75 50 83.87

SVMradial 87.5 78.57 85.7

C

Bayes 95.83 85.71 93.54

kNN 91.66 57.14 83.87

SVMpoly 85.41 71.42 82.25

SVMradial 87.5 57.14 80.64

[8], Feature set B correspond to the acoustic attenuation

coefficient, proposed originally by [7] and feature set C

that is the result of the feature selection procedure in which

we have incorporate the AR coefficients, extracted from the

wavelet detail decompositions.

From the original 36 extracted features only 6 were se-

lected, which formed feature set C. All features are computed

from the wavelet coefficients, from both levels, and are

mainly related with the AR coefficients, energy and pixel

mean, as shown in Figure 1. Individually, each feature shows

some overlapping between the considered classes.

Organized by the 3 feature sets, Table I resumes the

classification results. From feature set A, the best result was

achieved by using a kNN classifier (k=3), which revealed

an OA of 95.16%, with an optimal result for the normal

class, 100%, but with a low detection rate for the steatosis

class, 78.57%. In B the best results only attained 85.7% in

the OA with the SVM classifier, radial-basis kernel (r=1.2

and c=100). From this experience, the best achieved result

was observed for feature set C, with the Bayes classifier,

performing an OA of 93.54% with a detection rate of 95.83%

and 85.71% for normal and steatosis class, respectively.

In the study performed by [8], using a SVM classifier in

a leave-one-out cross validation approach, an OA of 95.6%

is achieved with sensitivity values for normal and steatosis

classes being 97.4% and 93.3%, respectively. Similar results

were also obtained by different studies [9], [7], [17]. The

present study is in accordance with this literature and similar

results were also obtained here. Based on these, enough

sensitivity is achieved to develop the graphical interface,

towards the CAD system.

We computed the Bayes factor, using the Bayes classifier

with feature set C, to form the diagnose map, D, displayed in

Figure 2. The Bayes factor and its graphical representation,

could be a helpful indicator for the quantification and local-

ization of the main foci of fat accumulation within the liver

parenchyma, in the sense that it allows a graphical correlation

between the classification results and their localization in the

original US image.

Figure 2 displays the algorithm results of US images
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Fig. 1. Estimated density distribution plots obtained for each of the selected
feature: (a) Energy of the wavelet horizontal detail coefficient, level 1; (b)
a1,0 and (c) a0,1 calculated from the horizontal detail coefficient, level 2;
(d) a0,1 from the diagonal detail coefficient, level 1; (e) mean and (f) a1,1

of the vertical detail coefficient, level 2.

from one healthy and steatotic liver sample, respectively.

The resultant map images, confidence and diagnose, show

that the yellow to red color regions indicate high probability

of fat presence, the green region indicates that there aren’t

enough evidence to support a decision and the light to

dark blue regions indicate normal liver tissue. These results

show that the physician can select an US ROI, within the

area corresponding to the liver parenchyma, and obtain a

confidence map image that illustrate the local classification

results, based on the Bayes factor. The diagnose map images

allow the physician to have an overall relationship between

the local classification results and the original US ROI, as

well as gives a notion of the spatial relationship of the

selected ROI with the rest of the anatomical structures.

IV. CONCLUSIONS

In this paper a new CAD system for steatosis analysis is

presented, developed from the US-based features, extracted

from the wavelet transform detail coefficients, by using a

Bayes classifier.

Among the four classifiers tested with three different sets

of features, the best result, in a leave-one-out basis, led to

an OA of 93.54% with a sensibility of 95.83% and 85.71%

for normal and steatosis class, respectively.
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Fig. 2. Classification results displayed in the developed CAD system
interface. From top to bottom, it is observed a steatotic sample with the
correct classification result (steatotic), a steatotic sample that, due to lack
of evidence to support the decision, it is not well classified and in the bottom
a normal US liver sample that is also correctly classified.

An important result from this preliminary study, was that

the AR coefficients, extracted from the multi-scale Haar

wavelet decomposition, are particular relevant for the classi-

fication of liver steatosis by US images.

Based on the results, global and local assessment of liver

tissue described by means of the Bayes factor can provide

useful information to the physician about the confidence of

the classification as well as the classification itself.

Further studies are needed, particularly, with higher num-

ber of patients, as well as with more correlation between

clinical features and US-based features. Another issue is that

in clinical practice it is important to discriminate between

different steatosis stages. For further studies, this topic will

be attempt by changing the classification and display schema

to handle multiple classes.
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