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� Abstract
Microbial adhesion is a field of recognized relevance and, as such, an impressive array
of tools has been developed to understand its molecular mechanisms and ultimately for
its quantification. Some of the major limitations found within these methodologies
concern the incubation time, the small number of cells analyzed, and the operator‘s
subjectivity. To overcome these aspects, we have developed a quantitative method to
measure yeast cells’ adhesion through flow cytometry. In this methodology, a suspen-
sion of yeast cells is mixed with green fluorescent polystyrene microspheres (uncoated
or coated with host proteins). Within 2 h, an adhesion profile is obtained based on two
parameters: percentage and cells-microsphere population’s distribution pattern. This
flow cytometry protocol represents a useful tool to quantify yeast adhesion to different
substrata in a large scale, providing manifold data in a speedy and informative
manner. ' 2011 International Society for Advancement of Cytometry
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IN nature, microorganisms such as bacteria and fungi prefer a community-based and

sedentary lifestyle, usually binding to biotic or abiotic surfaces. This ubiquitous beha-

vior confers obvious advantages for microbial development and proliferation, such

as the possibility to establish symbiotic relationships or the development of complex

structures like biofilms. Biofilm formation constitutes a protective milieu against

environmental injuries or human host defenses (1–5). From an evolutionary perspec-

tive, adhesion ability has been considered a selective advantage providing microor-

ganisms the chance to emerge as surface-bound populations, through cell–cell inter-

actions or bindings (6).

Surface adhesion is a complex and multiphase process, dictated by a number of

variables including organism species, surface composition, and environmental fac-

tors. Typically, it starts by a primary and reversible phase, which is highly dependent

on physiochemical interactions, namely hydrophobic ones. Subsequently, it evolves

to a second irreversible phase mediated by specific adhesins, with specific molecular

interactions occurring between the organism and the surface (6–9). Both interactions

are strongly biased by the cell wall proteome of each microorganism.

Yeast cell wall possesses hydrophobic proteins embedded in their matrix, which

mediate the initial fungal attachment. Hydrophobic cells tend to bind in a great num-

ber to plastics, host proteins (laminin, fibrinogen, and fibronectin (FN)), and host

tissues than the hydrophilic ones (7). Another important class of specialized cell wall

proteins involved in adhesion is the glycosylphosphatidylinositol proteins referred to

as ‘‘adhesins.’’ Despite sharing the same structure, an N- and a C-terminal inter-

spersed by a tandem repeat region, fungal adhesins, differ in their capacity to adhere

to a specific surface. According to the different hosts and environmental conditions,

adhesion genes can be expressed differentially (9–11).
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The efficiency of microbial adhesion has huge impact at

various levels, namely ecological, industrial, and clinical, with

either positive or negative repercussions. Bioremediation,

nitrogen fixation, flocculation of industrial brewing, and wine

production are just a few examples of how microbial adhesion

can enhance the performance of an industrial process (10–12).

Clinically however, microbial adherence poses serious con-

cerns and can lead to critical consequences. Pathogenic bacte-

ria and fungal cells can adhere to host tissues or to biomaterial

used in common medical indwelling devices leading to biofilm

formation, which frequently results in bloodstream infections

associated to high mortality rates (13–15). In fact, adhesion is

considered a significant virulence attribute as it is determinant

for colonization, invasion, and establishment of disease.

Extensive research has been performed to dissect the mo-

lecular mechanisms underlying microbial adhesion, and sev-

eral methods have been developed to quantify adhesion. Over-

all, these methodologies are laborious, expensive, and require

sophisticated equipment not always available in laboratories.

Nonetheless, the major drawback associated to the assays so

far described, concerns the subjectivity of a quantification per-

formed by the investigator. Moreover, output data frequently

corresponds to a global measurement of adhesion ability dis-

played by a microbial population without taking into account

the variability existing within the population.

To overcome some of the limitations described, we aimed

to develop a novel quantitative method to measure cell-surface

adhesion through flow cytometry. Essentially, the novel meth-

odology here described is an adaptation of the protocol

described by Hazen and LeMelle (16) to quantify hydrophobi-

city using microscopy. Briefly, yeast cells are allowed to

interact with microspheres and the relative population hydro-

phobicity is calculated as a percentage of yeast cells with three

or more attached polystyrene microspheres. We replaced the

operator microscopic counting by flow cytometry. The adhe-

sion assay described herein is based on a simple principle:

yeast cells became fluorescent when attached to highly green

fluorescent microspheres. Therefore, by flow cytometry, a

quantitative distinction between nonadherent yeast cells (non-

fluorescent) and adherent cells (fluorescent) is achieved.

Cytometry is extensively used to characterize eukaryotic

cells. Several microbiologic applications have been described,

namely in detection, evaluation of viability, and susceptibility

profile of microorganisms (17–21). Although it proved to be

beneficial over conventional methods, the potential of this

tool is still underestimated. Recently, flow cytometric adher-

ence assays have been used to measure the interaction between

bacteria and fungi with eukaryotic cells (22–24).

Herein, we optimized a novel flow cytometry protocol to

measure yeast cell adhesion ability toward abiotic and biotic

surfaces in a quantitative, fast, and informative manner.

MATERIAL AND METHODS

Strains and Cultures

Candida albicans SC5314, Candida parapsilosis OL021

(clinical isolate), Saccharomyces cerevisiae S150-2B; four S. cer-

evisiae strains expressing C. albicans adhesins, Als3p, Als5p,

Als6p, and Als7p, and one S. cerevisiae carrying the empty

plasmid (pADH) were used in this study (11). S. cerevisiae

S150-2B and plasmids carrying Als proteins were kindly

offered by Dr. John E. Edwards Jr. and Prof. Scott G. Filler. As

its adhesion profile is well characterized, these strains were

used to validate this novel methodology.

All strains were kept frozen in YPD with 40% glycerol at

2708C. For all assays, yeast cells were grown overnight with

agitation in YPD broth at 308C. S. cerevisiae expressing C.

albicans adhesins were grown in minimal medium (1x yeast

nitrogen base broth, 2% glucose, and 0.5% ammonium sul-

fate, supplemented with 100 lg/ml L-leucine, L-tryptophan,

L-histidine, and adenine sulfate).

Optimization of Yeast Flow Cytometric Microsphere

Adhesion Assay

After growing overnight at 308C, yeast cells were har-

vested and washed twice with phosphate buffer saline (PBS)

0.01 M (NaCl 0.138 M; KCl 20.0027 M; pH 7.4; Sigma). A

suspension of 2 3 106 yeast ml21 was prepared and mixed

with carboxylated highly green fluorescent polystyrene micro-

spheres (1 lm; F-8823; Molecular Probes) at final concentra-

tion of 13 105, 13 106, 13 107, 13 108, and 13 109 micro-

pheres ml21. The mix of microspheres and yeast was incu-

bated at room temperature for 15, 30, 90, and 120 min, with

agitation (150 rpm). Single yeast cell suspensions and micro-

spheres suspensions were used as controls. Following incuba-

tion, each suspension was vortexed and 50,000 events were an-

alyzed by flow cytometry in propylene tubes. To validate cyto-

metric results, epifluorescence microscopic examination of

each sample was performed in parallel to flow cytometric anal-

ysis. Yeast cells were stained with calcofluor (0.05% vol/vol,

Fluka), and images were taken with a fluorescence microscope

Axioplan Zeiss, coupled with acquisition image system Axio-

Vision (Zeiss) using two different filters ( DAPI: excitation k
5 365 nm; emission k 5 445/50 nm and Alexa 568: excitation

k 5 530/585 nm; emission k 5 615 nm).

Flow Cytometry Analysis

A standard flow cytometer (FACSCalibur, BD Bios-

ciences, Sydney) with three PMTs equipped with standard fil-

ters (FL1: BP 530/30 nm; FL2: BP 585/42 nm; FL3: LP 670

nm), a 15 mW 488 nm Argon Laser and operating with cell

Quest Pro software (version 4.0.2, BD Biosciences, Sydney)

was used. The Flow Cytometry data file format used was FCS

2.0a.

Acquisition settings were defined using carboxylated

highly green fluorescent polystyrene microsphere samples by

adjusting voltage to the third logarithmic (log) decade of all

fluorescence channels (Fig. 1a). FSC was used as trigger signal.

Samples were analyzed in the FL3 fluorescence channel (fluo-

rescence channel where all analyzed populations are clearly

distinct), using two dot plots: SSC versus FSC and SSC versus

FL3 (Fig. 1). Results were expressed using two parameters:

(a) percentage of cells with microspheres attached and (b) dis-

tribution pattern.
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Coating of Fluorescent Polystyrene Latex

Microspheres

FN and gelatin (GEL) (Sigma-Aldrich) were covalently

coupled to microspheres using the carbodiimide method as

recommended by microsphere manufacturer (Molecular

Probes). Briefly, the FN or GEL solutions were prepared in

MES buffer at the required concentration (0.01 mg ml21) and

5 ml of microsphere stock solution (2% aqueous suspension

of microspheres) was added. On 15 min of room temperature

incubation, EDAC (1-ethyl-3-(3-dimethylaminopropyl)-car-

bodiimide) (4 mg ml21) was mixed with the coating micro-

spheres solution. To quench the reaction, glycine was added to

a final concentration of 100 mM, and incubated for 2 h in an

orbital shaker. Samples were centrifuged (5000g, 20 min),

washed three times with PBS and resuspended in PBS with 1%

bovine serum albumin (BSA).

Statistical Analysis

Distribution normality was assessed by evaluating the his-

togram and applying the Kolmogorov–Smirnov (KS) non-

parametric test. All variables presented a normal distribution

and a P[ 0.05 in the KS test. Subsequently, we have used the

Student’s t test (a two-tailed analysis) for the Mean compari-

son between S. cerevisiae pADH and S. cerevisiae expressing

ALS genes.

For all analyses, significance was defined as P\ 0.05. All

statistical analyses were performed using the SPSS version 17.0

(SPSS, Chicago, IL).

This manuscript follows the Minimum Information

about a Flow Cytometry Experiment (MIFlowCyt) standard.

A detailed description of the experimental design, methodolo-

gies, results and conclusions is included in the supporting in-

formation.

RESULTS

Yeast Flow Cytometric Microsphere Adhesion Assay

Yeast and microspheres discrimination. Microspheres

attachment does not cause a substantial change in either size

or complexity of yeast, and as such, the subpopulation of yeast

cells adherent to microspheres is not obvious (Fig. 1c). Three

subpopulations can be distinctly identified in the dot plot

Figure 1. Flow cytometry analysis. (A) Representation of single microspheres population (R1) adjusted to the third logarithmic decade.

(B) Discrimination of yeast cell population (R2). (C) Analysis of a sample containing yeast cells (1 3 106 cell ml21) plus microspheres (1 3
107 microspheres ml21) after 30 min incubation. Differentiation of R2 and R3 populations was achieved in a dot plot of SSC versus FL3.
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mode of SSC versus fluorescence: R1-microspheres, R2-yeast

cells, and R3-yeast cells adherent to microspheres (Fig. 1c).

Analysis was focused on the yeast-microsphere subpopu-

lation (R3) and so, only the Candida population was gated on

the dot plot SSC versus FSC, excluding the microspheres

population (R1).

Microsphere concentrations. To optimize microsphere con-

centration for adhesion test preventing limitated amount of

microsphere (which may lead to a reduced yeast adhesion pro-

file), several concentrations ranging from 1 3 105 to 1 3 109

microspheres ml21 were tested. Concentrations below 1 3 107

microspheres ml21 were minimal compared with the concen-

tration of yeast cells (1 3 106 cells ml21); this unbalanced

yeasts/microspheres relation caused a negative bias in the

quantification of adhesion. We found a direct relation between

yeast adhesion and microsphere concentration until reaching

a saturation point with the concentration 1 3 107 micro-

spheres ml21 (Fig. 2). Concentrations above 1 3 107 micro-

spheres ml21 showed no differences in the percentage or in

the distribution pattern of R3 population; therefore, this con-

centration was selected for further procedures. Incubation

time was set to 30 min, allowing adhesion without micro-

sphere or yeast aggregation (Fig. 2).

Adhesion profile. Adhesion profiles were determined based

on a multifactorial analysis of the R3 subpopulation according

to two parameters (Fig. 3): (i) percentage of gated population,

representing the number of yeast cells with microspheres

attached and (ii) distribution pattern of a population, classi-

fied as either homogenic or heterogenic. A homogenous distri-

bution pattern indicates a population, wherein yeast cells are

bound to the same number of microspheres (frequently bind-

ing to a single microsphere) (Fig. 3). This population peak is

approximately superimposed to that of the microspheres

population (Fig. 1c). In contrast, a heterogeneous pattern dis-

plays the presence of different peaks beyond the third logarith-

mic decade and means attachment of more than a single

microsphere to each cell (Fig. 3).

To establish these patterns, a S. cerevisiae S150-2B (11)

strain displaying low adhesion profile (1.62% of adhered cells

and a homogenic distribution pattern) was used as negative

control. As a positive control, we selected a C. parapsilosis clin-

ical strain, isolated from a central venous catheter, displaying a

high adhesion profile (35% of adhered cells and a heterogenic

distribution pattern, with 44.39% of the yeast population

found beyond the third logarithmic decade).

Adhesion of S. cerevisiae Expressing Als Proteins
This flow cytometry adhesion protocol was validated

with S. cerevisiae strains previously characterized for their ad-

hesion phenotypes through standard methodology (11). Thus,

the adhesion ability of S. cerevisiae expressing C. albicans ALS

adhesion genes was assessed toward FN and GEL. ALS (agglu-

tinin-like sequence) genes encode a family of adhesins

involved in multiple host-pathogen interactions (attachment

to epithelial cells, endothelial cells, and extracellular matrix

proteins), also playing an important role in biofilm formation

and in the mediation of other cellular processes like iron

acquisition (25,26). As described by Sheppard et al. (11),

S. cerevisiae clones expressing ALS3, ALS5, ALS6, and ALS7

genes analyzed by flow cytometry revealed distinct adhesion

profiles, which also varied according to the host proteins

(Table 1). The negative control, S. cerevisiae transformed with

pADH (empty plasmid), exhibited low adhesion profile for

both host proteins (11).

Als3p and Als5p strains displayed the highest adhesion

profile. Als3p yielded the higher percentage of cells with ad-

herent microspheres as well as the higher relative number of

microspheres per cell (Table 1). Although a higher percentage

of Als3p cells adhered to FN, a similar distribution pattern was

obtained for FN and GEL. No differences in adhesion to both

proteins were detected for Als5p cells.

The Als6p strain displayed differential adhesion profiles

for GEL and FN. The percentage of cells adherent to micro-

Figure 2. Kinetics of cell-microsphere attachment. (A) For optimi-

zation of microspheres concentration, 1 3 106 yeast cell ml21

were incubated with 1 3 105 to 1 3 109 microspheres ml21 for 30

min. Concentrations below 1 3 107 microspheres ml21 proved to

be insufficient for adhesion quantification. Above this concentra-

tion, no differences were found in the percentage of cells with ad-

herent microspheres or in the distribution pattern (data not

shown). (B) To determine incubation time, 1 3 106 cell ml21 were

incubated with 1 3 107 microspheres ml21 for periods of time ran-

ging from 15 to 120 min. Thirty minutes of incubation was the

selected time.
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Figure 3. Characterization of adhesion profiles. A multifactorial adhesion profile can be defined for each sample based on two parameters

of the R3 population: percentage of cells with adherent microspheres and distribution pattern. The left panel represents S. cerevisiae
S150-2B strain exhibiting a low adhesion profile used as a negative control; the right panel depicts a representative case of a high adhesion

pattern, displayed by a C. parapsilosis clinical isolate. (A) shows the percentage of cells with adhered microspheres for the different pro-
files; (B) represents the characteristic distribution pattern (homogenic versus heterogenic) for a low adhesion profile (left panel) and a high

adhesion profile (right panel). Representative images of cells with adhered microspheres belonging to populations displaying the different

adhesion profiles are included in (C).

Table 1. Adhesion ability displayed by S. cerevisiae pADH and S. cerevisiae expressing C. albicans ALS genes toward host proteins:
gelatin (GEL) and fibronectin (FN)

PERCENTAGE OF CELLS WITH ADHERENT MICROSPHERES DISTRIBUTION PATTERN

GEL FN GEL FN

pADH 0.96 � 0.21 1.6 � 0.27* Homogenic Homogenic

Als3p 5.4 � 0.88* 10.3 � 2.22* Heterogenic Heterogenic

Als5p 6.6 � 1.20* 8.0 � 1.03* Heterogenic Heterogenic

Als6p 4.8 � 0.61* 1.7 � 0.10* Heterogenic Homogenic

Als7p 1.6 � 0.15* 2.4 � 0.23* Homogenic Homogenic

Adhesion was quantified through analysis of two parameters: percentage of cells with adherent microspheres and distribution pat-

tern. Data represents the mean of at least three experiences performed in triplicate.

* P\0.05 ALS when compared with pADH.
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spheres coated with GEL was four-fold higher, when compared

with control, and a heterogeneous pattern was obtained. Con-

versely, the adhesion ability of Als6p cells to attach to FN

microspheres was similar to that of pADH, providing evidence

that C. albicans Als6p is not involved in FN binding (Table 1).

Als7p adhesion profile was similar to that of pADH both

for GEL and FN.

DISCUSSION

The adhesion assay described in our study is based on a

simple principle: yeast cells become fluorescent when attached to

fluorescent microspheres. By flow cytometry, we were able to

distinguish nonadherent (nonfluorescent) from adherent yeast

cells (fluorescent). In this protocol, microspheres act as a surface

to which yeast cells can adhere enabling their quantification.

Compared with classical methodologies, flow cytometry

adhesion measurements exhibit major improvements: (i) large

scale quantitative analysis with possible detection of residual

adhesion; (ii) automated analysis which prevents operator’s

subjectivity and avoids false positives, as yeast cells with truly

adherent microspheres are evaluated as one single event; (iii)

results within a short period of time, in contrast to classical

methodologies that usually take several hours; (iv) finally, a

multifactorial analysis based in features displayed by individual

cells is provided allowing further evaluation of the adhesion

profile of the adherent population (heterogeneous/

homogenous). Thus, concomitant analysis of two independent

parameters by cytometric analysis (percentage of cells with

adherent microspheres and distribution pattern) enables an

extensive characterization of each sample population. Further-

more, this assay constitutes a useful and versatile tool to charac-

terize yeast attachment to a wide variety of substrata or mole-

cules of interest (by coating the microsphere). While optimizing

this methodology, polystyrene microspheres were used (a repre-

sentative of plastic). These microspheres can be easily coated

with a wide range of molecules, therefore allowing to measure

adhesion to other components, like host constituents.

After coating the microspheres with FN and GEL and

using flow cytometry protocol, the adhesion profile of S. cere-

visiae expressing C. albicans adhesins (ALS3, ALS5, ALS6, and

ALS7 genes) was determined. Als proteins are a major group

of adhesins encoded by the ALS gene family. It is known that

these cell surface proteins mediate adhesion to different host

molecules (namely FN, GEL, laminin, and cellular lines), yeast

aggregation and potentiates biofilm formation (11,25,26).

This approach allowed us not only to demonstrate the easiness

of the bead coating process but also to compare the adhesion

profile obtained by flow cytometry with the one previously

obtained by Sheppard et al. (11) using the six-well plate assay

method. Regarding their adhesion profile, these strains were

already well characterized. Data obtained by Sheppard et al.,

2004 (11), with a laborious classical methodology that takes

48 hours of incubation, were compared to the percentage of

cells with adherent microspheres determined by flow cytome-

try and results were very similar.

In conclusion, our adhesion flow cytometric method

proves to be a step forward regarding adhesion methodologies,

providing broader information within shorter time periods,

with considerably less laboratorial manipulation. Further-

more, it allows the characterization of each cell population

based on its adhesion profile, which proves to be important in

clinical and environmental fields.
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