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Since last decade, the debate on the parameter which reflects prostate cancer sensitivity to fractio-

nation in a radiotherapy treatment, the a/b, has become extensive. Unlike most tumors, the low

labeling indices (LI) and large potential doubling time that characterize the prostate tumor led some

authors to consider that it may behave as a late responding tissue. So far, the existing studies with

regard to this subject point to a low value of a/b, around 2.7 Gy, which may be considered as a ther-

apeutic gain in relation to surrounding normal tissues by using fewer and larger fractions. The aim

of this paper is to review several estimates that have been made in the last few years regarding the

prostate cancer a/b both from clinical and experimental data, as well as the set of factors that have

potentially influenced these evaluations. VC 2012 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4712224]
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I. INTRODUCTION

In radiotherapy (RT), the sensitivity to changes in fractiona-

tion can be quantified in terms of the a/b ratio.1 It is widely

accepted that a/b values for most human tumors are high

(typically 10 Gy), showing lower fractionation sensitivity

than late responding normal tissues (typically 3 Gy).2 How-

ever, there are some exceptions, such as the melanoma3 with

a/b of 0.6 Gy and some sarcomas4 with a/b of 0.4 Gy. Both

tumors show low labeling indices (LI) and/or are slow grow-

ing, with a large potential doubling time (Tpot).
5

Prostate tumors show both low LI values (<3%) and a

very large Tpot with a median of 42 days,6,7 resulting in a

low proportion of cycling cells. Thus, prostate tumors are

expected to respond to changes in fractionation as a late

responding tissue.8 Several recent studies have reported low

a/b values for prostate cancer.9–28 If this a/b is proven to be

lower than values estimated for late complications, then

hypofractionated regimens are expected to improve the ther-

apeutic ratio,8,29–36 beyond the advantages on cost saving

and patient convenience.

Nevertheless, the question of how low the a/b ratio for

prostate cancer is remains unanswered,37–39 and many factors

have been reported to contribute to the uncertainty about esti-

mations of its value, such as heterogeneity of tumors10,40 and

interpatient variations,41,42 influence of hypoxia,42 onset of

clonogenic cells repopulation,15,17,26,41,43,44 repair during low-

dose-rate brachytherapy (LDRBT),11,15,17,26,41,44 value of the

relative biological effectiveness (RBE) of permanent

implants,14,41,44,45 variations with clinical stage,24–27,42 edema

resulting from the insertion of radioactive seeds into the pros-

tate,17 dose heterogeneity of brachytherapy (BT) implants,23,41

biological effectiveness of external-beam radiotherapy

(EBRT) and LDRBT,46 relevance of parameters determined in
vitro and its relation to the in vivo environment,18,42,47 use of

combined data from multiple institutions with different modal-

ities,13 and imprecision of data assessed with only one modal-

ity.20,23,27 Therefore, despite large evidence exists in favor of a

low a/b ratio, caution must be taken when designing hypofrac-

tionated schedules, as small differences in its value may lead

to marked changes in the calculated biologically effective dose

(BED) delivered.

We will critically review the a/b ratio estimations for

prostate tumor by applying radiobiology knowledge to clini-

cal outcome as well as experimental in vitro data exploiting

factors which have been reported to influence evaluations.

Derivations from randomized clinical trials of hypofractiona-

tion and a trial from hyperfractionation will be also

reviewed.

II. CLINICAL EVIDENCE OF A SMALL a/b

Brenner and Hall9 were the first to point out the clinical

evidence that prostate cancer should have a low a/b ratio.

Two datasets on biochemical control—one from EBRT and

other from LDRBT with 125I implants—and the linear-

quadratic (LQ) model were used for the analysis. These com-

bined data were required to theoretically eliminate the b
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component from the LDRBT calculations (considering a com-

plete repair of sublethal damage after LDRBT treatment) to

estimate the a parameter. The b parameter was then generated

with the EBRT data, considering the equivalence on biochem-

ical control achieved using EBRT doses of 70 Gy in 1.8–2.0

Gy per fraction and 145 Gy from 125I implants. An a/b of

1.5 Gy (95% CI 0.8, 2.2) was derived from this analysis.

Proposals for the a/b ratio of prostate cancer of several inves-

tigators are summarized in Table I.

Fowler et al.11 updated the comparison and analysis of

Brenner and Hall9 with a review of 17 clinical outcome

papers in patients with prostate cancer treated either with

EBRT or 125I or 103Pd implants. A direct analysis of the clin-

ical data was performed to derive both the a/b ratio and the

half-time of repair (T1/2) of the prostate cancer. An a/b of

1.49 Gy (95% CI 1.25, 1.76) was obtained. Chappell et al.19

added Lukka et al.48 results on the clinical outcome of

patients treated with hypofractionated EBRT to the previous

analysis.11 An a/b ratio of 1.44 Gy (95% CI 1.22, 1.76) was

estimated, consistently with the first result.

Considering the equivalence on clinical outcomes of

EBRT and LDRBT in the treatment of localized prostate

cancer, King and Fowler12 presented a simple analytical

derivation of a/b without fitting models to clinical data. By

applying the LQ formalism for fractionated EBRT and per-

manent LDRBT, an a/b of around 1.8 Gy considering 125I

implants and around 2 Gy with 103Pd were derived.

III. THE TUMOR HETEROGENEITY EFFECT

King and Mayo40 made some remarks to the work of

Brenner and Hall9 due to its extremely low radiosensitivity

(a¼ 0.036 Gy �1) leading to an unrealistic too low number

of clonogens (15.3 with the LDRBT dataset and from 53.4 to

302.3 using the EBRT data). The authors argued that those

values had no biological relevance and were inconsistent

between LDRBT and EBRT. They proposed that a solid tu-

mor would consist of a heterogeneous population of clono-

gens with a spectrum of radiosensitivities. An a/b value of

4.96 Gy (95% CI 4.1, 5.6) was derived. Brenner and Hall10

responded with a fully heterogeneous LQ model in which

both a and b were represented by independent Gaussian dis-

tributions, resulting in an a/b of 2.1 Gy.

IV. THE INFLUENCE OF RBE, DOSE
HETEROGENEITY OF BT, REPOPULATION, AND T1/2

Dale and Jones45 criticized Brenner and Hall9 and Fowler

et al.11 estimations for not taking into account the RBE of the

radiation emitted by permanent implants of 125I and 103Pd.

The RBE contribution results in the enhancement of BED

(Refs. 49 and 50) and is likely to be between 1.2 and 2.1 for
125I sources51–55 and between 1.6 and 2.3 for permanent 103Pd

implants.53–55 Chappell et al.14 recalculated the a/b estimates

of Fowler et al.11 by combining RBEs for 125I and 103Pd in

the ranges (1.00, 1.20, 1.45) and (1.00, 1.20, 1.60, 1.75),

respectively. It resulted in a/b values between 0.68 Gy (95%

CI 0.57, 0.79) and 1.81 Gy (95% CI 1.51, 2.15), considering

only estimates with positive values of T1/2.

To estimate the sensitivity of the a/b ratio to dose hetero-

geneities resulting from 125I implants as well as to a set of

radiobiological parameters, Lindsay et al.41 equated the

tumor control probabilities (TCPs) of EBRT and LDRBT for

different values of a,56 Tpot,
6,7 RBE,53,55 and total dose of

EBRT treatments. They concluded that, without taking into

account dose heterogeneity and interpatient variation, the

actual value of a/b is most likely underestimated and could

be up to 12 Gy. Increasing RBE or Tpot values yielded to a

decrease in the a/b ratio. The largest variation occurred for

changes in the RBE. In average, changes of RBE between

1.0 and 1.4 yielded a 7.2 Gy decrease in fitted a/b.

Wang et al.15 claimed that other investigators9–12,40 have

not only ignored the problem of the unrealistic clonogenic

number (extremely low a values) but also neglected the

effect of repopulation of clonogenic cells in RT treatments.

They argued that if Tpot has a median of 42 days,7 repopula-

tion would play a role in LDRBT treatments, such as 125I

implants which treatment duration is protracted to more than

200 days. The generalized LQ model was applied to the clin-

ical data compiled by Fowler et al.11 and a new clinical data-

set of EBRT (Ref. 57) taking into consideration the effects

of dose-rate, sublethal damage repair, and clonogenic prolif-

eration. An a/b of 3.1 6 0.5 Gy was derived.15 They also

solved the problem of the extremely low radiosensitivity and

unrealistic clonogen cell number with an a parameter of

0.15 6 0.04 Gy�1 and a clonogenic cell number ranging

from 106 to 107, depending on the patient risk level.

Kal and Van Gellekom17 also took into account the influ-

ence of repopulation and added as a new factor the contribu-

tion of edema resulting from the insertion of radioactive

seeds in the prostate. This edema has the effect of reducing

the dose-rate and, therefore, the physical effective dose and

the BED.58,59 The reanalysis of the clinical data of Fowler

et al.11 resulted in an a/b value from 3.1 to 3.9 Gy.

Fowler et al.43 questioned the time delay (TK) for acceler-

ated proliferation in tumors used by Wang et al.15 and rang-

ing from 0 to 28 days. They argued that if fast proliferating

head and neck tumors present a TK of 21–35 days60,61 with a

Tpot from 3.5 to 4.7 days,62,63 the prostate cancer with a Tpot

of 42 days,7 would have a TK value up to 10 times the TK for

head and neck tumors, approximately between 210 and 300

days. Considering these TK values, the calculations9,11 of the

a/b ratio of 1.2–1.5 Gy were practically unaltered.

Fowler et al.11 used a generalization of the Brenner and

Hall9 model to determine a T1/2 of 1.90 h (95% CI 1.42,

2.86). Using this T1/2 and assuming no repopulation, Wang

et al.15 derived an a/b of 1.5 Gy, consistent with the result of

Fowler et al.11 If, instead, repopulation is considered with a

Tpot of 42 days, a T1/2 of 16 min is obtained, resulting in the

reported15 a/b of 3.1 6 0.5 Gy. A longer Tpot of 62 days

yielded a T1/2 of 48 min and an a/b of 2.6 Gy. Kal and Van

Gellekom17 found a common T1/2 value of 0.5 h for BT and

EBRT treatments in the range of the a/b overlap.

Nickers et al.26 used data of 328 patients treated with

EBRT and BT boost from either LDRBT or high-dose-rate

brachytherapy (HDRBT). The equivalence of dose was

established using the incomplete repair model of Dale64
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TABLE I. Summary of the reported a/b values for prostate cancer.

a/b(Gy) Source of the data Assumptions/comments References

1.5 (95% CI 0.8, 2.2) FFBF of EBRTþLDRBT Complete repair after LDRBT 9

No tumor repopulation

Biochemical control equivalence of EBRT and LDRBT

RBE of permanent implants¼ 1

Homogeneity of tumor and dose

Data collected from different institutions for multiple modalities

1.49 (95% CI 1.25, 1.76) FFBF of EBRTþLDRBT The same as Brenner and Hall (Ref. 9) except for the use of an ex-

ponential repair rate of tumor for LDRBT, l
11

1.44 (95% CI 1.22, 1.76) FFBF of EBRTþLDRBT The same as above 19

�1.8 (125I), �2 (103Pd) No fit to data The same as Brenner and Hall (Ref. 9) but with no fit to clinical

data

12

4.96 (95% CI 4.1, 5.6) FFBF of EBRTþLDRBT The same as Brenner and Hall (Ref. 9) except for the use of an a
represented by a distribution of values

40

2.1 FFBF of EBRTþLDRBT The same as Brenner and Hall (Ref. 9) except for the use of a and

b represented by independent distributions of values

10

0.68 (95% CI 0.57, 0.79) to

1.81 (95% CI 1.51, 2.15)

FFBF of EBRTþLDRBT The same as Fowler et al. (Ref. 11) except for the RBE of perma-

nent implants: RBE (125I)¼ (1.00, 1.20, 1.45), RBE

(103Pd)¼ (1.00, 1.20, 1.60, 1.75)

14

Nominal parameter values:

2.1–12.3 (all DVHs)

LDRBT DVHs: Uniform doses

of 120, 144 or 160 Gy; four clini-

cal preimplant; four clinical

postimplant

Exponential repair rate of tumor, l¼ 0.693 h�1 41

2.1–3.8 (better implants) TCP (EBRT)¼TCP (LDRBT)

1.0–1.8 (uniform doses) Nominal parameter values: RBE¼ 1.4, Tpot¼ 45 d, a¼ 0.2 Gy�1,

D (EBRT)¼ 70 Gy

Ranges of parameter values:

1.1–12.3 (better implants)

Ranges of parameter values: RBE¼ 1.2–1.6, Tpot¼ 25–65 d,

a¼ 0.05–0.3 Gy�1, D (EBRT)¼ 66–80 Gy

0.7–6.3 (uniform doses)

3.1 6 0.5 FFBF of EBRTþLDRBT The same as Fowler et al. (Ref. 11) except for the tumor repopula-

tion starting at Tk¼ 0 or 28 d, Tpot¼ 42 d

15

3.1–3.9 FFBF of EBRTþLDRBT The same as Wang et al. (Ref. 15) except for 17

Exponential repair rate of tumor for LDBT, l¼ 1.386, 0.693,

0.347 h�1

Edema resulting from the insertion of the radioactive seeds,

R0¼ 1.09 and kedema¼ 0.0032 h�1

3.41 (95% CI 2.56, 4.26)

(T1/2¼ 1.9 h)

FFBF of EBRTþLDRBT or

HDRBT boost

Exponential repair rate of tumor for LDBT, l¼ 0.462, 0.365 h�1 15

5.87 (95% CI 4.67, 7.07)

(T1/2¼ 1.5 h)

BED equivalence of EBRTþLDRBT boost and EBRTþHDRBT

boost (a/b¼ 3 Gy)

RBE of permanent implants¼ 1

Homogeneity of dose

Use of data from matching rather than from randomized controlled

trial

Nominal parameter values: FFBF of EBRTþLDRBT Nominal parameter values: RBE¼ 1, Tpot¼ 45 d, T1/2¼ 1 h 15

>30 (95% CI 5.2, >50) Ranges of parameter values: RBE¼ 1–2.0, Tpot¼ 30–90 d,

T1/2¼ 0.5–2 h

Ranges of parameter values: Homogeneity of dose

>30 (95% CI 0.6 –6.5, >50) Use of data from matching rather than from randomized controlled

trial

1.2 (95% CI 0.03, 4.1) FFBF of EBRTþHDRBT boost Complete repair after HDRBT 13

Homogeneity of dose

Use of data from matching rather than from randomized controlled

trial

Short follow-up

Small sample size

3.1 (68% CI 1.5, 5.7) FFBF of EBRTþHDRBT boost

and EBRT alone

Exponential repair rate of tumor for HDRBT (Ref. 15), l¼ 2.599

h�1

16

Clonogen number (Ref. 15), K¼ 1.6� 106–1.1� 107

Homogeneity of dose

3.7 (95% CI 1.1,1) (EBRT) FFBF of EBRTþHDRBT boost

and EBRT alone

Equivalence of EBRT and HDRBT in terms of dose and dose-rate

effects

23

2.6 (95% CI 0.9, 4.8)

(EBRTþHDRBT)

Data collected from different institutions for multiple modalities
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assuming15 an a/b of 3 Gy and a T1/2 of 1.5 h. Equivalence

on biochemical control between the two groups was

accessed and confirmed via a Cox proportional hazards anal-

ysis consistent with the fitted parameters. Data fitted well an

a/b of 3.41 Gy (95% CI 2.56, 4.26) and a T1/2 (Ref. 11) of

1.9 h, and also an a/b of 5.87 Gy (95% CI 4.67, 7.07) for a

T1/2 of 1.5 h. The a/b result did not vary with the three dif-

ferent prognostic groups of prostate cancer.

Shaffer et al.44 estimated the a/b value for low and low-

intermediate risk prostate cancer patients treated with EBRT

or LDRBT. Patients were matched for the same outcome-

associated risk factors and follow-up time. The LQ formula-

tion including the repopulation factor was used to find the

best fitting-values of a/b considering RBE¼ 1, Tpot¼ 45 d,

and T1/2¼ 1 h. This fit yielded an a/b value higher than 30

Gy with a lower confidence limit of 5.2 Gy. Varying parame-

ters to extreme values, the a/b best-fit was still higher than

30 Gy with a minimum lower confidence limit of 0.6 Gy for

RBE¼ 2, Tpot¼ 45 d, and T1/2¼ 1 h, and a maximum of 6.5

Gy for RBE¼ 1, Tpot¼ 30 d, and T1/2¼ 0.5 h.

V. THE CONTRIBUTION OF HDRBT BOOSTS

Interposing previous results, D’Souza and Thames46

questioned the equivalence of clinical outcomes of EBRT

and LDRBT treatments regarding the tumor control defini-

tion and prescribed dose. In order to overcome the inherent

uncertainties of combining different datasets of LDRBT

TABLE I. (Continued)

a/b(Gy) Source of the data Assumptions/comments References

4.5 (95% CI 1.6, 8.7)

(EBRTþ 120% HDRBT

increase)

1.55 (95% CI 0.46, 4.52) FFBF of EBRT Data collected from different institutions 27

1.4 (95% CI 0.9, 2.2) FFBF of EBRT

(standardþ hypofractionation)

Data collected from different institutions 25

1.86 (95%CI 0.7, 5.1) FFBF of EBRT

(standardþ hypofractionation)

No tumor repopulation 28

2.1 Gy FFBF of EBRT

(standardþ hypofractionation)

Tumor repopulation by 1 week with dose equivalent of prolifera-

tion of 0.25 Gy/d (Ref. 130)

28

8.5 (well-oxygenated

clonogens)

Radiosensitivity parameters from

prostate tumor cell lines

Hypoxic microenvironment in prostate tumor, OERa¼ 1.75 and

OERb¼ 13.25

42,71

50.3 (hypoxic clonogens) Interpatient heterogeneity of intrinsic radiosensitivity, ra

b-component contributes insignificantly for the total cell killing

Average values of a and b from prostate tumor cell lines,

a¼ 0.26 6 0.06 Gy�1 and b¼ 0.0312 6 0.0064 Gy�2

Complete repair after LDRBT

Clonogen number, K¼ 5� 106 (for LDRBT) and K¼ 106 to

107(for EBRT)

Different details of the several experimental protocols

No correction for dose-rate effects

3.3 (68% CI 1.9, 5.8)a Radiosensitivity parameters from

prostate tumor cell lines

Different details of the several experimental protocols 18,75

Correction for dose-rate effects, G computed with T1/2¼ 0.01

(LNCaP), 8.4 (PPC-1), 8.9 (TSU-Pr1), 5.7 (DU-145), 6.6 (PC-3) h

for survival data for several dose rates and T1/2¼ 2 h for survival

data for only HDR exposure

1.12 (95% CI –3.3, 5.6) FFBF of EBRT randomized trial

comparing two different sched-

ules (Ref. 48) (20 F� 2.62 Gy vs

33 F� 2 Gy)

The steepness of the dose–response relationship for a fixed fraction

size is known

20

No effect of increasing overall time from 4 to 6.5 weeks on tumor

control

0.65 (95% CI �1.4, 2.8) FFBF of EBRT randomized trial

comparing two different sched-

ules (20 F� 2.75 Gy vs 32 F� 2

Gy)

The same as above 22

8.3 (95% CI 0.7, 16) FFBF of EBRT prospective non-

randomized trial comparing two

different schedules (Ref. 76)

(daily 35–38 F� 2 Gy vs

2� daily 58–69 F� 1.2 Gy)

Assume a/b¼ 10 Gy for isoeffectiveness of the two regimens 20

The steepness of the dose–response relationship for a fixed fraction

size is known

The outcome after hyperfractionated treatments can be influenced

by incomplete repair

Note: CI¼ confidence interval; FFBF¼ freedom from biochemical failure; EBRT¼ external-beam radiotherapy; LDRBT¼ low-dose-rate brachytherapy;

RBE¼ relative biological effectiveness; DVH¼ dose-volume histogram; TCP¼ tumor control probability; T1/2¼ half-time of repair; Tpot¼ potential doubling

time; D¼ prescribed total dose; Tk¼ time after the starting of treatment at which repopulation begins; BED¼ biological effective dose; HDRBT¼ high-dose-

rate brachytherapy; OER¼ oxygen enhancement ratio; G¼Lea–Catcheside dose-protraction factor.
aFor details on reported parameters see Table II.
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and EBRT (different dose distributions and specifications,

derivation of data from different institutions yielding poten-

tial differences in responses to staging and scoring, and pos-

sible differences in RBEs of permanent implants), Brenner

et al.13 analyzed outcomes from EBRT treatments plus

HDRBT boosts reported by Martinez et al.65 In the HDRBT

protocol, treatment was delivered in two or three implants

of 192Ir escalated from 5.5 to 6.5 Gy (three implants) and

from 8.25 to 10.5 Gy (two implants). Analysis was per-

formed using standard models of tumor cure based on Pois-

son statistics combined with the LQ formalism. The authors

found an a/b value of 1.2 Gy (95% CI 0.03, 4.1) which

they claimed consistent with previous estimations.

One year later, Wang et al.16 reanalyzed the data from

Martinez et al.65,66 with a longer follow-up, allowing for ma-

turity and stability in the data and a new clinical dataset57,67

from EBRT dose-escalation to determine the standard uncer-

tainties of parameters. Using the same formalism as before,15

an a/b ratio of 3.1 Gy (68% CI 1.5, 5.7) was reported by

these authors.

To avoid dose inhomogeneity, Williams et al.23 made an

attempt to estimate the prostate cancer a/b ratio by consider-

ing only EBRT data of a total of 3756 patients with a range of

fraction sizes. The a/b ratios were estimated via a proportional

hazards model stratified by risk severity and institution. Using

biochemical failure as an endpoint resulted in an a/b estimate

of 3.7 Gy (95% CI 1.1,1). Despite the large sample size and

fractionation schedules, the use of EBRT data alone showed a

high level of uncertainty, although the tendency for low a/b
values. Incorporating in the analysis a small number of

HDRBT boost patients (185 patients), the precision of the

estimation was improved to 2.6 Gy (95% CI 0.9, 4.8). To

access the sensitivity of the previous estimation to the addition

of the HDRBT data, authors also assumed that the effective

tumor dose for each high-dose-rate fraction was higher than

the prescribed dose. With a 20% increment in the fraction

dose, the a/b ratio increased to 4.5 Gy (95% CI 1.6, 8.7).

VI. THE USE OF EBRT DATA ALONE

To overcome the large uncertainties found in Williams

et al.23 estimation of the a/b ratio by using only EBRT data,

Proust-Lima et al.27 avoided to use the conventional binary

failure endpoint to access outcome by incorporating a multi-

variable modeling approach focused on the prostate-specific

antigen (PSA) values after treatment. PSA measures were

accessed in a total of 5093 patients with localized prostate

cancer treated with EBRT. The total dose of EBRT and the

sum of square doses-per-fraction were associated with long-

term PSA rise. An estimate of 1.55 Gy (95% CI 0.46, 4.52)

was obtained with this approach.

Miralbell et al.24,25 collected data from 5969 patients

treated with EBRT standard fractionation (40%) and hypo-

fractionation (60%) with 2.7–6.7 Gy per fraction. Primary

endpoint was biochemical no evidence of disease (bNED)

using Phoenix definition. The value of the estimated a/b
ratio was 1.4 Gy (95% CI 0.9, 2.2). No major differences

were found in the a/b value for the different risk groups.

Leborgne et al.28 reported a low a/b derived from the out-

come of patients treated with hypofractionated EBRT deliv-

ered in 3.0–3.15 Gy fractions and patients treated with

standard fractionation. The parameter value which better

matched the actuarial bNED at 5 years was 1.86 Gy (95% CI

0.7, 5.1).

VII. THE INFLUENCE OF HYPOXIA

Nahum et al.42 proposed a model of prostate cancer

response to ionizing radiation by applying biological factors

which may influence the intrinsic radiosensitivity of the aer-

obic tumor clonogens. A model of TCP incorporating both

interpatient variation of intrinsic radiosensitivity and the

effect of hypoxia was used together with average values of

radiosensitivity (a and b) published for prostate cancer cell

lines (see Table II and Table I from Nahum et al.42). To

account for hypoxia, oxygen enhancement ratio (OER) fac-

tors of 1.75 and 3.25 were used for a and b-inactivation,

respectively.68,69 An a/b ratio of 8.5 Gy was derived for

well-oxygenated cells and of 15.5 Gy for hypoxic cells.

Orton70 commented on Nahum et al.42 results claiming that

these authors used an incorrect value of b for hypoxic cells.

The correction of this parameter resulted in a much higher

a/b ratio of 50.3 Gy for hypoxic cells.71 The report of

Nahum et al.42 was also criticized by Wang et al.47 who,

among other factors, objected about the relevance and reli-

ability of the in vitro data. In disagreement with the relation

between the decreased radiosensitivity due to hypoxia and

the a/b ratio, Fowler33 referred that its significance with

respect to the a/b values is unknown and speculated that

hypoxia might slow down proliferation leading to a

decrease in the a/b value. On the other hand, Carlson

et al.18 claimed that Nahum et al.42 made no attempt to cor-

rect for dose-rate effects and that radiosensitivity parame-

ters of PC3 cell line from Leith et al.72 were incorrectly

reported. The reanalysis of Carlson et al.18 of the in vitro
data suggested that the a/b ratios reported by Nahum

et al.42 were too high (see Sec. VIII).

VIII. THE CONTRIBUTION OF THE IN VITRO
STUDIES

Table II summarizes in vitro survival data for six cell

lines.72–74 Reported a/b ratios are between 1.2 and 34.0

Gy. If removing the data from LnCap cell line which yields

the highest a/b values, reminder will lie between 1.2 and

8.8 Gy which are within the range of the clinical derived

values. Carlson et al.18 reanalyzed survival data72–74 for

the six prostate cancer cell lines presented in Table II in a

total of 10 datasets using LQ survival model. Paired boot-

strap for regression was used to compute 95% confidence

intervals. Attempt was made to correct for dose-rate

effects. Estimates75 of a/b ranged from 1.1 to 6.29 Gy,

with a geometric mean of 3.3 Gy and corresponding stand-

ard deviation (SD) of 1.9–5.8 Gy. These investigators con-

cluded that estimates of the a/b ratio derived from in vitro
and clinical data are consistent with an a/b ratio less than

about 3–4 Gy.

3193 Oliveira, Teixeira, and Fernandes: a/b for prostate cancer 3193

Medical Physics, Vol. 39, No. 6, June 2012



IX. ESTIMATIONS FROM HYPERFRACTIONATION
RESULTS

Valdagni et al.76 reported on a prospective nonrandom-

ized trial using conventional 2 Gy daily treatments vs 1.2 Gy

twice a day. Hyperfractionation reduced late toxicities and

yielded a better biochemical control inconsistent with a low

a/b ratio. Bentzen and Ritter20 applied a method to deter-

mine the a/b ratio and its 95% confidence interval for two

nonisoeffective regimens since the steepness of the dose–-

response curve was known. The estimate of the slope of the

dose–response curve of Cheung et al.77 was used. The a/b
value was calculated from the hazard ratios reported by Val-

dagni et al.76 resulting in an estimate of 8.3 Gy (95% CI 0.7,

16). Bentzen and Ritter20 claimed that this confidence inter-

val cannot exclude the low values of a/b and suggested that

the hypofractionated schedule might suffer from incomplete

repair.

X. ESTIMATIONS FROM HYPOFRACTIONATION
RANDOMIZED TRIALS

Lukka et al.48,78 randomized 936 patients treated with 20

fractions of 2.62 Gy (short arm) vs 33 fractions of 2 Gy

(long arm) of EBRT. At 5-year follow-up, biochemical or

clinical failure probability was higher in the short arm (60%)

compared with the long arm (53%), although the total hypo-

fractionated dose was too low to give equality with the con-

trolled arm.33 There were no differences in the overall

survival or in late toxicity. Applying the same method as for

the Valdagni et al.76 trial in combination with the hazard ra-

tio and its 95% confidence limits to the Lukka et al.48 results

yielded an a/b of 1.12 Gy (95% CI �3.3, 5.6).

Another randomized trial on hypofractionation was per-

formed by Yeoh et al.21,22,79 in which hypofractionated

schedules of 20 fractions of 2.75 Gy were compared with

regimens of 32 fractions of 2 Gy for a total of 217 patients.

At 90 months follow-up, biochemical relapse-free survival

for the hypofractionated and conventional groups was 53%

and 44% using the Phoenix criteria, respectively.22 The esti-

mation of the a/b ratio was, as previous, made upon the slope

of the prostate cancer dose–response curve resulting in a

value of 2.2 Gy (95% CI �6.0, 10.6) from Yeoh et al.,21

with a median follow-up of 48 months and 0.65 Gy (95% CI

�1.4, 2.8) with the updated results of Yeoh et al.22 at 90

months follow-up. Both datasets21,48 exemplify the problem

of identifying a/b values within clinical relevant 95% confi-

dence intervals, although the considerable reduction in the

interval width with the longer follow-up results of Yoeh22

trial. Also, the estimations of Bentzen and Ritter20 and Yeoh

et al.21,22 assume that the dose–response relationship for a

fixed fraction size is known and do not take into account the

effect of increasing the overall time from 4 weeks with the

hypofractionated schedules to 6.5 weeks with the conven-

tional fractionated regimens.

Pollack et al.80,81 randomized 303 patients of intermedi-

ate and high risk prostate cancer treated with 26 fractions of

2.7 Gy or 38 fractions of 2 Gy. The rational for the design of

the hypofractionated schedule was based on the potential

therapeutic gain assuming an a/b ratio of 1.5 Gy. Investiga-

tors reported no differences between the two regimens in

relation to patient outcome or toxicity at a median follow-up

of 39 months. They also concluded that if no difference

exists between the two arms with longer follow-up, the a/b
ratio could be above 3 (possibly 6.5 or even higher).

XI. FEASIBILITY OF THE HYPOFRACTIONATION
REGIMENS

Clinical studies of hypofractionated treatments of prostate

cancer have shown that this modality is safe and effective. Non-

randomized studies of moderately hypofractionated EBRT

(2.5–4 Gy fractions) delivered mainly by intensity-modulated

radiotherapy (IMRT) or 3D-conformal radiotherapy have

reported biochemical outcomes comparable with that achieved

with conventional fractionated RT (Refs. 82–92) and with lim-

ited rectal and bladder late complications.82–95 Reported me-

dian follow-up time varied from 19 to 51 months. Publications

on prostate cancer patients treated with conventional fractio-

nated EBRT combined with hypofractionated IMRT boosts96

of 2 fractions of 5-8 Gy (median follow-up of 63 months) or

with concomitant boosts97,98 in 28 fractions of 2.5 Gy and 25

fractions of 2.7 Gy (median follow-up of 46 and 39 months,

respectively) concluded that these treatments were feasible and

well tolerated. The results on EBRT treatments in combination

TABLE II. a and b-coefficients reported for six human prostate cancer cell lines.

Cell line a (Gy�1) b (Gy�2) a/b (Gy) References

a/b (Gy)

Reporteda by Carlson (Ref. 18)

PC-3 0.487 0.055 8.8 72 4.93 (95% CI 3.17, 7.51)

0.241 0.069 3.5 73 3.09 (95% CI 2.22, 4.15)

0.064 0.017 3.7 74 4.11 (95% CI 2.51, 5.72)

DU-145 0.155 0.0521 2.9 72 3.11 (95% CI 2.33, 3.36)

0.099 0.009 11 74 6.29 (95% CI 4.09, 9.74)

0.313 0.048 6.5 73 5.71 (95% CI 2.90, 15.51)

LnCaP 0.29 0.013 22.3 74 1.09 (95% CI 1.06, 1.36)

PPC-1 0.1 0.026 3.8 74 2.49 (95% CI 1.89, 3.05)

TSU-Pr1 0.115 0.015 7.7 74 4.72 (95% CI 2.42, 10.69)

TSU 0.062 0.05 1.2 73 1.80 (95% CI 0.65, 3.42)

aBest estimates of a/b derived from the reanalyses of the published data reported by Carlson et al. (Ref. 18).
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with HDRBT boosts65,66,99–105 with median follow-up ranging

from 40 to 105 months (2 fractions� 5–15 Gy, 3

fractions� 3–6.5 Gy, or 4 fractions� 3–6 Gy) and extreme

hypofractionated treatments of HDRBT delivered as

monotherapy106–112 at median follow-up of 22–65 months (3

fractions� 10.5 Gy, 4 fractions� 8.5–9.5 Gy, 6 fractions

� 6.75–7 Gy, 8 fractions� 6 Gy, or 9 fractions� 6 Gy) or

stereotactic body radiosurgery113–115 with median follow-up

varying from 33 to 60 months (5 fractions� 6.7–7.25 Gy) have

been revealing high rates of biochemical control associated

with low morbidity. Analysis of the results of hypofractionated

conformal carbon ion RT (Ref. 116) delivered in 20 fractions of

3.3 Gy also yielded satisfactory biochemical control and mini-

mal morbidity at median follow-up of 30 months. On the other

hand, if some recent studies have reported equivalence in bio-

chemical outcome and/or complication rates when comparing

26 fractions of 2.7 Gy with 38 fractions of 2 Gy (Pollack

et al.,81 median follow-up: 39 months; Turaka et al.,117 median

follow-up: 55 months) or 30 fractions of 2.4 Gy with 42 frac-

tions of 1.8 Gy (Kuban et al.,118 median follow-up: 58 months

for the hypofractionation regimens and 55 months for the con-

ventional), others revealed equivalence in late toxicity with

superior outcome in the hypofractionated schedule as delivered

in 20 fractions of 3.1 Gy vs 40 fractions of 2 Gy (Arcangeli

et al.,119,120 median follow-up: 32 months for the hypofractio-

nation regimens and 35 months for the conventional). Despite

differences in dose prescription, delivery methods, patient

selection according to prognostic factors, short follow-up in

many studies, and the use of androgen deprivation therapy in

some patients, the clinical experience with hypofractionation

seems to be consistent with a low a/b ratio for prostate cancer.

XII. THE a/b VALUE FOR PROSTATE CANCER

Five years ago, in 2007, a review of the a/b values reported

to that date was published by Das�u.37 However, several reports

were published ever since with new estimations for the pros-

tate cancer a/b.22,23,25–28,44 Similarly, several studies compar-

ing the biochemical outcome and late toxicity in patients

treated with hypofractionation and conventional regimens are

now available, showing the feasibility of hypofractionation

used to treat prostate cancer by radiation.22,24,25,28,48–52

Although the first estimations from randomized trials have

drawn the idea of a low a/b value for prostate cancer,20,21 the

associated large width of the 95% confidence intervals indi-

cated a considerable uncertainty related with such evaluations.

Now, datasets reflecting longer follow-up allowed to substan-

tially reduce these margins.22 For example, Yeoh et al.21

reported a value of 2.2 Gy (95% CI �6.0, 10.6) in 2006 at 48

months follow-up which was reduced to 0.65 Gy (95% CI

�1.4, 2.8) with a longer follow-up of 90 months in 2011;22

Miralbell et al.,25 in 2012, found a value of 1.4 Gy (95% CI

0.9, 2.2) through the assembly of seven different datasets in a

total of 5969 patients with a median follow-up of 41 months in

40 patients, 52 months in 403, and more than 60 months in the

remaining.

Figure 1 shows a summary of the reported a/b values pub-

lished with the corresponding 95% CI limits. Studies

reported after the review of Das�u37 are highlighted with the

references in bold. An arithmetic mean of all these reports

yielded an a/b average of 2.73 Gy with a SD of 1.96 Gy.

Figure 2 was built upon the values represented in Fig. 1 and

shows also the arithmetic mean of the a/b values reported

before 2007 (2.88 Gy, SD¼ 2.15 Gy) and in the year of

2007 and after (2.48 Gy, SD¼ 1.74 Gy). Moreover, the cor-

responding arithmetic mean of the 95% CI amplitudes and

its SD are also represented in Fig. 2. A clear reduction not

only in these intervals but also in its variation can be

observed from studies reported before 2007 (5.57 Gy,

SD¼ 4.99 Gy) to the more recent reports (3.14 Gy,

SD¼ 1.30 Gy). An average amplitude of 4.62 Gy with a SD

of 4.09 Gy was obtained when considering all the studies.

Therefore, although the averaged reported values for the a/b
ratio of prostate cancer have not considerably changed since

the time of the last review, the amplitude of the reported CI

decreased considerably, increasing the confidence on its

value.

XIII. FINAL CONSIDERATIONS

Although clinical practice of hypofractionation in the

treatment of prostate cancer seems not to increase late

FIG. 1. Summary of reported a/b values and the corresponding 95% CI adapted from Das�u (Ref. 37) Published values without defined CI are not shown.

Square points and references in bold are those published after Das�u (Ref. 37) review.The dashed–dotted line represents the arithmetic mean of the a/bvalues

(2.73 Gy).
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complication and shows a biochemical outcome superior or

equivalent to conventional schedules, caution must be taken

when using extreme hypofractionated schedules (less than

ten fractions) due to the negative effects of hypoxia on cell

killing by radiation.121 In prostate cancer, fractional hypoxic

values were found to be between 0% and 94% with a median

of 18% using positron emission tomography scans and the

hypoxia-binding [18F]fluoromisonidazole.122 Estimations of

hypoxic fractions from cell survival curves of xenografted

human tumors72 derived hypoxic fractions of 7% and 52%

for DU-145 and PC-3 tumors, respectively. In vivo measure-

ments of pO2 using Eppendorf microelectrodes123 revealed

lower pO2 in the pathological involved side of the prostate

compared with normal muscle, suggesting that hypoxic

regions exist in human prostate cancer. Increasing levels of

hypoxia were correlated with increasing clinical stage124 and

early biochemical failure.125 Parker et al.126 measured the

intraprostatic oxygen tension using Eppendorf electrodes

and confirmed that hypoxia exists in prostate cancer but

found no association between oxygen values and clinical

prognostic factors or differences between oxygenation of tu-

mor regions and normal prostate. Furthermore, Carlson

et al.121 found that tumor cell survival increases by a factor

of �4� 102 as the dose per fraction is increased from 2.0 Gy

(n¼ 40) to 18 Gy (n¼ 1) for prostate cancer which authors

attributed to possible changes in the a/b ratio with heteroge-

neous oxygenation, reduction in interfraction reoxygenation,

and an increased importance of the hypoxic fraction in deter-

mining dose responses with the use of higher doses per frac-

tion. Nahum et al.42 reported an increased a/b value for

more radioresistent hypoxic tumors, comparing to well-

oxygenated tumor cells, although recent estimations did not

find a correlation between the a/b ratio and different risk

groups of prostate cancer.24–27

Another factor that may influence the a/b estimations

when using LDRBT clinical data is the onset of tumor cells

repopulation after the beginning of treatment. Brenner and

Hall9 and Fowler et al.11 neglected repopulation during the

radiation treatment and produced an a/b of �1.5 Gy. On

the other hand, Wang et al.15 and Kal and Van Gellekom,17

considering a repopulation onset of 0 or 28 days after the be-

ginning of the treatment, reported a/b values of �3.1–3.9 Gy

which would fall into the previous values15 if repopulation

was not considered. Despite the data indicating that overall

treatment time could be protracted by, at least, 9 weeks with-

out evident impact in outcome,127 some recent studies have

reported that prolongation of treatment in patients with T2

localized prostate cancer for more than 9 weeks may worsen

biochemical outcome.128 Likewise, breaks of more than 3

days in a 38-fraction treatment or of more than 4 days in a

40-fraction in low risk patients should be avoided.129 A rela-

tive increase of 6% in biochemical failures was found when

the treatment time was elapsed for 1 week (total of 7 weeks)

in low- and intermediate risk patients.130 Leborgne et al.,28

regarding these last results,130 considered a TK of 52 days

and a proliferation rate of 0.25 Gy/d which yielded a slight

increment in the a/b from 1.86 Gy (assuming no prolifera-

tion) up to 2.1 Gy. More studies are needed to understand

the role of repopulation on prostate cancer treatment by radi-

ation and what is its real impact on the a/b value. RBE of

permanent implants may also influence the a/b estimations

from LDRBT data.14,41,44,45 The correction for this factor

yielded lower values for the a/b ratio.

The introduction of the half-time of repair in Fowler

et al.11 study did not have a substantial impact in the a/b
estimation regarding the previous finding of Brenner and

Hall.9 However, Nickers et al.26 found an increase of more

than 2 Gy when decreasing T1/2 from 1.9 to 1.5 h. These

authors attributed this variation as well as the large confi-

dence interval to the diversity of the LDRBT patients’ data

and to the interpatient heterogeneity of tumors. In fact, the

tumor heterogeneity may increase the actual a/b value,42,131

and the use of homogeneous models overestimates its statis-

tical significance.132

If some studies suggest some correlation between in vitro
and in vivo parameters,133–141 in others little or no corre-

spondence is achieved between in vitro predictions and rele-

vant clinical endpoints.141–146 This lack of correlation may

be due to small patient sample sizes, unreliable radiosensi-

tivity indicators, or uncertain relationship among in vitro

FIG. 2. Arithmetic mean and corresponding SD of the reported a/b values shown in Fig. 1 before (lozenge light gray points: 2.88 Gy, SD¼ 2.15 Gy) and after

Das�u (Ref. 37) review (lozenge black points: 2.48 Gy, SD¼ 1.74 Gy) and from all studies (lozenge dark gray: 2.73 Gy, SD¼ 1.96 Gy). The arithmetic mean

of the 95% CI amplitudes of those studies is also represented with the corresponding SD before 2007 (circle light gray points 5.57 Gy, SD¼ 4.99 Gy), after

2007 (circle black points: 3.14 Gy, SD¼ 1.30 Gy) and from all the reports (circle dark gray: 4.62 Gy, SD¼ 4.09).
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indicators and in vivo endpoints.18 Nonetheless, a review of

the in vitro data of prostate cancer cell lines performed by

Carlson et al.18 resulted in an a/b geometric mean of 3.3 Gy

that agrees with other clinical estimations that took into

account the repopulation factor despite the large confidence

intervals reported.75

At date, evidence mounts that the a/b ratio for prostate

cancer is low, around 2.7 Gy. Since the last review of the

prostate cancer a/b performed by Das�u,37 several other

reports have been published providing new estimations of

the a/b value and re-enforcing the idea that it might be low.

Also, the reported amplitudes of the CI considerably

decreased, increasing the reliability of the most recent stud-

ies. Considering that this value is lower than that for late rec-

tal complications,147 with an a/b of 5.4 6 1.5 Gy, a

therapeutic gain may be achieved when using hypofractiona-

tion protocols. However, one cannot forget all the uncertain-

ties that have been revealed around the a/b estimation and

we expect that, with the maturation of the ongoing random-

ized trials, a more precise answer could be achieved in a

recent future. Also, the use of extreme hypofractionated

treatments should be evaluated carefully due to the possible

reduction on biochemical outcome triggered by other radio-

biological factors such as hypoxia. Acute toxicity may also

increase with the hypofractionated regimens,78,80,148,149 pos-

sibly due to a higher net of stem-cell depletion in the rectal

and bladder mucosa.78
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