

Study on influence of the new CoDeSys V3.0 on the
existing CoDeSys discipline of the Mind8 Engineering

Center

HUGO FILIPE DA SILVEIRA TEIXEIRA PEREIRA
(Bacharel em Engenharia Electrotécnica)

Dissertação para a obtenção do grau de Mestre em

Engenharia Electrotécnica – ramo de Automação e Electrónica Industrial

Orientador (es):
Dipl.-Ing. Raphael Buck
Ph.D. Acácio Galhardo

Júri:
Presidente:
Vogais:

Mês de Ano

I Acknowledgment

2

I Acknowledgment

I want to thank to Ph.D. Acácio Galhardo for the great willingness to accept me as my

I.S.E.L. tutor. I want to thanks also to Prof. Ricardo Luis, for guide me in the Erasmus

process. Thank you for all your efforts.

I specially want to thank to my German tutor, Dipl.-Ingenieur Raphael Buck, for all the help

he gave me and most of all for never make me feel I was alone. Another special thanks to

Harro Höfliger team. They always make me feel like I was at home, and most of all they had

so many patience speaking to me always in English because they know in that time my

German was not so good. They are Mr. Scheub, Mr. Weller and Mr. Haupt from

development department. I only have good memories from them.

Special thanks for my friend and college Rui Figueiredo for all the friendship and company

he gave to me, after all, we are the only two Portuguese in the Stuttgart University Campus.

Finally, I want to most specially thanks to my parents and my girlfriend, Carla, for all the

support in this time that I have been away.

Stuttgart, July 2012

II Theme

3

II Theme

III Table of Contents

4

III Table of Contents

I Acknowledgment .. 2

II Theme .. 3

III Table of Contents ... 4

IV Abbreviations .. 6

1 Abstract ... 7

2 Basics .. 8

2.1 Packaging Machinery ... 8

2.2 PLC – Programmable Logic Controller ... 11

2.3 Standard IEC 61131-3 .. 12

2.3.1 Configuration, Resources and Tasks .. 14

2.3.2 Programming Languages .. 16

2.4 PLCopen ... 21

2.5 Eplan Engineering Center (EEC) .. 23

3 Traffic Light Sample ... 24

3.1 Creation of CoDeSys Version 2 Project .. 25

3.2 Project XML Output – Eni-Server .. 31

3.3 Import of the Traffic Light Sample into CoDeSys Version 3 and adding of an

object oriented function block ... 33

3.4 XML Comparison of CoDeSys Version 2 and Version 3 44

III Table of Contents

5

4 Analysis of Epas-5 XML-Import/Export-Scheme 47

4.1 Export/Import PLCopenXML Tool ... 48

4.2 Comparison of Schemes ... 49

5 Creation of the Eplan Engineering Center Model 69

5.1 Mechatronic Architecture Library Creation .. 70

5.2 Epas-5 Architecture Library Creation .. 71

5.3 Mechatronic Construction Library Creation ... 73

5.4 Road Project Construction .. 94

6 Summary of Results ... 100

7 Future Prospects .. 103

V List of Figures ... 104

VI List of Tables ... 108

VII References .. 109

VIII Appendix ... 110

IV Abbreviations

6

IV Abbreviations

Abbreviation Meaning

FDB Function Block Diagram

SFC Sequential Function Chart

LD Ladder Diagram

ST Structure Text

IL Instruction List

IEC International Electrotechnical Commission

PLC Programmable Logic Controller

CPU Central Processor Unit

POU Program Organization Unit

XML Extensible Markup Language

EEC Eplan Engineering Center

I/O Inputs/Output

TC Technical Committees

HH Harro Höfliger

OOP Objects Oriented Programming

1 Abstract

7

1 Abstract

CoDeSys "Controller Development Systems" is a development environment for

programming in the area of automation controllers. It is an open source solution completely

in line with the international industrial standard IEC 61131-3. All five programming

languages for application programming as defined in IEC 61131-3 are available in the

development environment. These features give professionals greater flexibility with regard

to programming and allow control engineers have the ability to program for many different

applications in the languages in which they feel most comfortable.

Over 200 manufacturers of devices from different industrial sectors offer intelligent

automation devices with a CoDeSys programming interface. In 2006, version 3 was

released with new updates and tools.

One of the great innovations of the new version of CoDeSys is object oriented

programming. Object oriented programming (OOP) offers great advantages to the user for

example when wanting to reuse existing parts of the application or when working on one

application with several developers. For this reuse can be prepared a source code with

several well known parts and this is automatically generated where necessary in a project,

users can improve then the time/cost/quality management.

Until now in version 2 it was necessary to have hardware interface called “Eni-Server” to

have access to the generated XML code. Another of the novelties of the new version is a

tool called Export PLCopenXML. This tool makes it possible to export the open XML code

without the need of specific hardware. This type of code has own requisites to be able to

comply with the standard described above. With XML code and with the knowledge how it

works it is possible to do component-oriented development of machines with modular

programming in an easy way. Eplan Engineering Center (EEC) is a software tool developed

by Mind8 GmbH & Co. KG that allows configuring and generating automation projects.

Therefore it uses modules of PLC code. The EEC already has a library to generate code for

CoDeSys version 2. For version 3 and the constant innovation of drivers by manufacturers,

it is necessary to implement a new library in this software. Therefore it is important to study

the XML export to be then able to design any type of machine. The purpose of this master

thesis is to study the new version of the CoDeSys XML taking into account all aspects and

impact on the existing CoDeSys V2 models and libraries in the company Harro Höfliger

Verpackungsmaschinen GmbH. For achieve this goal a small sample named “Traffic light”

in CoDeSys version 2 will be done and then, using the tools of the new version it there will

be a project with version 3 and also the EEC implementation for the automatically

generated code.

2 Basics

8

2 Basics

2.1 Packaging Machinery

Packaging is the technology for protection and storage of products. To do the packaging of

products fast and with high reliability usually very sophisticated machines are used often

with the latest know-how and technology.

The company Harro Höfliger Verpackungsmaschinen GmbH is exclusively dedicated to the

design and construction of machinery for packaging production primarily for the medical

market. The technology introduced on these machines makes them able to produce any

product for this sector. To automate these devices the company uses programmable logic

controllers (PLC) from the brand ELAU. This brand was recently acquired by Schneider

Electric Company.

Figure 1 - Machinery for packaging production for the medical sector

One of big difficulties that existed in the past in the design of these machines was the

programming of automation devices like drives or cylinders and how this task was

performed. Each PLC programmer used to do his own way of programming which meant

that there was no standardization of code in any of the machines that were produced.

All PLCs were and still are programmed until today in CoDeSys version 2 Software with

Epas-4 (Elau). This is done to ensure that the standard "IEC 61131-3 Program Controllers,

Programming Languages" is fully accomplished.

2 Basics

9

As already mentioned, Harro Höfliger Verpackungsmaschinen GmbH produced machines

in the past without a harmonization of parameters for the programming of their machines.

To improve this situation there was adopted software called "Eplan Engineering Center"

developed by the German company Mind8 GmbH & Co. KG. This software uses libraries of

components based on mechatronic machine segments. These are once developed and

then many times used for the construction of a new model. All the code necessary to

program the machine is drawn into fragments for the various blocks and components, using

hierarchies among them. At the end of construction of the whole new machine, the PLC

code is generated using the CoDeSys library. This library contains all the code for

implementing the specific PLC code of Harro Höfliger.

Today, the Harro Höfliger mechatronic model consists of the disciplines control software,

wiring diagram and software documentation (SDS). In short, libraries with standardized

code fragments corresponding to mechatronic components are created in the software

EEC. The PLC code implementation of a new machine is then not more than joining several

pieces of mechatronic components with included code and adjusting various parameters to

customer defined requirements that will be present on the machine.

Figure 2 – Eplan Engineering Center variant management and configuration

2 Basics

10

Therefore, when creating a code for a new machine, the user does more than build a

machine using a graphical model which contains all the components that constitute it. This

ensures then that all the code is constructed and approved in advance and thereafter is

consistently used the same pattern.

The purpose of this master thesis is to create a new library for the software "Eplan

Engineering Center" so that the code is generated according to the new version 3 of

CoDeSys (Epas-5 from Elau). Besides of that, all the generated code in version 3 must be

in accordance with the standards of quality of machines produced by the company Harro

Höfliger. The influence on the new code generated by "Eplan Engineering Center" should

also be analyzed; it should be verified that all parameters of IEC 61131-3 are covered.

2 Basics

11

2.2 PLC – Programmable Logic Controller

A programmable logic controller (PLC) or programmable controller is a digital computer

used for automation of electromechanical processes, such as control of machinery on

factory assembly lines, amusement rides, or light fixtures. PLCs are used in many

industries and machines.

Unlike general-purpose computers, the PLC is designed for multiple inputs and output

arrangements, extended temperature ranges, immunity to electrical noise, and resistance to

vibration and impact. Programs to control machine operation are typically stored in battery-

backed-up or non-volatile memory.

A PLC is an example of a hard real time system since output results must be produced in

response to input conditions within a limited time, otherwise unintended operation will

result. [12]

The first PLC was made in the 70´s with a simplified programming language and limited to

meet demand in place of industrial control systems based on relays. Over the years various

functions have been incorporated into the controller, such as treatment of analog variables,

and complex arithmetic algorithms, not limited only to discrete logic (I/O).

Figure 3 – PLC System Overview

All PLCs have three physical parts (hardware) for your basic operating: CPU (Central

Processing Unit), memory unit and Inputs and outputs (I/O), all communicating via a bus

communication. The CPU coordinates all tasks and executes the PLC program control

stored in memory.

2 Basics

12

The actual states of the process are monitored and sampled by the drive I/O. All

programming is done through an engineering station (computer) in which the program is

compiled and loaded into the CPU to be stored in memory using local area network (LAN).

The PLC allows monitoring of inputs and outputs in real time using the engineering

workstation, while the program is running.

The company Harro Höfliger uses controllers from the brand Elau with the software Epas-4.

Controllers and software use CoDeSys version 2 interface.

Figure 4 – Elau Programmable Logic Controller

2.3 Standard IEC 61131-3

IEC 61131-3 is a programming language standard, independent and standardized for the

industrial automation sector. This standard was established by the International

Electrotechnical Commission (IEC), an organization of creating global standards at the level

established in 1906 and recognized worldwide by industry standards that elaborate.

Applying a standard programming language has a positive impact on the life cycle of a

software requisite that includes analysis, design, construction, testing (validation),

installation, operation and maintenance. IEC 61131-3 provides support of multiple

languages within one control program. The user / programmer can select the language that

is most suitable for a particular task, thereby increasing his productivity. Ladder Diagram

(LD) and Instruction List (IL) are fairly simple, so appropriate mainly for small applications.

Function Block Diagram (FBD), Structure Text (ST) and Sequential Function Chart (SFC)

are recommended for medium or large scale projects. [1]

2 Basics

13

IEC 61131-3 is a modular standard because with the FBD language it is possible to create

libraries of small modular programs allowing the creation of complete functions. These

functions can be used as often as necessary in new machines.

Figure 5 – Traffic Light Function Block Diagram

With a standardized programming interface that is completely independent of the hardware

platform (PLC), users can greatly reduce the maintenance cost and the training on these

automation application programs. The ability to migrate automation solutions from one to

another platform is given in PLC applications, which are offering users and programmers

reuse systems with levels never before available.

IEC 61131-3 increases efficiency and speed of implementation of new automation solutions

using available control components developed in other projects by other developers.

2 Basics

14

2.3.1 Configuration, Resources and Tasks

At the highest level, the software needed to solve a particular problem of control can be

formulated as a setting. The configuration is specific to a particular type of control system

and includes the arrangement of the hardware (processing resources, memory addresses

for I/O channels, and system capabilities). Within a configuration, you can define resources.

Within a resource, one or more tasks can be defined. [6]

Tasks control the execution of a set of programs and / or function blocks. These can be run

periodically or the occurrence of a specific event.

Figure 6 – Physic software model

- Configuration

A configuration includes at least one and usually several resources. A resource in turn

defines several tasks and programs to be executed by these tasks. Global variables

common to all resources are specified in the configuration. Access variables to be used for

communication with other configurations are also specified at the configuration level. Global

variables are also declared at resource level and are accessible to all the programs within

the resource. [6]

2 Basics

15

- Resource

A resource generally corresponds to a device that can execute IEC Programs and is

defined within a configuration using an identifier and the processor on which the resource

will be loaded. A resource contains Global variable declarations, Access variables that

permit remote access to named variables, External variable declarations, Program

declarations and task definitions. [6]

- Tasks

One of the main requirements in a large process control system is the ability to execute

different parts of the control program at different rates depending on the process

requirements. For example, a system may contain components with large inertia in its

parameters, say a boiler furnace whose temperature can only vary slowly in view of the

large thermal time constant and as a result, the function block which controls the furnace

temperature may execute once in say 10 seconds. On the other hand, a turbine will have a

very fast speed response and the over speed monitoring function block will have to execute

at a much faster rate.

An interlocking logic of a fast moving process line may require even faster execution. Tasks

achieve this type of control by triggering programs and function blocks at specified time

periods. The standard provides for allocation of specific programs and function blocks to

specific tasks, which execute at predefined intervals and priority rates (0 for the highest

priority and 1, 2, 3 etc. in decreasing order). When multiple tasks are declared within a

resource, they need to be scheduled. The scheduler decides the exact moment that a task

has to execute. [6]

- Program Organization Units (POU)

Within IEC 61131-3, programs, function blocks and functions are called program

organization units or POUs. IEC 61131-3 standard feature set includes cases, including

ADD, ABS, SQRT, SIN, COS, and the user can also create a custom function block and

use that function block several times.

Function blocks are software objects that represent a more detailed level of control. They

can contain data as well as an algorithm. Software as objects, they have a well-defined

interface and hide.

2 Basics

16

This creates a clear line between the different levels of programs. With these features,

functions and function blocks reflect good practice and principles embraced by object-

oriented programming.

Function blocks can be written in any of the IEC languages and, in most cases, even using

C basic building blocks. Sequential Function Charts or SFCs are used to control the

behavior of a sequential control program and support synchronization and concurrency.

One program organization unit may be as to its type: Program, Function Block or Function

and may be as to its implementation language: Instruction List, Structure Text, Sequential

Function Chart, Function Block Diagram and Ladder Diagram. [8]

Figure 7 – Program organization unit sample

2.3.2 Programming Languages

In this standard, five programming languages are defined. This means that their syntax and

semantics have been defined.

- Instruction List, IL (Textual language);

- Structured Text, ST (Textual language);

- Ladder Diagram, LD (Graphical language);

- Function Block Diagram, FBD (Graphical language);

- Sequential Function Chart, SFC (Organization structure).

2 Basics

17

Instruction List (IL)

Low-level machine-oriented language offered by most of the programming systems. It’s a

language very similar with assembler. Single accumulator based execution model. Only one

operation such as storing a value in the accumulator register is allowed per line.

Figure 8 – Instruction list code sample

Structure Text (ST)

Is a high-level language very powerful, with roots in Ada, Pascal and "C". Contains all the

essential elements of a modern programming language, including conditional (IF-THEN-

ELSE and CASE OF) and iteration (FOR, WHILE and REPEAT).

This language is excellent for the definition of complex functional blocks, which can be used

in any other language IEC. [6]

Figure 9 – Structure text code sample

2 Basics

18

Ladder Diagram (LD)

POUs written in LD are divided into sections known as networks. LD networks are bounded

on the left and right by power rails Graphical connections of Boolean variables (contacts

and coils), geometrical view of a circuit similar to earlier relay controls.

A Ladder diagram program enables the controller to test and modify data by means of

standardized graphic symbols. [6]

Figure 10 – Ladder diagrams samples

Function Block Diagram (FDB)

In the process industry graphical language is intensive used. This language allows

programs elements which appear as blocks to be “wired” together in a form analogous to a

circuit diagram.

Elements of the FBD language shall be interconnected by signal flow lines. Outputs of

function blocks shall not be connected together. [6]

Figure 11 – Functions blocks diagram samples

2 Basics

19

Sequential Function Chart (SFC)

In order to divide control task into parts which can be executed sequentially and in parallel,

as well as for controlling their overall execution, we have sequential functions charts. SFC

very clearly describes the program flow by defining which actions of the controlled process

will be enabled, disabled or terminated at any one time. [6]

Figure 12 – Sequential function chart samples

The SFC representation indicates the following in respect of an industrial process or

machinery:

- Main phases of the process;

- In the case of machinery, the main states;

- Behavior of action blocks pertaining to each phase or state;

- Conditions for change from one phase to the next phase.

An SFC consists of a sucession of steps, with each step representing a stage of a process.

The change over from one step to the next is decided by transitions, which follow a step. It

is to be stressed here that a SFC need not necessarily show an entire process.

A complex process can be split into several SFCs each representing a part of the process.

A Function block can itself be defined using a SFC. As in the case of other graphical IEC

languages such as the FBD or the LD, the Sequential Function Chart can also be

represented in full graphic or semi-graphic form.

2 Basics

20

Steps

We learnt about the use of steps in the previous section. There are essentially two types of

steps.

- Initial Step - The START step in the SFC is an initial step represented by a rectangle

with double vertical lines. An SFC can have only one initial step and this is the step

which will be activated first when a PLC is started;

- Normal Step - All the other steps in the SFC are normal steps and are represented by

plain rectangles.

Transitions

Transition conditions can be expressed using any of the other IEC standard languages. In

the examples, the most common is they represented on the SFC, using structured text. But,

the same can be represented using Ladder diagram or Function block diagram as well.

Actions

Each step of an SFC represents a particular state of a machine or a process. When a set of

conditions is fulfilled, a transition occurs and a sequence of actions is initiated to achieve

the process condition defined for the concerned step. In the SFC graphic representation,

this is shown as a rectangular box within which the actions corresponding to the step are

indicated using any of the IEC standard languages. [8]

Figure 13 – SFC initial step extended with a (non-Boolean) action block for step Start

2 Basics

21

2.4 PLCopen

PLCopen is an independent international organization. Many PLC manufacturers, software

houses and independent institutions in Europe and overseas are members of the

organization. Coming from different industry sectors, the members are focused on the

harmonization of controller programming and the development of applications and software

interfaces in the IEC 61131-3 environment.

In order to reduce the costs in industrial engineering, uniform specifications and

implementation guidelines have been devised. These efforts resulted, for example, in

standardized libraries for different application fields, the specification of a conformity level

for programming languages, and interfaces for an enhanced exchange of software. The

PLCopen expert members are organized in technical committees and define these open

standards in cooperation with final users. Since the release of the IEC 61131-3 standard,

users are able to exchange their programs, libraries and projects between all the available

development environments. [3]

PLCopen has several Technical Committees, but the most important for this thesis is the

TC6. TC6 defines XML schemes for the description of IEC 61131-3 application programs

and projects in XML. This includes the textual and graphical languages, variable

declaration, and configuration. The specification supports:

- The exchange of blocks between systems;

- The interface to other software packets such as documentation, simulation, or

verification tools.

2 Basics

22

PLCopen XML standard is the representation of the complete project within the IEC 61131-

3 environment based on current XML technologies. In PLCopen XML can be found the

common elements with Sequential Function Chart (SFC), the two textual languages

Structured Text (ST) and Instruction List (IL), and the two graphical languages Function

Block Diagram (FBD), and Ladder Diagram (LD). The formats are specified through a

corresponding XML scheme. This is an independent file, with the .xsd extension, and as

such part of this specification.

A scheme (xsd file) is defined as a formal specification of element names that indicates

which elements are allowed in an XML document, and in which combinations. It also

defines the structure of the document: which elements are child elements of others, the

sequence in which the child elements can appear, and the number of child elements. It

defines whether an element is empty or can include text.

The scheme can also define default values for attributes. A scheme also provides extended

functionality such as data typing, inheritance, and presentation rules.

In the exported XML file all information is made available. The intelligence is in the

importing function. Vendor specific information and attributes can be included in the export

file and deleted during import, if applicable. [3]

Figure 14 – PLCopenXML tool

2 Basics

23

2.5 Eplan Engineering Center (EEC)

The company Mind8 GmbH & Co. KG, headquartered in Stuttgart, was founded in late

2000. Since early 2004, this company has collaborated with the company Eplan Software &

Service. Since 2007 it is part of the Friedhelm Loh Group.

Mind8 is specialized in mechatronic variant management, reducing the complexity of

products and processes. The software tool Eplan Engineering Center (EEC) is developed

by Mind8. It is based on a combination of long experience in the areas of modularization

and reuse of mechatronics engineering of plant and machinery as well as in-depth

knowledge of standard IT systems.

Eplan Engineering Center is a technical software based on Java language with an eclipse

environment. This software is used for the construction of various items including

machinery and production of technical documentation for the same.

Based on object oriented blocks it is very simple to configure a machine and to produce the

source code for the controller and datasheets of all components forming part of the project.

Figure 15 – Eplan Engineering Center generation of documents out of the mechatronic model

As can be seen in figure 16, for each gripper inserted in different variants in machine 1242,

mechanical, electrical and software diagrams will be changed according to the

characteristics and functions predefined for the gripper inserted.

3 Traffic Light Sample

24

3 Traffic Light Sample

For this investigation a schedule of mile stones was elaborated. An achieved mile stone will

allow a consistent way forward to the next step and thus successfully complete the work

that was originally proposed.

1 SAMPLES (PHASE I)

1.1 CODESYS V2 (EPAS-4) SAMPLE

1.2 CODESYS V3 (EPAS-5) SAMPLE

1.3 CODESYS V2 (EPAS-4) PLC TESTING

1.4 CODESYS V3 (EPAS-5) PLC TESTING

2 TEMPLATES (PHASE II)

2.1 CODESYS V2 (EPAS-4) TEMPLATE – EEC RESOURCES

2.2 CODESYS V3 (EPAS-5) TEMPLATE – EEC RESOURCES

3 CODESYS / TEXT DISCIPLINE (PHASE III)

3.1 EEC MECHATRONIC MODEL – V2 CODESYS DISCIPLINE

3.2 EEC MECHATRONIC MODEL – V3 TEXT DISCIPLINE

4 TESTINGS (PHASE III)

4.1 EEC CODESYS V2 DISCIPLINE TESTING

4.2 EEC CODESYS V3 DISCIPLINE (TEXT DICSCIPLINE) TESTING

Table 1 – EEC CoDeSys version 3 implementation structure

In the first phase a project in CoDeSys version 2 Epas-4 called "Traffic Light" was created.

Once compiled, this project has been imported by the new version of CoDeSys software

through the Epas-5. This will be a very important analysis because there are already many

functions and programs written in Epas-4 and with this information it is possible to see if the

update for the new version can be done. In this way many functions and reusable codes

can be easily exported to the latest CoDeSys version and then take advantage of the latest

improvements. During the first phase both projects were compiled and tested with PLCs

specific for each version.

3 Traffic Light Sample

25

3.1 Creation of CoDeSys Version 2 Project

- Controlling a Traffic Signal Unit

For a simple traffic signal unit which is supposed to control two traffic signals at an

intersection. The red/green phases of both traffic signals alternate and, in order to avoid

accidents, it will be insert yellow or yellow/red transitional phases. The latter will be longer

than the former. In this example is possible to see how time dependent programs can be

shown with the language resources of the IEC 61131-3 standard, how one can edit the

different languages of the standard with the help of Epas-4. [10]

- Create a POU

In the dialog box which appears, the first POU has already been given the default name

PLC_PRG. The type of POU should definitely be a program. Each project needs a program

with this name. In this case may be chosen as the language of this POU the Continuous

Function Chart Editor (CFC). Now three more objects will be create with the command

"Project" "Object Add" with the menu bar or with the context menu. A program in the

language Sequential Function Chart (SFC) named SEQUENCE, a function block in the

language Function Block Diagram (FBD) named TRAFFICSIGNAL, along with a POU

WAIT, also of the type function block, which we want to program as an Instruction List (IL).

[10]

Figure 16 – POU folder

3 Traffic Light Sample

26

- Pou Trafficsignal

In the POU TRAFFICSIGNAL will be assign the individual traffic signal phases to the lights,

and has to be ensure that the red light is lit red in the red phase and in the yellow/red

phase, the yellow light in the yellow and yellow/red phases, etc. [10]

Figure 17 – Trafficsignal POU

- Pou Wait

In WAIT POU program a simple timer which as input will receive the length of the phase in

milliseconds, and as output will produce TRUE as soon as the time period is finished. [10]

Figure 18 – Wait POU

3 Traffic Light Sample

27

- Pou Sequence

In SEQUENCE all is combined so that the right light lights up at the right time for the

desired time period. [10]

Figure 19 – Sequence POU

The steps presented have associated actions that will be performed when the steps are

initiated. These actions also might be easily edited, and the code automatically generated

by EEC.

3 Traffic Light Sample

28

- Pou PLC_PRG

In PLC_PRG the input start signal is connected to the traffic lights sequence and the "color

instructions" for each lamp are provided as outputs. [10]

Figure 20 – PLC_PRG POU

This POU will be the most important for the implementation of the CoDeSys v3 library in

EEC software. Each intersection will have two traffic lights identified by this POU, "LIGHT1"

and "LIGHT2”. If the project developer chooses to introduce another Intersection the code

will automatically generate two additional FDB as shown in Figure 20.

- Data Type

In the section Data Types can define specific variables in our program. One can use

standard data types or user-defined types. Each identifier is assigned to a data type that

determines the amount of memory space will be reserved and what kind of values it stores.

Figure 21 – Data Types “TL_COLORS”

3 Traffic Light Sample

29

- Global Variables

Are constants or variables that are common to the whole project can be declared as global

variables, but also network variables that are then used to exchange data with subscribers

of other networks.

Figure 22 – Global Variables

- Tasks

To also test whether the tasks will be imported correctly, two tasks will be created in the

project as shown in the following two figures.

Figure 23 – Task configuration, Task

3 Traffic Light Sample

30

Parameter Value

Name Test

Priority 31

Type Cyclic

Interval 10ms

Program Call PLC_PRG

Figure 24 – Task configuration, Test_Task

Parameter Value

Name Test_Task

Priority 31

Type Cyclic

Interval 10ms

Program Call PLC_PRG, SEQUENCE

3 Traffic Light Sample

31

- Visualization

Figure 25 – Traffic light Visualization

The program was tested with the appropriate hardware and the intersection traffic light gain

live in the visualization showed in figure 25.

3.2 Project XML Output – Eni-Server

The XML project just performed can be analyzed only with Eni-Server interface. This

interface is responsible for “translating” the draft prepared by Epas-4 software in XML code.

Currently Eni-Server works together with EEC software for creating real-time code in Harro

Höfliger Company.

Figure 26 – Scheme of XML output, connection Eni-Server with EEC

3 Traffic Light Sample

32

Figure 27 – PLC_PRG code visualization with Eni-Server

Now with the release of CoDeSys version 3, users can take advantage of PLCopenXML

tool. Unlike Eni-Server this tool is completely open source and eliminates the need to have

a server to translate automation projects in XML format.

In the next picture is possible to visualize a small part of the code of the PLC_PRG POU.

Later in this document it will be done a comparison with the same part but in PLCopenXML

code, CoDeSys version 3.

Figure 28 – PLC_PRG code sample

3 Traffic Light Sample

33

3.3 Import of the Traffic Light Sample into CoDeSys Version

3 and adding of an object oriented function block

To implement the sample project in CoDeSys version 3 was used a new tool available in

this software. This tool is called "Import Epas-4 Project/Library" and easily the draft version

2 is updated to the latest version. Will be analyzed and discussed in this section what kind

of problems a user may find when performing this data transport and whether all mandatory

requirements will be met.

Figure 29 – Import Epas-4 Project/Library

The user must fill in all fields such as where is the source file (version 2), the name of the

new project or which Elau controller will be used to execute this project.

3 Traffic Light Sample

34

Figure 30 – Import Epas-4 Project/Library

The system identifies the library “STANDARD.LIB” is being used by the project in version 2

and the user is asked if he also wishes that this library is imported. If the library is imported

it is guaranteed that the whole project will work exactly as in version 2.

Figure 31 – Import Epas-4 Project/Library – Allocate libraries

3 Traffic Light Sample

35

Figure 32 – Epas-5 Messages

After finishing the imported project there is shown only one error regarding to the modem

device. It is an hardware settings error, the parameters of the new modem driver section do

not coincide with the equipment available in the previous version. This error is not influential

in the successful implementation of the program. After this step is carried out an

build and the project do not have any errors.

Another new feature of the new version is a controller simulation tool. It is now possible run

projects without any connection to any hardware. The project is then simulated by this tool

and it works as it worked in version 2.

The next section will be analyzed the POUs folder. Will be checked if this files have all the

parameters and requisites are in accordance with the project prepared in CoDeSys version

2.

- Program Organizations Units

Figure 33 – POU folder

3 Traffic Light Sample

36

Pou Trafficsignal

After the project importation from Epas-4 the POU Trafficsignal from the type “Function

Block” and the language “Function Block Diagram” remains with the same aspect from the

previous version.

Figure 34 – Pou Trafficsignal declaration and body sections

Pou Wait

This Pou is from type “Function Block” and the language of body section is “Instruction List”.

The program is the same as in Epas-4 but in the current version of Epas-5 (V1.35.15.0) it is

not possible to export the instruction list language with the PLCopenXML tool. This problem

will be mentioned further.

3 Traffic Light Sample

37

Figure 35 – Pou Wait declaration and body sections (Instruction List language)

Figure 36 – Pou Wait declaration and body sections (Structure Text language)

To eliminate this error then became necessary to change all “Instruction List” code to

“Structured Text”. It was changed the code of POU wait and all actions of the POU

Sequence.

3 Traffic Light Sample

38

Pou Sequence

Figure 37 – Pou Sequence declaration and body sections

3 Traffic Light Sample

39

Pou PLC_PRG

This POU was imported successfully and all requirements were covered.

Figure 38 – Pou PLC_PRG declaration and body sections

Data Types

Figure 39 – Data Types

Global Variables

Figure 40 – Global variables

3 Traffic Light Sample

40

- Tasks

Figure 41 – Task Configuration parameter

Both tasks of the project were imported and both are in agreement with the data entered in

the previous version.

Figure 42 – Task Configuration parameter

- Visualization

Figure 43 – Epas-5 Visualization

3 Traffic Light Sample

41

- Object-Oriented Programming and Inheritance

To introduce the greatest number of instances for the EEC implementation is as complete

as possible in this project was introduced an interface, a method unit to a function block

named PEDESTRIANLIGHT. This function block illuminates the walkways in the

intersection during the night period. With these units it can be possible speak of objects

programming software CoDeSys version 3.

Figure 44 – Project visualization with object oriented programming

This language constructs in the IEC 61131-3 allow the user to program one application with

object-oriented methods in the languages of the IEC standard. Object-oriented functionality

is optional, meaning it is left up to you to choose between classic or object-oriented

programming or combine both philosophies.

3 Traffic Light Sample

42

Definitions of terms used in Object Oriented Programming (OOP):

Figure 45 – Project Tree visualization with object oriented programming

In sample project it was used an Interface called ILight with a Method and one Property:

Figure 46 – ILight Interface

An interface possesses a set of methods and defines the required variables of the methods.

The body of the method is then programmed in the class the interface is implemented into.

Objects are instances of function blocks (classes).

Figure 47 – Method in Interface

3 Traffic Light Sample

43

Methods are routines which are firmly assigned to a function block or an interface. They

operate with the data of the function block but can, just like IEC functions; have I/O

variables or local variables.

Figure 48 –Interface property

It’s also used a function block called PEDESTRIANLIGHT. A function block is a class with

exactly one method. With the extension to full class functionality, methods and interfaces

with their methods can be implemented in one function block.

A function block implements an interface with the keyword IMPLEMENTS. Therefore, all

methods of the interface have to be realized in the function block. A function block can

extend a class with the keyword EXTENDS and then inherits the data and the methods of

the class. Which implementation of a method is actually executed when a method is called

via its interface is decided at runtime. This functionality is called polymorphism. [10]

Figure 49 – Function Block with Implements of the Interface

3 Traffic Light Sample

44

Figure 50 – Method aggregate at function block

3.4 XML Comparison of CoDeSys Version 2 and Version 3

This chapter aims to compare two XML tags of the two versions of CoDeSys. This analysis

will serve to assess whether the user can directly export code fragments from one version

to another, and if these will be used by version 3. To better analyze the code it was created

for this investigation a comparison tool called "Xml Dateien Baum Analyse" which is a

program that brings together two xml codes.

Figure 51 – Xml Dateien Baum Analyse, comparison

3 Traffic Light Sample

45

As shown in Figure above, codes of XML projects from both CoDeSys versions are not

identical and there are many differences between them. The existing codes for version 2

may not be used in version 3. It then becomes necessary to perform an export project from

older version to the latest. CoDeSys version 3 has a tool that automatically allows importing

projects and libraries from the previous version. This new feature was analyzed in chapter

3.2.1.

It is also possible to analyse a small part of the codes. These chosen parts must do the

same thing in the project. The first traffic light of Trafficsignal POU is been chosen.

Figure 52 – Traffic Light Function Block Diagram

Figure 53 – CoDeSys version 2 Eni-Server

3 Traffic Light Sample

46

Figure 54 – CoDeSys version 3 PLCopenXML

It is possible to observe that the codes are quite different. In Epas-4 through the Eni-Server

it seems an individualized programming across networks while in the PLCopenXML

structure programming is closer to a graphic language where localId have a special

importance.

4 Analysis of Epas-5 XML-Import/Export-Scheme

47

4 Analysis of Epas-5 XML-Import/Export-Scheme

In this chapter is described the analysis of the compliance of traffic light Epas-5

PLCopenXML sample with the PLCopenXML Scheme (according IEC 61131-3).

This analysis is necessary to see if the Epas Scheme is completely in compliance with

PLCopenXML standard. This is a important knowledge because implementation on EEC

will use the Epas-5 XML output and then in EEC only one implementation is necessary to

generate all CoDeSys PLC-systems and also other systems which use the PLCopenXML

scheme.

Figure 55 – Automation project structure check

4 Analysis of Epas-5 XML-Import/Export-Scheme

48

For this analyses it was used a software named “XMLSpy” and another already mention

named “Xml Dateien Baum Analyse”. The first one analyses the compliance with the

standard and the second is only for visual analyses. It was used also “eclipse” software for

generate a blank XML file from the PLCopenXML scheme file and “Notepad++” for reading

all XML files. For CoDeSys environment was used the program Epas-5 version 1.35.15.0.

The next conformance level checks if an automation project is formed at least by a

configuration containing one or more resources in which the source code (program

instances) is going to be downloaded. In order to check if the automation project follows this

architectural style, multiplicity constraints have been added to the PLCopen XML scheme,

as illustrated in the next figure.

The elements of any automation project structure have been highlighted and in particular

the multiplicity of configurations and resources has been modified. [5]

4.1 Export/Import PLCopenXML Tool

Currently, many software programs that are in accordance with IEC 61131-3 standard, as

CoDeSys version 3 or Epas version 5 (which implements CoDeSys version 3), use a tool

that allows export or import an entire project. This tool will allow the exchange of projects

between different kinds of software.

The file created with this tool is in XML format and is standardized by the international

company called PLCopen. In short, A project can be create in IEC 61131-3 compiler, create

an XML file with all the project information’s and it can be open it with another compiler that

possesses this export import tool, then this project will work in a different PLC brand.

Is with this XML file that the CoDeSys version 3 in EEC integration can be done.

An automation project can be create using the existing libraries of EEC and this software

can generate the project in XML code. As this is standard XML we can work with it in any

type of controller that obeys to IEC 61131-3.

4 Analysis of Epas-5 XML-Import/Export-Scheme

49

Figure 56 – Export/Import PLCopenXML tool

4.2 Comparison of Schemes

The XML export/import tool from Epas-5 software will now be tested and compared with the

PLCopen standard scheme. As already mentioned this scheme is consistent with standard

IEC61131-3 and is therefore ensured that all the requirements are met.

The purpose of this analysis is also to understand the PLCopenXML scheme to perform a

compliance implementation in EEC. The XML output of this software must be completely

consistent with this scheme and then it can be opened in any automation application.

Figure 57 – EEC XML generate code

4 Analysis of Epas-5 XML-Import/Export-Scheme

50

1 - Project

This element shows the main tree of the project.

Figure 58 – project diagram

- Header information of an XML file

The file header and content header information originates from the publicly available

specification of the IDA consortium and was specifically developed for usage in a context,

where XML exchange files are generated from different tools of the same or of different

vendors.

Looking at the differences between standard diagram PLCopen and Epas-5 XML export

tool software it appears that this software does not use the element "documentation". This

element is not a required element and the export tool does not show unconformities with

the PLCopen standard.

One difference is that the export tool is in the PLCopen version 2.0 as showed in parameter

targetNamespace (xmlns) in figure 59. This version is not the latest. The latest version is

PLCopen version 2.01 released in August 2008. [11]

4 Analysis of Epas-5 XML-Import/Export-Scheme

51

Figure 59 – project diagram

Epas-5 XML code (Left) and PLCopenXML Scheme (Right)

Epas-5 XML

PLCopen Scheme

Table 2 – project diagram XML

4 Analysis of Epas-5 XML-Import/Export-Scheme

52

1.1 - File Header

The “FileHeader” element is used to provide information concerning the creation of the

export / import file.

Figure 60 – fileHeader diagram

Figure 61 – fileHeader diagram

Epas-5 XML code (Left) and PLCopenXML Scheme (Right)

4 Analysis of Epas-5 XML-Import/Export-Scheme

53

Epas-5 XML

PLCopen Scheme

Table 3 – fileHeader structure XML

The Epas-5 export tool only has the required attributes “companyName”, “productName”,

“productVersion” and “creationDateTime”. With those attributes the tool is in conformance

with PLCopen standard.

1.2 - Content Header

Figure 62 – contentHeader diagram

4 Analysis of Epas-5 XML-Import/Export-Scheme

54

The “contentHeader” element is used to provide overview information concerning the actual

content of the export / import file. The "name" attribute is required. In case of exporting this

attribute is set to the project name. The other attributes correspond to the equally named

attributes of the "VersionInfo" element as defined in IEC 61499-2. The "comment" element

corresponds to the "Remarks" attribute of the "VersionInfo" element. The attribute

“language” is intended to specify the used language in the definition of the project. The

“comment’ element consists of a string. The element “coordinateInfo” contains the

information for the mapping of the coordinate system. [11]

Figure 63 –contentHeader structure

Epas-5 XML code (Left) and PLCopenXML Scheme (Right)

4 Analysis of Epas-5 XML-Import/Export-Scheme

55

Epas-5 XML

PLCopen Scheme

Table 4 – contentHeader structure XML

In Epas-5 the parameters of contentHeader can be change. The user can choose the menu

“Project” and then “Project Information” section Summary.

Figure 64 –contentHeader project parameters in Epas-5

4 Analysis of Epas-5 XML-Import/Export-Scheme

56

1.2.1 – Coordinate Info

This parameter is responsible for positions and coordinates of inputs, outputs and blocks

positions manly use for graphical information.

Figure 65 – coordinateInfo diagram

Figure 66 – coordinateInfo structure

Epas-5 XML code (Left) and PLCopenXML Scheme (Right)

4 Analysis of Epas-5 XML-Import/Export-Scheme

57

Epas-5 XML

PLCopen Scheme

Table 5 – contentHeader structure XML

Analyzing the figure 66 and the table 5 it is possible conclude that Epas-5 export tool is in

conformance with PLCopen in this parameter although in standard PLCopen has an

optional attribute named “pageSize”.

4 Analysis of Epas-5 XML-Import/Export-Scheme

58

- coordinateInfo / fdb / scaling

In this element is defined the scales x and y for the language Function Diagram Blocks.

Figure 67 – fdb/scaling diagram

- coordinateInfo / ld / scaling

In this element is defined the scales x and y for the language Ladder Diagram.

Figure 68 – ld/scaling diagram

- coordinateInfo / sfc / scaling

In this element is defined the scales x and y for the language Sequential Function Chart.

Figure 69 – sfc/scaling diagram

4 Analysis of Epas-5 XML-Import/Export-Scheme

59

Figure 70 – fdb, ld, sfc scaling

Epas-5 XML code (Left) and PLCopenXML Scheme (Right)

The Epas-5 export tool is in conformance with PLCopen in element coordinateInfo.

1.2.2 – add Data and add Data Info

For the project and certain objects in the XML file the vendor can include additional data.

Such additional data is vendor-specific. The data itself is given in an addData object.

Additionally in the addDataInfo an URI (uniform resource identifier) is given for the

corresponding addData to uniquely identify the additional data element content. In this

name the vendor domain shall be included to ensure unique names. Using this name the

importing tool may process the addData. The vendor shall specify the behavior of the

importing tool in case the name is not known by the importing tool especially regarding a

later export from this tool. [11]

4 Analysis of Epas-5 XML-Import/Export-Scheme

60

Figure 71 – addData with child data diagram

Figure 72 – addDataInfo with child info diagram

4 Analysis of Epas-5 XML-Import/Export-Scheme

61

Figure 73 – addData and addDataInfo structure

Epas-5 XML code (Left) and PLCopenXML Scheme (Right)

4 Analysis of Epas-5 XML-Import/Export-Scheme

62

Epas-5 XML

PLCopen Scheme

Table 6 – contentHeader/addData addDataInfo structure XML

The Epas-5 export tool is in conformance with PLCopen in element addData.

4 Analysis of Epas-5 XML-Import/Export-Scheme

63

1.3 - Instances

Instances can contain a “configurations” element, which consists of zero or more elements

“configuration”.

Figure 74 – Instances diagram

1.3.1 - Configurations

Configuration represents a group of resources and global variables. It is identified by a

required name. Configuration is for example A PLC system, e.g. a controller in a rack with

multiple (interconnected) CPUs, controlling a cell of machines. In configuration we have:

 - Definition of global variables (valid within this configuration);

 - Combination of all resources of a PLC system;

 - Definition of access paths between configurations;

 - Declaration of directly represented (global) variables.

Figure 75 – configurations/configuration diagram

4 Analysis of Epas-5 XML-Import/Export-Scheme

64

Figure 76 – Instances structure

Epas-5 XML code (Left) and PLCopenXML Scheme (Right)

The name of the configuration is “LMC_PacDrive” as it´s possible to see in the figure.

Configuration elements are typically declared in textual form. The standard provides a

definition for a graphical representation of a TASK, but the graphical representation of all

other configuration elements is left to the programming system and is therefore

implementation-dependent. [11]

Epas-5 XML

Table 7 – contentHeader/addData addDataInfo structure XML

4 Analysis of Epas-5 XML-Import/Export-Scheme

65

1.3.2 - Resources

Resource represents a group of programs, tasks and global variables. It is identified by a

required name.

A resource is defined in order to assign TASKs to the physical resources of a PLC system.

In a resource we have:

- Definition of global variables (valid within this resource);

- Assignment of tasks and programs to a resource;

- Invocation of run-time programs with input and output parameters;

- Declaration of directly represented (global) variables.

The resource name assigns a symbolic name to a CPU in a PLC. The types and numbers

of the resources in a PLC system (individual CPU designations) are provided by the

programming system and checked to ensure that they are used correctly. Global variables,

which are permissible at resource level, can be used for managing the data that are

restricted to one CPU. [11]

Figure 77 – resource diagram

4 Analysis of Epas-5 XML-Import/Export-Scheme

66

Figure 78 – resources

Epas-5 XML code (Left) and PLCopenXML Scheme (Right)

1.3.2 - Tasks

In a task a definition of run-time properties can be done. Task represents a periodic or

triggered task and consists of a group of program and / or function block instances. It is

defined by a required priority, an optional single, and an optional interval time.

A task definition according to IEC 61131-3 enables these program features to be formulated

explicitly and vendor-independently. This makes program documentation and maintenance

easier. [11]

4 Analysis of Epas-5 XML-Import/Export-Scheme

67

Figure 79 – task diagram

Figure 80 – resource/task

Epas-5 XML code (Left) and PLCopen XML Scheme (Right)

4 Analysis of Epas-5 XML-Import/Export-Scheme

68

Epas-5 XML

PLCopen Scheme

Table 8 – task structure XML

After this analysis it was found that the extracted XML from software Epas-5 is in

compliance with the PLCopen scheme. In this section, only some parameters were

analyzed. A more detailed study than can be seen in the appendix to this document.

5 Creation of the Eplan Engineering Center Model

69

5 Creation of the Eplan Engineering Center Model

For this work to be understood more simply was conceived a project of a Road for

automobile traffic. For this project could be modular on this road the user can introduce one

or more intersections. Each intersection has two traffic lights for each direction of

intersection.

Figure 81 – Eplan Engineering Center Road project

The aim of this project is to demonstrate that it is possible to generate CoDeSys version 3

PLC code. It is possible extrapolate this small example project to a machine with

components as a modular sensor or actuator. In this case was created a main road project

and the user can put as many intersections he want. In addition to the modular component

"Intersection" it is possible to put n modular components, but the goal is to be simple and

perceptible by all.

5 Creation of the Eplan Engineering Center Model

70

5.1 Mechatronic Architecture Library Creation

First it is necessary to split the project and put all the components by levels of functionality

and structure. The levels of structure will be:

- Station (Machine);

- Stationcomponent (Component of the machine);

- Component.

Later, the design of each component will be referred to those elements described.

Figure 82 – T_Mechatronik_Architektur construction

In this library it will be used one pre-defined base-library called Engineering.

Figure 83 – T_Mechatronik_Architektur library

5 Creation of the Eplan Engineering Center Model

71

5.2 Epas-5 Architecture Library Creation

This library is the main responsible for the CoDeSys version 3 code generate

Figure 84 – Epas-5 _Architektur library

TextDiscipline is a pre-defined library. This library is capable from the functional

configuration of a mechatronik system generate an element of text (source code).

Figure 85 – Epas5 _Architektur tree view

5 Creation of the Eplan Engineering Center Model

72

The library “Epas5_Architekture” has two main folders, “Epas5” with the text discipline

library and “levelcomponents” with the components that will be used later in the creation of

the source code fragments.

In Epas5 folder user can define the entire library for example, where is the text source that

will be used to generate the code source for PLC project (resources).

Figure 86 – Epas5 _Architektur path to resources of the project

In “Levelcomponents” The “Body” level object is the hull for the main Epas-5 code, with

other words it will contain the PLCopenXML output from the project constructed in Epas-5

(CoDeSys version 3) for the Road project like we have seen in previous chapter. The

“Fragment” level object is the hull for fragments of little codes that we introduce in the main

code depending of the construction of the project.

Just to remember these two objects are just hulls and they will be used further in this

chapter.

5 Creation of the Eplan Engineering Center Model

73

5.3 Mechatronic Construction Library Creation

The “T_Mechatronik_Construction” library will be the working library of the project Road. In

this library are three main folders:

- CoDeSysV3 – this folder contains the body and the fragments for the generation of

XML code.

- Mechatronik – Is defined the Mechatronik structure.

- Parameters – All the parameters for the project will be save in this folder.

Figure 87 – T_Mechatronik_Construction tree view

Figure 88 – T_Mechatronik_Construction tree view

5 Creation of the Eplan Engineering Center Model

74

CoDeSysV3 Folder:

CoDeSysV3 contains the folder “Bodys” which contain the main body text file of the

ExportPLCopenXML of Epas-5 Road project, called “M8_Fragment_MainBody”.

Figure 89 – M8_Fragment_MainBody Data

In Datei (Data) user can visualize all the XML from the Road original project. The letters in

blue color are parameters we can change in EEC. In fileHeader section we can change

“Company Name” and the parameter is called “M8_CompanyName” and so on. These

features allow the user to personalize each machine for each customer. The main code is

the same for the same kind of machines but they are never equals.

5 Creation of the Eplan Engineering Center Model

75

For the simple introducing of these parameters it is possible to create a user friendly user

interface in EEC software like the next figure.

Figure 90 – Road traffic light configuration project form, File and Content Header Parameters

The PLCopenXML output from EEC is in the next figure and as we can see all parameters

are with the complete information of the previous form.

5 Creation of the Eplan Engineering Center Model

76

Figure 91 – Road traffic light PLCopenXML EEC output

Beyond these parameters in “M8_Fragment_MainBody” user have to introduce another

function called “LOOP”. This function is called to repeat the text fragments many times as

selected by the user or simply to replace the main body in the places where this function is

referred to the text fragments released by the parameters listed on the form. Normally this

function is placed in the Epas-5 code where the original text to be replaced is located. In

this project we have four functions “LOOP”, they are:

5 Creation of the Eplan Engineering Center Model

77

- Loop for replace default task with parameters edit by user;

Figure 92 – M8_Fragment_MainBody Loop for Default Task code

- Loop for enumeration intersection code replace with parameters edited by user;

Figure 93 – M8_Fragment_MainBody Loop for Enumeration Intersections code

5 Creation of the Eplan Engineering Center Model

78

- Loop for body intersection code replace with parameters edited by user;

Figure 94 – M8_Fragment_MainBody Loop for Body Intersections code

- Loop for hardware devices code replace;

Figure 95 – M8_Fragment_MainBody Loop for devices code

5 Creation of the Eplan Engineering Center Model

79

Controller folder:

For example user can create a fragment or several fragments for several PLC devices in

project and then he can introduce or replace in main body of code the fragment belong to

the device we will use. Maybe if you need more inputs or outputs in a specific machine than

the usual, it is possible to replace the code from the source code to a “larger” PLC and for

that he only have to choose which PLC he want to implement in the project. The replace

text file is called “M8_Fragment_Controller_LMCx00C”.

Figure 96 – M8_Fragment_Controller_LMCx00C Data

Fragments folder:

In this folder are introduced all fragments for the modular parts of the machine (Road). In

Road project the only modular part sample is a intersection. For each intersection introduce

in project is considered two kinds of fragments:

- Enumerations intersections;

- Body intersections.

The user can edit the project introducing in this sample more intersections with the form of

the Road traffic light configuration project. If he clicks the “Add Intersections” button the

table at the right will be increased with one more intersection line and in XML output the

POU “PLC_PRG” will have another incremental text code.

5 Creation of the Eplan Engineering Center Model

80

Figure 97 – Road traffic light configuration project form, Road Design

In “M8_Fragment_Enumeration_Intersections” text fragment is enounce the variables of

each intersection. In the next figure is possible to see that each intersection has an

intersection number light1 and light2. Light1 and light2 are the two traffic lights for each

intersection. The parameter “M8_AdressIntersections” will be replaced by the index of each

intersection. In figure 102 is possible to see a sample for three intersections.

Figure 98 – M8_Fragment_Enumeration_Intersections Data

5 Creation of the Eplan Engineering Center Model

81

Figure 99 – Enumeration intersection PLCopenXML Eplan EC output

The second part of intersection (Body intersections) is responsible for the rest of the code

for “PLC_PRG” program unit organization.

As can be seen in the next figure the parameters “M8_AddressLocal” and “M8_RefLocalId”

are indexes and they are responsible for the positions and coordinates of inputs, outputs

and blocks for Epas-5 software and PLC graphical information.

5 Creation of the Eplan Engineering Center Model

82

Figure 100 – M8_Fragment_Body_Intersections data

Figure 101 – Main Body PLCopenXML EEC output

5 Creation of the Eplan Engineering Center Model

83

Tasks folder:

In tasks folder it was introduced the text file “M8_Fragment_DefaultTask”. This text file is

responsible for the default task of the project. This means that it is possible to create or

change some parameters of the tasks inside a project. Editing the task is possible in the

Road form like showed in the next figure. Each project requires at least one task but user

can introduce as many as he want, depending of the complexity of the machine. In this

sample the number of tasks was not modular because this is a sample project and the

modular parameterization is always reach with the intersections. In default task we can

change “Name”, “Kind Of Task”, “Interval” and the “Pou Name” that is the name of the Pou

called when the task is executed.

Figure 102 – Road traffic light configuration project form, Default Task Parameters

Figure 103 – M8_Fragment_DefaultTask data

5 Creation of the Eplan Engineering Center Model

84

Mechatronik Folder:

In this folder is saved the mechatronics parts of the project. Subfolders are the elements of

the “T_Mechatronik_Architektur”, Stations, Stationcomponents and Components.

Figure 104 – T_Mechatronik_Construction Mechatronik tree view

Components folder:

This folder contains the lowest value element “TrafficLight”. This element is from the type

“Component” enounced in the library “T_Mechatronik_Architektur”.

Figure 105 – T_Mechatronik_Construction Traffic Light

5 Creation of the Eplan Engineering Center Model

85

Stationcomponents folder:

This folder contains the medium value element “Intersection”. This element is from the type

“Sationcomponent” enounced in the library “T_Mechatronik_Architektur”. The Intersection

element will be the only modular element of the Road project.

In figure below one “Intersection” has in the “Komponenten” section one “TrafficLight”. This

is the way to define compositions..

Figure 106 – T_Mechatronik_Construction Intersection

In the next figure it is sign now the “M8_Enumeration_of_Intersecions”. This fragment is

responsible for input the variables of one intersection. This fragment has just one parameter

“M8_AddressIntersection” and is responsible to give the index for each intersection. The

formula to calculate this index is programed in Standard column “m8_AddressIntersections

= mc.$M8_Index”. “M8_Index” is an index that represents the number of intersections of a

Road. “mc” means mechatronic components (mechatronic father of this component) and

the all formula means that for one Intersection the project have one

“M8_AddressIntersections”. The project has as many “M8_AddressIntersections”

parameters as Intersections it has.

5 Creation of the Eplan Engineering Center Model

86

Figure 107 – T_Mechatronik_Construction Intersection

The object intersection also has another fragment called “M8_Body_of_Intersection”. In the

next figure it is possible to see the several parameters of this fragment. They are

responsible for all the addresses of the text. These addresses are not constants and that’s

the reason we have to use formulas, depending on the number of intersections the indexes

of these addresses will change according the formulas presents in parameters.

Figure 108 – T_Mechatronik_Construction Intersection

5 Creation of the Eplan Engineering Center Model

87

Station folder:

This folder contains the main project “Road”. This element is from the type “Station”

enounced in the library “T_Mechatronik_Architektur”.

Figure 109 – T_Mechatronik_Construction Road

Inside the project Road we have as components:

- Intersection;

- Add_Intersection;

- M8_Fragment_MainBody;

- M8_Fragment_Controller_LMCx00C;

- M8_Fragment_DefaultTask.

5 Creation of the Eplan Engineering Center Model

88

Intersection:

The picture below shows the Intersection parameters. The formula means that it will exist

many “M8_Index” as many intersections the user add to the main Road project.

The name “mc” means mechatronic father object and “mos” means mechatronic child

objects

“M8_Index =mc.mos('T_Mechatronik_Construction.Mechatronik.Stationcomponents.Intersection').indexOf(this) +1”

Figure 110 – T_Mechatronik_Construction Road - Intersection

Add_Intersection:

This is a EEC function and means “addition points” to project. In these case is the function

that turns possible the adding of intersections to the project.

5 Creation of the Eplan Engineering Center Model

89

Figure 111 – T_Mechatronik_Construction Road – Add_Intersection

M8_Fragment_MainBody:

Including this fragment text to the Road project means that when the user generate the

XML code this text will have the most of the line of code. Is inside this code that loops

functions will be introduced for replacing and editing the lines of XML code.

Figure 112 – T_Mechatronik_Construction Road - M8_Fragment_MainBody

5 Creation of the Eplan Engineering Center Model

90

It is possible to see in the parameters section of this fragment all variables that are presents

in this element of text. In the Standard column are the initial values of these parameters.

The user can change all of them.

M8_Fragment_Controller_LMCx00C:

In this parameter the user can change the code for the hardware (PLC) called devices. If

the user has a several numbers of PLC XML Fragments he can choose in an appropriate

form which PLC he will use in the project. In this case the used device was which is the

most common in ELAU projects.

Figure 113 – T_Mechatronik_Construction Road - M8_Fragment_Controller_LMCx00C

5 Creation of the Eplan Engineering Center Model

91

M8_Fragment_DefaultTask:

This fragment of text will replace or create tasks in the project. There are four possible

variables in this fragment. The user can have many tasks saved and he can use the most

appropriate one.

Figure 114 – T_Mechatronik_Construction Road - M8_Fragment_DefaultTask

Parameters Folder:

All parameters will be saved in parameters folder. This folder has six subfolders for better

organize the elements. Each subfolder contains the parameter of that specific fragment.

Figure 115 – T_Mechatronik_Construction Parameters tree view

5 Creation of the Eplan Engineering Center Model

92

Content File Header folder:

This folder contains the parameters of the XML “Content Header” and “File Header”. All of

them are informative parameters.

Figure 116 – Parameters Content File Header tree view

Controller and Form UI folder:

In the figure below the parameters in folder “Controller” and “Form UI” are showed.

“Controller” contains the parameters for the device. “Form UI” contains some parameters

only for organize the form user friendly and those variables don´t have anything to do with

the really project.

Figure 117 – Parameters Controller and Form UI tree view

5 Creation of the Eplan Engineering Center Model

93

Instances folder:

Variables configuration name and resource name can be change also by the user and they

are saved under the subfolder “instances”.

Figure 118 – Parameters Instances tree view

Project Structure folder:

All project structure variables are under this folder. They are specially indexes variables for

coordinates of blocks for function blocks diagrams.

Figure 119 – Parameters Project Structure tree view

5 Creation of the Eplan Engineering Center Model

94

Tasks folder:

The folder “Tasks” contains the four variables that user can change in project tasks.

Figure 120 – Parameters Tasks tree view

5.4 Road Project Construction

Under the Project Katalog window the project will be constructing and in the end is possible

to have a structure like the figure below.

Figure 121 – Project tree view

5 Creation of the Eplan Engineering Center Model

95

The main project is called Road and it has a mechatronik folder with the Road “machine”. A

Road contains in this case three intersections and each intersection one traffic light set. The

user has also the possibility for adding more intersections to the project. Users have also

the folder for the XML code created with text discipline library. It can be seen in the figure

121 “M8_Fragment_MainBody” as the father of all others fragments. In this project there

are three intersections so the project will have three “M8_Enumeration_of_Intersections”

and also three “M8_Body_of_Intersection”. To generate the XML code just choose

“Generate Structure and open file” in Mechatronik and all the code will be processed.

Figure 122 – Generate XML code

5 Creation of the Eplan Engineering Center Model

96

Figure 123 – Generate XML code

After few moments the code appears in the window and it’s ready for testing in PLC. For

appropriate test the output code of EEC the Epas-5 software is open and then one new

project is create and “Import PLCopenXML”. Then, the entire project will be constructing

with all the structure that we have defined in the project design.

Figure 124 – Epas-5 Import PLCopenXML

5 Creation of the Eplan Engineering Center Model

97

Figure 125 – Epas-5 Project Structure

Now it´s possible trying the program with the simulate tool of Epas-5 and everything works

fine like planned.

Figure 126 – Epas-5 Project running

5 Creation of the Eplan Engineering Center Model

98

In this project it was projected a Road with three Intersecions. After open the project in

Epas-5 tool it is possible to check the POU PLC_PRG which contains all the Intersections

of the Road and see if they really exists three Intersections.

Figure 127 – Road PLC_PRG Declaration section

In the declaration part of PLC_PRG POU it is possbible see three Intersection declared.

Each Intersection have two traffic Light. The label of those Epas-5 variables are like the

introduced label in EEC software, on M8_Fragment_Enumeration_Intersections. The code

above is based in PLCopenXML and represents one intersection. This fragment will be

repeat many times, as many Intersections the project will have.

 <variable name="INTERSECTION#{M8_AddressIntersections}LIGHT1">

 <type>

 <derived name="TRAFFICSIGNAL" />

 <variable name="INTERSECTION#{M8_AddressIntersections}LIGHT2">

 <type>

 <derived name="TRAFFICSIGNAL" />

5 Creation of the Eplan Engineering Center Model

99

The next figure represents the body section of the PLC_PRG POU. It can be seen the six

FDB for the three Intersections in the Road project.

Figure 128 – Road PLC_PRG Body section

6 Summary of Results

100

6 Summary of Results

Once completed the CoDeSys version 3 implementation work in EEC software, the

program of this project has been tested several times but there was some errors in the

PLCopenXML export import Epas-5 tool. To achieve and certificate if the XML code is

correctly organized “Sequence” program organization unit was bypassed and manually

imported because the current version of Epas-5 does not support sequential function chart

language.

The program organization unit “Wait” was programmed in structure text language because

instruction list language was not recognized by Epas-5. That’s another “bug” in this latest

update. The mains errors found in Elau Epas-5 Export/Import PLCopen were:

- The XML scheme not update (v2.00);

- Doesn’t support IEC 61131-3 standard instruction list language;

- Doesn’t support IEC 61131-3 standard sequential function chart language;

- When interfaces and implements are introduced in the project, the PLCopenXML

Import does not work.

- Problems with PLCopenXML Import/Export comments;

Although this errors, was guaranteed that the text fragment extracted from the software

EEC works in general and has been proved that the implementation of CoDeSys version 3

in EEC is possible and was well successful.

The main objective of this work was to study all the requirements necessary for the

introduction of the new discipline CoDeSys in EEC software. With these results the

company Harro Höfliger can build a process to create control software to automate their

machines, as it already does with CoDeSys version 2.

6 Summary of Results

101

A small project in both versions of CoDeSys was built. In this project the following items

were analyzed:

- Main software environment differences between the both versions of CoDeSys;

- CoDeSys version 2, Eni-Server XML format;

- CoDeSys version 3 and PLCopen XML format;

- Update Projects with CoDeSys version 3 import tool (version 2 to version 3)

- PLCopenXML Export/Import Projects;

- Analyze errors with Epas5 PLCopenXML Export/Import tool.

With this small project was also possible to develop the “Text Discipline” model to

implement the new version 3 discipline in EEC software. It is possible to conclude that are

many differences between two versions of XML code extracted from Elau-4 and Elau-5.

These codes do not have a structure or a similar semantic which makes it impossible to

reuse the blocks of all existing code in Harro Höfliger Company. Nevertheless all the code

could be analyzed and imported but not directly.

When the projects are update to the latest version they can be exported with PLCopen XML

and then the integration in the future EEC discipline will be possible. The migration of Harro

Höfliger library projects can be made now, but should be considered that Epas-5 software is

still evolving and is not now completely stabilized. This migration should be initiated with

small projects so as to be easily detected some errors that may occur during the import.

After this migration all projects should be tested in PLC's version 3 to ensure everything is

parameterized. New projects may also be inserted in the new discipline of EEC soon as it is

released by Mind8 GmbH & Co. KG.

6 Summary of Results

102

Here some recommendations for the creation of the new library in EEC:

Initial conditions

- Software Epas-5 stable;

- CoDeSys V3 Library implement in Eplan Engineering Center;

- New server for store all new version data with a copy of Eni-Server;

Import V2 resources

- With Epas-5 import one simple project with a fragment to new version;

- PLCopenXML for generate XML code;

- Construct the structure in EEC;

- Generate code and test project in PLC for checking eventual errors;

- Organize the disk structure;

- Iniciate the migration of the data folow the steps above;

7 Future Prospects

103

7 Future Prospects

In this document it was demonstrated that IEC 61131-3 standard is very important for
nowadays automation. Besides that international standard the PLCopen standard is also
crucial for standardizes machines and softwares. Summarizing it will be very good if we all
talk the same automation language, and for that we must adopt definitely the two standards
above.

It was demonstrated also that the implementation on EEC will be successful and very

helpful for create new processes and methods. I´m very satisfied for can contribute for the

development on such important automation tool.

Eplan Engineering Center is an important tool for working with high quality and fastness.

These kinds of tools use one fast constructing projects and parameterizing without any

“heavy” programming.

CoDeSys version 3 is important and very useful upgrade software. It brings to automation

world some new enhancements that will surely make a big difference in the way you

envision designs and implements automation projects.

Combining all these tools it will be possible to create a great process to develop and design

automated structures. If all procedures are complied with the standards and get the

maximum leverage this tool can actually be a universal tool easy to use with maximum

quality and high standards.

V List of Figures

104

V List of Figures

Figure 1 - Machinery for packaging production for the medical sector ... 8

Figure 2 – Eplan Engineering Center variant management and configuration 9

Figure 3 – PLC System Overview ... 11

Figure 4 – Elau Programmable Logic Controller ... 12

Figure 5 – Traffic Light Function Block Diagram ... 13

Figure 6 – Physic software model ... 14

Figure 7 – Program organization unit sample ... 16

Figure 8 – Instruction list code sample .. 17

Figure 9 – Structure text code sample .. 17

Figure 10 – Ladder diagrams samples .. 18

Figure 11 – Functions blocks diagram samples .. 18

Figure 12 – Sequential function chart samples ... 19

Figure 13 – SFC initial step extended with a (non-Boolean) action block for step Start 20

Figure 14 – PLCopenXML tool .. 22

Figure 15 – Eplan Engineering Center generation of documents out of the mechatronic model 23

Figure 16 – POU folder ... 25

Figure 17 – Trafficsignal POU ... 26

Figure 18 – Wait POU ... 26

Figure 19 – Sequence POU .. 27

Figure 20 – PLC_PRG POU .. 28

Figure 21 – Data Types “TL_COLORS” .. 28

Figure 22 – Global Variables ... 29

Figure 23 – Task configuration, Task .. 29

Figure 24 – Task configuration, Test_Task ... 30

Figure 25 – Traffic light Visualization .. 31

Figure 26 – Scheme of XML output, connection Eni-Server with EEC ... 31

Figure 27 – PLC_PRG code visualization with Eni-Server ... 32

Figure 28 – PLC_PRG code sample ... 32

Figure 29 – Import Epas-4 Project/Library .. 33

Figure 30 – Import Epas-4 Project/Library .. 34

Figure 31 – Import Epas-4 Project/Library – Allocate libraries .. 34

Figure 32 – Epas-5 Messages .. 35

Figure 33 – POU folder ... 35

Figure 34 – Pou Trafficsignal declaration and body sections ... 36

Figure 35 – Pou Wait declaration and body sections (Instruction List language) 37

Figure 36 – Pou Wait declaration and body sections (Structure Text language) 37

Figure 37 – Pou Sequence declaration and body sections ... 38

V List of Figures

105

Figure 38 – Pou PLC_PRG declaration and body sections .. 39

Figure 39 – Data Types ... 39

Figure 40 – Global variables ... 39

Figure 41 – Task Configuration parameter ... 40

Figure 42 – Task Configuration parameter ... 40

Figure 43 – Epas-5 Visualization... 40

Figure 44 – Project visualization with object oriented programming ... 41

Figure 45 – Project Tree visualization with object oriented programming .. 42

Figure 46 – ILight Interface ... 42

Figure 47 – Method in Interface .. 42

Figure 48 –Interface property .. 43

Figure 49 – Function Block with Implements of the Interface ... 43

Figure 50 – Method aggregate at function block ... 44

Figure 51 – Xml Dateien Baum Analyse, comparison .. 44

Figure 52 – Traffic Light Function Block Diagram ... 45

Figure 53 – CoDeSys version 2 Eni-Server .. 45

Figure 54 – CoDeSys version 3 PLCopenXML ... 46

Figure 55 – Automation project structure check .. 47

Figure 56 – Export/Import PLCopenXML tool ... 49

Figure 57 – EEC XML generate code ... 49

Figure 58 – project diagram .. 50

Figure 59 – project diagram .. 51

Figure 60 – fileHeader diagram ... 52

Figure 61 – fileHeader diagram ... 52

Figure 62 – contentHeader diagram ... 53

Figure 63 –contentHeader structure ... 54

Figure 64 –contentHeader project parameters in Epas-5 ... 55

Figure 65 – coordinateInfo diagram .. 56

Figure 66 – coordinateInfo structure ... 56

Figure 67 – fdb/scaling diagram .. 58

Figure 68 – ld/scaling diagram .. 58

Figure 69 – sfc/scaling diagram .. 58

Figure 70 – fdb, ld, sfc scaling ... 59

Figure 71 – addData with child data diagram .. 60

Figure 72 – addDataInfo with child info diagram ... 60

Figure 73 – addData and addDataInfo structure ... 61

Figure 74 – Instances diagram .. 63

Figure 75 – configurations/configuration diagram ... 63

Figure 76 – Instances structure ... 64

Figure 77 – resource diagram ... 65

V List of Figures

106

Figure 78 – resources ... 66

Figure 79 – task diagram ... 67

Figure 80 – resource/task .. 67

Figure 81 – Eplan Engineering Center Road project .. 69

Figure 82 – T_Mechatronik_Architektur construction .. 70

Figure 83 – T_Mechatronik_Architektur library ... 70

Figure 84 – Epas-5 _Architektur library ... 71

Figure 85 – Epas5 _Architektur tree view ... 71

Figure 86 – Epas5 _Architektur path to resources of the project .. 72

Figure 87 – T_Mechatronik_Construction tree view .. 73

Figure 88 – T_Mechatronik_Construction tree view .. 73

Figure 89 – M8_Fragment_MainBody Data .. 74

Figure 90 – Road traffic light configuration project form, File and Content Header Parameters 75

Figure 91 – Road traffic light PLCopenXML EEC output .. 76

Figure 92 – M8_Fragment_MainBody Loop for Default Task code .. 77

Figure 93 – M8_Fragment_MainBody Loop for Enumeration Intersections code 77

Figure 94 – M8_Fragment_MainBody Loop for Body Intersections code ... 78

Figure 95 – M8_Fragment_MainBody Loop for devices code .. 78

Figure 96 – M8_Fragment_Controller_LMCx00C Data .. 79

Figure 97 – Road traffic light configuration project form, Road Design .. 80

Figure 98 – M8_Fragment_Enumeration_Intersections Data ... 80

Figure 99 – Enumeration intersection PLCopenXML Eplan EC output .. 81

Figure 100 – M8_Fragment_Body_Intersections data .. 82

Figure 101 – Main Body PLCopenXML EEC output ... 82

Figure 102 – Road traffic light configuration project form, Default Task Parameters 83

Figure 103 – M8_Fragment_DefaultTask data ... 83

Figure 104 – T_Mechatronik_Construction Mechatronik tree view ... 84

Figure 105 – T_Mechatronik_Construction Traffic Light ... 84

Figure 106 – T_Mechatronik_Construction Intersection ... 85

Figure 107 – T_Mechatronik_Construction Intersection ... 86

Figure 108 – T_Mechatronik_Construction Intersection ... 86

Figure 109 – T_Mechatronik_Construction Road ... 87

Figure 110 – T_Mechatronik_Construction Road - Intersection ... 88

Figure 111 – T_Mechatronik_Construction Road – Add_Intersection .. 89

Figure 112 – T_Mechatronik_Construction Road - M8_Fragment_MainBody 89

Figure 113 – T_Mechatronik_Construction Road - M8_Fragment_Controller_LMCx00C 90

Figure 114 – T_Mechatronik_Construction Road - M8_Fragment_DefaultTask 91

Figure 115 – T_Mechatronik_Construction Parameters tree view .. 91

Figure 116 – Parameters Content File Header tree view .. 92

Figure 117 – Parameters Controller and Form UI tree view ... 92

V List of Figures

107

Figure 118 – Parameters Instances tree view ... 93

Figure 119 – Parameters Project Structure tree view ... 93

Figure 120 – Parameters Tasks tree view .. 94

Figure 121 – Project tree view ... 94

Figure 122 – Generate XML code ... 95

Figure 123 – Generate XML code ... 96

Figure 124 – Epas-5 Import PLCopenXML ... 96

Figure 125 – Epas-5 Project Structure .. 97

Figure 126 – Epas-5 Project running .. 97

Figure 127 – Road PLC_PRG Declaration section ... 98

Figure 128 – Road PLC_PRG Body section ... 99

VI List of Tables

108

VI List of Tables

Table 1 – EEC CoDeSys version 3 implementation structure .. 24

Table 2 – project diagram XML ... 51

Table 3 – fileHeader structure XML... 53

Table 4 – contentHeader structure XML ... 55

Table 5 – contentHeader structure XML ... 57

Table 6 – contentHeader/addData addDataInfo structure XML .. 62

Table 7 – contentHeader/addData addDataInfo structure XML .. 64

Table 8 – task structure XML .. 68

VII References

109

VII References

[1] International Electrotechnical Commission. IEC International Standard IEC 61131

3:2003, Programmable Controllers, Part 3: Programming Languages, 2003.

[2] XML Formats for IEC 61131-3 version 2.01, PLCopen Technical Committee 6,

Technical Paper.

[3] PLCopen home-page: http://www.plcopen.org.

[4] XML, available at: http://www.w3.org/XML.

[5] E. Estévez, M. Marcos, E. Irisarri “Analysis of IEC 61131-3 Compliance through

PLCopen XML Interface”.

[6] Karl-Heinz John y Michael Tiegelkamp, “IEC 61131-3: Programming Industrial

Automation Systems”, Second edition. Springer. 2001.

[7] Edouard Tisserant, Laurent Bessard, and Mário de Sousa “An Open Source IEC

61131-3 Integrated Development Environment”.

[8] IDC Technologies Industrial Programming using lEC 61131-3 for PLCs.

[9] 3S Software home page: http://www.3s-software.com.

[10] Elau, Epas version 4 and version 5 Help menu.

[11] Technical Paper PLCopen Technical Committee 6 XML Formats for IEC 61131-3

version 2.01 – Official Release.

[12] Wikipedia the free encyclopedia home-page: http://en.wikipedia.org.

VIII Appendix

110

VIII Appendix

- Epas-5 / PLCopen XML

a) Analyses of Export PLCopenXML Road Project

- Structure of the CD_Master Thesis of Hugo Pereira 04.2012

VIII Appendix

111

a) Analyses of Export PLCopenXML Road Project

After doing the project, must be analyzed the Export code PLCopenXML from the Road

project. This analysis will be used to refer all objects that make up the XML. Then will serve

for the implementation of the CoDeSys software EEC.

The most important objects in this analysis are:

- POUs;

- Interfaces;

- Actions;

- Methods;

- Properties;

- Transitions;

- Global variables;

- Data types;

- Tasks;

- Devices;

- Applications;

- Project information.

These objects may for example be easily edited, deleted or duplicated in software EEC. For

this reason it is important to know the exact location of them.

VIII Appendix

112

1 – Header Information

Epas-5 XML code (project structure)

Here we have the main project and information about the PLCopenXML version used.

2 – File Header

Epas-5 XML code (fileHeader structure)

Here we have the information’s about the project and the user.

3 – Content Header

Here we have the information’s about the project and the user. In Epas-5 we can change

the parameters of contentHeader. We can choose the menu “Project” and then “Project

Information” section Summary.

contentHeader project parameters in Epas-5

VIII Appendix

113

Epas-5 XML code (contentHeader structure)

3.1 – Coordinate Info

Epas-5 XML code (coordinateInfo)

The element “coordinateInfo” contains the information for the mapping of the coordinate

system

3.2 – Add Data

For the project and certain objects in the XML file the vendor can include additional data.

Epas-5 XML code (addData)

VIII Appendix

114

4 – Types

Epas-5 XML code (dataTypes/ dataType structure)

5 – Instances

5.1 – configurations / configuration / resource

Epas-5 XML code (instances)

VIII Appendix

115

5.1.2 – Tasks

Tasks control the execution of a set of programs and/or function blocks. These can either

be executed periodically or upon the occurrence of a specified trigger, such as the change

of a variable:

In next figure we have the tasks tree view of EPAS-5 Intersection project. This project has

two tasks, “Task” and “Test_Task”. The first one is the main task of project and “Test_Task”

is only for testing the XML output.

Epas-5 Tree view project

Epas-5 “Task” configuration form

VIII Appendix

116

Epas-5 XML code (Task XML output)

Inside a task can be defined:

- POUs for execute;

- Priority;

- Type of Task, Interval and Interval unit;

- Enable/disable Watchdog, Time and Sensitivity;

VIII Appendix

117

If user look closely the form of the task and its xml code we can conclude that we can fully

configure a task just by changing the xml code. Thus with the implementation in software

EEC can create and edit tasks in a project.

Epas-5 “Test_Task” configuration form

Epas-5 XML code (Test_Task XML output)

VIII Appendix

118

5.1.3 – Global Variables

Epas-5 Tree view project (Global variables)

Epas-5 Global variables declaration

In these variables we have three derived variables data type and one generic data type

variable.

Epas-5 XML code (Global variables XML output)

VIII Appendix

119

Like the Task configuration we can fully configure global variables just by just changing the

xml code. Thus with the implementation in software Mind8 can create and edit global

variables in a project.

5.1.4 – Add Data

5.1.4.1 – Data Types

Epas-5 Tree view project (Data types)

Epas-5 Data types “TL_COLORS” declaration

Epas-5 XML code (Data type “TL_TIMEOFDAY” XML output)

VIII Appendix

120

Epas-5 Data types “TL_TIMEOFDAY” declaration

Epas-5 XML code (Data type “TL_COLORS” XML output)

Again we can fully configure Data Types just by just changing the xml code. Thus with the

implementation in software Mind8 can create and edit Data Types in a project.

VIII Appendix

121

5.1.4.2 – Interface

Interfaces can be used to organize methods which are used by function blocks. An

"Interface" is a POU describing a collection of method-prototypes. "Prototype" means that

just declarations but no implementation is contained. A function block can implement one or

several interfaces which mean that basically all methods of the interface(s) are available in

the function block.

The advantage: The method calls are defined and thus unique for all function blocks

implementing the same interface. Within a function block the methods have to be filled with

implementation code.

Epas-5 Tree view project (Interfaces)

Epas-5 Interface “ILight” declaration

VIII Appendix

122

Epas-5 XML code (Interface “ILight” XML output)

Epas-5 Method “SetLight” declaration

Epas-5 XML code (Method “SetLight” XML output)

VIII Appendix

123

Epas-5 Property “Value” declaration

Epas-5 XML code (Properties “Value” XML output)

5.1.4.3 – Pou / PLC_PRG

Interface / Local variables:

Here is defined all variables of the PLC_PRG program organization unit declaration.

Epas-5 Tree view project (POUs)

VIII Appendix

124

Epas-5 POU “PLC_PRG” declaration

Epas-5 XML code (POU “PLC_PRG” variables XML output)

VIII Appendix

125

Body / FDB:

In this section it will be analyze the POUs body XML. This part of XML is mainly with

coordinate factors.

Epas-5 POU “PLC_PRG” Body

 - PedestrianLight

Epas-5 PEDESTRIANLIGHT block

SVG is a vector graphics format that follows the XML grammar. It defines three types of

graphical objects: vector graphical objects, such as lines, ellipses, rectangle, etc. that can

be grouped, formatted, transformed and composed.

Related to the IEC 61131-3 graphical languages and, in particular, to the FBD language, a

limited set of SVG elements are needed, as illustrated in Fig. 4 along with its expression in

SVG language.

VIII Appendix

126

Besides the common characteristics, it is necessary to add to each element the specific

characteristics, as defined by the standard as well as the specific graphical information,

such as position, width and height.

The information needed for generating the SVG of a graphical POU, written in FBD, can be

extracted from a XML file that follows the grammar, as it not only contain the networks and

lines by network, but also the relative position of blocks in a line (order attribute).

Only filters the information about block instances and input/output variables, but it also can

apply the processing algorithms in order to generate the picture (as any PLC programming

tool does). In this sense, making use of a XSL stylesheet, it is possible to generate the SVG

corresponding to each graphical POU.

Epas-5 XML code (Input BEGIN PedestrianLight FB XML)

Xml variable coordinate Structure for graphic elements (Inputs and Outputs)

The “LocalId” for the BEGIN “inVariable” is “0”. This object get a local number as

identification by the generating system, and shall be unique within this POU code body.

“inVariable” means that the code above is relative to an input variable.

VIII Appendix

127

Epas-5 XML code (PEDESTRIAN Block)

Xml block coordinate Structure for graphic elements (Blocks)

In this XML part we define the all inside block with the instance name “PEDESTRIAN”.

First is defined the “typeName” and the “instanceName”, then the coordinate of the block

and the input variable “Start”. The parameter “refLocalId” is “0”. Next the “outputVariables”

“xValue” is announced. Finally we have the type of POU “functionblock” in the parameter

“callType”.

VIII Appendix

128

- Sequence

Epas-5 SEQUENCE block

Epas-5 XML code (Input BEGIN SEQUENCE FB XML)

The “localId” of this object has the number “2”, because the number “0” is already been

used by a “inVariable” and the number “1” by the previous block.

Epas-5 XML code (SEQUENCE Block)

VIII Appendix

129

The parameter “refLocalId” increase one unit when we change of block. In the parameter

“callType” we have the type of POU “program”.

- Trafficsignal Light1

TRAFFICSIGNAL LIGHT1 block

Epas-5 XML code (Input SEQUENCE.TRAFFICSIGNAL1 XML)

Epas-5 XML code (TRAFFICSIGNAL LIGHT1 Block)

VIII Appendix

130

Epas-5 XML code (output TL1COLORS.TLCOLORSGREEN XML)

- Trafficsignal Light2

TRAFFICSIGNAL LIGHT2 block

Epas-5 XML code (Input SEQUENCE.TRAFFICSIGNAL2 XML)

VIII Appendix

131

Epas-5 XML code (TRAFFICSIGNAL LIGHT2 Block)

Epas-5 XML code (output TL2COLORS.TLCOLORSGREEN XML)

With the closing of “FDB and “body” we finish the graphical information for this POU.

VIII Appendix

132

5.1.4.4 – Pou / TRAFFICSIGNAL

Interface / Local variables:

Here is defined all variables of the TRAFFICSIGNAL program organization unit declaration.

Epas-5 POU “TRAFFICSIGNAL” declaration

Epas-5 XML code (POU TRAFFICSIGNAL variables XML output)

VIII Appendix

133

Body / FDB:

In this section it will be analyze the POUs body XML.

Epas-5 POU “TRAFFICSIGNAL” Body

- Network1:

Epas-5 POU “TRAFFICSIGNAL” Block 1

VIII Appendix

134

Epas-5 XML code (Inputs STATUS and “1” XML)

Epas-5 XML code (TRAFFICSIGNAL Block 1)

Epas-5 XML code (output GREEN XML)

VIII Appendix

135

- Network2:

Epas-5 POU “TRAFFICSIGNAL” Network 2

Epas-5 XML code (Inputs STATUS and “2”)

VIII Appendix

136

Epas-5 XML code (TRAFFICSIGNAL Network 2 Block “EQ”)

Epas-5 XML code (Inputs STATUS and “4”)

VIII Appendix

137

Epas-5 XML code (TRAFFICSIGNAL Network 2 Block “EQ”)

VIII Appendix

138

Epas-5 XML code (TRAFFICSIGNAL Network 2 Block “OR”)

Epas-5 XML code (output YELLOW XML)

- Network3:

Epas-5 POU “TRAFFICSIGNAL” Network 3

VIII Appendix

139

Epas-5 XML code (Inputs STATUS and “3”)

Epas-5 XML code (TRAFFICSIGNAL Network 3 Block “EQ”)

VIII Appendix

140

Epas-5 XML code (Inputs STATUS and “4”)

Epas-5 XML code (TRAFFICSIGNAL Network 3 Block “EQ”)

VIII Appendix

141

Epas-5 XML code (TRAFFICSIGNAL Network 3 Block “OR”)

Epas-5 XML code (output RED XML)

VIII Appendix

142

- Network4:

Epas-5 POU “TRAFFICSIGNAL” Network 4

Epas-5 XML code (Inputs STATUS and “5”)

Epas-5 XML code (TRAFFICSIGNAL Network 4)

VIII Appendix

143

Epas-5 XML code (output OFF)

5.1.4.4 – Pou / PEDESTRIANLIGHT

Interface / Local variables:

Here is defined all variables of the PEDESTRIANLIGHT program organization unit

declaration.

Epas-5 Tree view project (PEDESTRIAN POU)

Epas-5 POU “PEDESTRIANLIGHT” declaration

VIII Appendix

144

Epas-5 XML code (POU PEDESTRIANLIGHT variables XML output and Inheritance)

Body / ST:

In this section it will be analyze the POUs body XML.

Epas-5 POU “PEDESTRIANLIGHT” Body

VIII Appendix

145

Epas-5 XML code (PEDESTRIANLIGHT Body)

Add Data / Data:

- Method Interface:

Epas-5 POU Method “SetLight” declaration

Epas-5 XML code (Method SetLight declaration)

VIII Appendix

146

- Method Body / ST:

Epas-5 POU Method “SetLight” body

Epas-5 XML code (Method SetLight body)

- Property Value:

Epas-5 POU Property “Value”

Epas-5 XML code (Property Value)

VIII Appendix

147

- Property Value GetAccessor:

Epas-5 Method Property “Value” GetAcessor

Epas-5 XML code (Property Value GetAccessor)

Epas-5 Method Property “Value” SetAcessor

VIII Appendix

148

Epas-5 XML code (Property Value SetAccessor)

5.1.4.5 – Pou / WAIT

Interface:

Here is defined all variables of the WAIT program organization unit declaration.

Epas-5 POU “WAIT” declaration

VIII Appendix

149

Epas-5 XML code (POU WAIT variables XML)

Body / ST:

Epas-5 POU WAIT body

VIII Appendix

150

Epas-5 XML code (POU WAIT body)

5.1.4.5 – Pou / SEQUENCE

Interface:

Epas-5 Tree view project (SEQUENCE POU)

VIII Appendix

151

Epas-5 POU SEQUENCE declaration

Epas-5 XML code POU SEQUENCE declaration

VIII Appendix

152

Body / SFC:

Epas-5 POU SEQUENCE body section in SFC language

VIII Appendix

153

Epas-5 XML code Init Step

Epas-5 XML code Switch1 Step

VIII Appendix

154

Epas-5 XML code Count Step

Epas-5 XML code Off Step

VIII Appendix

155

Epas-5 XML code Green2 Step

Epas-5 XML code Switch2 Step

VIII Appendix

156

Epas-5 XML code Green1 Step

Actions:

Epas-5 Action Switch1

Epas-5 XML code Action Switch1

VIII Appendix

157

Epas-5 Action Init

Epas-5 XML code Action Init

Epas-5 Action Off

Epas-5 XML code Action Off

VIII Appendix

158

Epas-5 Action Switch2

Epas-5 XML code Action Switch2

Epas-5 Action Count

Epas-5 XML code Action Count

VIII Appendix

159

Epas-5 Action Green2

Epas-5 XML code Action Green2

Epas-5 Action Green1

Epas-5 XML code Action Green1

VIII Appendix

160

Transitions:

Epas-5 Transition EXIT_1

Epas-5 XML code Transition EXIT_1

VIII Appendix

161

Libraries:

Epas-5 XML code Libraries used in Project

VIII Appendix

162

5.2 – configurations / configuration / addData

In this parameter is defined the configurations for PLC hardware.

Epas-5 XML code Hardware, devices

6 – Add Data

In this section XML print the project structure of all project. Is it showed the tree view for the

IEC 61131-3 project.

Epas-5 Project tree view

VIII Appendix

163

Application and Data Types folder:

Epas-5 Project tree view Application and Data types

POUs folder:

Epas-5 Project tree view POUs folder

VIII Appendix

164

Global variables, Interfaces and Task configuration:

Epas-5 Project tree view folders

With the closing of the element “project” the ExportPLCopenXML code is finish.

