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Abstract 

 

The aim of this paper is to analyze the forecasting ability of the CARR model proposed 

by Chou (2005) using the S&P 500. We extend the data sample, allowing for the 

analysis of different stock market circumstances and propose the use of various range 

estimators in order to analyze their forecasting performance. Our results show that there 

are two range-based models that outperform the forecasting ability of the GARCH 

model. The Parkinson model is better for upward trends and volatilities which are 

higher and lower than the mean while the CARR model is better for downward trends 

and mean volatilities. 

 

JEL Classification: G10, G11, G14. 

Keywords: CARR; GARCH; Range Estimators; Forecasting Performance 

 

                                                 
1  Corresponding author 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico de Lisboa

https://core.ac.uk/display/47130949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:miralles@unex.es�
mailto:juliodaza@unex.es�


 
 

Volatility Forecasting with Range models. An evaluation of 

new alternatives to the CARR model 
 

1 Introduction 

 

In the years following the publication of the ARCH model proposed by Engle (1982) 

and its generalization (GARCH model) proposed by Bollerslev (1986), modeling and 

forecasting volatility has been the subject of vast empirical and theoretical investigation. 

As a result, many different studies have focused on evaluating different volatility 

measures that might improve volatility forecasts and, if possible, identify a preferred 

technique. 

For forecasting monthly US stock index volatility, Akgiray (1989) finds the GARCH 

model superior to ARCH, as well as the exponentially weighted moving average and the 

historical means models. Lamoureux and Lastrapes (1993) show that implied volatility 

tends to underpredict realized volatility while forecasts of variance from past returns 

contain relevant information not contained in the forecast constructed for implied 

volatility. 

Moreover, Brailsford and Faff (1996) find GJR and GARCH models slightly 

superior to a number of simpler models for predicting Australian monthly stock index 

volatility. In contrast, Tse (1991) and Tse and Tung (1992) use data from Japan and 

Singapore and find that an Exponentially Weighted Moving Average model produces 

better volatility forecasts than do ARCH models. 

Martens (2001) analyzes the improvement of forecasting on different GARCH 

models by including additional intraday information and finds that the higher the 

frequency used the better the volatility forecast.  

The use of ranges is another alternative to measure the variability of a share, an index 

or a stock market, which makes sense because that is what traders perceive volatility to 

be. The application of ranges in finance started with Parkinson (1980) who showed the 

superiority of his proposal when compared with the standard methods of volatility 
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estimations. This initial study was followed by others1

More recently, Brandt and Jones (2006) compare a range-based EGARCH model 

with the return-based volatility model and find that the former produces better 

predictions for out of sample forecasts, while Chou (2005), in a very interesting paper, 

uses Standard and Poors 500 index data and proposes a range-based model, the 

Conditional Autoregressive Range (CARR), suggesting that it outperforms the 

forecasting ability of the GARCH model. 

 where the range properties were 

analyzed. 

Our study furthers the line of research initiated by Chou (2005) by mainly discussing 

the results of the forecasting power of the CARR model, and suggesting the use of 

range estimators in order to improve the original model of Chou (2005). 

We improve the previous literature in various ways. Firstly, we propose to extend the 

original sample of Chou (2005) to the week which begins on September 27, 2010 in 

order to analyze the performance of the models employed by Chou (2005) in different 

situations. Secondly, we analyze the performance of both models to forecast volatility 

depending on the day of the week the variables are calculated. Finally, we suggest 

substituting the original range employed by Chou (2005) with other range estimators 

with the aim of finding an alternative to the CARR model. 

This paper shows that when forecasts are made on an upward trend and in a low 

volatility environment the Parkinson range estimator provides better forecasting results 

while the original CARR model is better on downward trends and mean volatility. 

The remainder of the paper is organized as follows. Section 2 describes the original 

methodology and the initial results, Section 3 presents the alternatives, Section 4 shows 

the main results and Section 5 provides the main conclusions. 

2. INITIAL METHODOLOGY AND PRELIMINARY RESULTS 

 

Different applications and methodologies have been developed in recent years to 

analyze the dynamics of volatility. Among them, the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models proposed initially by Engle (1982) 

and Bollerslev (1986), and the stochastic volatility (SV) models advocated by Taylor 

(1986) are two popular and useful alternatives for estimating and modeling time-varying 
                                                 
1 See Garman and Klass (1980), Beckers (1983), Rogers and Satchell (1991), Kunitomo (1992) or Yang 

and Zhang (2000) among others. 
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conditional financial volatility. However, as pointed out by Alizadeh, Brandt, and 

Diebold (2002), Brandt and Diebold (2006) and Chou (2005) among others, both 

models are inaccurate and inefficient, because they are based on the closing prices of 

the reference period and fail to use the information contents in between the reference 

points. 

We initially follow the Chou approach (2005), which proposed the Conditional 

Autoregressive Range (CARR) model as an alternative for the modeling of financial 

volatility. 

The CARR model of order (p,q) is shown as 
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where, Rt=Max (Pt)-Min (Pt), is the range measure calculated as the difference between 

the highest and the lowest logarithms of the prices of a speculative asset observed at 

time t and λt is the conditional mean of the range based on all information up to time t. 

As pointed out by Chou (2005), the distribution of the disturbance term εt, or the 

normalized range εt=Rt/λt, is assumed to be distributed with a density function f(.) with 

a unit mean. Additionally, the coefficients in the conditional mean equation are all 

positive to ensure positivity of λt. 

Assuming that the distribution follows an exponential distribution with unit mean 

then the log likelihood function can be written as: 
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Chou (2005) also shows that the unconditional (long term) mean of range can be 

calculated as 
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Chou (2005) performs out of sample forecasts and makes comparisons with a 

GARCH (1,1) model with conditional normal distribution. He chooses the forecast 

horizons ranging from 1 week to 50 weeks and makes rolling sample estimations to 

estimate the parameters of both models. In each case, 972 weeks of data prior to the 

forecast interval are used and 100 out of sample forecast are made for each forecast 

horizon. Four measures are used as the benchmark of the ex post volatility: the sum of 

squared daily returns (SSDR), weekly return squared (WRSQ), weekly range (WRNG) 

and absolute weekly return (AWRET). 

In order to evaluate the performance of both models, Chou (2005) uses two 

symmetric error statistics, the Root Mean Squared Error (RMSE) and Mean Absolute 

Error (MAE): 
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where T=100 and mm σandσ̂  denote the volatility forecast and the realized volatility in 

week m, respectively. 

After computing those symmetric statistics over 50 forecast horizons, Chou (2005) 

considers that both criteria give almost unanimous support for the CARR model over 

GARCH. Chou (2005) also points out that a closer analysis of the results shows that the 

differences in the performance of the two models are more evident when the horizons 

are shorter and, in particular, for the SSDR and WRNG measures, because both of them 

use more information (daily) than WRSQ and AWRET and, therefore, contain less 

noise. 
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The results in Chou (2005) are not shown for a horizon longer than 13 weeks in order 

to save space2, but if we analyze those results we find that the performance of the 

GARCH model on forecasting volatility is significantly better than the CARR model, 

specially for the RMSE statistics, and for most of the measures of volatility used as 

benchmarks, as reported in Tables 1 and 2.3

 

 

INSERT TABLE 1 ABOUT HERE 

 

Table 1 shows the results for the RMSE statistics. It is interesting to observe that in 

the last 30 horizons most of the smaller stats are for the GARCH model, which means 

that its forecasting ability is better than the CARR model proposed by Chou (2005). The 

difference between these models is specially significant when the Weekly Range 

(WRNG) is used to measure volatility because 24 out of the 30 cases are smaller for the 

GARCH model. 

This fact is in conflict with the original hypothesis of Chou (2005) who considers 

that the CARR model should be good at forecasting the Weekly Range (WRNG) 

because it is the variable used in the variance equation of the CARR model. 

On the other hand, from the results of the Mean Absolute Error statistics reported in 

Table 2, we see that the CARR model performs better forecasts than the GARCH model 

for all measures of volatility. There is just one exception because, once again, the 

WRNG provides better results for the GARCH model (18 out of 30 stats are smaller for 

the GARCH model).  

 

INSERT TABLE 2 ABOUT HERE 

 

3. COMMENTS AND PRICE RANGE ESTIMATORS 

 

From the previous results, and after analyzing in depth the methodology, we find 

some weaknesses in the model proposed by Chou (2005). The first one is related to the 

way in which the data is collected. Chou (2005) collects daily data from the Standard 

                                                 
2 Chou (2005) points out that the results are available in a previous working paper. 
3 Following the same reason of saving space only the results for a 13 weeks horizon and longer are 

reported. The remainders are partially in Chou (2005) or are available upon request. 
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and Poors 500 for the period from April 26, 1982 to October 17, 2003, which was 

downloaded from the website “Yahoo.com”. Daily and weekly data (obtained from the 

daily one) were considered, but only weekly estimations were shown because the results 

were basically the same and some weekday seasonal effects were found for the daily 

range data. 

All the dates that are referred to in Chou (2005) are Mondays, which suggests us to 

think that all the weekly estimations are from Monday to Monday, but the fact is that 

the weekly format that can be downloaded from the aforementioned website is from 

Monday to Friday, which led us to check that the returns (close to close natural 

logarithm difference) used to calculate the GARCH models and, consequently, the 

GARCH forecasts are not from Monday to Monday but from Friday to Friday.4

We agree with the fact of using weekly returns in the analysis because they should 

not be subject to potential bias such as the bid–ask effect, non-trading days, etc, that 

might arise when daily returns are used. However, we must consider that the existence 

of calendar anomalies such as the Monday effect, the Friday effect or the day of the 

week effect could lead to an irregular behavior of the proposed models according to the 

day of the week on which the variables are calculated. 

 

Secondly, the sample used by Chou (2005) was from April 26, 1982 to October 13, 

2003, the forecast period5

Thirdly, the classical estimator of volatility is based on the close to close prices but it 

has been demonstrated that the daily squared return is an unbiased estimator of the 

realized daily volatility, however, Andersen and Bollerslev (1998) show that it is also 

extremely noisy. Furthermore, it must be pointed out that by only looking at opening 

and closing prices we may wrongly conclude that volatility on a given day is small if 

both prices are similar, despite large intraday price fluctuations. For those reasons, more 

 being characterized by a mix of downward and upward trend 

in the Standard and Poors 500. Since the publication of Chou’s paper there have been 

different trends in the S&P500, with a higher maximum and a lower minimum than 

those that were considered by Chou (2005). In our opinion, it would be interesting to 

analyze the forecasting ability of the GARCH and the CARR models in different trends 

in order to check the performance of each one in special situations. 

                                                 
4 It was also checked with the Chou (2005) data. 
5 The first date is December 4, 2000. 



7 

sophisticated estimators using additional information such as high, low and open prices 

are needed to estimate volatility. 

Taylor and Xu (1997) use the standard deviation of the intraday returns, while 

Martens (2001) uses the sum of squared intraday returns, in both cases provide better 

results for the conditional variance. However, we consider the extreme value methods to 

be more effective. In order to explain them we adopt the notation of Garman and Klass 

(1980) and Yang and Zhang (2000). 

 

Ct = closing price on day t;  

Ot = opening price on day t;  

Ht = high price on day t;  

Lt = low price on day t;  

ct = lnCt – lnOt, the normalized close price;  

ot = lnOt – lnCt-1, the normalized open price;  

ut = lnHt – lnOt, the normalized high price;  

dt = lnLt – lnOt, the normalized low price;  

n = number of daily periods (five in our case). 

 

Parkinson (1980) provides a simple way to measure daily volatility given the daily 

range of the high/low prices by suggesting the measurement of the daily volatility as 

follows: 
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It has been demonstrated that the efficiency of this estimator is very high, about 4.91 

in comparison with the standard simple variance estimator and could be as much as 8.5 

times more efficient than log-squared returns. 

Since then, different methods have been proposed for estimating the volatility 

parameter. Garman and Klass (1980) incorporate the opening and closing prices and 

suggest the following measure (VGK) : 
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and VRS is another alternative measure of volatility proposed by Rogers and Satchell 

(1991) which is calculated as: 
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Finally, Yang and Zhang (2000) propose a new estimator which is, in their opinion, 

the minimum-variance unbiased variance estimator and is independent of both the drift 

and opening jumps of the underlying price movements. This estimator, VYZ, is given by 

the equation: 
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Considering all these comments, we propose to extend the sample to the week which 

begins on September 27, 2010 in order to analyze the performance of the original 

models (GARCH and CARR) employed by Chou (2005) in different situations along 

this time (upward and downward trends) but always keeping the number of observations 
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(1120) used by Chou (2005); we also analyze the performance of both models on 

forecasting volatility depending on the day of the week the variables are calculated and, 

additionally, we suggest to substitute the original range employed by Chou (2005) with 

the volatility measures previously mentioned (Parkinson, Garman-Klass, Rogers-

Satchell and Yang-Zhang) with the aim of finding an alternative to the CARR model. 

 

4. DATA AND RESULTS 

 

The data consists of daily data from the Standard and Poors 500 for the sample 

period from April 26, 1982 to September 27, 2010. As in Chou (2005), open, high, low 

and close prices are collected. Consistent with reviewed literature, the previous day of 

trading data was taken to calculate the different estimators in those cases when a holiday 

occurred. Weekly series were constructed for each day of the week so for example in 

the case of Monday, data from Tuesday to the following Monday (including it) was 

collected. 

Having observed that there are different trends in the sample, we decide to divide the 

full sample in four sub-samples with the aim of analyzing the forecasting ability of the 

different range estimators in various periods. 

Following those reasons, the first sub-sample (April 26, 1982-October 13, 2003) is 

the sample used by Chou (2005). The second sub-sample (April 14, 1986-October 9, 

2007) is the period which ends with the historical maximum quote of the Standard and 

Poors 500. The phase which ends with the minimum after the technological bubble 

crash is the period analyzed in the third sub-sample (September 7, 1987-March 9, 

2009). Finally, the period from March 13, 1989 to September 27, 2010 is the fourth sub-

sample. 

The results for the first subsample are shown in Table 3. They denote a better 

forecasting performance for the CARR model proposed by Chou (2005), specially when 

the Mean Absolute Error (MAE) criteria is considered. We observe that in most of the 

cases, and the CARR model provides the best forecasting results often for more than a 

90% of the horizons estimated. 

 

INSERT TABLE 3 ABOUT HERE 
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However, we find that for the Root Mean Squared Errors (RMSE) the results of 

forecasting ability are not so favorable for the CARR model. Considering the RMSE we 

show that the GARCH model provides better forecasting results in the central part of 

the week, 3 out of 4 cases on Wednesday and 4 out of 4 on Thursday. The results for 

Friday samples show that both models performance is very similar and with just one 

exception, when the Weekly Range (WRNG) is used as the measure of expost volatility, 

both models provide the best forecasting ability in 25 of the 50 cases (50% each). 

In this case the proposed models based on different range estimators are not 

significant. There is just one case, for the MAE estimator and the Weekly Return 

squared (WRSQ), where the Parkinson model fits volatility better than the others (on 

Friday for 6 times), and the Garman-Klass and Yang-Zhang models for Monday (twice 

and once respectively). 

We find some interesting results for the second subsample which are reported in 

Table 4. Depending on the choice of the error estimator either the Parkinson or the 

GARCH model are better at forecasting volatility. 

 

INSERT TABLE 4 ABOUT HERE 

 

The Parkinson model is best for forecasting volatility, specially for the WRSQ and 

AWRET volatility measures, when the Mean Absolute Error estimator is considered. In 

those cases the Parkinson model performs better than the others for 46 out of 50 forecast 

horizons for Friday (WRSQ measure) and for 41 out of 50 forecast horizons on 

Monday, (AWRET measure), having also a high percentage of better results on the rest 

of the days and for the other two measures of volatility (SSDR and WRNG).  

On the other hand, the GARCH model provides the best forecasting performance 

when the RMSE is considered. However, in three cases the model with the Parkinson 

volatility estimator is better (on Friday when SSDR is used and on Monday for WRNG 

and AWRET measures). 

In this sample, the CARR model proposed by Chou provides the better forecasting 

performance in just 2 out of the 40 possibilities, being equal to the GARCH model in 
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one case (for the Thursday estimations when the Weekly Return Squared, WRSQ, is 

used as the measured volatility). 

The rest of the models proposed fit better results than in the first sample but their 

relevance is minor when compared with the Parkinson or the GARCH model. The most 

interesting results are provided by the Rogers-Satchell model when the MAE estimator 

and SSDR measure are considered (13 out of 50 forecast horizons on Monday are better 

suited to this model) and for Monday and Wednesday when WRSQ is used (6 out of 50 

forecast horizons). Furthermore, the Yang-Zhang model is better on Thursday when the 

MAE estimator and WRSQ measure are considered (12 out of 50 forecast horizons are 

better suited to that model). 

The results for the third sub-sample (September 7, 1987-March 9, 2009), which are 

reported in Table 5, show smaller differences among the proposed models than in the 

previous samples. As well as in the previous sample, the best forecasting results for the 

Parkinson model are obtained when the Mean Absolute Error (MAE) estimator is 

calculated and, in this case, for the WRSQ and AWRET measures, specially on 

Tuesday, Wednesday and Thursday. 

 

INSERT TABLE 5 ABOUT HERE 

 

With respect to the Root Mean Squared Error (RMSE) estimator, the GARCH and 

the CARR models provide similar forecasting ability, when SSDR and WRSQ measures 

are considered. The GARCH model is better on Wednesday and Friday for SSDR and 

Tuesday and Wednesday for WRSQ but the CARR model is better on Tuesday and 

Thursday for SSDR and Monday and Thursday for WRSQ. They are equal on Monday 

for SSDR and Friday for WRSQ. 

For the rest of the volatility measures used as benchmarks (WRNG and AWRET) the 

CARR model performance is better than the GARCH model one. However, the 

improvement is insignificant because in most of the cases the GARCH model provides a 

high number of instances in which performs better than the CARR model. 

Once again the Rogers-Satchell and the Yang-Zhang models are the only alternative 

to the Parkinson, GARCH and CARR models. In this case, it is significant to point out 

the fact that the best forecasting ability of the Rogers-Satchell is produced on 



12 

Wednesday when the MAE estimator and the AWRET measure are considered (13 out 

of 50 forecast horizons are better fitted for that model). On the other hand, Table 5 

shows that the best results for the Yang-Zhang model are on Thursday when RMSE 

estimator and WRNG are considered (in that case 20 out of the 50 forecast horizons are 

better fitted for that model). 

Finally, the results for the last sample (March 13, 1989 to September 27, 2010) are 

shown in Table 6. In this case there is no debate about which is the best model for 

forecasting volatility because the CARR model is clearly better than the other ones for 

both the error estimators as well as the volatility measures. According with Chou 

(2005), the differences in the performance of the models are more obvious when SSDR 

and WRNG are used to measure volatility. 

 

INSERT TABLE 6 ABOUT HERE 

 

The main explanation of the results we obtained is that the choice of the best 

forecasting model depends on three factors: the trend, the level of volatility in the 

analysis period and the error estimator that is used to analyze the forecasting ability of 

each model. On the other hand, the day of the week on which the estimations are made 

is insignificant. 

Figure 1 presents the plot of the weekly closes on Friday6

 

 of the Standard and Poors 

500 for the whole sample. The AF, AL and A denote the first one-step forecast, the last 

one-step forecast and the end of the sample respectively (by substituting B, C and D for 

A we would get the same variables for the second, third and fourth samples). 

INSERT FIGURE 1 ABOUT HERE 

 

The CARR model proposed by Chou (2005) shows better results for forecasting 

volatility in the first and fourth samples, denoted by A and D on Figure 1, where the 

forecasting period is a mix of downtrend7

                                                 
6 We choose Friday in order to maintain the methodology of Chou (2005). 

 (most of the time) and uptrend. In both cases, 

7 The downtrend is most significant in the fourth sample because it contains the technological bubble 
crash. 
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the mean of the different volatility measures used as benchmarks on each weekday is 

approximately the mean of the four samples as reported in Table 7. 

 

INSERT TABLE 7 ABOUT HERE 

 

However, the CARR model is no longer adequate for forecasting volatility in other 

cases. That is the point of the second sample (denoted by B in Figure 1), where the 

whole forecasting period is entirely included in an upward trend and the volatility 

values are significantly lower than the mean as show in Table 7. In that case, the 

proposed Parkinson model forecast volatility better than the rest of the models when the 

MAE estimator and the four volatility measures are considered. However, for the same 

forecasting period the GARCH model is better at forecasting when the RMSE estimator 

is used. 

On the other hand, the Parkinson and the GARCH models perform better than the 

CARR model for both error estimators when the WRSQ and AWRET measures are 

used and when the volatility is higher than the mean and the trend is mixed, being in an 

upward trend most of the time, which is the case of the third sample (denoted by C on 

Figure 1). The GARCH model also shows good results when the SSDR measure is used 

while the CARR model reports the best forecasting ability only when the WRNG is 

used (precisely the variable used in the variance equation of the CARR model). 

The best performance of the Parkinson estimator and, therefore, the worst of the 

Garman-Klass, Rogers-Satchell and Yang-Zhang models is in accordance with the 

results of Brandt and Kinlay (2005) who show that the latter ones were downward 

biased. They demonstrate that the Parkinson estimator outperforms all of the other 

estimators in terms of bias and that the Garman-Klass, Rogers-Satchell and Yang-Zhang 

estimators show signs of negative bias. 

In spite of the theoretical heterogeneity of the results, they agree with the findings of 

Poon and Granger (2003) who, in a review about forecasting volatility in financial 

markets, provide some useful insights into comparing different studies about this topic. 

The authors say that the conclusions of these studies depend strongly on the error 

statistics used, the sampling schemes employed (e.g. rolling fixed sample estimation or 

recursive expanding sample estimation), as well as the period and assets studied. 
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To sum up, we agree with the fact that the CARR model proposed by Chou (2005) is 

a good model, but it is also very important to point out that the Parkinson model is 

clearly an alternative for the CARR and the GARCH models, specially when the 

volatility is low and we run the forecast analysis on an upward trend. 

 

5. CONCLUSIONS 

 

In this paper we analyze the forecasting ability of the Conditional Autorregresive 

Range (CARR) model, proposed by Chou (2005), by extending the sample of analysis 

of the Standard and Poors 500 till the last week of September 2010 and allowing for the 

analysis of different stock market circumstances (like upward or downward trends). 

Additionally, we analyze the volatility forecasting ability for all the weekdays and we 

propose to use various range estimators in order to analyze their forecasting 

performance. 

The results show that the original CARR model can be improved depending on three 

factors: the trend, the level of volatility in the analysis period and the error estimator 

that is used to analyze the forecasting ability of each model. 

For that reason, in those samples where the whole forecasting period is entirely 

included in an upward trend and the volatility values are significantly lower than the 

mean, the use of the Parkinson estimator instead of the range used by Chou (2005) leads 

to an improvement in the forecasting ability of the model. 

Finally, we must point out that these results are of greatest relevance when applied to 

option pricing or market risk management where an under or over- estimation of risk 

can be disastrous. 
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Figure 1: Weekly closes of the Standard and Poors 500 

Sample April 26, 1982 to September 27, 2010 
The AF, AL and A denote the first one-step forecast, the last one-step forecast and the end of the sample 

respectively (by substituting B, C and D for A we would get the same variables for the second, third and 

fourth samples). 
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Table 1: Root Mean Squared Errors (RMSE) estimations 
 SSDR WRSQ WRNG AWRET 

Horizon GARCH CARR GARCH CARR GARCH CARR GARCH CARR 

13 12.674 11.604 19.760 19.603 2.595 2.482 2.131 2.104 

14 12.916 11.776 19.806 19.591 2.616 2.493 2.136 2.099 

15 12.708 11.603 19.407 19.152 2.586 2.487 2.089 2.047 

16 12.537 11.609 19.346 19.130 2.521 2.433 2.073 2.042 

17 12.420 11.637 19.241 19.131 2.500 2.444 2.064 2.048 

18 12.006 11.274 19.160 19.115 2.443 2.414 2.042 2.042 

19 11.939 11.329 19.100 19.008 2.441 2.419 2.028 2.018 

20 12.022 11.294 19.420 19.394 2.446 2.428 2.050 2.048 

21 11.920 11.197 19.313 19.307 2.444 2.405 2.036 2.036 

22 11.867 11.087 19.171 19.184 2.440 2.385 2.014 2.008 

23 12.041 11.146 19.256 19.173 2.445 2.392 2.024 2.000 

24 12.085 11.158 19.388 19.219 2.443 2.398 2.042 2.011 

25 12.109 11.228 19.485 19.336 2.456 2.420 2.068 2.035 

26 12.041 11.211 19.380 19.262 2.427 2.402 2.053 2.028 

27 11.805 11.221 19.322 19.347 2.393 2.416 2.054 2.042 

28 11.751 11.272 19.453 19.418 2.402 2.431 2.059 2.046 

29 11.614 11.243 19.439 19.424 2.368 2.426 2.058 2.051 

30 11.388 11.178 19.313 19.387 2.320 2.407 2.032 2.037 

31 11.241 11.175 19.315 19.427 2.295 2.418 2.032 2.041 

32 11.041 11.143 19.293 19.446 2.266 2.416 2.037 2.051 

33 10.880 11.109 19.237 19.445 2.234 2.412 2.023 2.046 

34 10.969 11.162 19.168 19.412 2.206 2.410 2.012 2.037 

35 10.831 11.138 19.114 19.412 2.154 2.409 2.010 2.041 

36 10.581 11.110 19.133 19.385 2.136 2.403 2.011 2.036 

37 10.352 11.109 19.215 19.398 2.099 2.401 2.039 2.043 

38 10.129 11.106 19.201 19.410 2.079 2.413 2.056 2.054 

39 9.745 11.074 19.001 19.345 2.062 2.402 2.024 2.035 

40 9.431 11.068 18.809 19.318 2.022 2.390 2.003 2.026 

41 9.110 11.036 18.689 19.321 2.015 2.394 1.973 2.023 

42 8.380 10.459 11.677 12.442 1.726 2.127 1.682 1.727 

43 8.201 10.336 11.179 11.348 1.762 2.093 1.639 1.639 

44 8.469 10.369 11.677 11.379 1.817 2.092 1.669 1.636 

45 9.231 10.425 11.594 11.386 1.882 2.107 1.661 1.641 

46 9.742 10.473 11.689 11.417 1.917 2.109 1.674 1.646 

47 10.111 10.507 11.877 11.473 2.001 2.122 1.706 1.658 

48 10.210 10.497 11.827 11.483 2.027 2.125 1.705 1.664 

49 10.245 10.515 11.748 11.477 2.010 2.127 1.692 1.660 

50 10.187 10.531 11.716 11.483 2.033 2.135 1.704 1.667 
This table computes the Root Mean Squared Error (RMSE) where T=100. In all cases, the smaller the error, 

the better the forecasting ability. SSDR, WRSQ, WRNG and AWRET are the sum of squared daily returns, 

weekly return squared, weekly range and absolute weekly return, respectively. 
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Table 2: Mean Absolute Errors (MAE) estimations 
 SSDR WRSQ WRNG AWRET 

Horizon GARCH CARR GARCH CARR GARCH CARR GARCH CARR 

13 8.853 7.441 10.061 8.915 1.919 1.752 1.496 1.420 

14 9.046 7.438 10.046 8.919 1.938 1.752 1.490 1.412 

15 8.907 7.242 9.601 8.431 1.910 1.724 1.438 1.362 

16 8.776 7.161 9.526 8.424 1.828 1.668 1.421 1.357 

17 8.666 7.062 9.401 8.475 1.839 1.685 1.442 1.375 

18 8.422 6.764 9.471 8.367 1.802 1.642 1.425 1.366 

19 8.428 6.810 9.350 8.219 1.789 1.651 1.411 1.340 

20 8.423 6.921 9.575 8.364 1.806 1.679 1.431 1.354 

21 8.340 6.895 9.405 8.273 1.798 1.680 1.416 1.351 

22 8.154 6.733 9.301 8.094 1.796 1.676 1.402 1.329 

23 8.268 6.778 9.238 8.022 1.777 1.677 1.418 1.313 

24 8.371 6.728 9.155 8.021 1.721 1.652 1.419 1.322 

25 8.292 6.757 9.410 8.104 1.727 1.652 1.462 1.344 

26 8.316 6.800 9.305 8.108 1.748 1.635 1.449 1.344 

27 8.197 6.787 9.205 8.139 1.718 1.641 1.454 1.353 

28 8.138 6.898 9.238 8.087 1.719 1.636 1.457 1.350 

29 8.071 6.898 9.226 8.124 1.683 1.631 1.440 1.359 

30 7.840 6.845 9.097 8.111 1.632 1.611 1.420 1.349 

31 7.770 6.805 9.112 8.075 1.603 1.621 1.426 1.343 

32 7.627 6.726 9.168 8.122 1.577 1.625 1.434 1.355 

33 7.323 6.596 9.142 8.087 1.558 1.608 1.422 1.342 

34 7.528 6.671 9.103 8.008 1.537 1.622 1.397 1.323 

35 7.421 6.665 9.216 8.058 1.524 1.636 1.403 1.329 

36 7.278 6.624 9.252 8.058 1.541 1.641 1.401 1.334 

37 7.239 6.665 9.394 8.078 1.515 1.644 1.420 1.339 

38 7.136 6.715 9.528 8.128 1.489 1.662 1.453 1.352 

39 6.945 6.722 9.267 7.978 1.497 1.663 1.417 1.327 

40 6.747 6.697 9.068 7.836 1.482 1.642 1.399 1.314 

41 6.426 6.671 8.962 7.814 1.449 1.636 1.381 1.305 

42 6.190 6.374 7.545 6.338 1.362 1.546 1.289 1.208 

43 6.137 6.266 7.409 5.918 1.362 1.518 1.276 1.165 

44 6.405 6.282 7.455 5.870 1.384 1.495 1.279 1.156 

45 6.681 6.252 7.334 5.863 1.414 1.495 1.272 1.162 

46 6.882 6.284 7.397 5.868 1.444 1.496 1.285 1.162 

47 7.084 6.292 7.595 5.959 1.489 1.503 1.306 1.176 

48 7.193 6.206 7.495 5.995 1.530 1.503 1.308 1.187 

49 7.228 6.226 7.437 5.957 1.494 1.500 1.290 1.178 

50 7.175 6.241 7.368 5.972 1.525 1.506 1.298 1.194 
This table computes the Mean Absolute Error (MAE) where T=100. In all cases, the smaller the error, the 

better the forecasting ability. SSDR, WRSQ, WRNG and AWRET are the sum of squared daily returns, 

weekly return squared, weekly range and absolute weekly return, respectively.



 
 

Table 3: Out of sample forecast comparison. 

First Sample: April 26, 1982 to October 13, 2003 
   RMSE        MAE    

   SSDR        SSDR    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 0 50 0 0 0 0  MO 4 46 0 0 0 0 

TU 0 50 0 0 0 0  TU 3 47 0 0 0 0 

WD 26 24 0 0 0 0  WD 2 48 0 0 0 0 

TH 34 16 0 0 0 0  TH 3 47 0 0 0 0 

FR 20 30 0 0 0 0  FR 2 48 0 0 0 0 

               

   WRSQ        WRSQ    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 0 50 0 0 0 0  MO 28 19 0 0 2 1 

TU 0 50 0 0 0 0  TU 0 50 0 0 0 0 

WD 31 19 0 0 0 0  WD 3 47 0 0 0 0 

TH 35 15 0 0 0 0  TH 0 50 0 0 0 0 

FR 19 31 0 0 0 0  FR 0 44 6 0 0 0 

               

   WRNG        WRNG    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 16 34 0 0 0 0  MO 1 49 0 0 0 0 

TU 0 50 0 0 0 0  TU 0 50 0 0 0 0 

WD 28 22 0 0 0 0  WD 0 50 0 0 0 0 

TH 36 14 0 0 0 0  TH 31 19 0 0 0 0 

FR 25 25 0 0 0 0  FR 19 31 0 0 0 0 

               

   AWRET        AWRET    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 25 25 0 0 0 0  MO 13 37 0 0 0 0 

TU 0 50 0 0 0 0  TU 0 50 0 0 0 0 

WD 19 31 0 0 0 0  WD 0 50 0 0 0 0 

TH 38 12 0 0 0 0  TH 11 39 0 0 0 0 

FR 18 32 0 0 0 0  FR 1 49 0 0 0 0 

               

This table reports a summary of the results for the Root Mean Squared Error (RMSE) and the 

Mean Absolute Error (MAE) estimations for all the horizons (50), all the measures of volatility 

(SSDR, WRSQ, WRNG and AWRET) and the six models considered. The row next to each day 

shows the number of times in which forecasting ability of each model is better than the others. 

MO, TU, WD, TH and FR are the reference of Monday, Tuesday, Wednesday, Thursday and 

Friday respectively. 
 



21 

 

Table 4: Out of sample forecast comparison. 

Second Sample: April 14, 1986 to October 9, 2007 
   RMSE        MAE    

   SSDR        SSDR    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 30 16 2 0 2 0  MO 22 0 15 0 13 0 

TU 39 11 0 0 0 0  TU 47 3 0 0 0 0 

WD 43 7 0 0 0 0  WD 22 0 26 0 2 0 

TH 26 12 12 0 0 0  TH 10 5 24 3 0 8 

FR 15 6 29 0 0 0  FR 2 6 42 0 0 0 

               

   WRSQ        WRSQ    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 41 0 0 0 3 6  MO 13 0 27 0 6 4 

TU 46 4 0 0 0 0  TU 7 0 43 0 0 0 

WD 42 7 1 0 0 0  WD 15 0 29 0 6 0 

TH 25 25 0 0 0 0  TH 0 0 38 0 0 12 

FR 19 31 0 0 0 0  FR 0 4 46 0 0 0 

               

   WRNG        WRNG    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 14 11 25 0 0 0  MO 14 0 36 0 0 0 

TU 48 1 1 0 0 0  TU 41 0 9 0 0 0 

WD 29 7 14 0 0 0  WD 19 0 31 0 0 0 

TH 38 10 2 0 0 0  TH 17 4 29 0 0 0 

FR 45 5 0 0 0 0  FR 22 6 22 0 0 0 

               

   AWRET        AWRET    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 14 8 28 0 0 0  MO 9 0 41 0 0 0 

TU 43 0 7 0 0 0  TU 23 0 27 0 0 0 

WD 30 8 12 0 0 0  WD 20 0 25 0 5 0 

TH 28 10 12 0 0 0  TH 10 3 37 0 0 0 

FR 40 10 0 0 0 0  FR 46 3 1 0 0 0 

               

This table reports a summary of the results for the Root Mean Squared Error (RMSE) and the 

Mean Absolute Error (MAE) estimations for all the horizons (50), all the measures of volatility 

(SSDR, WRSQ, WRNG and AWRET) and the six models considered. The row next to each day 

shows the number of times in which forecasting ability of each model is better than the others. 

MO, TU, WD, TH and FR are the reference of Monday, Tuesday, Wednesday, Thursday and 

Friday respectively. 
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Table 5: Out of sample forecast comparison. 

Third Sample September 7, 1987 to March 9, 2009 
   RMSE        MAE    

   SSDR        SSDR    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 25 25 0 0 0 0  MO 31 19 0 0 0 0 

TU 19 31 0 0 0 0  TU 27 23 0 0 0 0 

WD 34 14 0 2 0 0  WD 38 12 0 0 0 0 

TH 17 31 0 0 0 2  TH 18 32 0 0 0 0 

FR 28 22 0 0 0 0  FR 46 4 0 0 0 0 

               

   WRSQ        WRSQ    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 21 28 0 0 0 1  MO 32 6 9 0 3 0 

TU 27 20 0 2 0 1  TU 13 0 25 1 11 0 

WD 27 18 0 2 0 3  WD 10 0 24 4 9 3 

TH 15 24 0 0 0 11  TH 11 0 24 2 3 10 

FR 24 24 0 1 0 1  FR 46 0 2 0 2 0 

               

   WRNG        WRNG    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 14 28 0 0 0 8  MO 10 40 0 0 0 0 

TU 15 31 0 0 4 0  TU 10 40 0 0 0 0 

WD 22 21 0 0 5 2  WD 22 27 0 0 1 0 

TH 0 30 0 0 0 20  TH 10 38 0 0 0 2 

FR 20 28 0 0 0 2  FR 16 34 0 0 0 0 

               

   AWRET        AWRET    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 11 30 0 0 0 9  MO 4 46 0 0 0 0 

TU 21 23 0 0 3 3  TU 27 5 16 0 2 0 

WD 26 17 0 0 5 2  WD 19 1 17 0 13 0 

TH 11 19 0 0 2 18  TH 15 6 16 0 9 4 

FR 18 28 0 1 0 3  FR 29 21 0 0 0 0 

               

This table reports a summary of the results for the Root Mean Squared Error (RMSE) and the 

Mean Absolute Error (MAE) estimations for all the horizons (50), all the measures of volatility 

(SSDR, WRSQ, WRNG and AWRET) and the six models considered. The row next to each day 

shows the number of times in which forecasting ability of each model is better than the others. 

MO, TU, WD, TH and FR are the reference of Monday, Tuesday, Wednesday, Thursday and 

Friday respectively. 
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Table 6: Out of sample forecast comparison. 

Fourth Sample March 13, 1989 to September 27, 2010 
   RMSE        MAE    

   SSDR        SSDR    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 0 50 0 0 0 0  MO 0 50 0 0 0 0 

TU 0 50 0 0 0 0  TU 0 50 0 0 0 0 

WD 0 50 0 0 0 0  WD 0 50 0 0 0 0 

TH 0 50 0 0 0 0  TH 0 50 0 0 0 0 

FR 0 50 0 0 0 0  FR 0 50 0 0 0 0 

               

   WRSQ        WRSQ    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 6 44 0 0 0 0  MO 0 50 0 0 0 0 

TU 9 41 0 0 0 0  TU 6 44 0 0 0 0 

WD 4 46 0 0 0 0  WD 6 44 0 0 0 0 

TH 0 48 1 0 0 1  TH 0 49 0 0 0 1 

FR 0 50 0 0 0 0  FR 0 50 0 0 0 0 

               

   WRNG        WRNG    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 0 50 0 0 0 0  MO 0 50 0 0 0 0 

TU 0 50 0 0 0 0  TU 0 50 0 0 0 0 

WD 0 50 0 0 0 0  WD 0 50 0 0 0 0 

TH 0 50 0 0 0 0  TH 0 50 0 0 0 0 

FR 0 50 0 0 0 0  FR 0 50 0 0 0 0 

               

   AWRET        AWRET    

 GARCH CARR PARK GK RS YZ   GARCH CARR PARK GK RS YZ 

MO 2 48 0 0 0 0  MO 1 49 0 0 0 0 

TU 1 49 0 0 0 0  TU 5 45 0 0 0 0 

WD 0 50 0 0 0 0  WD 7 43 0 0 0 0 

TH 0 50 0 0 0 0  TH 0 50 0 0 0 0 

FR 0 50 0 0 0 0  FR 0 50 0 0 0 0 

               

This table reports a summary of the results for the Root Mean Squared Error (RMSE) and the 

Mean Absolute Error (MAE) estimations for all the horizons (50), all the measures of volatility 

(SSDR, WRSQ, WRNG and AWRET) and the six models considered. The row next to each day 

shows the number of times in which forecasting ability of each model is better than the others. 

MO, TU, WD, TH and FR are the reference of Monday, Tuesday, Wednesday, Thursday and 

Friday respectively. 
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Table 7: Main statistics of the volatility measures 
    SSDR       WRSQ   

  MO TU WD TH FR   MO TU WD TH FR 

1st Mean 5,691 5,692 5,691 5,691 5,691  Mean 6,381 5,980 5,460 4,991 4,957 

 Std. Dev. 18,599 19,195 18,966 19,362 18,637  Std. Dev. 32,599 26,366 21,292 13,324 11,098 

2nd Mean 5,468 5,469 5,466 5,466 5,472  Mean 5,863 5,575 5,062 4,552 4,573 

 Std. Dev. 18,565 19,177 18,955 19,351 18,619  Std. Dev. 32,226 26,147 21,131 13,022 10,685 

3rd Mean 7,008 7,041 7,041 7,055 7,053  Mean 6,863 6,114 5,681 5,858 5,710 

 Std. Dev. 21,941 22,578 22,614 22,679 22,145  Std. Dev. 33,723 27,610 23,157 22,759 17,477 

4th Mean 6,590 6,590 6,590 6,589 6,585  Mean 6,146 5,502 5,319 5,649 5,617 

 Std. Dev. 13,790 13,969 14,344 13,844 13,904  Std. Dev. 14,972 13,923 13,406 20,558 16,642 

Mean Mean 6,189 6,198 6,197 6,200 6,200  Mean 6,313 5,793 5,381 5,263 5,214 

 Std. Dev. 19,402 19,883 19,908 19,965 19,511  Std. Dev. 30,048 24,469 20,660 20,264 15,814 

              

    WRNG       AWRET   

  MO TU WD TH FR   MO TU WD TH FR 

1st Mean 3,236 3,240 3,219 3,173 3,196  Mean 1,750 1,754 1,697 1,661 1,675 

 Std. Dev. 2,064 2,126 2,021 1,896 1,852  Std. Dev. 1,822 1,704 1,607 1,495 1,467 

2nd Mean 3,077 3,073 3,047 3,006 3,033  Mean 1,666 1,675 1,604 1,561 1,589 

 Std. Dev. 2,031 2,100 2,005 1,866 1,824  Std. Dev. 1,758 1,665 1,579 1,455 1,432 

3rd Mean 3,293 3,257 3,233 3,213 3,240  Mean 1,775 1,716 1,654 1,653 1,696 

 Std. Dev. 2,415 2,397 2,345 2,345 2,269  Std. Dev. 1,928 1,781 1,717 1,769 1,685 

4th Mean 3,298 3,256 3,240 3,230 3,250  Mean 1,780 1,708 1,667 1,653 1,703 

 Std. Dev. 2,227 2,131 2,143 2,196 2,160  Std. Dev. 1,726 1,608 1,594 1,709 1,648 

Mean Mean 3,226 3,206 3,185 3,155 3,180  Mean 1,743 1,713 1,656 1,632 1,666 

 Std. Dev. 2,269 2,234 2,188 2,193 2,126  Std. Dev. 1,866 1,710 1,655 1,690 1,618 

This table reports a summary of the mean and standard deviation for all the measures of volatility (SSDR, WRSQ, WRNG and 

AWRET). MO, TU, WD, TH and FR refer to Monday, Tuesday, Wednesday, Thursday and Friday respectively. 1st, 2nd, 3rd and 4th 

refer to the first, second, third and fourth samples, while Mean refer to the mean values of each statistic for the four periods. 
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