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Abstract 

Although stock prices fluctuate, the variations are relatively small and are frequently 

assumed to be normal distributed on a large time scale. But sometimes these 

fluctuations can become determinant, especially when unforeseen large drops in asset 

prices are observed that could result in huge losses or even in market crashes. The 

evidence shows that these events happen far more often than would be expected under 

the generalized assumption of normal distributed financial returns. Thus it is crucial to 

properly model the distribution tails so as to be able to predict the frequency and 

magnitude of extreme stock price returns. In this paper we follow the approach 

suggested by McNeil and Frey (2000) and combine the GARCH-type models with the 

Extreme Value Theory (EVT) to estimate the tails of three financial index returns DJI, 

FTSE 100 and NIKKEI 225 representing three important financial areas in the world. 

Our results indicate that EVT-based conditional quantile estimates are much more 

accurate than those from conventional AR-GARCH models assuming normal or 

Student’s t-distribution innovations when doing out-of-sample estimation (within the in-

sample estimation, this is so for the right tail of the distribution of returns).  
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Extreme Value Theory and conventional methods applied to financial data: a 

comparative evaluation 

 

1. Introduction 

Although stock prices fluctuate, the variations are relatively small and are frequently 

assumed to be normal distributed on a large time scale. But sometimes these 

fluctuations can become determinant, especially when unforeseen large drops in asset 

prices are observed that could result in huge losses or even in market crashes. Besides, 

based on the quite generalized assumption of the normal distribution for financial 

returns, these “extreme” variations are expected to occur with an almost negligible 

probability. The reason is that the normal density function has exponentially decaying 

tails which assign very small probability to values far from the mean of the distribution. 

Thus, for instance, with independent realizations that are observed once a day, we 

should not expect a “4-sigma event” occurring with a frequency lower than 86 years, 

nor a “7-sigma event” with a frequency lower than 56 times the age of the universe i.e. 

13.7 millions of years (Dowd et al. 2008). Of course, the evidence shows that these 

events happen far more often than would be expected under this assumption. 

Therefore, the key is how to distinguish between extreme and non-extreme events. With 

the aim of answering this question, it is crucial to properly model the distribution tails 

so as to be able to predict the frequency and magnitude of extreme stock price returns. 

Moreover, as the extreme (price fluctuations) events will be defined as those exceeding 

a predetermined threshold, determining such a threshold becomes an essential step in 

embracing the analysis. 

In this paper we use the Extreme Value Theory (EVT) to estimate the tails of three 

financial index returns. The modeling of extreme events is the central issue in EVT and 

the main purpose of the theory is to provide asymptotic models for the tails of a 

distribution. This theory has been increasingly playing a role in many research areas 

such as hydrology and climatology where extreme events are not infrequent and can 

involve important negative (or positive) consequences and, more recently, there has 

been a number of extreme value studies in the finance literature. Some examples include 

Embrechts et al. (1999), who present a broad basis for understanding the extreme value 
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theory with applications to finance and insurance; Liow (2008), who compares the 

extreme behaviour of securitized real state and equity market indices representing 

Asian, European and North American markets; Danielsson and de Vries (1997), who 

test the predictive performance of various VaR2 methods for simulated portfolios of 

seven US stocks concluding that EVT is particularly accurate as tails become more 

extreme whereas the conventional variance-covariance and the historical simulation 

methods under- and over-predict losses, respectively; similar results are found in 

Longin (2000)3, Assaf (2009)4 and Bekiros and Georgoutsos (2005)5; Danielsson and 

Morimoto (2000) apply EVT to Japanese financial data to confirm the accuracy and 

stability of this methodology over the GARCH-type techniques; Byström (2004) 

focuses on the negative distribution tails of the Swedish AFF and the U.S. DOW indices 

to compare EVT with generalized ARCH approaches and finds EVT to be a generally 

superior approach both for standard and more extreme VaR quantiles. Nevertheless, 

Fernández (2005) uses a sample comprised of several financial indices from the United 

States, Europe, Asia and Latin America and finds that conditional EVT gives the most 

accurate estimates when compared with traditional methods. Finally, Lee and Saltoglu 

(2001) concentrate on five Asian stock market indices and come to somewhat 

inconclusive results in the sense that conventional methods turn out to have more 

consistent performance but none of the methods used in that paper is shown to produce 

a superior VaR forecast.  

In some papers, the focus is on the marginal or unconditional distribution of the process, 

without accounting for the conditional heteroscedasticity of most financial data 

(Christoffersen and Diebold, 2000; Danielsson and de Vries, 2000; Longin, 2000; 

Bekiros and Georgoutsos, 2005; Gilli and Këllezi, 2006; Assaf, 2009). In this paper, 

however, we follow McNeil and Frey (2000) to overcome this shortcoming and proceed 

                                                 
2 Value at Risk (VaR) is a generalized measure of market risk which tells you the maximum loss, with a 
given probability, over a certain time horizon. More formally, given some confidence level )1,0(∈α , VaR 
at the confidence level α is given by the smallest number l such that the probability of the loss L exceeds 
l is no longer than (1-α ). Thereby, in probabilistic terms, VaR is a quantile of the loss distribution. 
3 Longin (2000) compute the VaR of single and bivariate portfolio positions by applying the EVT 
methodology to S&P 500 index and the SBF 240 index. 
4 Assaf (2009) focuses on four emerging financial markets (Egypt, Jordan, Morocco and Turkey) to 
provide estimates of their tail index behaviour. 
5 In Bekiros and Georgoutsos (2008) the focus is on returns of the Dow Jones Industrial Average and the 
Cyprus Stock Exchange indices finding that at confidence levels higher (lower) than 99% the EVT-based 
methodology (conventional methods) produces the most accurate forecasts for extreme losses. 
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in two steps. First, we fit a GARCH-model to the return series with the aim of obtaining 

estimates of the conditional volatility. Second, we use the extreme value theory, in 

particular, the Peak Over Threshold (POT) approach, to estimate the distribution of the 

standardized normal residuals.  

In contrast  to Normal and Student’s t distributions which are symmetric and therefore 

not able to capture differences between the upper and lower tails, the unconditional 

EVT estimator has the advantage of treating the tails separately. By applying the 

unconditional POT method to the residuals from the normal AR-GARCH model what 

we get are time-varying tail quantiles according to periods of high (low) volatility. 

Estimates of the tails of the residuals from models with a normal and a t-Student 

distributed conditional return distribution are additionally presented for comparative 

purposes. 

This paper contributes to the literature by applying the methods proposed by McNeil 

and Frey (2000) to three financial indices representing the three main financial areas in 

the world, i.e., USA, UK and Japan, covering a sample period from 1964 (variable 

depending on the stock index) to 2009. Our sample extends those from previous studies 

focusing on (at least) one of these three financial indices and following the approach 

used in this paper6. To do so, we are concerned not only with in-sample estimation but 

also and most relevant to portfolio management, out-of-sample one-day prediction. 

Moreover, apart from considering the lower tail of the distributions, which is the most 

frequent choice, we additionally analyze the upper tail of the distribution. The reason is 

that the former represents losses for an investor with a long position in the financial 

index, whereas the latter represents losses for an investor being short on the index. 

Therefore, although throughout the paper we talk about tail quantile estimates, we 

distinguish between the lower and the upper tail, the lower tail quantiles estimates being 

direct VaR estimations, as usually defined in literature. Finally, to deal with the 

controversial issue of the threshold choice (necessary to define an observation as 

extreme), we use the standard method based on the mean residual life plot. This 

graphical tool is frequently employed to determine the threshold directly from visual 

inspection. In this paper we use the likelihood test ratio as a robustness check.  

                                                 
6 For instance, Byström (2004) uses the time period January 2, 1980 to September 8, 1999 for DJI while 
Fernández (2005) uses the time period 1990 to 2002 for DJI and 1980 to 2002 for NIKKEI 225.  
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The remainder of this paper is organized as follows. Section 2 describes and carries out 

a preliminary analysis of the data set. In Section 3 the theoretical framework of the 

extreme value theory as well as the methods proposed by McNeil and Frey (2000) 

called conditional EVT are presented. Section 4 is concerned with the estimation of the 

GARCH-type models and the fitting of the GPD model to standardized normal returns 

for each of the financial indices involved in this study. In section 5, tail quantile 

estimates are obtained by applying the different methodologies considered in this study 

with comparative purposes. The empirical exercise is divided into an in-sample and an 

out-of-sample estimation. Finally, section 6 summarises the results and concludes. 

 

2. Data 

The data used are the historical daily log return series on three financial indices 

referring to three relevant financial areas such as USA, London and Japan. The selected 

financial indices are DJI, FTSE 100 and NIKKEI 225. Our sample respectively covers 

the following periods: January 2,   1964 to October 30, 2009, November 2, 1987 to 

October 30, 2009 and January 4, 1984 to October 30, 2009. The data has been taken 

from the Reuters database. 

Table 1 reports some statistics on the log return series and the Ljung-Box test statistic 

for autocorrelation in returns and squared returns. As can be observed, all three series 

are stationary according to the Augmented Dickey Fuller statistics. Note the very high 

kurtosis and the negative value of skewness denoting wider lower tails. 

According to the Ljung-Box test, the log return series display strong autocorrelation 

with the only exceptions being the FTSE 100 and NIKKEI 225 log returns which are 

not autocorrelated of order one. Though not shown, they present autocorrelation up until 

any other lag exceeding one. From a visual inspection of Figures 1-3 a noticeable 

degree of volatility clustering can be detected. To confirm such an intuition, the Ljung-

Box test has been additionally applied to squared log returns. As can be observed in 

Table 1, the p-values for the Ljung-Box tests are below 0.05, indicating there is 

heteroscedasticity in the series. 

Thus, two stylized facts for return series are detected: (i) the nonnormality of the 

unconditional distribution of returns suggested by the commented values of kurtosis and 
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skewness and evidenced by highly significant Jarque-Bera statistics7 and (ii) the time-

varying volatility of returns indicated by the significant Ljung-Box test statistics 

showing strong autocorrelation in squared returns. 

 

Table 1. Descriptive Statistics 

Log returns on DJI, FTSE 100 and NIKKEI 225. ADF is the Augmented Dickey Fuller 

test statistic (without trend) and the 99% critical value is -3.43. Q(1) [Q2(1)] and q(5) 

[Q2(5)] are the Ljung-Box tests for autocorrelation at lags 1 and 5 in the log return 

series [in the squared log return series], their p-values are shown. A p-value less than or 

equal to 0.05 is interpreted as evidence against the null hypothesis that there is no 

autocorrelation up to lag shown in parenthesis. ** (*) denotes statistical significance at 

1% (5%) level. 

 

 DJI  FTSE 

100 

NIKKEI 

225 

Mean (%) 0.02 0.02 0.00 

Median (%) 0.03 0.00 0.03 

Standard Deviation (%) 1.03 1.11 1.46 

Minimum -0.25 -0.09 -0.16 

Maximum 0.10 0.09 0.13 

Skewness -1.32 -0.139 -0.25 

Kurtosis 42.62 9.82 11.40 

Jarque-Bera  

(p-value) 

759 878 

(0.0000) 

11 162 

(0.0000) 

18 770 

(0.0000) 

 t-Statistic 

                                                 
7 The Jarque-Bera statistic is 2

2χ distributed under the null of normality. 
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ADF -78.68** -33.88** -76.81** 

 p-value 

Q(1) 0.00* 0.41 0.17 

Q(5) 0.00* 0.00* 0.00* 

Q2(1) 0.00* 0.00* 0.00* 

Q2(5) 0.00* 0.00* 0.00* 
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 Figure 1. DJI index log returns (01/02/1964 – 30/10/2009) 
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Figure 2. FTSE 100 index log returns (11/02/1987– 30/10/2009) 
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Figure 3. NIKKEI 225 index log returns (01/04/1984– 30/10/2009) 

  

3. Methodology  

The extreme value theory8 relies on two main general definitions of extreme events. 

Following the so-called Block Maxima (BM) approach, data are taken to be the maxima 

(or minima) over certain blocks of time. In this context, it is appropriate to use the 

Generalized Extreme Value distribution. Instead, the Peak Over Threshold (POT) 

methodology considers as extreme those observations (Xi) that exceed a properly 

chosen high threshold u. These excesses, when independent, follow a Generalized 

Pareto Distribution. The BM approach compared to the POT approach presents a 

shortcoming: as just one extreme per block is chosen, completeness of the statistical 

population is not guaranteed. In fact, the former implies a loss of information that may 

be important, since the latter allows for more data to inform the analysis. Therefore, the 

threshold method uses data more efficiently and, for that reason, it is the method of 

choice in this paper.  

Let X1, X2, … be a sequence of independent and identically distributed random 

variables, having marginal distribution function F. Under the POT approach, extremes 

are regarded as those of the Xi that exceed some high threshold u. If F were known, the 

distribution of threshold excesses would also be known. Since in practice this is not the 

                                                 
8 See Leadbetter et al. (1983), Embrechts et al. (1999) and Coles (2003) for more details of extreme value 
theory. 
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case, approximations applicable for high values of the threshold are needed. According 

to Pickands (1975), for large enough u, the distribution function of y=X- u, conditional 

on X > u, belongs to the family of distributions called the generalized Pareto family and 

is approximately 

ξ

σ
ξ

1

~11)(
−

⎟
⎠
⎞

⎜
⎝
⎛ +−=

yyH      (1) 

defined as 
⎭
⎬
⎫

⎩
⎨
⎧ >+> 0)~1(0:

σ
ξyandyy , where )(~ μξσσ −+= u .  “y” are the excesses of a 

threshold, σ is a scale parameter and ξ a shape parameter. 

H(y) gives the probability of a random variable exceeding a high value given that it 

already exceeds a high threshold, say u. Thus, y = X-u, may be regarded as independent 

realizations of a random variable whose distribution can be approximated by a member 

of the Generalized Pareto family. Inference consists of fitting the generalized Pareto 

family to the observed threshold excesses. The result, which is stated for maxima, can 

be applied to minima by taking the sequence –Xn instead of the sequence Xn (Coles, 

2003). 

The threshold choice is controversial and, according to McNeil and Frey (2000), the 

most important implementation issue in EVT. So far, no automatic algorithm with 

satisfactory performance for the selection of the threshold u is available. If we choose 

too low a threshold we might get biased estimates because the limit theorems do not 

apply any more, while high thresholds generate estimates with high variance due to the 

limited number of observations. Thus, the issue of threshold choice implies a balance 

between bias and variance. 

In this paper, the issue of threshold choice has been handled through the standard 

method based on the mean residual life plot (Davison and Smith, 1990). The mean 

residual life plot is made up of the locus of points 

∑
=

<−
un

i
i

u

xuux
n

u
1

max)( :))(1,( ,                                                  (2) 

where x(1), …, x( un ) consist of the nu observations that exceed u, and xmax is the largest 

of the series to be fitted, Xi. Above a specific threshold u at which the generalized 
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Pareto distribution provides a valid approximation to the excess distribution, the mean 

residual life plot should be approximately linear in u. When applying this method, the 

choice of the threshold is frequently done directly from visual inspection (for instance, 

see Gilli and Këllezi, 2006, Coles, 2003); however, in this paper we use the likelihood 

test ratio as a robustness check. 

The likelihood test ratio is defined as follows. Suppose that M1 is a model with 

parameter vector θ, and M0 is the subset of model M1 obtained by constraining k of the 

components of θ to be zero. Let l0(M0) and l1(M1) be the maximized value of the log-

likelihood for models M0 and M1 respectively. M0 can be rejected in favour of M1 at the 

α level of significance if D=2[l1(M1) – l0(M0)] > cα, where cα is the (1-α) quantile of the 
2
kx distribution and k is the difference in the dimensionality of M1 and M0. D is known 

as the deviance statistic. 

In our case, M0 is identified with the linear model whereas M1 corresponds to the 

quadratic model. Thus, 

Linear model:      ttt umrl εβα +⋅+=                                                            (3) 

Quadratic model:      tttt uumrl φγλϖ ++⋅+= 2                                                  (4) 

where mrlt denote the mean residual life computed as the sample mean of the nu 

observations that exceed the corresponding threshold (ut). 

The deviance statistic is calculated at each specific threshold around the potential 

threshold identified by visual inspection, with the aim of determining the value of the 

specific u from which there is evidence of the linear model explaining better than the 

quadratic model the variation in the data. 

As indicated in the introduction, there are previous studies in the literature that apply 

EVT-based methods directly to the series of returns, following the unconditional 

approach. However, the EVT requires the series to be identically and independently 

distributed (i.i.d.) and, given the conditional heteroscedasticity of most financial data, 

this approach is hardly appropriate. In fact, the presence of stochastic volatility implies 

that returns are not necessarily independent over time. Besides, financial time series 

generally show clusters of volatility. Therefore, we must look more carefully into the 
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issue of de-clustering the extreme values so that they appear as approximately 

independent (McNeil, 1998).  

Thereby, following the methods proposed by McNeil and Frey (2000), we use historical 

simulation for estimating the conditional mean and volatility of the log return series and 

threshold methods from EVT to estimate the distribution of the residuals (which are 

approximately independent). 

Let ),( Ζ∈tX t  be a strictly stationary time series representating daily observations of 

the log return on a financial index. Assuming that the dynamics of X are given by 

tttt ZX σμ +=                                                                     (5) 

where the innovations Zt are a strict white noise process with zero mean, unit variance 

and marginal distribution function FZ(z), our aim is to estimate the conditional quantiles 

in the tails of the predictive distributions. As well, we do obtain in-sample extreme 

quantiles estimates but also, and more relevantly, out-of-sample extreme quantiles 

estimates. 

For 0 < q < 1, a conditional quantile is a quantile of the predictive distribution for the 

return over the next h days denoted by  

))(:inf()( /...1 qxFxhx
ThXX

t
q ≥ℜ∈= ℘++++                                             (6) 

where )(/...1 xF
ThXX ℘++++  denote the predictive distribution of the return over the next h 

days, given knowledge of returns up to and including day t. In particular, we are 

interested in quantiles for the 1-step predictive distribution which we denote by t
qx . 

Being )/)(()/()( 11111/1 +++++℘+ −=℘≤+= ttZttttX XFxZPxF
T

σμμσ , the calculus of the 

conditional quantile simplifies to  

qtt
t
q zx 11 ++ += σμ                                                                             (7) 

where zq is the upper qth quantile of the marginal distribution of Zt which by 

assumption does not depend on t.   

Firstly, we need a particular model for the dynamics of the conditional mean and 

volatility in order to obtain iid residual series which EVT will be applied to. In this 
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paper, differentiated model specifications for the three studied index series are chosen 

so as to pre-whiten the returns. 

We use maximum likelihood to estimate both the conditional mean and volatility from 

the corresponding GARCH-type model by assuming that the innovation distribution is 

standard normal. For comparative purposes we repeat the estimation procedure although 

this time considering that the distribution of the innovations is more heavier-tailed than 

is the normal, i.e. t-Student’s. 

To obtain conditional POT estimates, we follow McNeil and Frey (2000) and, firstly, fit 

a GARCH-type model to the return data by quasi-maximum likelihood, that is, 

maximize the log-likelihood function of the sample assuming normal innovations9. 

Secondly, we consider the resulting standardized residuals to be white noise process and 

estimate the tails of innovations using POT in order to finally compute the 

corresponding quantiles.  

Then, conditional 95%, 97.5%, 99% and 99.5% tail quantiles )( t
qz  of the financial index 

log return series are estimated by multiplying the corresponding GARCH volatilities 

with quantiles  from the standard normal, t-distribution and GPD (in this latter case by 

means of the application of the POT approach to standardized normal residuals) and 

adding the conditional mean return. 

 

4. Estimation Results   

In this section we present the models selected to capture the dependencies shown in the 

log return series as well as the corresponding estimation results. Then we apply the POT 

approach to the residuals from the AR-GARCH model that assumes normal innovations 

by fitting the GPD to the excesses over a predetermined threshold, which can be 

different according to the series.  

4.1. AR-GARCH models  

When looking for the best fitted AR-GARCH model to data, differences in the 

dynamics of the considered index log return series need individual analysis. Therefore, 

                                                 
9 Even if innovations are not truly normally distributed, this way of proceeding still provides consistent 
and asymptotically normal estimates (see for instance Engle and González-Rivera, 1991). 
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according to the volatility clustering as well as the different seasonality pattern observed 

in the series, three differentiated model specifications have finally been chosen. 

Thus, the DJI index log return series seems to be a realisation from an AR(1)-

GARCH(1,1) process, while for the FTSE 100 index we are able to remove 

autocorrelation both in the returns themselves as well as in squared returns by simply 

fitting a GARCH(1,1) model. Lastly, the NIKKEI 225 index log return series requires 

an AR(1), AR(10)-GARCH(1,1) model10. Maximum likelihood estimates for each of 

the involved index series are reported in Table 2. 

 

Table 2. AR-GARCH Model 

Panel A, B and C respectively display AR(1)-GARCH(1,1) parameters estimates for the 

DJI, GARCH(1,1,) parameters estimates for the FTSE 100 and AR(1) AR(10)-

GARCH(1,1) parameter estimates for the NIKKEI 225 indices. d.f. is degrees of 

freedom. * (**) denotes statistical significance at a 1% (10%) level.  

 

Panel A: DJI index 

AR(1)-GARCH(1,1) 

tttt XX εσφφ ++= −110  

2
11

2
110

2
−− ++= tt σβεαασ   

Normal 

innovations 

Student´s t 

innovations 

0φ  0.4E04* 0.4E04* 

1φ  0.081* 0.074* 

0α  6.74E-07* 5.02E-07* 

1α  0.067* 0.054* 

1β  0.928* 0.941* 

                                                 
10 In McNeil and Frey (2000) an AR(1) model for the mean and a GARCH(1,1) process for the volatility 
are used. AR(1), AR(24) and AR(168) terms combined with a GARCH(1,1) model are included in 
Byström(2005). 
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d.f.  8.04* 

Panel B: FTSE 100 index 

GARCH(1,1) 

tttX εσφ += 0  

2
11

2
110

2
−− ++= tt σβεαασ  

Normal 

innovations 

Student´s t 

innovations 

0φ  0.4E04* 0.5E04* 

0α  1.18E-06* 1.12E-06* 

1α  0.079* 0.076* 

1β  0.909* 0.913* 

d.f.  10.77* 

Panel C: NIKKEI 225 index 

AR(1),AR(10)-

GARCH(1,1) 

ttttt XXX εσφφφ +++= −− 102110  

2
11

2
110

2
−− ++= tt σβεαασ  

Normal 

innovations 

Student´s t 

innovations 

0φ  0.7E04* 0.7E04* 

1φ  0.027** 0.004 

2φ  0.036* 0.034* 

0α  2.36E-06* 1.26E-06* 

1α  0.132* 0.095* 

1β  0.867* 0.904* 

d.f.  7.07* 
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As we have said, we look at both the standardized normal and Student’s t residuals 

distribution of each of the involved series. Table 3 displays the descriptive statistics of 

these series distinguishing between in-sample and out-of-sample estimation. Note that, 

in contrast to the log return series, the standardized residuals are approximately 

independent according to the Ljung-Box tests on the residuals and the squared residuals 

(in particular, Ljung-Box tests for one and five lags are presented). 

 

Table 3. Descriptive Statistics of standardized normal residuals 

IS and OS are in-sample and out-of-sample estimation. Q(1) [Q2(1)] and q(5) [Q2(5)] 

are the Ljung-Box tests for autocorrelation at lags 1 and 5 in the log return series [in the 

squared log return series], their p-values are shown. A p-value less than or equal to 0.05 

is interpreted as evidence against the null hypothesis that there is no autocorrelation up 

to lag shown in parenthesis. * denotes statistical significance at a 5% level, indicating 

significant serial correlation in the residuals. 

 

 DJI FTSE 100 NIKKEI 225 

 IS OS IS OS IS OS 

Mean (%) -0.02 -0.02 -0.02 -0.02 -0.05 -0.05 

Median (%) -0.01 -0.01 -0.03 -0.02 -0.03 -0.04 

Standard Deviation (%) 1.00 1.01 1.00 1.00 1.00 1.00 

Minimum -12.61 -9.54 -5.57 -4.70 -13.32 -6.22 

Maximum 5.45 5.47 6.09 5.94 10.92 6.39 

Skewness -0.43 -0.23 -0.22 -0.21 -0.55 -0.10 

Kurtosis 7.86 5.27 4.00 3.90 11.02 4.52 

Q(1) 0.85 0.26 0.20 0.36 0.55 0.78 

Q(5) 0.44 0.84 0.06 0.06 0.55 0.98 

Q2(1) 0.92 0.26 0.38 0.96 0.16 0.03* 
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Q2(5) 0.47 0.64 0.50 0.14 0.69 0.25 

 

4.2. POT methodology applied to the upper tail (maxima)  

Maximized value of the log likelihood for the quadratic and linear models together with 

deviance statistics calculated at different potential thresholds for each of the 

standardized residuals series involved in the study are shown in Figures 4-6 and in 

Figures 7-9 respectively for in-sample estimation and out-of-sample estimation. 

The particular thresholds from which the linear model fits better than the quadratic one 

are highlighted in bold in all the cases. Thereby, according to the test likelihood ratio,  

the thresholds for the in-sample estimation should be the following: *
DJIu = 1.65, *

FTSEu = 

1.77 and *
NIKKEIu = 2.18, considering as extreme values 4.4%, 2.9% and 1.2% of data, 

respectively (Figures 4-6).  

 

 

Log likelihood u=1.62 u=1.63 u=1.64 u=1.65 u=1.66 u=1.67 

Linear relationship 332.64 330.22 327.75 325.35 322.43 319.57 
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Quadratic 

relationship 
335.91 332.88 329.86 326.95 323.71 320.54 

Deviance Statistic 6.55 5.33 4.23 3.20* 2.55* 1.93* 

 

Figure 4. In-sample mean residual life plot and likelihood ratio tests. Calculated at 

different potential thresholds for the DJI index standardized normal residuals (upper 

tail). * denotes statistical significance at 5% level.  

 

Log likelihood u=1.74 u=1.75 u=1.76 u=1.77 u=1.78 u=1.79 

Linear relationship 169.81 167.26 164.66 162.01 159.83 157.58 

Quadratic 

relationship 
172.15 169.39 166.64 163.90 161.32 158.74 

Deviance Statistic 4.67 4.26 3.96 3.77* 2.97* 2.31* 

Figure 5. In-sample mean residual life plot and likelihood ratio tests. Calculated at 

different potential thresholds for the FTSE 100 index standardized normal residuals 

(upper tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.15 u=2.16 u=2.17 u=2.18 u=2.19 u=2.20 

Linear relationship 189.94 192.00 190.47 188.03 186.21 183.56 

Quadratic 

relationship 
194.43 194.86 192.56 189.72 187.34 184.45 

Deviance Statistic 8.98 5.73 4.18 3.37* 2.26* 1.78* 

 

Figure 6. In-sample mean residual life plot and likelihood ratio tests. Calculated at 

different potential thresholds for the NIKKEI 225 index standardized normal residuals 

(upper tail). * denotes statistical significance at 5% level. 

 

Much more interesting than in-sample estimation is out-of-sample estimation, as the 

latter allows us to forecast tail estimates. Thus, we fix a constant memory n (n=1001 in 

our case) so that at the end of day t our data consist of the last 1001 log returns. On each 

day we fit a new AR-GARCH-type model, i.e. the AR-GARCH models selected in 

Section 4.1, to capture the dynamics of the three studied indices. The next step is to 
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obtain the quantile estimates from the GPD by fitting this distribution to the excesses of 

the new standardized normal residuals over the corresponding thresholds. 

These thresholds are fixed by applying the standard method based on the mean residual 

life plot. Finally, we calculate the EVT conditional quantile estimates by multiplying 

the new estimated GARCH volatilities with quantiles from the standard normal, t-

distribution and GPD (in this latter case by means of the application of the POT 

approach) and adding the new estimated conditional mean returns. 

The thresholds suggested by the test likelihood ratio for the out-of-sample estimation 

are *
DJIu = 1.66, *

FTSEu = 2.06 and *
NIKKEIu = 2.03, considering as extreme values 4.4%, 

1.4% and 1.7% of data, respectively (Figures 7-9). 
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Log likelihood u=1.63 u=1.64 u=1.65 u=1.66 u=1.67 u=1.68 

Linear relationship 376.00 374.77 373.32 373.59 371.13 367.75 

Quadratic 

relationship 
380.72 378.40 376.01 373.59 371.13 367.75 

Deviance Statistic 9.45 7.26 5.38 3.79* 2.49* 1.80* 

 

Figure 7. Out-of-sample mean residual life plot and likelihood ratio tests. 

Calculated at different potential thresholds for the DJI index standardized normal 

residuals (upper tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.03 u=2.04 u=2.05 u=2.06 u=2.07 u=2.08 

Linear relationship 106.01 103.41 101.68 99.20 96.17 93.04 

Quadratic 

relationship 
110.34 107.03 104.16 100.99 97.69 94.43 

Deviance Statistic 8.66 7.24 4.97 3.58* 3.05* 2.78* 

 

Figure 8. Out-of-sample mean residual life plot and likelihood ratio tests. 

Calculated at different potential thresholds for the FTSE 100 index standardized normal 

residuals (upper tail). * denotes statistical significance at 5% level. 
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Log likelihood u=2.00 u=2.01 u=2.02 u=2.03 u=2.04 u=2.05 

Linear relationship 181.95 178.93 176.10 173.30 170.84 168.06 

Quadratic 

relationship 
184.31 181.26 178.18 175.12 172.24 169.22 

Deviance Statistic 4.72 4.65 4.16 3.64* 2.80* 2.31* 

 

Figure 9. Out-of-sample mean residual life plot and likelihood ratio tests. 

Calculated at different potential thresholds for the NIKKEI 225 index standardized 

normal residuals (upper tail). * denotes statistical significance at 5% level. 

 

From a visual inspection of mean life residual plots, the selected thresholds are around 

the lowest values of u for which the mean residual life plots seem to be linearly related 

to the corresponding potential thresholds, so that we conclude that the selected 

thresholds do not seem   unreasonable. 

The excesses over the selected thresholds are fitted to the GPD in each case. Parameters 

under the in-sample and out-of-sample estimation have been estimated by maximum 
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likelihood and are shown respectively in Tables 4 and 5. On the one hand, we obtain the 

estimates 016.0ˆ =ξ (0.171, 0.029) and 480.0ˆ =σ (0.360, 0.720) for the DJI (FTSE 100, 

NIKKEI 225) index within the in-sample estimation. On the other hand, under the out-

of-sample estimation, we obtain the estimates 001.0ˆ =ξ (0.337, 0.217) and 

511.0ˆ =σ (0.295, 0.474) for the DJI (FTSE 100, NIKKEI 225) index.  

 

Table 4. Threshold In-sample 

Panel A, B, C respectively shows in-sample maximum likelihood GPD parameter 

estimates (with standard errors in parenthesis) and threshold values for both tails of the 

standardized normal residuals distribution of the DJI, FTSE 100 and NIKKEI 225 

indices. 

 

 GPD parameters 

estimates 

 Upper tail Lower tail 

Panel A: DJI 

σ 0.480 

(0.02) 

0.451 

(0.04) 

ξ 0.016 

(0.04) 

0.340 

(0.08) 

u 1.65 2.18 

Panel B: FTSE 100 

σ 0.360 

(0.04) 

0.646 

(0.02) 

ξ 0.171 

(0.09) 

-0.04 

(0.02) 

u 1.77 0.93 
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Panel C: NIKKEI 225 

σ 0.720 

(0.11) 

0.421 

(0.12) 

ξ 0.029 

(0.11) 

0.633 

(0.29) 

u 2.18 2.79 

 

Table 5. Threshold Out-of-sample 

Out-of-sample maximum likelihood GPD parameter estimates (with standard errors in 

parenthesis) for both tails of the standardized normal residuals distribution. Panel A, B, 

C respectively shows the estimates for the DJI, FTSE 100 and NIKKEI 225 indices. 

 

 GPD parameters estimates 

 Upper tail Lower tail 

Panel A: DJI 

σ 0.511 (0.03) 0.514 (0.04) 

ξ 0.001 (0.04) 0.180 (0.06) 

u 1.66 1.95 

Panel B: FTSE 100 

σ 0.295 (0.06) 0.711 (0.12) 

ξ 0.337 (0.17) -0.18 (0.12) 

u 2.06 2.52 

Panel C: NIKKEI 225 

σ 0.474 (0.08) 0.573 (0.15) 

ξ 0.217 (0.15) 0.158 (0.21) 
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u 2.03 2.82 

 

4.3. POT methodology applied to the lower tail (minima) 

One of the advantages of the GPD approach to tail estimation is the fact that it allows 

for the handling of upper and lower tails separately. In contrast, normal and Student’s t 

symmetric distributions are unable to capture any difference between them since both 

tails are assumed to present identical characteristics.  

Of note is also the fact that the threshold level finally chosen depends on the particular 

series. Thus, the number of data exceeding the corresponding threshold is different 

according to this threshold level, which is another sign of this methodology’s flexibility.   

Similarly to the upper tail, the mean residual life plots together with some deviance 

statistics calculated at several thresholds are shown in Figures 10-12 and in Figures 13-

15, respectively, under the in-sample and out-of-sample estimation. 

Thus, within the in-sample estimation, the thresholds suggested by the ratio likelihood 

test are *
DJIu = -2.18, *

FTSEu = -0.93 and *
NIKKEIu = -2.79, leaving 1.8%, 16.8% and 0.6% of 

data below each of them, respectively. As can be observed, the selected thresholds for 

the lower tail of the DJI and the NIKKEI 225 (FTSE 100) indices are greater (lower), in 

absolute value, than the ones for the upper tail, which is a sign of asymmetry in the 

series. The estimates 340.0ˆ =ξ (-0.040, 0.633) and 451.0ˆ =σ (0.646, 0.421) for the DJI 

(FTSE 100, NIKKEI 225) index are displayed in Table 4. Since the shape parameter 

gives an indication of the heaviness of the tail (the larger ξ, the heavier the tail), results 

lead us to conclude that the upper tail of the standardized normal residuals distribution 

is heavier than the lower tail for the FTSE 100 index, whereas the reverse holds for the 

DJI and the NIKKEI 225 indices. This result is only partly consistent with that from 

Gilli and Këllezi (2006) who state that the left tail is heavier than the right one for the 

NIKKEI 225 and the FTSE 100 indices, though it is true that in that paper the 

unconditional approach is used and the studied samples also differ11.   

 
                                                 
11 Sample periods in Gilli and Këllezi (2006) cover from 01/07/1970 through 08/17/2004 and from 
01/05/1984 through 08/17/2004 respectively for DJI and FTSE 100. 
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Log likelihood u=2.15 u=2.16 u=2.17 u=2.18 u=2.19 u=2.20 

Linear relationship 118.44 115.88 113.09 110.12 107.59 105.10 

Quadratic 

relationship 
121.51 118.36 115.19 112.02 108.98 106.02 

Deviance Statistic 6.14 4.97 4.20 3.81* 2.78* 1.84* 

 

Figure 10. In-sample mean residual life plot and likelihood ratio tests. Calculated at 

different potential thresholds for the DJI index negated standardized normal residuals 

(lower tail). * denotes statistical significance at 5% level.  
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Log likelihood u=0.90 u=0.91 u=0.92 u=0.93 u=0.94 u=0.95 

Linear relationship 520.52 518.12 515.70 513.25 510.74 508.17 

Quadratic 

relationship 
522.99 520.34 517.68 515.01 512.31 509.58 

Deviance Statistic 4.94 4.42 3.95 3.51* 3.14* 2.82* 

 

Figure 11. In-sample mean residual life plot and likelihood ratio tests. Calculated at 

different potential thresholds for the FTSE 100 index negated standardized normal 

residuals (lower tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.76 u=2.77 u=2.78 u=2.79 u=2.80 u=2.81 

Linear relationship 29.63 29.38 27.60 27.49 24.38 21.07 

Quadratic 

relationship 
36.38 33.35 29.87 27.84 24.41 21.12 

Deviance Statistic 13.50 7.93 4.55 0.70* 0.07* 0.10* 

 

Figure 12. In-sample mean residual life plot and likelihood ratio tests. Calculated at 

different potential thresholds for the NIKKEI 225 index negated standardized normal 

residuals (lower tail). * denotes statistical significance at 5% level.  

 

Under the out-of-sample estimation, however, the thresholds should be *
DJIu = -1.95, 

*
FTSEu = -2.52 and *

NIKKEIu = -2.82, leaving 3.0%, 1.2% and 0.6% of data above each of 

them, respectively. In this case, the asymmetry of the distribution is also evidenced by 

comparing the upper and lower tails in terms of the estimated shape parameters and 
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thresholds. The estimates 180.0ˆ =ξ (-0.180, 0.158) and 514.0ˆ =σ (0.711, 0.573) for the 

DJI (FTSE 100, NIKKEI 225) index are shown in Table 5.  

On the one hand, the estimated thresholds for the lower tail within the out-of-sample 

estimation are always higher than the ones for the upper tail. On the other hand, 

regarding the estimated shape parameters, the results obtained from the in-sample 

estimation remain constant under the out-of-sample estimation except for the NIKKEI 

225 index that exhibits a shape parameter for the upper tail (0.217) higher than the one 

for the lower tail (0.158), meaning that, in this case, the upper tail is heavier than the 

lower tail (Table 5). 

 

 

Log likelihood u=1.92 u=1.93 u=1.94 u=1.95 u=1.96 u=1.97 

Linear relationship 248.74 246.16 243.55 240.97 238.48 235.90 

Quadratic 

relationship 
248.74 246.16 243.55 240.97 238.48 235.90 

Deviance Statistic 5.09 4.46 3.94 3.40* 2.80* 2.39* 
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Figure 13. Out-of-sample mean residual life plot and likelihood ratio tests. 

Calculated at different potential thresholds for the DJI index negated standardized 

normal residuals (lower tail). * denotes statistical significance at 5% level.  

 

 

Log likelihood u=2.49 u=2.50 u=2.51 u=2.52 u=2.53 u=2.54 

Linear relationship 166.26 163.18 160.15 157.75 154.91 151.84 

Quadratic 

relationship 
168.76 165.63 162.48 159.53 156.40 153.28 

Deviance Statistic 5.00 4.89 4.64 3.56* 2.98* 2.87* 

 

Figure 14. Out-of-sample mean residual life plot and likelihood ratio tests. 

Calculated at different potential thresholds for the FTSE 100 index negated standardized 

normal residuals (lower tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.79 u=2.80 u=2.81 u=2.82 u=2.83 u=2.84 

Linear relationship 48.54 45.18 43.04 40.04 39.74 36.29 

Quadratic 

relationship 
52.05 48.79 45.17 41.46 39.82 36.93 

Deviance Statistic 7.03 7.23 4.27 2.85* 0.15* 1.28* 

 

Figure 15. Out-of-sample mean residual life plot and likelihood ratio tests. 

Calculated at different potential thresholds for the NIKKEI 225 index negated 

standardized normal residuals (lower tail). * denotes statistical significance at 5% level.  

 

Similarly to the in-sample estimation, from a visual inspection of mean life residual 

plots, the selected thresholds are around the lowest values of u for which the mean 

residual life plots seem to be linearly related to the corresponding potential thresholds, 

so that we consider the selected thresholds acceptable. The excesses over the selected 
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thresholds are fitted to the GPD in each case and maximum likelihood parameters are 

shown in Tables 4 and 5. 

  

5. Tail quantile calculations and backtesting 

The estimates from the previous section allow us to compute the series of conditional 

tail quantiles by multiplying the estimated conditional volatility with the quantiles of the 

normal distribution, the t-distribution or the generalized Pareto distribution and finally 

adding the estimated conditional mean. 

The accuracy of the estimates under the distributions considered in the present study can 

be assessed by counting the number of actual returns that are larger than the estimated 

tail quantile and comparing this figure with the theoretically expected number of 

excesses12 for a determined probability. Of course, the closer the empirically observed 

number of excesses is to the theoretically expected amount, the more preferable the 

method is for estimating the tail quantiles. 

As a first step, we carry out an in-sample evaluation mainly to investigate the fit of the 

models to extreme data, followed by an out-of-sample evaluation to test how well future 

extreme movements can be predicted, the latter being of greater concern to risk 

managers.  

5.1. In Sample Evaluation 

Table 6 presents the number of excesses for both tails at different quantiles associated 

with each of the involved distributions, together with the theoretically expected number 

of excesses for the DJI (Panel A), FTSE 100 (Panel B) and NIKKEI 225 (Panel C) 

indices. To help the reader with the comparison, closer numbers of estimated excesses 

to theoretically expected ones are highlighted in bold. Also reported (in parenthesis) is 

the difference between the theoretically expected and the estimated excesses. 

As can be observed in Table 6, the results do indicate that the EVT-based approach is 

the most successful for capturing the behaviour of the upper tail of the DJI and FTSE 

                                                 
12 For example, the expected number of excesses of a 95% tail quantile over a sample of 11564 
observations is 578 (0.05*11564). 
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100 indices at all the considered levels of probability, as well as at the most extreme 

levels (99% and 99.5%) in the NIKKEI 225 index. 

Nevertheless, according to our results, the normal AR-GARCH and the AR-GARCH-t 

models generally provide more accurate estimations for the lower tails. In fact, the 

former performs better at the 95% and 97.5% levels whereas the latter do so at the 99% 

and 99.5% of the DJI and the NIKKEI 225 indices. The reason is that the Student´s t 

distribution is a fat-tailed distribution compared to the normal. The AR-GARCH-t 

model is also the one that produces better tail estimates for the FTSE 100 index, with 

the only exception being the most extreme tail quantile, i.e. at the 99.5% level, in which 

it is overcome by the EVT-based method. These results are consistent with previous 

studies in the sense that EVT is particularly accurate as tails become more extreme 

(Danielsson and de Vries, 1997; Longin (2000); Assaf (2009); Bekiros and 

Georgoutsos, 2005).  

 

Table 6. In sample evaluation 

In sample evaluation of estimated (positive and negative) tail quantiles at different 

probabilities for the DJI, FTSE 100 and NIKKEI 225 indices. Closer numbers of 

estimated excesses to theoretically expected ones are highlighted in bold. Also reported 

are the differences between the theoretically expected and the estimated excesses (in 

parenthesis). 

 

Panel A: DJI 

 AR-GARCH AR-GARCH-t Conditional GPD 

Probability Expected Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

0.95 578 506 

(72) 

565 

(13) 

547 

(31) 

613 

(-35) 

594 

(-16) 

416 

(162) 

0.975 289 242 312 253 320 300 253 
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(47) (-23) (36) (-31) (-11) (36) 

0.99 116 133 

(-17) 

163 

(-47) 

84 

(32) 

115 

(1) 

115 

(1) 

104 

(12) 

0.995 58 75 

(-17) 

101 

(-43) 

41 

(17) 

55 

(3) 

63 

(-5) 

51 

(7) 

Panel B: FTSE 100 

  AR-GARCH AR-GARCH-t Conditional GPD 

Probability Expected Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

0.95 287 222 

(65) 

313 

(26) 

240 

(47) 

278 

(9) 

273 

(14) 

255 

(32) 

0.975 144 91 

(53) 

172 

(-28) 

92 

(52) 

147 

(-3) 

152 

(-8) 

126 

(18) 

0.99 57 36 

(21) 

101 

(-44) 

29 

(28) 

59 

(-2) 

57 

(0) 

48 

(9) 

0.995 29 27 

(2) 

60 

(-31) 

21 

(8) 

34 

(-5) 

29 

(0) 

28 

(1) 

Panel C: NIKKEI 225 

  AR-GARCH AR-GARCH-t Conditional GPD 

Probability Expected Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

0.95 318 237 

(81) 

360 

(-42) 

256 

(62) 

389 

(-71) 

613 

(-259) 

104 

(214) 

0.975 159 108 

(51) 

195 

(-36) 

107 

(52) 

201 

(-42) 

239 

(-80) 

85 

(74) 
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0.99 64 61 

(3) 

108 

(-44) 

41 

(23) 

71 

(-7) 

62 

(2) 

53 

(11) 

0.995 32 45 

(-13) 

64 

(-32) 

24 

(8) 

33 

(-1) 

33 

(1) 

29 

(3) 

 

 

5.2. Out-of-sample evaluation 

In this case (Table 7), results indicate that EVT-based conditional quantile estimates are 

much more accurate than the conventional AR-GARCH models assuming normal or t-

Student’s innovations13. In fact, it occurs in 20 to 24 cases. Furthermore, at most of the 

considered confidence levels, the AR-GARCH model combined with normal or t-

Student’s innovations underestimate the upper tail and overestimate the lower tail. This 

is the consequence of using a symmetric distribution with data which are asymmetric in 

the tails. The almost perfect correspondence between the theoretically expected number 

of violations and the estimated number of violations provided by GPD evidences the 

suitability of this methodology to estimate the tails of the DJI, FTSE 100 and NIKKEI 

225 indices returns distributions. 

 

Table 7. Out-of-sample evaluation 

Out-of-sample evaluation of estimated (positive and negative) tail quantiles at different 

confidence levels for the DJI, FTSE 100 and NIKKEI 225 indices. Closer numbers of 

estimated excesses to theoretically expected ones are highlighted in bold. Also reported 

are the differences between the theoretically expected and the estimated excesses (in 

parenthesis). 

 

Panel A: DJI 

                                                 
13 This result is consistent with that of Byström (2004), in which it is stated that for the lower tail of the 
DJI index (December 14, 1983 to September 8, 1999) and within the out-of-sample estimation the EVT-
based models do a better job for confidence levels equal or higher than 99%. 
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 AR-GARCH AR-GARCH-t Conditional GPD 

Probability Expected Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

0.95 528 477 

(51) 

534 

(-6) 

521 

(7) 

544 

(-16) 

523 

(5) 

496 

(32) 

0.975 264 241 

(23) 

294 

(-30) 

243 

(21) 

292 

(-28) 

266 

(-2) 

267 

(-3) 

0.99 106 129 

(-23) 

166 

(-60) 

88 

(18) 

115 

(-9) 

103 

(3) 

110 

(-4) 

0.995 53 82 

(-29) 

112 

(-59) 

36 

(17) 

64 

(-11) 

52 

(1) 

53 

(0) 

Panel B: FTSE 100 

 AR-GARCH AR-GARCH-t Conditional GPD 

Probability Expected Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

0.95 237 197 

(40) 

255 

(-18) 

207 

(30) 

272 

(-35) 

142 

(95) 

421 

(-184) 

0.975 119 78 

(41) 

141 

(-22) 

82 

(37) 

146 

(-27) 

100 

(19) 

151 

(-32) 

0.99 48 32 

(16) 

80 

(-32) 

23 

(25) 

60 

(-12) 

48 

(0) 

49 

(-1) 

0.995 24 21 

(3) 

55 

(-31) 

11 

(13) 

38 

(-14) 

22 

(2) 

24 

(0) 

Panel C: NIKKEI 225 

 AR-GARCH AR-GARCH-t Conditional GPD 
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Probability Expected Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

Upper 

tail 

Lower 

tail 

0.95 268 199 

(69) 

302 

(-34) 

220 

(48) 

320 

(-52) 

234 

(34) 

237 

(31) 

0.975 134 94 

(40) 

162 

(-28) 

98 

(36) 

164 

(-30) 

132 

(2) 

143 

(-9) 

0.99 54 51 

(3) 

87 

(33) 

33 

(21) 

61 

(-7) 

51 

(3) 

57 

(-3) 

0.995 27 31 

(-4) 

57 

(-30) 

21 

(6) 

23 

(4) 

27 

(0) 

28 

(1) 

 

6. Concluding remarks 

In this paper we follow McNeil and Frey´s (2000) two-step estimation procedure 

(conditional EVT) with the aim of comparing this methodology with other conventional 

methods such as those that combine GARCH models with Student’s t or normal 

distributions for tail estimation of financial data. In step one, we fit a GARCH-type 

model to the return data by maximizing the log-likelihood function of the sample 

assuming normal innovations. In step two, the standardized residuals computed in step 

one are considered as realizations of a white noise process and EVT (in particular, the 

POT approach) is used to estimate the tails of innovations.  

Specifically, we test the conditional EVT approach and the above mentioned traditional 

methods by applying them to the log return series of DJI, FTSE 100 and NIKKEI 225 

stock indices. To do so, both in-sample and out-of-sample estimations are conducted. 

According to our results, within the in-sample estimation, the EVT methodology 

produces the most accurate estimates for the upper tail of the three considered financial 

indices. In particular, this is true at all the contemplated confidence levels for the DJI 

and the FTSE 100 indices and at the 99% and 99.5% levels for the NIKKEI 225 index. 

However, the normal AR-GARCH and the AR-GARCH-t models generally provide 
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more accurate estimations for the lower tails. Specifically, the former performs better at 

the 95% and 97.5% levels whereas the latter do so at the 99% and 99.5% levels of the 

DJI and the NIKKEI 225 indices. 

More interestingly for a risk manager, whose aim is to know how well he is able to 

predict future extreme events rather than to model the past, the superiority of the 

conditional EVT methodology over the other two conventional methods is clearly 

evidenced under the out-of-sample estimation. 

Thus, the accuracy of the conditional EVT tail estimates is confirmed for both the upper 

and the lower tails, since it provides the most accurate estimates in 11 (9) out of 12 

cases for the right (left) tail. Such a result has been obtained when applied to the 

extreme returns for the three financial indices involved in this study, and by extension, 

it should be applied to other financial assets. In fact, these financial indices were chosen 

because they can be considered as representative of three important financial areas and 

no remarkable differences in terms of the accuracy of the estimates have arisen between 

them. 

To conclude, on the one hand the results found in this paper should be useful to 

investors in general, since their goal is to be able to forecast unforeseen price 

movements and take advantage of them by positioning themselves in the market 

according to these predictions. On the other hand, precise (out-of-sample) predictions of 

the probability of extreme returns are of great importance for risk traders who 

implement dynamic portfolio hedging and need to design active strategies on a daily 

basis. 
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