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Abstract 

This work focuses on the appraisal of public and environmental projects and, more 

specifically, on the calculation of the social discount rate (SDR) for this kind of very 

long-term investment projects. As a rule, we can state that the instantaneous discount 

rate must be equal to the hazard rate of the public good or to the mortality rate of the 

population that the project is intended to. The hazard can be due to technical failures of 

the system, but, in this paper, we are going to consider different independent variables 

that can cause the hazard. That is, we are going to consider a multivariate hazard rate. In 

our empirical application, the Spanish forest surface will be the system and the forest 

fire will be the fail that can be caused by several factors. The aim of this work is to 

integrate the different variables that produce the fail in the calculation of the SDR from 

a multivariate hazard rate approach. 

 

Key-words: social discount rate, multivariate hazard rate, forest fires, public and 

environmental projects. 
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 2 

 

1. INTRODUCTION. 

A hazard function describes mathematically the effect that increases in waiting time 

have on the risk that something will happen to prevent an event from occurring (Gross 

and Clark, 1975). In the framework of temporal discounting, the fail represents the 

probability of an event occurring at t (or during an interval starting at t) that will prevent 

the receipt of a reward, divided by the probability of the event not occurring until t, that 

is the conditioned probability of fail. In this paper, we are going to study the discounting 

function including the risk, considered as the hazard rate of a group (in general the 

reliability of a system). Consequently, we propose a discounting function for investment 

appraisal based on the system’s reliability. So, the discounting function at t will be 

(Cruz-Rambaud and Muñoz-Torrecillas, 2005): 

∫
=−=

−
t

dxxh

etFtR 0

)(

)(1)( , (1) 

where )(tR  is the system’s reliability, )(tF  the distribution function, at instant 0, of the 

random useful life of the system, and )(xh  the instantaneous hazard rate at instant x, 

tx ≤≤0 . In effect, let T be the random variable that represents the life of an investment 

in a public good, for example, a sewage treatment plant. Let us suppose that the 

distribution function of the random variable, )()( tTPtF ≤=  (with density function 

)(tf ), represents the probability that the public good will stop working before t years 

after starting its useful life (time 0). 

The reliability of the system at year t, )(tR , is the probability that the life of the system 

will be greater than t: 

)()(1)( tRtFtTP =−=> ,  t > 0. (2) 

Therefore, 
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represents the proportion of units that fail in the interval ),( dttt +  with respect to the 

units that continue working at year t. This is the well-known concept of hazard rate, and 

it can be shown that: 

)(
)()(

tR
tRth

′
−= , (4) 

from which we can obtain the expression of the system reliability, seen before in 

equation (1): 
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t
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0

)(exp)( .  

In general, if we make the hazard rate of the random variable T, defined in an interval of 

the form [ )+∞,0 , equal to the instantaneous rate of a discounting function from d to 

td +  ( 0≥t ), say ),( tdA , we can deduce that (Cruz-Rambaud, 1995): 

)(1
)(1),(

dF
tdFtdA

−
+−

=  . (5) 

In the specific case in which d = 0, as F(0) = 0, it must be (see Maravall, 1970): 

 

)()(1)(:),0( tRtFtAtA =−== , 0≥t . (6) 

 

Our findings can be also derived from Gollier (2002a, 2002b). See Cruz-Rambaud and 

Muñoz-Torrecillas (2005) for a complete demonstration. Observe that the discounting 

function can be composed by several components. In effect, assume that, in the 

expression of a discounting function ),( tdA , n causes are implicit (among them, the 

hazard). This makes that, at first, A is a function of n functions denoted by 

nAAA ,,, 21  , that is: 

),,,( 21 nAAAF Ψ= . 

However, this general treatment of the hazard can be very difficult, whereby we are 

going to adopt the following simplifying assumption: any discounting function can be 
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decomposed into the product of the discounting function derived from the hazard rate 

and the discounting function due to the remainder causes. Therefore, 

),(~),(ˆ),( tdAtdAtdA ⋅= , 

where: 

• ),(ˆ tdA  represents the discounting function derived from the hazard rate of the 

system, and 

• ),(~ tdA  denotes the discounting function due to the rest of causes involved in the 

valuation process. 

Nevertheless, in this paper, we only consider the problem of determine the discounting 

function ),(ˆ tdA , leaving the study of the influence of the rest of causes to a future 

research. Thus, the next step in our research will be to consider the hazard rate of all 

components in a system, and to study the way in which all of them can be joined in only 

one hazard rate representing the entire system. To do this, we are going to start with the 

concept of multivariate hazard rate. 

Following Navarro (2008), if 21 ,( TT ) is a random vector (usually representing the 

lifetime of two units or two components in a system) with absolutely continuous 

reliability function defined by ),Pr(),( 221121 tTtTttR >>=  and density function 

),( 21 ttf , the univariate failure rate (or hazard rate) can be extended to the bivariate set-

up by using different ways. 

The first one uses the bivariate failure rate function defined in Basu (1971)1

),(
),(),(

21

21
21 ttR

ttftth =

 by: 

, (7) 

for all ),( 21 tt , such that 0),( 21 >ttR . 

We can also extend it to the case of a multivariate failure rate function in the following 

way: 

                                                 
1 Puri and Rubin (1974) defined a multivariate hazard rate in a similar way. 
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for all ),,,( 21 nttt  , such that 0),,,( 21 >ntttR  . 

The second option is to use the hazard (failure) gradient defined by Johnson and Kotz 

(1975), Barlow and Proschan (1976) and Marshall (1975) as: 

)),(),,((),( 21221121 tthtthtth = ),(lngrad 21 ttR−= , 

where 

),(ln),( 2121 ttR
t

tth
i

i ∂
∂

−= , (9) 

for 2 ,1=i  and for all ),( 21 tt , such that 0),( 21 >ttR . 

From a multivariate approach, we will have: 

)),,,(,),,,,(),,,,((),,,( 2121221121 nnnnn ttthttthttthttth  =  

),,,(lngrad 21 ntttR −= , 

where 

),,,(ln),,,( 2121 n
i

ni tttR
t

ttth 
∂
∂

−= , (10) 

for ni ,,2 ,1 =  and for all ),,,( 21 nttt  , such that 0),,,( 21 >ntttR  . 

Johnson and Kotz (1975) introduced the concept of a vector multivariate hazard rate and 

Marshall (1975) showed that this vector function determines the multivariate failure 

distribution uniquely and is the natural generalization of the corresponding univariate 

concept. In this way, some recent characterizations using the hazard gradient were given 

by Navarro and Ruiz (2004), Kotz et al. (2007) and Navarro et al. (2007). 

Johnson and Kotz (1975) state that: “For a concept such as “hazard rate”, it is 

unreasonable to expect a single value to represent this aspect of a multivariate 

distribution. The basic idea underlying the univariate definition is that of rate of 

decrease in “survivors” with increase in value (t) of T (as in a life table where the hazard 

rate is in fact the force of mortality). When there are two or more variates this rate 
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depends on which variate is changed (or, more generally, the proportions in which 

different variates are changed) and we need a different “rate” for each variate.” So they 

defined the (joint) multivariate hazard rate of m absolutely continuous random variables 

mTTT ,,, 21   as a vector, called the vector (or gradient) multivariate increasing/ 

decreasing hazard rate (IHR/DHR). 

However, our aim in this paper is to aggregate all the components of a multivariate 

hazard rate in a unique hazard rate describing the whole system. Thus, the organization 

of the paper is the following. After justifying the mathematical expression of the 

discounting function associated to the hazard rate of a system or population, in Section 

2 the formula of the discounting function associated to the weighted mean of n hazard 

rates due to several causes is deduced. Section 3 describes the fitting process of data 

coming from empirical data to a theoretical probability distribution, more specifically, a 

Weibull distribution. In Section 4 we apply the results obtained in Section 3 to the data 

provided by the Ministerio de Medio Ambiente y Medio Rural y Marino which includes 

the environmental Spanish agency, obtaining the corresponding empirical discounting 

function. Finally, Section 5 summarizes and concludes. 

 

2. MULTIVARIATE HAZARD RATE AND DISCOUNTING. 

In the Introduction we have described the attempts of several authors to define a 

multivariate hazard rate, but we are looking for a single value of the hazard rate 

representing the entire system, not a vector. To do this, we are going to consider the 

approach of Barlow and Proschan (1996) for structures of nonidentical components. 

More specifically, we are going to focus on the particular case when the system’s 

hazard rate is the weighted average of the hazard rates of the n system’s components, 

that is: 

∑
=

⋅=⋅++⋅+⋅=
n

k
kknn hhhhh

1
2211 αααα  . (11) 

Taking into account that the general structure of the system’s fail has the following 

form (Barlow and Proschan, 1996): 
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we can deduce that: 

k
k

k R
RR

R α=
∂∂ ; nk ,,2,1 = . (13) 

We will find the expression of h by induction over k. This way, for 1=k , 

1
1

1 α=
∂∂

R
RRR , 

or equivalently, 

1

11

RR
RR α

=
∂∂ . 

By integrating both members with respect to 1R , we will have: 

11321 ln),,,(ln RRRRR nn ⋅=Φ+ − α . 

To determine ),,( 21 nn RR −Φ , we can differentiate the previous equality with respect 

to 2R , resulting in: 

0
),,,(

2

3212 =
∂

Φ∂
+

∂∂ −

R
RRR
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As 
2

22

RR
RR α

=
∂∂ , if we substitute in the previous formula, we will have: 

2

2

2

321 ),,,(
RR

RRR nn α
−=
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Φ∂ − 

, 

from where: 

),,(ln),,,( 3222321 nnnn RRRRRR  −− Φ+⋅−=Φ α , 

that is, 

221132 lnln),,(ln RRRRR nn ⋅+⋅=Φ+ − αα . 

Le us suppose now that ( nk < ): 
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By a similar process, we can demonstrate that: 

∑
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therefore we can finally deduce that: 

∑
=

⋅=Φ+
n

k
kk RR

1
lnln α , 

where Φ  is a constant. Obviously, for 0=t , 0=kR , for every k, whereby 0=Φ  and 

∏
=

=⋅=
n

k
kn

kn RRRRR
1

21
21 αααα  . (14) � 

Observe that, in this particular case, last expression can be directly derived from 

equation (1) by simple integration of equation (11). 

 

3. FITTING DATA TO A THEORETICAL DISTRIBUTION. 

In this section, we will use a Weibull distribution whose cumulative distribution 

function takes the following form: 

btaetF )(1)( µ−−−= , (15) 

where t ≥ µ, a > 0 and b > 0. In order to apply the ordinary least squares (OLS) method, 

we are going to transform this equation into a linear relation, taking Napierian 

logarithms twice: 

btaetF )()(1 µ−−=− , 

[ ] btatF )()(1ln µ−−=− , 

bta
tF

)(
)(1

1ln µ−=
−

, 



 9 

)ln(ln
)(1

1lnln µ−+=
−

tba
tF

. (16) 

More specifically, if we have the experimental data of forest fires, in percentage terms: 

),(,),,(),,( 2211 nn ptptpt  , 

we can build the experimental values of the distribution function: 

))(,(,)),(,()),(,( 2211 nn tFttFttFt ∗∗∗  , 

where: 

• 11)( ptF =∗ , 

• 212 )( pptF +=∗ , 

  

• nn ppptF +++=∗ 21)( . 

To apply this methodology, it is necessary to be sure that we have calculated all 

percentages nppp ,,, 21   over the same initial number of hectares, that is, that kp  is 

the percentage of burnt hectares in the interval ],] 1 kk tt − , not over the number of hectares 

that were unburned at 1−kt , but over the hectares initially available in 0. We could have 

also the percentages over the hectares that remain without burning at the end of the 

previous year. In this case, these percentages will directly represent the hazard rates 

that, in the case of the Weibull, are represented by the following expression: 

1)()( −−= btabth µ , (17) 

from where, taking Napierian logarithms, 

)ln()1()ln()(ln µ−−+= tbabth . 

Moreover, it is not a problem that afforestation has occurred in the forest extensions 

under consideration. Following with the solution of the initial problem, we will make 

the regression with a linear function: 
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)ln(ln
)(1

1lnln µ−+=
−

tba
tF

. (18) 

For this purpose, we will make the following changes of variables: 

• y
tF
=

− )(1
1lnln , 

• xt =− )ln( µ , and 

• Aa =ln , 

resulting in: 

bxAy += , 

where we have to find A and b. This way, once we have calculated the values of x and y: 

X y 

 

)ln( 1 µ−t  )(1
1lnln

1tF ∗−
 

 

)ln( 2 µ−t  )(1
1lnln

2tF ∗−
 

    

 

)ln( µ−nt  )(1
1lnln

ntF ∗−
 

 

we will be able to obtain a straight line from the regression: 

xbAy ∗∗ += , 

from where we can obtain ∗a : 

∗

=⇒= ∗∗∗ AeaAaln . 

When there are several causes, it is necessary to fit each one prior to applying the 

formula. 
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4. EMPIRICAL APPLICATION. 

In order to apply our model, we have considered the Spanish forest surface as the 

system and the forest fire as the fail of the system. To do this, taking into account that 

the fail can be produced by different causes, we have used a multivariate hazard rate. 

The Ministerio de Medio Ambiente y Medio Rural y Marino is the Spanish 

Environmental Department which publishes the forest fires data every year, including 

the burnt surface due to different causes. Five causes have been identified: 

• lightning (bolt of lightning), 

• negligence and other accidental causes, 

• deliberate (arson), 

• unknown, and 

• reproduction. 

The information provided by the Ministerio de Medio Ambiente y Medio Rural y 

Marino have been divided into sure and estimated causes. The identification of each of 

these causes refers to the determination of the agent who originates the fire. Depending 

on the type of reason, this agent can be either a person, in the case of deliberate fires or 

arson, or an object, like a machine or a tool, etc. The percentage of identified agents 

with regard to the whole of events is variable and depends principally on the type of 

reason. This way, for example, for the disasters originated by lightning, the fact of 

managing to determine with certainty the reason, implies the identification of the cause 

(the own bolt of lightning). 

In general, there is a bigger percentage of agents identified when the reasons are 

associated to negligence or accidents than to deliberate reasons. Thus, the deliberate 

fires supposed in 2008 45.26% of the fires, burning 60.39% of the forest surface, 

followed by the fires caused by negligence or accidents with 35.41% of the total number 

of fires. Regarding deliberate fires, among the most frequent motivations, we find 

traditional agricultural burnings, pasture renewal and slash burning. These traditional 

practices are generally carried out inadequately, without administrative authorization 

and in periods of high risk of fire. 
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The following table reflects surfaces affected by forest fires in Spain in 2008 classified 

by reasons: 

CAUSE 

NUMBER OF FIRES 
TOTAL FORESTAL 
SURFACE (Hectares) Type of cause 

Sure Supposed Total 

Lightning (bolt of lightning)      347    24       371    362,71     

Negligence and other accidental causes   2.607    1521     4.128    16.091,59 

Deliberate (arson)   1.871    3404     5.275    30.389,17 

Unknown   1.789    0     1.789    3.318,44 

Reproduction       61    32         93    159,43 

Total   6.675         4.981      11.656              50.321,34    

Table 1. Surfaces affected by forest fires in Spain in 2008 classified by reasons.  

Source: Ministerio de Medio Ambiente y Medio Rural y Marino 

 

We could weight these causes based on, for example, the government budget to prevent 

each of them. But, currently, we do not have the data of the Spanish government budget 

to prevent forest fires, detailed by cause. So, we will have to make some assumptions in 

order to choose the weighting coefficients ( kα ) for the corresponding hazard rates: 

1. Let us weight the causes due to natural reasons, that is lightning and 

reproduction, with 1=kα . So, 11 =α  and 15 =α . 

2. Assume that increasing the advertising campaigns to prevent fires caused by 

negligence and other accidental causes, can result in a 5% decrease in the fires 

originated by this cause. Therefore, 95.005.012 =−=α . 

3. Let us assume that increasing the advertising campaigns to prevent deliberated 

fires and also the efforts in pursuing and punishing this kind of actions, can 

result in a 10% decrease in the fires originated by this cause. Therefore, 

9.01.013 =−=α . 

4. Finally, suppose that increasing the budget for research on forest fire causes, we 

could decrease a 3% the unknown causes. So, 97.003.014 =−=α . 
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To calculate the hazard rate, we have used the data of forest fires in Spain in the period 

from 1998 to 2008. More specifically, we have taken the data2

The total forest surface is given by the Third National Forest Inventory (Inventario 

Forestal Nacional: IFN). The IFN is a research work repeated every ten years. It was 

established as an indispensable tool to adequately know the structure and the forests 

dynamics in order to take the necessary actions to handle and conserve them. The Third 

National Forest Inventory corresponds to the period 1997-2007. 

 of burnt forest surface 

(measured in hectares) by cause over the total forest surface. 

Next, we are going to explain the methodology used to obtain the discount function 

from the hazard rate. We are going to study the fitting of the forest fires data for Spain 

from 1998 to 2008, using a Weibull distribution, as explained in Section 3. 

In the following table we show in detail the calculations for cause 1. First of all, we will 

make the regression from data of burnt forest surface (measured in hectares), over the 

total forest surface. 

Year 

it  
% Burnt surface ip  )(*

itF  ii tx ln* =  
)(1

1lnln*

i
i tF

y ∗−
=  

1998 0.009474 0.000095 0.000095 7.599902 −9.264307 

1999 0.005958 0.000060 0.000154 7.600402 −8.776363 

2000 0.015559 0.000156 0.000310 7.600902 −8.079055 

2001 0.034541 0.000345 0.000655 7.601402 −7.330055 

2002 0.012326 0.000123 0.000779 7.601902 −7.157641 

2003 0.111520 0.001115 0.001894 7.602401 −6.268230 

2004 0.011823 0.000118 0.002012 7.602900 −6.207611 

2005 0.048811 0.000488 0.002500 7.603399 −5.990163 

2006 0.018307 0.000183 0.002683 7.603898 −5.919405 

2007 0.009919 0.000099 0.002782 7.604396 −5.883055 

2008 0.001396 0.000014 0.002796 7.604894 −5.878044 

Table 2. Regression data. 

 
                                                 
2 Source: Website of the Ministerio de Medio Ambiente y Medio Rural y Marino: 
http://www.mma.es/portal/secciones/biodiversidad/defensa_incendios/estadisticas_incendios/index.htm 
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Plotting the concrete couples: 

),(,),,(),,( 2211
∗∗∗∗∗∗
nn yxyxyx  , 

we can observe the existence of a vertical asymptote for x = ln 1997, which theoretically 

can be justified as follows: 

−∞=
−

=
−→ )(1

1lnlnlim
1997 tFt

. 

 

Figure 1. Representation of the regression data. 

what lead us to take µ = 1997 and make a new regression over ln (t – 1997) values: 

ln (t – 1997) )(1
1lnln

itF ∗−
 

0 −9.264307 

0.693147 −8.776363 

1.098612 −8.079055 

1.386294 −7.330055 

1.609438 −7.157641 

1.791759 −6.268230 

1.945910 −6.207611 

2.079442 −5.990163 

2.197225 −5.919405 

2.302585 −5.883055 

-10 

-8 

-6 

-4 

-2 

0 
7,6 7,601 7,602 7,603 7,604 7,605 

x* 

y* 
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2.397895 −5.878044 

Table 3. Data of the regression over the log values. 

 

obtaining: 

y = 1.6337 x – 9.577, 

with a coefficient of determination R2 = 96.01%: 

 

Figure 2. Graphic of the new regression. 

 

Thus, 

0000693045.0577.9*
1 == −ea  

and 

6337.1*
1 =b . 

Therefore, 

6337.1)1997(0000693045.0
11 )(ˆ)(ˆ −−== tetRtA . 

With the rest of the causes, we will proceed similarly. We summarize the results in the 

following table: 

 

y = 1,6337x - 9,577 
R 2  = 0,9601 

-12 

-10 

-8 

-6 

-4 

-2 

0 
0 0,5 1 1,5 2 2,5 3 
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  Cause 1 Cause 2 Cause 3 Cause 4 Cause 5 

α  1 0.95 0.9 0.97 1 

Reg. 577.96337.1 −= xy  6082.6941.0 −= xy  9046.50294.1 −= xy  7352.70901.1 −= xy  2696.98578,.0 −= xy  

*a  6.93045E-05 0.001349259 0.00272769 0.000437165 9.42462E-05 

*b  1.6337 0.941 1.0294 1.0901 0.8578 

Table 4. Results of the regression over each cause. 

 

Finally, using formula (14), we can obtain the mathematical expression of the 

discounting function including the effects of the five fire causes: 

[ ] [ ] [ ] [ ] [ ] =⋅⋅⋅⋅= 1
5

97.0
4

9.0
3

95.0
2

1
1 )(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)1997,( tRtRtRtRtRtA  

( ) ( )[ 9.00294.195.0941.06337.1 )1997(00272769.0)1997(00134926.0)1997(00006930.0EXP −−−−−−= ttt  

( ) ]8578.097.00901.1 )1997(00009425.0)1997(00043717.0 −−−− tt . 

Starting from this formula, we can calculate the discounting function and the 

corresponding annual discount rate for a certain period of time, for example 20 years 

(see Table 5). 

Year Discounting function Discount rate (%) 

1998 0.99568501 0.43336850 

1999 0.99127729 0.44465081 

2000 0.98681231 0.45246544 

2001 0.98230459 0.45889161 

2002 0.97776280 0.46450882 

2003 0.97319290 0.46957842 

2004 0.96859936 0.47424521 

2005 0.96398573 0.47859938 

2006 0.95935491 0.48270167 

2007 0.95470934 0.48659529 
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2008 0.95005112 0.49031227 

2009 0.94538209 0.49387716 

2010 0.94070389 0.49730928 

2011 0.93601795 0.50062411 

2012 0.93132562 0.50383434 

2013 0.92662807 0.50695050 

2014 0.92192642 0.50998144 

2015 0.91722167 0.51293470 

2016 0.91251476 0.51581674 

2017 0.90780658 0.51863318 

2018 0.90309793 0.52138893 

Table 5. Discounting functions and discount rates associated to different delays. 

 

5. Conclusion. 

Observe that the hazard rate of the random variable T is slightly increasing, which can 

be interpreted as a slight annual increase in the number of burnt hectares over the 

remaining ones. This leads to an increasing instantaneous rate of discount associated to 

the discounting function (which coincides with the hazard rate of the random variable 

T). Therefore, the more distant the cash-flows are, the higher the average discount rate 

is. We can interpret this result as an increasing risk of forest fires over time, which 

implies that the present value of the profits performed by the public good decreases as 

they are situated in a more distant future, resulting in an increasing average annual 

discount rate. 

There is a wide range of economic literature on the constant versus variable discount 

rate. Our work is positioned in the school of thought favorable to a variable discount 

rate over the investment horizon, as observed in the results from the empirical 

application. Many authors, as Harvey (1986), state that the discount rate for long-term 
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projects must be decreasing. We agree with them, although in our case this should occur 

after an initial period. The policies of prevention and public awareness will reverse the 

evolution of the hazard rate, leading to a decreasing hazard rate in a very long-term 

delay. That is to say, for a certain investment, the discount rate could be increasing in 

the early period mainly due to an inadequate conservation policy or to a lack of 

adaptation in the first years of the investment, etc. 

Our hazard rate approach to calculate the discount rate responds to the consideration of 

the risk associated to the waiting time until obtaining the reward (or cash flows’ 

maturities). This risk can be considered as the hazard of the system in which we will 

invest, the mortality of the population that will enjoy the investment and, even, the 

decrease in the income’s marginal utility. Nevertheless, we have focused on the risk as 

the hazard of the investment project. The justification of our approach is that the 

instantaneous discount rate to discount the future cash flows must be equal to the 

instantaneous hazard rate of the system (the investment). As it can be understood, it is 

very difficult to support a constant hazard rate hypothesis that will imply to assume a 

constant risk associated to the obtaining of the investment’s future cash flows over time. 
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