
  

IS STOCK MARKET VOLATILITY PERSISTENT? A FRACTIONALLY 

INTEGRATED APPROACH 

 

Sónia R. Bentes1,* and M. Mendes da Cruz1,2 

 

1 ISCAL, Av. Miguel Bombarda 20, 1069-035 Lisboa, Portugal, smbentes@iscal.ipl.pt 
2 IPL, Estrada de Benfica 529, 1549-020 Lisboa, Portugal, mmcruz@iscal.ipl.pt 

 

* corresponding author 

 

Abstract 

 

This paper seeks to study the persistence in the G7’s stock market volatility, 

which is carried out using the GARCH, IGARCH and FIGARCH models. The data set 

consists of the daily returns of the S&P/TSX 60, CAC 40, DAX 30, MIB 30, NIKKEI 

225, FTSE 100 and S&P 500 indexes over the period 1999-2009. The results evidences 

long memory in volatility, which is more pronounced in Germany, Italy and France. On 

the other hand, Japan appears as the country where this phenomenon is less obvious; 

nevertheless, the persistence prevails but with minor intensity. 
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IS STOCK MARKET VOLATILITY PERSISTENT? A FRACTIONALLY 

INTEGRATED APPROACH 

 

1. INTRODUCTION 

 

A common finding in most of the empirical studies using financial data concerns 

the apparent persistence of shocks, or long memory, for the estimates of volatility. The 

presence of this property implies that the market does not immediately respond to an 

amount of information flowing into the financial market, but reacts to it gradually over 

time. Therefore, past price changes can be used as significant information for predicting 

future price changes. One implication of this is that shocks to the volatility process tend 

to have long-lasting effects. In addition, it also provides negative evidence as well as a 

new perspective to the Efficient Market Hypothesis (EMH) (Fama, 1970; Sharpe, 

1970). 

The origin of interest in long memory does not, however, lie in the 

economics/finance arena but instead appears to come out from a very different world – 

hydrology – and was first provided by Hurst (1951) while studying the flow of the river 

Nile. Hurst (1951, 1956) analyzed 900 geophysical time series and was partly motivated 

through the desire to understand the persistence of the steam flow and, thus, the design 

of reservoirs. Interestingly, after his seminal work, several authors have found the same 

pattern in many other domains of science, such as, biology, geophysics, climatology and 

other natural sciences as well (e.g. Mandelbrot and Wallis, 1968 and McLeod and 

Hipel, 1978). In economics, this phenomenon was first observed by Mandelbrot and van 

Ness (1968) while modelling asset price dynamics. Since then, the Hurst exponent H , 

has been calculated for many financial time series, such as, stock prices, stock indexes 

and currency exchange rates (Peters, 1994; Vandewalle and M. Ausloos, 1997 and 

Grau-Carles, 2000). In most cases, a Hurst exponent 1 2 1H   has been found, 

indicating long memory correlations in the observed data (Grau-Carles, 2000). 

Particularly, while analyzing stock market returns an interesting picture seems to arise 

(Matteo et al., 2003; Grau-Carles, 2000): large and more developed markets (e.g., 
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NYSE and LSE), usually tend to have H equal to, or slightly less than 1 2 , whereas less 

developed markets show a tendency to evidence 1 2 1H  . In other words, large 

markets seem to be efficient in the sense that 1 2H  , whereas less developed markets 

tend to exhibit long-range correlations. A possible explanation for this is that smaller 

markets are more prone to experience correlated fluctuations and, therefore, more 

susceptible to be influenced by aggressive investors, which may in part explain a Hurst 

exponent greater than 1 2 . 

Given the above, several reasons have been advanced for the apparent 

widespread finding of persistence in financial time series. For instance, Porteba and 

Summers (1987), have argued that for multiperiod assets like stocks, shocks have to 

persist for a long period for a time-varying risk premium to be able to explain the large 

fluctuations observed in stock market. In fact, if volatility changes are only transitory, 

no significant adjustments to the risk premium will be made by the market; hence, no 

significant changes in the discount factor or in the price of a stock, as determined by the 

net present value of the future expected cash flow, will occur. In addition, Schwert and 

Seguin (1990) have found out a common source of time-varying volatility across the 

disaggregated stock portfolios suggesting that portfolios might be co-persistent in the 

terms of Bollerslev and Engle (1993). On the other hand, Engle and Gonzalez-Rivera 

(1991) have noticed that persistence in variance seems to be related to the size of the 

business, with smaller businesses having a lower persistence than the larger 

corporations studied by Engle and Mustafa (1992). 

Additionally, Chambers (1998) has not only observed long memory in the 

volatility of individual stocks and of aggregate indexes, but also that the degree of 

persistence was invariant with respect to the frequency of the data. In fact, the null 

hypothesis of a unit root in variance is not rejected by several authors using different 

sets of stock market data (French et al., 1987; Chou, 1988 and Pagan and Schwert, 

1990). A distinct explanation based on the interaction in the market of agents with 

different time horizons was also provided by Muller et al. (1997). According to the se 

authors, long memory arises from the reaction of short-term dealers to the dynamics of a 

proxy for the expected volatility trend (coarse volatility), which causes persistence in 

the mean higher frequency volatility process (fine volatility). On the other hand, long-
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term dealers base their decisions on the fundamentals of the market ignoring short-term 

movements. The empirical literature on long memory is vast and relies mainly on the 

estimation of the ARCH-type models (Vilasuso, 2002; Bentes et al. 2008; Mendes and 

Kolev, 2008; Oh et al., 2008; Kang et al., 2009; Kasman et al., 2009; inter alia). In this 

context, the FIGARCH process, introduced by Baillie et al. (1996), seems to be of 

particular relevance since it constitutes a more flexible form than the traditional 

GARCH or IGARCH processes and accommodates both of them as special cases. 

In order to determine whether the G7’s stock market volatility exhibits long 

memory this paper focuses on the daily returns of the S&P/TSX 60, CAC 40, DAX 30, 

MIB 30, NIKKEI 225, FTSE 100 and S&P 500 indexes. The analysis is carried out 

based on the GARCH, IGARCH and FIGARCH models. The results points out to the 

existence of long memory, which is more pronounced in Germany, Italy and France.  

The remainder of the paper is organized as follows. Section 2 clarifies the 

meaning of long memory. Section 3 describes the methodology. Section 4 presents the 

statistical characteristics of the sample data. Section 5 discusses the empirical results 

and, finally, Section 6 draws the conclusions. 

 

2. LONG MEMORY: SOME DEFINITIONS 

 

Before proceeding any further a clarification about its meaning is necessary. 

Generally speaking, it is considered that long memory is related to a high degree of 

persistence of the observed data; hence, these two terms are used as synonymous. There 

are, however, several ways of defining it. Basically, it can be expressed either in the 

time domain or in the frequency domain. In the time domain, long memory manifests 

itself as hyperbolically decaying autocorrelation functions. This means that observations 

far from each other are still strongly correlated and decays at a slow rate. In other 

words, a stationary discrete time series process is defined to exhibit long memory if the 

autocorrelation function j  at lag j  satisfies 

 lim 1,j

j c j 





  (1) 
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for some constants 0 c    and 0 1  . In contrast, we say that a weakly 

stationary process has short memory when its autocorrelation function is geometrically 

bounded (Brockwell and Davis, 1987) 

 ,j
j c r   (2) 

for 0c  , 0 1r  .  

A more generalized definition of expression (1) was presented by McLeod and 

Hipel (1978) 

 lim ,
n

jn j n





   (3) 

where n  denotes the number of observations.  

In the frequency domain, the same information comes in a form of a spectrum 

showing all the information within the interval –  0, . In this context, a stationary 

time series is said to exhibit long memory if the spectral density f  behaves as  

  
0

lim 1,
f

f
c 



 
  (4) 

for some constants 0 fc    and 0 1  . A connection between expressions (1) and 

(4) and the Hurst exponent, H , were also found (Beran, 1994): if 1 2 1H  , then 

2 2H    and 2 1H   , which characterizes a classical process of long memory. 

On the contrary, negative memory or antipersistence occurs when 1 0    holds.  

 

3. METHODOLOGY 

 

In order to shed some light into the long memory process of stock market 

volatility the ARCH, GARCH, IGARCH and FIGARCH framework are theoretically 

described. Some of its main characteristics and its advantages/shortcomings are also 

discussed. 
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3.1 ARCH MODEL 

 

One of the most popular models when dealing with this property is the ARCH(q) 

model derived by Engle (1982). Consider the time series ty  and the associated 

prediction error 1t t t ty E y    where 1tE   is the expectations operator conditioned on 

time 1t   information. By definition, t  is serially uncorrelated with mean zero but the 

conditional variance of the process 2
t  is changing over time. In the classic ARCH(q) 

process proposed by Engle (1982) 2
t  is postulated to be a linear function of the lagged 

squared innovations implying Markovian dependence dating back only q  periods; that 

is, 2
t i   for 1,2,...,i q . 

 

3.2 GARCH MODEL 

 

A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) was 

defined by Bollerslev (1986) so that t t tz  , tz  is i.i.d., with zero mean and unit 

variance 

    2 2 2 ,t t tL L         (5) 

where 0  ,  L  and  L  are polynomials in the lag operator  i
t t iL L x x   of 

order q  and p , respectively. For stability and covariance stationarity of the t  process, 

all the roots of    1 L L      and  1 L    are constrained to lie outside the unit 

circle.  

Expression (5) may also be rewritten in the form of an ARMA(m,p) process in 
2
t ,  

      21 1 ,tL L L                 (6) 
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where  max ,m p q , and 2 2
t t t     is mean zero serially uncorrelated. One 

characteristic of the GARCH model is that the effect of the past squared innovations on 

the current conditional variance decays exponentially with the lag length. In applied 

work, it has been frequently demonstrated that the GARCH(1,1) process is able to 

represent the majority of financial time series. In fact, a data set that requires a model of 

order greater than GARCH(1,2) or GARCH(2,1) is very rare (Bera and Higgins, 1993). 

 

3.3 IGARCH MODEL 

 

A common empirical regularity that has been found in many studies using 

financial data concerns the apparent persistence implied by the estimates for the 

conditional variance functions. In the GARCH model that is manifested by the presence 

of an approximate unit root in the autoregressive polynomial; i.e., 

1 1... ... 1q p         . Engle and Bollerslev (1986) was the first to refer to this 

class of models as integrated on variance or IGARCH (Integrated GARCH). Its 

specification is given succinctly by 

      21 1t tL L L          . (7) 

The authors pointed out the similarity between IGARCH processes and 

processes that are integrated in the mean. For a process that is integrated in the mean 

(one that must be differenced to induce stationarity) a shock in the current period affects 

the level of the series into the indefinite future. As in the martingale model for 

conditional means, current information remains important for forecasts of the 

conditional variance for all time horizons.  

However, the idea of an infinite unconditional variance distribution in 

characterizing financial data is not new to the IGARCH class of models. Mandelbrot 

(1963) and Fama (1965) both have suggested the stable Paretian class of distributions 

with characteristic exponent less than two as providing a good description of the 

distributional properties of speculative prices.  
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3.4 FIGARCH MODEL 

 

Despite its insight, the IGARCH process is not entirely satisfactory in modeling 

long memory in stock market volatility since it assumes infinite memory (Vilasuso, 

2002). This, allied to the fact that the extreme degree of persistence found in many 

empirical studies might be contrary to the observed pricing behaviour led to the 

introduction of the Fractional IGARCH (FIGARCH(p,d,q)) model (Baillie et al. 1996). 

Mathematically, the FIGARCH process can be written as follows 

     21 1 ,d
t tL L L           (8) 

where 0 1d   is the fractional differential parameter. The FIGARCH model provides 

greater flexibility for modeling the conditional variance, because it nests the covariance 

stationary GARCH when 0d  , and the IGARCH when 1d  , as special cases. For the 

FIGARCH the persistence of shocks to the conditional variance or the degree of long 

memory is measured by the fractional differencing parameter d . Thus its attraction lies 

on the fact that for 0 1d  , the model is sufficiently flexible to allow for an 

intermediate range of persistence. In particular, the FIGARCH model implies a slow 

hyperbolic rate of decay for the lagged squared innovations in the conditional variance 

function, although the cumulative impulse response weights associated with the 

influence of a volatility shock on the optimal forecasts of the future conditional variance 

eventually tend to zero. 

A common approach for estimating ARCH models assumes a conditional 

normality process. Under this assumption the parameters of the FIGARCH model can 

be estimated using nonlinear optimization procedures to maximize the logarithm of the 

Gaussian likelihood function. Considering the random variable  0,1tz N , the log 

likelihood of Gaussian or normal distribution ( NormL ) can be expressed as 

    2 2

1

1 ln 2 ln ,
2

T

Norm t t
t

L z 


       (9) 

where T  is the number of observations. It is worthy to note that the estimation 

procedure of the FIGARCH model requires a minimum number of observations. This 
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minimum number is related to the truncation order of the fractional differencing 

operator  1 dL . 

 

4. DATA 

 

This study focuses on the daily closing prices of S&P/TSX 60, CAC 40, DAX 

30, MIB 30, NIKKEI 225, FTSE 100 and S&P 500, spanning over a period from 4th 

January 1999 to 21st January 2009. All indexes were collected from Datastream, 

resulting in 2623 observations for each series. To perform our analysis the daily sample 

prices were converted into a daily nominal percentage return series (not adjusted for 

dividends), given by 

  1100 lnt t tr P P , (10) 

for 1,...,t T , where tr  denotes the return at time t , tP  the current price and 1tP  the 

previous day’s price. Expression (10) can be rewritten as 

  1100 ln lnt t tr P P  . (11) 

In accordance with Morana and Beltrati (2004) the motivations underlying the 

use of daily observations were two-fold: (i) from a statistical point of view, computing 

daily returns yields to a sample which is large enough to make statistical meaningful 

analysis; and, (ii) from a practical point of view the daily frequency is of utmost 

importance to the financial industry and to investors. For instance, risk management 

needs accurate forecast of daily and weekly volatility to implement value-at-risk 

models. Furthermore, in the case of quantitative asset allocation models, investors are 

interested in risk measurement at the daily or even lower frequencies. This is worthy to 

note as there is a general tendency in empirical studies to single out the advantages of 

high frequency data neglecting, somehow, the potentialities of lower frequencies. The 

closing prices dynamics and returns are depicted in Figs. 1 and 2, respectively. 
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Fig. 1. Daily closing prices of the S&P/TSX 60, CAC 40, DAX 30, MIB 30, NIKKEI 225, FTSE 100 and 
S&P 500 indexes in the period ranging from 4th January 1999 to 21st January 2009. 
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Fig. 2. Daily returns of the S&P/TSX 60, CAC 40, DAX 30, MIB 30, NIKKEI 225, FTSE 100 and S&P 
500 indexes in the period ranging from 4th January 1999 to 21st January 2009. 

 

Table 1 summarizes the descriptive statistics for returns. The results show that 

the sample mean is positive, but close to zero. To evaluate the significance of this 

outcome a statistical test with the null of zero mean was conducted. The p-values 

(S&P/TSX 60 – 0.5167; CAC 40 – 0.7961; DAX 30 – 0.6396, MIB 30 – 0.3645, 

NIKKEI 225 – 0.8939, FTSE 100 – 0.4160 and S&P 500 – 0.5788) show that the null is 

not rejected at the 1% significance level. A slightly different pattern seems to arise 

while analyzing the standard-deviation, where the null of zero standard-deviation is 

rejected at the 1% significance level. This clearly reveals different volatilities.  

In addition, our results also show that the NIKKEI 225 is the most volatile 

index. This is not surprising as the Japanese stock market was subjected to a severe 
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instability over the period under consideration, showing a non-increasing long-run trend 

in the raw prices and quite sharp oscillations over time. This was, thus, transmitted to 

returns and translates into abnormally large oscillations or high volatility, as observed. 

Next, the S&P 500 shows the second highest volatility followed by the S&P/TSX 60. 

The German DAX 30 and the Italian MIB 30 exhibit the lowest volatility as measured 

by the standard-deviation. 

Consistent with a plethora of studies on the stylized facts of stock market 

volatility, returns are non-normally distributed with fat tails, as indicated by the 

skewness, kurtosis and Jarque-Bera test. In fact, all series display negative asymmetry, 

except Germany, which is positively skewed. Similarly, they are all leptokurtic with a 

kurtosis greater than 3. Likewise, the Jarque-Bera test also indicates significant 

departures from normality. 

Additionally, the null hypothesis of a white-noise process for the sample returns 

was also assessed. According to the Ljung-Box statistics the DAX 30 and MIB 30 

returns are not serially correlated, which seems to confirm that the log-prices follows a 

martingale. For the S&P/TSX 60, CAC 40, MIB 30, FTSE 100 and S&P 500, however, 

there is significant evidence of serial dependence, which can be removed by fitting an 

AR(5), AR(6), AR(5), AR(6) and AR(2) model, respectively. In order to test the 

presence of conditional heteroskedasticity and the evidence of ARCH effects the 

Lagrange Multiplier ARCH test was performed. The results show that all indexes’ 

returns exhibit ARCH effects since the null of no ARCH was rejected for the time series 

under consideration. 
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Table 1 

Descriptive Statistics for the S&P/TSX 60, CAC 40, DAX 30, MIB 30, NIKKEI 225, FTSE 100 and S&P 
500 returns 

        
        

Series 
S&P/TSX 

60 CAC 40 DAX 30 MIB 30 Nikkei 225 FTSE 100 S&P 500 
        
        Mean 0,000190 -6,87E-05 -0,000121 -0,000222 -3,92E-05 -0,000213 -0,000163 

Median 0,000708 0,000271 0,000445 7,69E-05 0,000165 8,22E-05 0,000172 
Maximum 0,197644 0,099199 0,160461 0,104822 0,103666 0,090037 0,103077 
Minimum -0,236878 -0,084287 -0,072114 -0,086364 -0,077852 -0,089287 -0,090098 
Standard-
Deviation 0,014979 0,013610 0,013181 0,012528 0,015043 0,013428 0,015007 
Skewness -0,939692 -0,056967 0,505864 -0,129414 -0,207952 -0,175215 -0,011419 
Kustosis 42,74492 8,285171 15,25676 10,29054 5,761197 9,418414 7,678499 
Jarque-Bera 172963.6** 3053,102** 16524.24** 5814.168** 851.168** 4514.084** 2391.359** 
Q(5) 60.368 27.330 8.5671 45.577 3.1907 44.975 25.624 
Q(10) 72.499 45.699 14.154 70.575 10.951 61.951 39.827 
Qs(5) 0.2527 0.1244 - 0.2937 - 0.0803 3.7048 
Qs(10) 6.3675 6.8479 - 17.206 - 5.3865 16.405 
LM-ARCH 101.235** 63.571** 27.193** 71.169** 34.732** 90.523** 72.221** 

Notes: The Jarque-Bera corresponds to the test statistic for the null hypothesis of normality in sample 
return distribution. The Ljung-Box statistics, Q(n) and Qs(n), check for the serial correlation of the return 
series and the squared returns up to the nth order, respectively. The LM-ARCH denotes the ARCH test 
with lag 10. 

** indicates the rejection of the null hypothesis at the 1% significance level. 

   *indicates the rejection of the null hypothesis at the 5% significance level. 

 

Prior to testing for the long memory property in volatility, all the sample 

returnswere subjected to 2 unit root tests, ADF (Augmented Dickey-Fuller) and KPSS 

(Kwiatkowski, Philips, Schmidt and Shin), in order to determine whether stationarity 

holds. These tests differ in the null hypothesis. Thus, for the ADF test the null is that a 

time series contains a unit root,  1I  process, whereas the KPSS has the null of 

stationarity, i.e.,  0I . Table 2 illustrates the empirical results of the unit root tests. 
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Table 2 

Unit Root test for the S&P/TSX 60, CAC 40, DAX 30, MIB 30, NIKKEI 225, FTSE 100 and S&P 500 
returns 

   

Returns ADF KPSS 

   

S&P/TSX 60 -24,72529** 0,301588 

CAC 40 -51,57925** 0,305330 

DAX 30 -50,42855** 0,186591 
MIB 30 -23,18508** 0,323470 

NIKKEI 225 -51,41697** 0,259831 

FTSE 100 -23,67382** 0,425302 

S&P 500 -55,56673** 0,206709 

Notes: MacKinnon critical values: -3.43 (1%) and -2.86 (5%) for constant and -3.96 (1%) and -3.41 (5%) 
for constant and linear trend. Kwiatkowski-Philips-Schmidt-Shin crtitical values: 0.739 (1%) and 0.463 
(5%) for constant and 0.216 (1%) and 0.1446 (5%) for constant and linear trend. 

** indicates the rejection of the null hypothesis at the 1% significance level. 

  * indicates the rejection of the null hypothesis at the 5% significance level. 

 

For the ADF test, large negative values for all cases support the rejection of the 

null of a unit root at the 1% significance level, whereas the statistics of the KPSS show 

that the return series are insignificant for the rejection of the null hypothesis of 

stationarity, implying that they are stationary processes. Hence, all series are suitable for 

subsequent analysis in this study. 

 

5. EMPIRICAL RESULTS 

 

In this Section we estimate the GARCH (1,1), IGARCH (1,1) and FIGARCH 

(1,d,1) models and compare their performance. The estimation results, listed in Tables 

3, 5 and 6, have been produced using the Maximum Likelihood Estimation (MLE) 

method with the Generalized Error Distribution (GED). 
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Table 3 

Maximum likelihood estimates of the GARCH(1,1) with GED 
        
        

Series S&P/TSX  CAC 40 DAX 30 MIB 30 NIKKEI  FTSE 100 S&P 500 
 60    225   
̂  7,29E-07* 1,42E-06** 1,59E-06** 1,39E-06** 3,62E-06** 1,40E-06** 9,33E-07** 
 (3,03E-07) (4,19E-07) (4,14E-07) (4,07E-07) (1,16E-06) (4,54E-07) (3,15E-07) 

1̂  0,066785** 0,095208** 0,107301** 0,105619** 0,077715** 0,099643** 0,053777** 
 (0,0009092) (0,011338) (0,013528) (0,013138) (0,012027) (0,012411) (0,008021) 

1̂  0,929492** 0,898933** 0,887383** 0,887719** 0,908478** 0,894714** 0,942955** 
 (0,009142) (0,011595) (0,013372) (0,013470) (0,013956) (0,012384) (0,008389) 

GED 1,381377** 1,538070** 1,365483** 1,379187** 1,508999** 1,580459** 1,514688** 
 (0,048237) (0,050186) (0,040428) (0,051252) (0,049865) (0,055901) (0,052089) 

Log-L 7359,269 8085,075 8198,237 8369,754 7485,422 8145,663 7742,724 
SIC -6,415955 -6,148160 -6,238412 -6,366378 -5,694693 -6,194481 -5,889447 
AIC -6,441077 -6,172840 -6,249609 -6,388807 -5,705890 -6,219161 -5,905133 

        

Notes: ** indicates the rejection of the null hypothesis at the 1% significance level. 

* indicates the rejection of the null hypothesis at the 5% significance level. 

 

The conclusions are similar for all the returns. Specifically, the GARCH (1,1) 

estimates reveals the presence of volatility clustering in the conditional variance, since 

the estimated parameters are all significant at 1%. Also, like most financial applications 

using high frequency returns, the sum of the estimated parameters of the lagged 

variance and the lagged squared residuals in the GARCH(1,1) process is close to one 

(α+β≃1). This might suggest that volatility is highly persistent, i.e., shocks tend to have 

a permanent influence on the conditional variance, a fact that favours the IGARCH(1,1) 

specification. Nevertheless, to asses the significance of this outcome a Wald test to the 

sum of the parameters was performed. Accordingly, the null and alternative hypothesis 

were specified as follows 

0 1 1

1 1

: 1
: 1a

H
H

 
 

 
  

. 

The results of the Wald test are reported in Table 4. 
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Table 4 

Results of the Wald test to the sum of the lagged variance with the lagged squared residuals 

 
        

Wald Test 
S&P/TSX 

60 CAC 40 DAX 30 MIB 30 
NIKKEI 

225 FTSE 100 S&P 500 
        
        2 a 5,960998* 1,278926 0,743907 1,092194 7,662850** 0,998128 6,200133* 

Notes:  The 2  test was estimated with 1 lag and 1 degree of freedom. 

** indicates the rejection of the null hypothesis at the 1% significance level. 

* indicates the rejection of the null hypothesis at the 5% significance level. 

 

The rejection of the null at the 5% significance level, for the S&P/TSX 60 and 

S&P 500, and at the 1% for the NIKKEI 225 suggests that these returns are not highly 

persistent. Thus, the IGARCH (1,1) model was estimated for the remainder series 

(Table 5). 

 

Table 5 

Maximum likelihood estimates of the IGARCH(1,1) with GED 
        
        

Series S&P/TSX CAC 40 DAX 30 MIB 30 NIKKEI FTSE 100 S&P 500 
 60    225   
̂  - 0,010844** 0,013774** 0,011297** - 0,010770** - 
 - (0,0035368) (0,0046686) (0,0037685) - (0,0035301) - 

1̂  - 0,096630** 0,112039** 0,109404** - 0,100781** - 
 - (0,012471) (0,012275) (0,015959) - (0,014815) - 

1̂  - 0,903370 0,887961 0,890596 - 0,899219 - 
 - - - - - - - 

GED - 1,517003** 1,352310** 1,355676** - 1,562021** - 
 - (0,074558) (0,081166) (0,061987) - (0,072183) - 

Log-L - 8105,026 8197,047 8385,193 - 8165,877 - 
SIC - -6,152302 -6,240506 -6,369009 - -6,198717 - 
AIC - -6,174696 -6,249464 -6,389164 - -6,221111 - 

        

Notes: ** indicates the rejection of the null hypothesis at the 1% significance level. 

* indicates the rejection of the null hypothesis at the 5% significance level. 
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The results given on Table 5 show that though  , 1  and GED are statistically 

significant at 1%, the same does not occur with 1 , which is not significant at any of the 

conventional levels. It also emerges while comparing Tables 3 and 5 that there is little 

discernible difference for these returns between the GARCH and IGARCH models. 

This is not surprising as the IGARCH(1,1) specification nests the GARCH (1,1) (e.g., 

Vilasuso, 2002, Kang et al., 2009). 

The next step was then to adjust the FIGARCH model (1,d,1) with the 

restrictions 0d  , 1d  . Table 6 summarizes the results. 

 

Table 6 

Maximum likelihood estimates of the FIGARCH(1,d,1) with GED 
        
        

Series S&P/TSX CAC 40 DAX 30 MIB 30 NIKKEI FTSE 100 S&P 500 
 60    225   
̂  2,579237* 3,496927* 5,571936 4,267883* 3,208807** 3,153874* 3,317692** 
 (1,2177) (1,5484) (2,4065) (2,1695) (0,98780) (1,3604) (1,1903) 

1̂  0,145704** 0,079608 0,060435 0,046432 0,121331 0,061955 0,150769** 
 (0,047175) (0,046211) (0,041596) (0,049529) (0,087791) (0,053911) (0,056288) 

1̂  0,689087** 0,634176** 0,650559** 0,590615** 0,480313** 0,536630** 0,614842** 
 (0,049783) (0,067334) (0,057723) (0,069073) (0,11719) (0,073075) (0,090704) 

d̂  0,571926** 0,588910** 0,623683** 0,592794** 0,399785** 0,535808** 0,483263** 
 (0,060333) (0,057982) (0,059569) (0,058795) (0,057646) (0,048787) (0,067574) 

GED 1,388687** 1,532205** 1,357048** 1,379116** 1,506296** 1,586665** 1,506983** 
 (0,067704) (0,074964) (0,084732) (0,062769) (0,071506) (0,073075) ((0,076568) 

Log-L 7382,398 8112,191 8206,130 8394,823 7489,988 8174,546 7754,758 
SIC -6,418763 -6,151763 -6,241430 -6,370350 -5,708610 -6,199325 -5,891130 
AIC -6,446348 -6,178635 -6,254866 -6,394983 -5,708610 -6,226198 -5,909045 

        

Notes: ** indicates the rejection of the null hypothesis at the 1% significance level. 

* indicates the rejection of the null hypothesis at the 5% significance level. 

 

The first diagnostic concerns the mixed significance of the estimated parameters: 

thus, while 1 , GED and d  estimates are all significant at 1%, distinct patterns seem to 

arise for   and 1  estimates, which ranges from no significance at all to 1% or 5% 

significance. 
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A second diagnostic refers to the estimated fractional differencing parameter d , 

which spans from 0.399785 for the NIKKEI 225 to 0.623683 in the case of the DAX 

30; thus, rejecting the null hypothesis of GARCH ( 0d  ) and IGARCH ( 1d  ) 

models. Hence, the estimated FIGARCH parameters are consistent with a long-memory 

process, which more realistically describes the return dynamic properties.  

Notwithstanding, it is worthy to note that, NIKKEI 225, the most volatile index 

according to the standard-deviation, exhibits the lowest persistence. Similarly, DAX 30, 

one of the less volatile ones, displays the highest memory, suggesting somehow that 

there is an inverse relation between these two measurements. This might be explained 

by the fact that smaller markets characterized by less liquidity, like the DAX30 or MIB 

30, are less efficient in the sense of the EMH, thus exhibiting higher persistence. This is 

consistent with the findings of Matteo et al. (2003) and Grau-Carles (2000). 

Subsequently, following Mittnik and Paoella (2003), the maximum log-

likelihood value, the bias-corrected Akaike Information Criterion (AIC) and the 

Schwartz Information Criterion (SIC) were used to discriminate between models. These 

criteria are also recommended by Sin and White (1996) to take a final decision. Overall, 

the results described in Tables 3, 5 and 6, strongly indicate that the FIGARCH (1,d,1) is 

the best model to capture the dependence in the variance. 

 

6. CONCLUSIONS 

 

In this paper we have examined the persistence in volatility of the G7’s stock 

market indexes. The daily returns of the S&P/TSX 60, CAC 40, DAX 30, MIB 30, 

NIKKEI 225, FTSE 100 and S&P 500 were modeled using a GARCH(1,1), IGARCH 

(1,1) and FIGARCH (1,d,1) framework. As suggested by Baillie et al. (1996), 

FIGARCH is better suited to capture persistence in volatility than the GARCH or 

IGARCH models since it is a more flexible form, which nests both processes as special 

cases. The results suggest that the financial industry and investors should consider 

persistence in the volatility of all indexes. 
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Another interesting feature which seems to arise in this study is that, the 

NIKKEI 225, the most volatile index according to the standard-deviation, exhibits the 

lowest persistence. Analogously, the DAX 30, one of the less volatile ones, displays the 

highest persistence, suggesting an inverse relation between these two measurements. 

This might be explained by the fact that smaller markets are less liquid, less efficient, 

and more prone to experience correlated fluctuations and, therefore, more susceptible to 

be influenced by aggressive investors. 

To conclude we shall mention that thought the estimated fractional differencing 

parameter evidences distinct persistence across the G7’s countries, which is more 

pronounced in Germany, Italy and France, there is no relevant difference among them, 

suggesting that the returns tend to some kind of homogeneity, which can be viewed as a 

result of globalization. 
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