PROJECT SELECTION CONSIDERING DELAYED ACCEPTANCE OF INVESTMENT PROJECTS

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

by

Javier Eugenio Martinez-Serna

In Partial Fulfillment

of the Requirement for the Degree

Master of Science in Industrial Engineering

Georgia Institute of Technology

November, 1978

PROJECT SELECTION CONSIDERING DELAYED ACCEPTANCE OF INVESTMENT PROJECTS

APPROVED:

G.P. Sharp, Chairman 1- all G.J. Thuesen 1 A (J.F. McGinnis Date approved by Chairman: 29 Nov 78

ACKNOWLEDGMENTS

It gives me joy to avail of this opportunity to show my deep appreciation for and express my most sincere and heartfelt gratitude to Dr. Gunter P. Sharp for all the assistance rendered to me during the development of this work. His constant guidance, infinite patience, and deep insight were indispensable for the completion of this research, and I will always treasure the bond of friendship existing between us.

I wish to thank Dr.L.F. McGinnis and Dr.G.J. Thuesen for serving on my Thesis Advisory Committee and for providing their valuable professional support.

Special recognition to my parents, whom I always knew were behind us.

This thesis is dedicated to my wife,Adriana, whose love, patience and inspiration enabled me to complete not only this study, but my whole graduate program.

ii

TABLE OF CONTENTS

	. pa	ıge
ACKNOWLE	EDGMENTSi	i
LIST OF	ILLUSTRATIONS	v
LIST OF	TABLES	ri
SUMMARY .	iv	lii
Chapter		
I.	INTRODUCTION	l
	Background Purpose Method of Approach	
II.	LITERATURE SURVEY	5
	Deterministic Models Non-Deterministic Models Uncertainty Resolution Product Development	
III.	DESCRIPTION OF THE MODEL	23
	Overview Probabilistic Consideration of the Cash Flow Present Value of Each Proposal Case of Complete Independence Case of Complete Dependence Case of Partial Dependence Case of Independence and Partial or Perfect Correlation Correlation Between Projects j and k Case of Time-Wise and Project-Wise Correlation	
IV.	SOLUTION PROCEDURE AND COMPUTATIONAL EXPERIENCE 4	11
	Project Generation and Input Data Program Language Characteristics of the Projects Flexibility of the Algorithm and Program Runs Computational Experience .Analytical .Simulation	

TABLE OF CONTENTS (Continued)

V.	CONCLUSIONS AND RECOMMENDATIONS	age 70
Appendio	ces	
Α.	COMPLETE RESULTS FOR EACH SET (Tables)	.73
в.	PROGRAMS USED TO SOLVE THE PROBLEM	, 88
с.	EFFICIENCY FRONTIERS	, 113
BIBLIOGI	RAPHY	120

LIST OF ILLUSTRATIONS

Figure pa	ıge
2-1. Difference Between Variance and Semivariance	9
2-2. The Basic Model for Utility of Present Worth	14
2-3. The High Risk-Aversion Model for Utility of Present Worth	14
2-4. Typical Product Life Cycle	21
2-5. Effect of Timing of Entry to the Market	21
3-1. Flowchart of Analytical Solution	24
3-2. Flowchart of Simulation	25
3-3. Probability Functions for a Cash Flow	30
4-1. Project Cash Flow Patterns	46
4-2. Flexibility of the Algorithm	48
4-3. Patterns Followed by the Simulation	62
4-4. Time Progression of Efficiency Frontiers	66
4-5. Comparison of Final Efficiency Frontiers	68
C-1. Efficiency Frontiers for Set 1, "first year only" Decision Rule,Budget \$6000	114
C-2. Efficiency Frontiers for Set 1, "second year only" Decision Rule, Budget \$6000	115
C-3. Efficiency Frontiers for Set 1, "first, second or third year" Decision Rule, Budget \$4000	116
C-4. Efficiency Frontiers for Set 1, "first, second or third year" Decision Rule, Budget \$2000	117
C-5. Efficiency Frontiers for Set 3,"first,second or third year" Decision Rule, Budget \$1500	118
C-6. Efficiency Frontiers for Set 3,"first year only" Decision Rule	119

LIST OF TABLES

..... · _

Table	pag	je
4-1.	Example of Project Cash Flows, Means and Variances	44
4-2.	Structure of the Analysis	49
4-3.	Selected Results for Project Set 1, Budget \$6000	53
4-4.	Comparison of Selected Results for Project Set 1	58
4-5.	Test of Hypothesis	60
4-6.	Comparison of Selected Results for Project Set 3	65
A-1.	Complete Results for Set 1,"first,second or third year" Decision Rule	74
A-2.	Complete Results for Set 1,"first year only" Decisión Rule	75
A-3.	Complete Results for Set 1, "second year only" Decision Rule	76
A-4.	Complete Results for Set 2,"first, second or third year" Decision Rule	77
A-5.	Complete Results for Set 2, "first year only" Decision Rule	78
A-6.	Complete Results for Set 2,"second year only" Decision Rule	79
A-7.	Complete Results for Set 3,"first, second or third year" Decision Rule	80
	Complete Results for Set 3,"first year only" Decision Rule	81
A-9.	Complete Results for Set 3, "second year only" Decision Rule	82
A-10.	Simulation Results for Set 1,"first,second or third year" Decision Rule	83
A-11.	Simulation Results for Set 1, "first year only" Decision Rule	84

A-12.Simulation Results for Set 2,"first, second or third year" Decision Rule	85
A-13.Simulation Results for Set 2,"first year only" Decision Rule	86
A-14.Simulation Results for Set 3	87

SUMMARY

When a company is planning to enter a new product market, it is possible to follow one of three basic strategies:

- A) Be the first to enter the market.
- B) Follow the leader.
- C) Wait more time and be "one more" in that product market.

The firm faces different risk-reward alternatives as a function of the time to launch a product. This product market behavior can be extended to many other types of investment decisions that the company faces year by year.

This research includes the construction of a project selection process, with the consideration of the timing effect as the main objective, which combines an important number of real world characteristics: a stochastic sequential decision model with new projects every year, those projects which were not selected can be carried forward to the next years, correlated cash flows among projects, and budget and project contingency constraints.

The following pattern is assumed for the projects: In proportion to the implementation time of the project, the expected value of the elements in the cash flow stream decrease, and also their variability. The selection process is based in the expected present worth as a measure of reward and its variability as a measure of risk. Different levels of the main parameters, risk-aversion factor, delaying project acceptance and annual budget are tested in three project sets. The problem is solved analytically and simulated.

The most important result of this research effort is the realization of a model which combines capital budgeting theory, new-product development theory, and mathematical and computational tools into a practical and realistic sequential procedure for project selection. Such a model would be useful to any decision maker who faces the problem of allocating limited financial resources of the firm in a periodic sequential decision making environment.

t

iΧ

CHAPTER I

INTRODUCTION

Background

When a company is planning to enter a new product market, it is possible to follow one of three basic strategies.

- A) Be the first to enter the market.
- B) Follow the leader (be the second to enter the market) or
- C) Wait more time and be "one more" in that product market.

The first strategy is the most risky, but also is the most likely to result in higher payoff. It has been found that sometimes the second firm to enter the market will achieve only half the sales of the first firm, and the third firm half the sales of the second firm (13). It is clear that timing is important, and rewards from entering a market at an opportune moment could be substantial. On the other hand, there are more risks associated with entering a market early: substantial resource and development (R&D) cost may not be recovered, and there is more uncertainty regarding product acceptance. A firm that waits can avoid exessive R&D costs and can avoid products that do not sell well. Therefore the firm faces different risk-reward alternatives as a function of the time to launch a product.

This product-market behavior can be extended to many other types of investment decisions that the company faces year by year: cost-reduction measures, plant and warehouse location, installation of environmental controls, etc. Each of these proposals has associated with it a riskreward relation depending upon the time at which it is implemented.

Different models have been proposed in the literature to solve this problem. Some authors assume certainty conditions and use deterministic models, others use stochastic models under uncertainty conditions and make one decision at one point in time for the planning horizon. Others propose a sequential decision procedure with new projects considered every year. No one, however, has developed a project selection process which combines an important number of real world characteristics: a stochastic sequential decision model with new projects considered every year, those projects which were not selected can be carried forward to the next years, correlated cash flows among projects, and budget and project contingency constrains.

Purpose

With the consideration of the timing effect as the main objective of this work, the purpose of this research is:

 To develop a project selection technique which considers sequential decision points, variability of the cash flows, and this variability dependent on timing.

2) To obtain computational experience with this project selection technique, testing the effects of different project evaluation criteria.

Method of Approach

The approach of the research will be to postulate a fixed planning period of five years with annual investment decisions, generate cash flow streams for investment projects, and apply different project evaluation criteria to select the projects. The following pattern will be assumed for investment projects: in proportion to the implementation time of the project, the expected value of the elements in the cash flow stream will decrease, and also their variability. Typical patterns will be based on literature concerning marketing of new products(22). Projects which are not selected one year might be available for selection the following one or two years. The generation of the streams will be done using uncertainty conditions for different cases of correlated cash flows: complete independence, perfect correlation, partially correlated, and cross-correlated flows. Also, there will be considered contingency and budget constrains.

In order to structure the project selection technique it will be necessary to obtain the expected present worth as a measure of reward and associate the variance of the present worth as a measure of risk. Then there will be tested different levels of risk-aversion in order to represent aggresive and conservative project selection strategies. The resulting sets of selected projects will then represent different points on an "efficiency frontier". Also, the model will give additional information to support the decision process; ie, the amount of cash every year, the amount of cash at the horizon, the total cost of each selected decision alternative, etc.

In order to solve the problem, a sequential analysis through the planning period will be done. This process will include the selection of the projects, the computation of the expected present worth and its variability for a set of projects, and a simulation to determine project outcomes for that particular year. A comparison of the results with and without the option of delaying project acceptance will also be made

It is expected that the results gained from this research will yield a more realistic and practical decision making technique dealing with the variabilities of the cash flows dependent upon the timing of project acceptance.

CHAPTER II

LITERATURE SURVEY

In the literature can be found many different approaches to the problem of allocating limited cash resources to the proposed alternatives a company faces each period of time. These approaches range from models considering certainty conditions (deterministic models) to models considering a probabilistic future, and models with different kinds of interrelationships between projects. Depending upon the size of the firm, the amount of money involved in project selection and the accuaracy required of the models, each firm attempts to select a technique or model appropiate for its needs.

Deterministic Models

Among the models assuming certainty conditions, the most comprehensive treatment of the problem has been by Weingartner(35). He uses a mathematical programming approach that deals with the set of investment alternatives, borrowing and lending activities, and complex interrelationships among projects. The form of his Basic Horizon model is:

$$\begin{aligned} \text{Maximize:} & \hat{a}_{j} x_{j} + v_{T} - w_{T} \end{aligned} \tag{2-1}$$

Subject :
$$\sum_{j=1}^{\infty} a_{1j} x_j + v_1 - w_1 \leq D_1$$
 (2-2)

$$\sum_{j=1}^{2} x_{j}^{-(1+r)} v_{t-1}^{+v_{t}^{+}(1+r)} w_{t-1}$$

-w_t \delta D_t t=2,3,4...T (2-3)

$$0 \neq x_{j} \leq 1$$
 $j=1,2,3,..n$ (2-4)

$$v_t, w_t \ge 0$$
 $t=1, 2, 3...T$ (2-5)

where, a_{tj} =cash outflow for project j at time t.

 \hat{a}_{tj} =time T value of post-horizon cash flows.

 D_t =cash available at time t from other sources.

 v_+ =lending from t to t+l at rate r.

 w_{\pm} =borrowing from t to t+l at rate r.

This linear programming model maximizes the net value of assets at the horizon. These consist of the funds available for lending at that time and the discounted streams of net revenues past the horizon. The model assumes all interest is payable at the end of the year, and new loans can be immediately made to cover any cash shortages. To the four restrictions above it is possible to add others expressing relationships of complementarity and competitiveness between projects.

Bernhard(2) made a comprehensive review of the mathematical programming models, surveying, extending, criticizing, and building a generalized deterministic model. He considers various cases and some relationships of other models proposed in the literature, such as those by Baumol and Quandt, Weingartner, and Lorie and Savage, etc. However, the principal shortcoming of these approaches is the

assumption of complete information, because in most investment situations the future is not known with certainty.

Non-Deterministic Models

In a more realistic world, the decisions are based usually on predictions about the future. The problem then focuses on the variations in the outcomes of the alternatives. If it is possible to know or assume some probability distribution about the outcomes, the decision will be under risk, on the other hand, if it is not possible to associate any probability distribution to the project outcomes the decision will be under uncertainty (30).

The Concept of Risk

Usually the variability of the future outcomes is used as a concept of risk. Some authors, as Markowitz (19) and Tobin (31), measure this risk by the variance or the standard deviation of the return. Markowitz discusses the risk-vs-return problem within the context of securities investments. The problem is one of determining the optimal set of securities (a portfolio) from a large number of prospective investment opportunities. Optimality is based upon two criteria: expected return (E), and variance of return (σ^2). Given the probabilistic estimates of the future performance of securities, an efficient set of portfolios is determined. Then from that set a portfolio is selected which best reflects the decision maker's preferences. Markowitz selects the variance of return (\mathbb{T}^2) as a measure of risk. However, he says that the standard deviation (\mathbb{T}) or the coefficient of dispersion (\mathbb{T}_E) could also be used as measures of risk, and any of the three measures will result in the set of efficient portfolios. Mao (16) compares this concept with an alternative one, the semivariance, which he defines as:

$$S_{h} = E\left[\left(R-h\right)^{-}\right]^{2}$$
(2-6)

where: R=is a random variable with known probability distribution.

h=is a critical value which R should exceed. E=is an expectation operator.

and,

 $(R-h)^{-}=(R-h) \quad \text{if } (R-h) \neq 0$ $(R-h)^{-}=0 \quad \text{if } (R-h) > 0$ Alternativley, it can be expressed as: $S_{h}=E\left[\min(R-h), 0\right]^{2} \quad (2-7)$

The effect is to measure the downside (unfavorable) variability. Both the variance and semivariance criteria will pick the same solution for investments involving only symmetric distributions. However, the two criteria may indicate different solutions if returns from investments are asymmetric. Mao illustrated this with a skewed distribution, figure 2-1(a), and its reflection about the mean figure 2-1(b), where each point represents one possible investment outcome. It easy to see that both distributions (a) and (b) have the

Figure 2-1. Difference between Variance and Semivariance.

same means and variances; therefore the variance criterion will evaluate the two proposals as equally attractive. However, an investor interested in reducing losses will prefer (b) to (a). The semivariance criterion will also pick (b) because the distribution (a) has an S_h of 3.2, and distribution (b) has an S_h of only 0.8. The variance seems to be too conservative because of the fact that any extreme (below or above of the expected return) is undesirable. However, it is a more popular measure of risk than the semivariance, because of its familiarity and ease of computation.

Dealing With Risk

There are numerous approaches for compensating for risk in the project selection process. Among the simplest ones are:

- The payback period:number of years required to recover the initial cash investment.
- II) The risk-adjusted discount rate: the riskless rate and a premium for risk, ie,

where i_r denotes the incremental return required to compensate for risk. And,

III) The variation of project life as a measure for adjusting risk, ie, a very risky ten year project may be reduced to an eight or seven year project to compensate for risk.

The main disadvantage of the payback period is that this criterion gives equal importance to all cash flows ocurring before the project recovers its initial investment and no importance to flows ocurring after that time. It has the virtue of promoting the liquidity of the firm, but at the same time, some good projects with high returns in the future may be seriously underrated. On the other hand, Van Horne (32) shows that the disadvantage of the risk-adjusted discount rate is the difficulty of determining the appropriate one for each particular alternative. Also,he discusses(33) the drawbacks of using project life as a mean for adjusting for risk.

Robicheck and Myers (26) recommend the concept of certainty-equivalent, defined as a certain amount equivalent to the outcome of a risky situation, or, in other words, a certain amount such that an investor is indifferent between this amount for certain and a chance on the outcome of the risky situation. With this method, distibutions of possible cash flow outcomes are specified period by period and a certainty equivalent is substituted for each of the distributions. Van Horne(32) explains that the difficulties of this approach are: a) The specification of the appropriate certainty-equivalents period by period for an investment opportunity and b) Being consistent in these specifications from project to project.

Baumol(1) introduces a modification to the variance

criterion, named Expected Gain Confidence Limit Criterion (EGCL). This model involves the calculation of a critical point on which every alternative decision should be based. The basic equation in his approach is:

$$CP = EV - \phi \nabla$$
 (2-8)

where; EV=expected value of return.

 ∇ =standard deviation of expected return.

The value of ϕ is selected by the investor or portfolio manager based on risk preferences - ϕ and CP vary inversely. For example, assuming returns are normally distibuted, if the investors are willing to accept a 0.25 chance that the portfolio return is below CP, they should set ϕ =2. If less chance of a low return is desired, this may be achieved by setting ϕ =3.

A more elaborate approach which considers the probability distributions of the project outcomes over time is the method of Hillier (9). Period by period the project outcome is treated as a random variable with known mean and standard deviation. Then the mean and variance of the "figure of merit" (net present value, equivalent uniform annual cost, or internal rate of return) are determined analytically. Thus, Markowitz' method for single-period investments is extended to multiple periods. Furthermore, Hillier incorporates

the concepts of perfect independence and perfect and partial correlation among cash flows. Later in 1971(11) Hillier reexamined the problem from the view point of expected utility of present worth. His solution procedure consists of an approximate linear programming approach and an exact Branch-and-Bound algorithm. The utility functions considered are: I) A basic model, (figure 2-2), where the expression for Utility of present worth is given by a hyperbola

$$U(p) = \frac{(a_1+b_1p)+(a_2+b_2p)-Q}{2}$$
(2-9)

where;

$$Q = \sqrt{\left[(a_1 + b_1 p) + (a_2 + b_2 p) \right]^2 - 4p \left[a_1 + b_1 b_2 p + a_2 \right]}$$

$$a_1 = d(1 - b_1) \qquad a_2 = d(b_2 - 1)$$

II) And a high risk aversion model for U(p), (figure 2-3), which differs from the above only in the behavior of the utility function as p grows very large in the negative direction. The algebraic form of the function is:

$$-[(1-b_1)/a_1]p$$

U(p)= a₁+b₁p-a₁e (2-10)

Using Hillier's results, many other authors have

extended his ideas and studied various general cases of investment situations, as Kahak and Owen(12), Canada and Wadsworth(5), Mantell(15), Young and Contreras(37), etc. An important drawback of Hillier's and related methods is the difficulty of implementing the analytical procedures necessary to derive the mean and variance of the present worth of the selected projects. The complexity of some real world problems

precludes the use of these methods.

On the other hand, Hertz(8) in 1964 uses Monte Carlo simulation to deal with the riskiness of an investment. As in the case of Hillier's models, the objective of the computer simulation is to generate a probabilistic distribution for the present worth. This enables the decision maker to compare expected returns and their variabilities for two or more alternatives. Even though Hertz makes a distinction between "risk of investment" (probability that the project will result in a loss) and "variability of return on investment" (dispersion of the probability distribution for the present worth), most other authors only use the variance of return as a measure of project risk. A feature of the Hertz approach is that computer simulation always results in a distribution for the present worth of the selected projects. The stochastic models discussed by Hillier do not always generate directly a probability distribution, but instead use the means and variances of the cash flows to obtain the mean and variance of the present worth of the selected projects.

Lately, in the fall of 1977 Bey and Porter(3) wrote a paper which deals with the evaluation of capital budgeting portfolio models by using simulated data. In their work they point out that while decision rules as payback, internal rate of return, and net present value may deal effectively with some of the problems which the decision

maker faces, ie, large number of available alternatives, interrelationships among projects, constraints on capital resources, etc., "they have the common shortcoming of considering projects only on an individual basis and, therefore, fail to consider the statistical interrelationships among the set of proposals". They also cited some other authors who have suggested a portfolio approach to capital budgeting, Lintner(14), Naslund(20), Salazar and Sen(27), and Quirin(25).

In their paper Bey and Porter make an empirical study of the performance of several of the major portfolio approaches to capital budgeting. The portfolio models studied were:

1) A modification to the mean-variance model (EV-I) as adapted to capital budgeting by Weingartner(36).

2) Porter's (23) extension of the Lintner (14) single-period case (EV-II).

3) A mean-semivariance model(ES_h).

4) A chance-constrained model (CCP).

Their study assumed one decision at one point in time and uses as a standard of comparision the second degree stochastic dominance model, because of its conceptual superiority (24). Then they simulated several decision environments and found that the results of the decision models are highly dependent upon whether the project cash flows are positively or negatively correlated. For the positively

correlated cash flows the mean-semivariance model (ES_h) clearly outperformed all the others. The next best performance was accomplished by the chance-constrained model (CCP), follow by the EV-II and EV-I. Even though a direct comparison of the NPV model with the others is not easy, because this model selects only one set for the efficiency frontier, consisting of all those with NPV greater than or equal to zero, the study clasifies its performance as quite poor. On other hand, for negatively correlated cash flows the ranking of the models depends of how the comparison is made. However, in general the only change in the ranking of performance is in the EV-II and EV-I models which interchange their places. Bey and Porter suggest at the end of the study that: a) The set of projects selected will depend on which portfolio model was used and b) There is no benefit in attempting to match decision environments and capital budgeting models.

Uncertainty Resolution

It is possible to find in the literature two major approaches which deal with the concept of uncertainty resolution in an explicit manner: the payback period method, and the certainty-equivalent method. Uncertainty resolution describes the situation in which information needed to formulate or assume probability distributions of possible events is unknown.

Even though uncertainty resolution has been discussed by several authors, as Robicheck and Myers(26),

Percival and Westerfield(21), Bierman and Hansman(4), it has not been found very useful in the allocation of the firm's resources among competing alternatives. For example, a major difficulty in the certainty-equivalent approach is the development of an appropriate utility function to identify the time preferences of consumption. In particular, an individual's time preference for future consumption depends on what investment opportunities this individual would have in the future. However, in most real investment situations, the ocurrence, timing, and characteristics of future investment opportunities are difficult to predict with certainty. On other hand, in the use of the payback method as a basis for measuring uncertainty resolution, it is difficult to find a meaningful index representing the rate of the resolution of uncertainty through time, when the cash flows of a proposal are expressed in terms of a probability tree. It is possible to compute the expected payback period and variability about the expectation for a proposal. However, the interpretation of the statistic in terms of uncertainty resolution over time is rather vague.

Product Development

Up to now the literature search has dealt with the problem of allocating limited money resources to different project proposals. Although the work done in this research may apply to all types of investment proposals, as costreduction measures, plant and warehouse location, and installation of environmental controls, the timing in the

launching of a new product is of particular importance. Therefore, part of this literature search also treats this concept. Unfortunately, the literature in this field is not as rich as the literature of capital budgeting.

In 1972 Seavoy(28) said that "new-product marketing is an art, a science, a gamble", and classifies the risks in five areas: risk in the product, risk in production, risk in the market,risk in distribution, and risk in commercialization. He really points out the importance of timing, saying: "if you're late or early (in the market), the market will pass you by like a speeding jet".

FitzRoy(7) proposes three basic product strategies: 1) Be the first in the market (or market leadership). This is a high risk strategy, but the company has the possibility of high income. In order to be a successful company of this type, the firm has to be inventive, high risk oriented, development oriented, and also should have the resources required to absorb possibles losses. 2) Follow the leader (second in the market). In this strategy, the firm chooses to be the second one in

the market. Here the firm takes advantage of the mistakes made by the leader, and then it may launch a better product. This kind of behavior is a lower risk strategy, but the potential revenues are lower too.

3) Me-too.

In this strategy the company goes into an established market. This choice has, generally, the lowest risk. But in order to

generate some profits, the firm requires superior product positioning and because most of the time those markets have severe price competition, the company must have production and distribution strengths.

There are some other aspects the company must examine before choosing a strategy, as: the market opportunities (advantage of the firm relative to the competition), the maximum utilization of resources, and corporate stability (overall level of risk).

In 1966 Pessemier (22), combining the product life cycle concept (figure 2-4) and the timing concept, shows the effects on investments, sales and profits of two different companies when they enter the market with similar products but at different times (fig.2-5). This figure shows how the success of a product entering the market will depend on the degree to which its entry leads or follows similar products. Company A, the first to go into the market, spends and risks more money than company B, but assuming good planning and management control, company A will get more profits, as shown in the figure.

Kotler (13) said that the first firm to enter the market will enjoy, if its product is perfected, a substantial advantage over the second one. It is estimated that the second firm to enter the market will achieve only half the sales of the first firm, and a third firm entering the market would achieve only half the sales of the second firm. He also points out that, when the firm which enters the market first

Figure 2-4. Typical Product Life Cycle

Figure 2-5. Illustration of the Effect of Timing of Entry of two Similar New Products Offered by Competing Companies.

has a poor version of the product, it may spoil its share of the market. The quality and/or suitability of the product is a function of the passage of time and the money spent on R&D.

Is clear then, that timing is important and the rewards from entering a market at an opportune moment can be substantial. However, it should be said that sometimes products are placed on the market prematurely and fail, losing the market leadership, and, sometimes even worse, going out of the market losing a great deal of money. This occurred in the Bowmar case: they had the initial advantage in the hand-held electronic computer market, and they lost it because of factors related to this "premature concept"(28).

The above covers the literature survey of the two principal areas upon which this work is based: capital budgeting and product development. In the next section the model used in this research will be established.

CHAPTER III

DESCRIPTION OF THE MODEL

Overview

In the evaluation of investment projects, whether new products or any other kind of investment porposal, the projected cash flow streams represent the major determinants of project worth in the evaluation process. Although in the past many decision makers assumed certainty conditions for analytic purposes, today many planners recognize that probabilistic formulations of project outcomes add considerable quantitative information for project evaluation and selection. However, this type of formulation introduces some additional problems not found in the deterministic case.

Before presenting the detailed methods related to this formulation, is necessary to describe the general model, including the sequential decision process, the linear programming model, and the assumptions made in the model, in order to give a clearer idea of the main purpose pursued throughout this research.

The general model, which is described in a flow chart in figures 3-1 and 3-2, begins with three cash flow estimates (the optimistic, most likely, and pessimistic ones), for each year for each project as principal data. This is done in the context of a fixed planning period with annual

÷

Figure 3-1. Analytical Solution.

1.1

Figure 3-2. Simulation

-

.

investment decisions. Each proposal may be considered for selection during each of three years, the year in which the project is proposed for the first time, and the next two. In general, it is assumed that as the time of implementation is delayed, the expected value of the elements in the cash flow steams will decrease, and also their variability. This pattern is based on articles by Kotler(13) and Pessemier(22) about the marketing of new products.

It is convenient to assume a Beta distribution for each annual cash flow for each project. The mean and variance of the cash flows are readily calculated using wellknown formulas. Then the expected present worth and the variance of the expected present worth is obtained for each project. However, in the calculation of the variance of the expected present worth, the model includes the different cases of correlated flows, which are explained in detail in the next section. The discount factor is assumed constant through time.

With all of this information a linear programming (LP) model is used as follows:

Maximize:
$$\sum_{i=1}^{N} EPW_{i}x_{i} - \sum_{i=1}^{N} VEPW_{i}x_{i}$$
 (3-1)

st:
$$\sum_{i=1}^{N} c_{ti} K_t$$
 (Budget constraint) (3-2)

Contingency Constraints (3-3)

0fx;f1 (3-4)

where: EPW;=Expected present worth of project i.

VEPW_=Variance of the expected present worth of project i.

 λ =Risk aversion factor.

K₊=Budget in year t

From the LP model a set of projects is obtained for the first year and a value of the variance of present worth for the set of projects (portfolio) including cross-correlation effects. As was mentioned earlier, the non-selected projects are considered then with the projects of the next year and the sequential process is done through all the planning period (a project may be selected only once). Because of the fact that the LP model is not an integer programming algorithm, the decision process assumes an arbitrary x value, ie; x20.7 for the acceptance of fractional projects. Deviations from the original budget are carried forward to the next year, assuming lending or borrowing at some interest rate i, as necessary. Project returns are assumed to be invested elsewhere in the company.

The model gives additional useful information for the decision maker, as: the amount of cash at every year, the amount of cash at the horizon, the total cost of the alternatives, etc. The solution procedure can be performed in two ways: analytically and simulated. Analytically means that the model will work with the values give by the

27

(3-5)

parameters of the Beta distribution, ignore cross-correlation effects, and assume no budget deviations. Simulated implies using a Beta random number subroutine to simulate the cash flow values, including cross-correlation effects, and borrowing and lending to adjust for budget deviations.

One of the main advantages of the algorithm is that the decision maker can "play" with the sequential process. He can change the budget for every year, the value of the risk aversion factor (λ) , and the decision rules for project acceptance (ie.; the model permits the selection of projects only in the first year, or the second, or in any of the first three years after the project is identified). With this the decision maker ends with a series of different alternatives, and each set of projects selected (portfolio) can be represented as a point on an "efficiency frontier". Therefore, depending upon the specific considerations of each firm (budget,aggressiveness,etc.) the selection of the investment alternatives can be made.

It is possible that some of the concepts just exposed here may not be very clear. The next chapter explains in detail how the model can be used. The rest of this chapter is dedicated to describing the theory upon which the sequential model is based.

Probabilistic Consideration of the Cash Flow

Assuming probabilistic conditions, the net present value of any project is a random variable. Considering a stream of random net cash flow increments A_{ti} , generated by a project j (j=1,2,3,...n) at times t (t=0,1,2...n) using i_k as a discount rate, the net present value of the cash flow stream will be:

$$NPV_{j} = \sum_{t=0}^{n} \begin{bmatrix} A_{tj} \\ A_{tj} \\ \vdots \\ \vdots \\ \vdots \\ k=0 \end{bmatrix}$$
(3-6)

where NPV_j is the discounted net present value of project j.

A very common assumption in capital budgeting problems is the assumption of the discount rate i_k as constant over the planning period, and also known with certainty, reducing equation (3-6) to the form:

NPV_j =
$$\sum_{t=0}^{n} \frac{A_{tj}}{(1+i)^{t}}$$
 (3-7)

This is the formula used throughout the analysis.

Since a random process governs the values taken by A_{tj} , this can be represented by discrete or continous density functions such as those illustrated in figure 3-3. In figure 3-3 (a) the mass function $f(A_{tj})$ describes the relative frequency of each discrete value of outcomes, while in 3-3 (b) the expression

$$p(A_{tj})_{x,y} = \int_{A=x}^{Y} G(A_{tj}) dA \qquad (3-8)$$

gives aproximately the relative frequency over a small range

Value of Random Cash Flow

of outcomes for a continuously distributed A_{ti}, where G(A_{ti}) is the probability density function of the random cash flow. It is convenient to represent each random cash flow using the mean and variance of a distribution, such as the Beta distribution. This approach, proposed by Waqle (34) and summarized by Hillier (10), has the advantage that it is patterned after the PERT technique, which has achieved considerable success in evaluation of research and development program schedules. Another advantage is that it is very easy to estimate the Beta distribution parameters. This technique needs three estimates by the analyst: an optimistic one, which represents a cash flow if the project goes as well as reasonably possible, a pessimistic one, assuming the project goes as poorly as reasonable possible, and a most like estimate. These three values are assumed to correspond to the upper bound, lower bound and the mode of the Beta distribution, respectively. This Beta distribution resembles a Normal distribution with two principal exceptions:

 The Beta distribution is truncated at the tails, while the Normal distribution continues indefinitely.

2) The Beta distribution may be skewed right or left, instead of being symmetric as the Normal.

The second condition may be present because the most likely estimate may take any value between the other two estimates, depending upon the analyst's judgement, and not necessarily midway between the extreme bounds. Under

these assumptions the mean and the variance of each cash flow element in any period t for a project j can be found by (10):

$$E(A_{tj}) = (1/6) (PE_{tj} + 4ML_{tj} + OP_{tj})$$
 (3-9)

and

$$V(A_{tj}) = \left[(1/6) (OP_{tj} - PE_{tj}) \right]^2$$
 (3-10)

Present Value Of Each Proposal

The general definition of the present value of a project is: the sum of the discounted cash flows throughout the project life. In the non-deterministic case the effect of randomness can be expressed through the mean and variance of the distribution of A_{tj} . The summation of these discounted random outcomes is also a random variable described by the formula (3-7), where NPV_j is the random net present value for project j, A_{tj} is the random cash flow in period t for project j, and i is the discount rate. So for the discrete

case as well as the continuous one, the random net present value for the project will have a mean net present value $E(NPV_j)$ and a variance of net present value $V(NPV_j)$. This is very important, because it permits one to relate the unknown NPV_j to the random cash flow elements of the project. The mean net present value of the project is simply the sum of the discounted cash flow elements:

$$E(NPV_{j}) = \sum_{t=0}^{n} \frac{E(A_{tj})}{(1+i)^{t}}$$
(3-11)

On the other hand, the value of the variance will depend on the relationships among the cash flows of the project. Several kinds of this relationship may exist, ie: complete independence, complete dependence, partial dependence, and combinations of these.

Case Of Complete Independence

When the variability of a project outcome is due to random elements without any causative or consequential relationship with any other outcome in the cash flow stream, the cash flow for that project is said to be independent.

For this case the variance of the project net present value is obtained form the formula for the variance of the weighted sum of independent random variables (29).

$$Var(ax+by) = a^{2}Var(x) + b^{2}Var(y)$$
 (3-12)

$$V(NPV_{j}) = \sum_{t=0}^{n} \frac{(JA_{tj})^{2}}{(1+i)^{2t}}$$
(3-13)

where $\sqrt{\frac{2}{A_{tj}}}$ = variance of the tth cash flow element, project j.

Case Of Complete Dependence

Complete dependence, or perfect correlation, exists when the random cash flows have a "one to one" relationship among events in succeding periods, ie.: marketing expenses varying directly with sales.

The mean net present value $E(NPV_j)$ is calculated exacly the same way for the independent case, because the present value does not depend on the dependence-independence assumptions. To calculate the variance of the net present value it is necessary to use the relation:

 $Var(ax+by) = a^{2}Var(x)+b^{2}Var(y)+2abCov(x,y) \quad (3-14)$ Considering that:

$$Cov(x,y) = \int_{xy} \sqrt{x} \sqrt{y}$$
(3-15)

the variance can be found as follows:

$$V(NPV_{j}) = V(A_{0j}) + \frac{V(A_{1j})}{(1+i)^{2}} + \frac{V(A_{2j})}{(1+i)^{4}} + \dots$$

$$+ \frac{V(A_{nj})}{(1+i)^{2n}} + \frac{2Cov(A_{0j}, A_{1j})}{(1+i)}$$

$$+ \frac{2Cov(A_{0j}, A_{2j})}{(1+i)^{2}} + \dots + \frac{2Cov(A_{n-1}, A_{nj})}{(1+i)^{2n-1}}$$
(3-16)

substituting $T_{tj}^2 = V(A_{tj})$

$$V(NPV_{j}) = \sum_{t=0}^{n} \frac{\overline{U}_{tj}}{(1+i)^{2t}} + 2 \sum_{x=0}^{n-1} \sum_{y=0}^{n} \frac{\rho_{xjyj}}{(1+i)^{x+y}}$$
(3-17)

where $\int_{xy} = 1$ because of perfect correlation. Then the calculation is reduced to:

$$V(NPV_j) = \left[\sum_{(1+i)}^{N} \frac{V_i t_j^2}{(1+i)}\right]^2$$
 (3-18)

Case Of Partial Dependence

There are cases when the outcomes of a project are neither independent nor perfectly correlated. This is the case of partial correlation. The mean net present value does not represent any problem, and it is calculated by the same formula used before. For the calculation of the variance the formula used is equation (3-17). However, in this case g_{xy} is not one any more, so the problem is to find a good way to estimate g_{xy} . Using two common restrictive assumtions, this calculations became fairly simple.

- Assumption 1: The random variables are Markov-dependent through time. In other words, whatever influences the cash flow in period t, derives only from the preceding period t-1, so the partial correlation between lag time periods of two or more is zero.
- Assumption 2: The correlation coefficient for the cash flow in time t and the cash flow in t-1 is the same

as for the cash flow in time t+a and the cash flow in time t+a-1.

Then, using some early work by Mood and Cramer (18,6), and assuming that A_{oj} and A_{1j} are partially correlated, with a given value for A_{oj} , then the estimate of the expected value of A_{1j} given A_{0j} is:

$$E(A_{1j}|A_{0j}=x) = E(A_{0j}) + c_{A_{0j}A_{1j}}(\overline{\sqrt{A_{1j}}})(x-E(A_{0j})) \quad (3-19)$$

then

$$\frac{E(A_{1j}|A_{0j}=x)-E(A_{1j})}{\overline{G}_{A_{1j}}} = \int_{A_{0j},A_{1j}} (\frac{x-E(A_{0j})}{\overline{G}_{A_{0j}}})$$
(3-20)

By obtaining estimates of A_{1j} conditional on A_{0j} , an estimate of the correlation coefficient can be made. The deviation of Alj from its unconditional mean is related to the deviation of the given value x of A_{0j} from the unconditional mean for A_{0j} , by the correlation coefficient $\beta_{A0j,A1j}$. Mood points out that if A_{0j} and A_{1j} are bivariate normal, the procedure gives the best unbiased estimate of β . Cramer says that otherwise it gives the best linear estimate according to the principle of least squares (18,6).

To use the method, it is necessary to select given values of A_{0j} and then estimate the expected values of A_{1j} given the A_{0j} 's. It is helpful to select the given values of A_{0j} as being 3[°] above and below $E(A_{0j})$, and then use the formula for estimating the mean of a Beta distribution. It is possible to average all the resulting values of ℓ 's and then construct the correlation matrix.

With this correlation matrix, and equation (3-17), the variance of the project net present value for partially correlated cash flows is obtained.

Case Of Independence And Partial Or Perfect Correlation.

Sometimes it is possible to have the initial investment of a project j independent of the rest of the cash flows stream, but at the same time, the remaining cash flow stream may be partially or perfectly correlated itself. In this case, like in the others, the mean net present value is found exactly the same way, by adding the discounted cash flow elements. However, the calculation of the variance of project net present value has some minor changes.

I) Initial investment independent, and the rest of the cash flow stream partially correlated.

The only difference in the calculation of the variance in this case, with respect to the case in which all

e

the cash flows are partially correlated, is in the values of the first column and the first row of the correlation matrix. Here, both the first column and the first row take values of zero with the exception of the first element, which is 1. The rest of the calculations are exacly the same. II) Initial investment independent and the rest of the cash

A simple combination of the perfect independence situation and the perfectly correlated case is used to obtain the variance of the net present value in this case. The resulting expression is:

$$V(NPV_j) = V(A_{0j}) + (\sum_{t=1}^{n} \frac{\nabla_{A_{tj}}}{(1+i)^t})^2$$
 (3-21)

Correlation Between Projects j And k.

flow stream perfectly correlated.

Sometimes the projects can be affected in their cash flows by changes in economic or political conditions. When this happens it is said that the net present value of projects j and k are cross-correlated. For the projects which are affected one can pairwise combine the statistical parameters into one set, (one for the mean and one for the variance) for each pair.

The calculation of the mean net present value for such pair is fairly simple; just add the two net present values of the projects.

$$E(NPV_{j,k}) = E(NPV_{j}) + E(NPV_{k})$$
(3-22)

In the computation of the variance, the case of independence or dependence between projects must be considered. The mathematical calculations for these two cases is not simple. However, assuming two conditions the computation can be straightfoward.

Assumption 1: The economic or political conditions will push the cash flows up or down simultaneously, rather than in different time periods. This permits one to assume the correlation coefficient f_{ikt} to be the same between projects j and k.

Assumption 2: This correlation coefficient will be the same through time (ρ_{jkt} = ρ_{jkt+1} for t=1,2,3,...n). Thus we need only to define ρ_{jk} .

With these two assumptions, and by methods analogous to equation 3-17, the variance is expressed as;

$$V(NPV_{jk}) = \sum_{t=0}^{n} \frac{\overline{U_{tj}}^{2}}{(1+i)^{2t}} + \sum_{t=0}^{n} \frac{\overline{U_{tk}}^{2}}{(1+i)^{2t}} + 2\beta_{jk} \sum_{t=0}^{n} \frac{\overline{U_{tj}}_{tj}}{(1+i)^{2t}} + 2\beta_{jk} \sum_{t=0}^{n} \frac{\overline{U_{tj}}}{(1+i)^{2t}} + 2\beta_{jk} \sum_{t=0}^{n} \frac{\overline{U_{tj}}}{(1+$$

(3 - 23)

From this formula, the assumption of independence or dependence between the projects will just change the last term of expression 3-23. For cross-correlated projects $\boldsymbol{\xi}_{jk}$ will take values between 0 and 1 depending upon the degree of correlation. For projects not cross-correlated $\boldsymbol{\xi}_{jk}$ will be equal to zero and the equation 3-23 reduces to:

$$V(NPV_{jk}) = \sum_{t=0}^{n} \frac{\sqrt{t_{j}^{2}}}{(1+i)^{2}t} + \sum_{t=0}^{n} \frac{\sqrt{t_{k}^{2}}}{(1+i)^{2}t}$$
(3-24)

Case Of Time-Wise And Project-Wise Correlation

In this case the correlations occur not only within the cash flow streams of two different projects(autocorrelation), but also between the cash flow elements of the projects (cross-correlation).

The mean net present value is just the sum of the mean cash flow elements of both projects, equation 3-22. By the combination of the formulas used in the preceding cases, recalling that the auto-correlations are Markovian and the cross-correlations are zero lagged, the formula for the computation of the variance of net present value is:

$$V(NPV_{jk}) = \sum_{t=0}^{n_{j}} \frac{V(A_{tj})}{(1+i)^{2t}} + \sum_{t=0}^{n_{k}} \frac{V(A_{tj})}{(1+i)^{2t}} + \sum_{t=0}^{n_{k}} \frac{V(A_{tj})}{(1+i)^{2t}} + \sum_{t=0}^{2} \frac{\min(n_{j}, n_{k})}{(1+i)^{2t}} \frac{\nabla_{tj} \nabla_{tk}}{(1+i)^{2t}} + \sum_{t=0}^{n_{j}-1} \sum_{y=1}^{n_{j}} \frac{\rho_{xy,j} \nabla_{xj} \nabla_{yj}}{(1+i)^{x+y}} + \sum_{x \neq y} \frac{2\sum_{x=0}^{n_{k}-1} \sum_{y=1}^{n_{k}} \frac{\rho_{xy,k} \nabla_{xk} \nabla_{yk}}{(1+i)^{x+y}}}{(1+i)^{x+y}}$$
(3-25)

This completes the exposition of the correlated model used as a part of the overall decision model developed in this work. In the next chapter a detailed description of the solution procedure will be presented.

CHAPTER IV

SOLUTION PROCEDURE AND COMPUTATIONAL EXPERIENCE

Project Generation And Input Data

For testing the solution procedure three sets of projects were generated. Each one assumed fifteen new investment alternatives every year, with a project life of ten years, and a planning period of five years. Based on marketing literature, the expected return of a project and its variability were assumed to be decreasing functions of the delay in acceptance of the project. With this in mind, three cash flow estimates for each proposal were made. A complete list of the input data needed for the algorithm, as well as the parameters used, follows:

- A) Pessimistic, most likely and optimistic
- estimates of annual project cash flows.
- B) Number of projects:

Fifteen new investments available every year.

C) Time horizon:

The tenth year.

- D) Autocorrelation coefficient x: 0≤x≤1 distributed roughly according to a uniform distribution.
- E) Initial investment coefficient y:

Parameter used: I) Initial investment

F) Decision rules for project selection: Parameter used: FR=0 Project can be selected in any of the first three years after becoming available. FR=1 Project can be selected only in the first year. FR=2 Project can be selected

only in the second year.

G) Analytical or simulated solution:

Parameter used: ANA=0 means analytical solution. ANA=1 means simulated solution.

H) Risk-aversion factor:

Parameter used: Lambda value in the objective function of the LP model.

I) Delta for lambda values: A delta of 0.25 was used, which means that the values range from 1 to 0, ie.: 1.0,0.75,0.5, 0.25,0.0.

J) Annual investment budget: Parameter used: \$2000,\$4000,\$6000 for the first and second project set. \$500,\$1000,\$1500 for the third

project set.

K) Discount rate:

10%

- L) Cross-correlation index w; 05w51 distributed roughly according to a uniform destribution.
- M) Contingency constraints:

In a matrix form, 5 or 6 constraints per year.

Program Language

Two programs were used to solve the problem, both coded in Fortran IV for use on the CDC Cyber 74 at the Georgia Institute of Technology. (Appendix B).

Characteristics Of The Projects

Table 4-1 shows a sample of projects used to test the solution procedure. Through these two projects it is shown how the value of the cash flows decrease as the acceptance of the projects is delayed one or two years. Equations (3-9) and (3-10) were used to obtain the mean and variance of the cash flows in each year as follows:

Project 1 t=1

$$E(A_{tj}) = (1/6) (PE_{tj} + 4ML_{tj} + OP_{tj})$$
$$E(A_{tj}) = (1/6) (-710 + 4(-700) - 600) \approx -698.33$$

and

$$V(A_{tj}) = ((1/6) (OP_{tj} - PE_{tj}))^{2}$$
$$V(A_{tj}) = [(1/6) ((-680) - (710))]^{2} = 25$$

Table 4-1. Example of Project Cash Flows, Means and Variances.

						Accep	tance	in:							
	FIRST	YEAR		5	SECOND	YEAR	Т	HIRD Y	EAR	F.Y.		S.	Υ.	Т.	<u>Y.</u>
t	PE	ML	0P _	PE	ML	OP	PE	ML	OP	E	<u>v</u>	E	V	E	<u>v</u>
0	-710	-700	-680	0	0	0	0	0	0	-698	25	0	0	0	0
1	580	600	615	-700	~690	-685	0	0	0	599	34	-690	6	0	0
2	580	600	615	285	300	310	-653	-650	-640	599	34	299	17	-648	4
3	480	500	515	285	300	310	145	150	155	499	34	299	17	150	2
- 4	480	500	515	235	2 5 0	260	170	175	180	499	34	249	17	175	2
5	980	1000	1 015	235	250	260	140	150	155	999	34	249	17	149	6
6	880	900	915	480	500	510	140	150	155	899	34	498	25	149	6
7	870	900	915	380	400	410	235	250	255	899	56	398	25	248	11
8	870	900	915	480	500	510	185	20 0	205	897	5 6	498	25	198	11
9	870	900	915	480	500	510	235	250	255	897	56	498	25	248	11
10	870	900_	<u>915</u>	480	500	510	235	250	255	897	56	498	25	248	11

PROJECT 1

PROJECT 2 Acceptance in:

_	I	FIRST Y	EAR		SECOND	YEAR	T	HIRD Y	EAR	F.Y	•	S.	Υ.	T.	Y
t	PE	ML	ŌP	PE	ML	OP	PE	ML	<u>OP</u>	Е	V	E	v	E	<u>v</u>
0	-220	-200	-190	0	Ö		0	Ò	0	-201	25	0	0	0	0
1	490	500	520	-205	-200	-195	0	0	0	501	25	-200	2	0	. 0
2	490	500	520	297	300	305	-203	-200	-196	501	25	300	1	-199	1
3	490 /	500	520	297	300	305	148	150	152	501	25	300	1	150	0
4	485	500	520	296	300	306	148	150	152	500	34	300	2	150	0
5	485	500	520	296	300	305	148	150	153	500	34	300	2	150	0
6	485	500	525	295	300	305	147	150	153	501	44	300	2	150	1
7	485	500	525	295	300	305	146	150	153	501	44	300	2	149	1
8	480	500	525	293	300	305	145	150	153	500	56	299	4	149	1
9	480	500	525	293	300	305	144	150	153	500	56	299	- 4	141	2
10	480	500	525	290	300	305	143	150	153	500_	_ 56	299	6		2

PE=Pessimistic valueF.R.=First yearML=Most likely valueS.Y.=Second yearOP= Optimistic valueT.Y.=Third yearE=MeanV=Variance

44

۰.

- where $A_{tj}^{=}$ Stream of random net cash flows generated by a project j at the end of present and future time periods t.
 - PE_{tj}=Pessimistic estimate of cash flow in period t and project j.
 - ML_{tj}=Most likely estimate of cash flow in period t and project j.

```
OPtj≈Optimistic estimate of cash flow in period t
    and project j.
```

Various patterns of project cash flows were made (figure 4-1): good at the begining, uniform, variable, good at the end, etc., in order to test the procedure under realistic circumstances.

In order to make clearer the characteristics of each project set, and to help understand some of the results obtained in the computational experience, a variability ratio is defined as:

 $1/n \ge \frac{1}{2}$ (Variance of total expected present worth j=1 for project j)

$$1/n \sum_{j=1}^{n}$$
 (Total expected present worth for project j)

Thus, for each project set:

- ---

- Set 1; VR=4973/1131=4.38 Set 2; VR=7154/997=7.17
- Set 3; VR=2.75*10¹⁰/1164=2.36*10⁷

These numbers point out clearly the high degree of variability of project set 3 compared with project sets one and two.

Flexibility Of The Algorithm And Program Runs

Before going into the details of the analytical and simulation procedures, it is important to show the flexibility of the algorithm for changing key values. This enables the analyst to obtain a wide span of decision environments. This flexibility is presented in figure 4-2. After the decision maker has obtained the three basic estimates of the cash flows, he can easily change the following items:

- A) Decision rules for project selection.
- B) Risk-aversion factor (lambda value).
- C) Annual budget.
- D) Solve analytically or simulate.

Table 4-2 shows how the analysis was structured, presented in the format of a fractional design of experiments, in order to perform the program runs and obtain meaningful comparative results. Thus, cell 1 represents the program values obtained when I) The projects may be selected in their first, second or third year, II) The lambda value in the objective function of the LP model is 1, III) The annual budget is \$2000 and IV) The first set of projects is used. The total number of cells obtained is given by:

*Not done in this work

Figure 4-2. Flexibility of the Algorithm.

48

.=

Lambda	Projects can be	ecision Rule 1 selected in the f	irst, second or	Decision Rule 2 "only first year"	Decision Rule 3 "only second year"
1		Budget 2 Set 1 Set 2 Set 3 cell 4cell 5cell 6			
.75			· ·		
•					
• •					
•					
0					

Table 4-2. Structure of The Analysis.

$$(3)*(10)*(3)*(3) = 270$$
 cells.

Each cell represents a five-year planning period. Consequently five LP problems are solved per cell. Therefore, the total number of LP's solved is:

270 cells * 5 LP/cell= 1350 LP's.

For simulated solutions this number is given by equation 4-1 times the 5 LP/cell,times the number of simulations. Therefore, for set 1:

From 4-1 A=3, B=10, C=3, D=1, simulations =20 thus,

for set 2:

From 4-1 A=3, B=10, C=3, D=1, simulations =20

thus,

for set 3:

From 4-1 A=2, B=3, C=1, D=1, simulations =50 thus,

(A) * (B) * (C) * (D) * 5 * 50 = 1500 LP's solved.

Computational Experience

Changing the values of the parameters mentioned above according to figure 4-2 and table 4-2, computational experience was obtained with the three sets of generated projects.

Analytical Results

The results obtained from the analytical solution are summarized in tables A-1 through A-9 (appendix). Observing these tables and the behavior of the total expected present worth (TEPW), its standard deviation(SD), the total cost of each alternative (TC) and the amount of cash at the horizon(CH), as a function of each of the parameters, some major conclusions can be drawn.

I) Effect of Changing the Decision Rules for Project Selection.

For the three sets of projects, the largest amounts of total expected present worth and cash at the horizon were obtained when the program is allowed to select projects in "the first, second or third year", followed by "only the first year", and "only the second year" decision rules, in that order. This result would be expected from an optimal selection procedure. Also, it was found that the total investment cost of each project portfolio is not very sensitive to changes in the decision rules. Thus, the cost of each strategy is almost the same for the same values of all other parameters. Furthermore, in some cases these values were lower for the "first, second or third year" than for the other two decision rules. On the other hand, the values obtained for the standard deviation behave as expected: the largest values are for the portfolios with the largest amounts of money. Generally, the results show that the strategy of always being the first in the market, or being aggresive and accepting only projects in the first year, may not give the highest expected returns. These results are shown in table 4-3 and tables A-1 through A-3.

II) Effect of Changing the Value of Lambda.

A singular result, obtained only because of the specific structure of project sets one and two, was the conclusion that being totally indifferent to risk would always be the best strategy. Comparing the $3\sqrt{1}$ limits of each possible choice, for these two sets, the selection of the 0 lambda value is in all cases the best strategy. In the first set of projects, table A-1 shows that with a budget of \$6000, the total expected present worth for $\lambda = 0.25$ is \$180,300, with a standard deviation of 257. The corresponding values for $\lambda = 0$ are \$200,700 total expected present worth with standard deviation of 1259. Then, according to statistical principles, the firm might receive with $\lambda = 0$:

Amount	Pro	obability	7	Limits	5
\$200,700 [±] 1259		63.3%		Ъ	
\$200,700 [±] 2591		95.0%		25	,
\$200,700 <mark>+</mark> 3885		99.8%		35	
Thus, the worst thing	that could	happen f	for the	firm i	is to

	Select in 1st, 2nd, or 3rd year	Select in lst year only	Select in 2nd year only
TEPW			
$\lambda = 0.75$ $\lambda = 0.25$	156,600 180,300	152,600 164,900	91,200 107,500
СН			
$\lambda = 0.75$ $\lambda = 0.25$	492,000 532,700	460,700 493,300	301,700 342,000
TC			
$\lambda = 0.75$ $\lambda = 0.25$	29,600 30,100	30,700 30,200	30,000 28,900
SD			
$\lambda = 0.75$ $\lambda = 0.25$	149 256	220 305	151 246

.

-

Table 4-3. Selected Results for Project Set 1, Budget of \$6000.

- -

-

TEPW= Total expected present worth CH = Cash at the horizon

.

TC = Total cost

SD = Standard deviation

53

_

····· —····· ·······

receive \$196,775 (200,660-35), which is better than the best value for lambda 0.25, which is 181,100 (180,300+35). This always happens in project sets 1 and 2. Therefore, in such cases the projects selected with $\lambda=0$ are always better than the projects for all other values of lambda.

However, this is not true for project set three. The projects in this set have a significantly greater variability in their cash flows than the first two sets. Therefore, the selection of the strategy will depend on the degree of risk the decision maker allows in his selection process. Here, for example, with an annual budget of \$1000 and the "first, second or third year" decision rule (table A-7), the decision maker will have the following alternatives:

Lambda	Total expected		Limits	1
values	present worth	Ъ	25	30-
1.00	65,464	+ 5,275	<u>+</u> 10,550	<u>+</u> 15,825
.75	68-205	± 5,832	±11, 72 7	±17,590
.50	75,367	±10,681	<u>+</u> 21,363	+32,045
.25	75,367	±10,681	<u>+</u> 21,363	<u>+</u> 32,045
.00	90,027	±2 *10 ⁶	<u>+</u> 5 *10 ⁶	± 8*10 ⁶

One thing can definitely be concluded: the value of $\lambda=0$ is not likely to be chosen by any decision maker because of its high degree of variability,or risk. Also, it can be observed that for the lambda values of 0.5 and 0.25, there is no difference in the table values. This kind of behavior was found also for the other two decision rules,

"only the first year" and "only the second year", of this third project set. Furthermore, for these two last ones the values were also the same for $\lambda = 0.75$, which means that this project set is not highly sensitive to intermediate values of lambda.

Another criterion that may help the decision maker is the amount of cash at the horizon and the total cost of each project portfolio. In most cases both of them increase as the lambda value decreases from one to zero.

III) Effect of Changing the Annual Budget.

Here, the three project sets behave in the same way as the annual budget increases, from \$2000 to \$6000 for the first and second sets, and from \$500 to \$1500 for the third. The total expected present worth and the amount of cash at the horizon increase, while keeping the same values of lambda and the same decision rules for project selection. This is a logical result, because as the budget increases, more projects can be selected. Consequently, the increments in the values of the total expected present worth and cash at the horizon occur.

However, an important observation is that, even though the standard deviations change in the same directions as the expected present worth and cash at the horizon, the increment in this value (the standard deviation) is by far smoother than the other values, as shown in the following example:

Project	Increase	Lambda	Increase	Increase	Increase
set	in Budget	λ	in _CH	in TEPW	in SD
1	4,000	0	317,900	106,000	78
2	4,000	0	291,600	85,600	600
3	1,000	0.5	106,600	36,800	560

On other hand, the sensitivity of project sets one and two, measured by changes in the project portfolio, to changes in the lambda value was found to be higer as the initial budget increased. In some cases where the budget was \$2000 the projects selected were the same for lambda values of 1.0,0.75, and 0.5.

This behavior can be explained by the thightness of the budget at small amounts: it does not easily permit changes in the projects selected. However, as the budget is increased, the number of projects eligible for selection also increases, making the lambda value important in the selection process. However, this did not happen with the third project set; this set was always insensitive, as mentioned earlier, to intermediate values of lambda, despite the budget amount.

IV) Finally, observing the tables, in can be seen that some values do not follow the general behavior of the others, ie.: in table A-5 the lambda value of 0.75 gives lower expected values than the lambda value of 1.0: 47,500 versus 49,900 for a budget of 2000, etc., these cases are due to the approximation made by the linear programming model used throughout work in the selection process. All project

variables with value grater than of equal to 0.7 were rounded to 1, and values less than 0.7 were rounded to zero.

Simulation Results

I) Simulation of Project Sets 1 and 2

A simulation was performed for two of the decision rules for project selection, "first, second or third year" and "first year only", for project sets one and two (see figure 4-2). The process was simulated 20 times each for most of the possible selection alternatives (20A,27,30A); some alternatives were excluded because of insensitivity to parameters.

The complete results obtained from this simulation are given in tables A- 9 to A-13, and selected results are shown in table 4-4. Comparing the values obtained in the anlytical solution with those obtained in the simulation, some differences can be observed. This raises some questions, as: are the differences significant?, why do they exist?, which method, analytical or simulation, is better?. Before trying to answer these questions some statistical principles are reviewed.

In the problem formulation both the total expected present worth and the cash at the horizon are random variables which are sums of Beta distributed variables. The Central Limit Theorem states that if a random variable M may be represented as the sum of n independent random variables, then for a sufficiently large n , M is approximately Normally Table 4-4. Comparison of Selected Results for Project Set 1, Budget of \$6000, Select in the 1st, 2nd, or 3rd Year Decision Rule.

Analytical Results

Simulation Results

TEPW		
$\lambda = 1.00$	156,600	156,645
$\lambda = 0.75$	164,900	166,800
$\lambda = 0.50$	171,500	172,200
$\lambda = 0.25$	180,300	180,300
$\lambda = 0.00$	200,600	200,900
СН		
$\lambda =$ 1.00	470,700	471,000
$\lambda_{=} 0.75$	492,000	497,000
$\lambda = 0.50$	509,600	512,100
$\lambda = 0.25$	532,700	532,900
$\lambda = 0.00$	585,300	586,500
	-	

TEPW= Total expected present worth CH = Cash at the horizon

7

- - -

- -

distributed(37A). For correlated random variables, M can also be considered Normally distributed(10). Both the total expected present worth and the cash at the horizon thus behave as Normally distributed. Assuming that the simulation provides a sample of size 20, it is possible to perform a Test of Hypothesis for each case, the TEPW and CH,

Ho: u=uo

$H_1: u \neq u_0$

with a t distribution(due to the size of the sample). The results of these tests are in table 4-5.

Now, after the statistical principles have been reviewed, the comparison between the analytical results and the simulations can be made.

Analytical Solution Vs. Simulation For Sets 1 And 2

The results obtained from the Hypothesis Tests show that the differences between the analytical and simulation procedures are significant in most cases at levels of \propto =0.01 or \propto =0.05 (see table 4-5). There are two major reasons which explain this type of behavior:

1) During the simulation the variance of the total expected present worth is calculated including the cross-correlation between projects. This is not done in the analytical procedure.

2) During the simulation the amount of money available for subsequent annual budgets may change according to the random values obtained from the project cash flows.

Table 4-5. Hypothesis Tests for the Simulation of Sets 1 and 2.

<u> </u>	TEPW	СН	TEPW	СН	TEPW	CH
1.00	-	<u> </u>	0.00	12.95**	0.00	3.52**
.75	-		4.35**	3.49**	6.90**	9.66**
.50	45.8**	12.7**	4.35**	3.43**	4.67**	6.35**
.25	4.3**	3.9**	4.04**	3.87**	0.00	6.05**
.00	4.4**	3.9**	4.25**	0.17	4.35**	3.66**

Set 1 Projects 1st, 2nd, or 3rd year.

Set 1 Projects "only the first year"

1.00	-		0.08	2.03*	0.00	1.94*
.75	-	-	4.37**	5.77**	4.40**	1.95*
.50	4.36**	3.52**	4.36**	3.47**	0.00	3.25**
.25	4.35**	4.34**	1.45*	1.63	4.36**	0.72
00	6.34**	11.01**	4.47**	<u>3.67**</u>	4.40**	1.15

Set 2 Projects 1st, 2nd, or 3rd year.

1.00	-		5.42**	4.90**	3.27**	16.29**
.75	-	-	3.97**	3.07**	3.04**	3.84**
.50	0.00	3.72**	0.00	0.30	7.76**	1.40*
.25	0.00	3.27**	0.27	1.20	4.16**	3.56**
.00	4.20**	4.24**	0.97	2.04*	18.19**	18.10**

1.00	_	-	0.00	1.80*	0.00	1.94*
.75	-	-	0.00	1.06	0.00	2.70**
.50	4.36**	9.88**	4.34**	2.85*	0.00	6.16**
.25	6.77**	6.34**	0.00	0.87	0.00	0.32
.00	4.36**	6.70**	4.39**	17.62**	4.36	3.72**

Set 2 Projects "only the first year"

Ho: u=uo	x-u	Critical values:
H ₁ : u≠u ₀	s/√n	5% t=1.753 (*) 1% t=2.600 ((**)

والمستدينة فنهر والاراد المادينين وال

This could change the projects selected and the cash at the horizon.

A very interesting, and important, result obtained with these two project sets is the fact that the project portfolios selected by the analytical procedure are nearly the same as those chosen by the simulation. As an example of this behavior tables B-1 and B-2 in the appendix show in vector form the projects selected by the analytical procedure for two decision environments:

I) Project set two, budget \$6000, $\lambda = 0.75$

II) Project set two, budget \$6000, λ =0.25

Tables B-3 and B-4 show the results from the simulation for the same decision environments. It can be observed that even though the Test of Hypothesis generally reveals significant differences between the two solutions, the projects selected by the two solution procedures were the same, except for one or two projects. This type of behavior is found in all cases for these two project sets. Therefore, it is possible to say that in this case both the analytical solution procedure and the simulation give basically the same result with respect to project selection. Furthermore, figure 4-3 shows the patterns followed by the simulation for project set 1, budget of \$6000, and decision rule "first, second or third year". This gives a very good idea of the changes in the values of total expected present worth and its variance during the simulation process. As can be seen in the figure,

į.

the patterns followed from t=1 to t=5 are quite smooth, indicating that the mean values obtained from the simulations are reliable for decision making.

Simulation of Set 3

Due to the magnitude of the values of the variance found in the analytical solutions for project set three, fifty simulations were performed for each decision environment tested, instead of twenty. The decision environments were:

Selection rules	Lambda	Budget	Simulations
"first, second or third year"	1.00	1500	50
"first, second or third year"	0.75	1.500	50
"first, second or third year"	0.50	1500	50
"first, second or third year"	0.25	1500	50
"first, second of third year"	0.00	1500	50
"only the first year"	1.00	1500	50
"only the first year"	0.75	1500	50
"only the first year"	0.50	1500	50
"only the first year"	0.25	1500	50
"only the first year"	0.00	1500	50

These alternatives were chosen because of the fact that they combine two factors relating to decision environments, five lambda values, and a tighter budget that forces more comptition among the projects. The results are presented in table A-14. The differences between the analytical solution and the simulation are quite evident (see table 4-6). This is because of the two reasons mentioned earlier, and because of the high variability of the project cash flows. Furthermore tables B-5 and B-6 in the appendix show the differences in portfolios chosen by the two procedures. There are similarities in portfolios, but there are enough differences to prevent the decision maker from simply using the analytical procedure.

Efficiency Frontiers

The values of expected present worth and variance for different lambda values can be plotted to obtain a graphical representation of the efficiency frontier. Figure 4-4 shows the efficiency frontiers as time progresses for one of the situations. Each point represents a specific portfolio of projects selected by the LP model as a function of the lambda value. The leftmost curve represents the values of TEPW and SD after making decision at t=1. The next curve represents the values cumulative for t=1 and t=2. As time progresses the cumulative curves shift to the right and up.

Figure 4-5 shows the final efficiency frontiers (t=1,2,3,4,5) for the three decision rules for set 1 and a budget of \$6000. It can clearly be seen that "select in the first, second or third year" dominates "select in first year" It would also dominate "select in second year" where it not

Table 4-6.	Comparison of Selected Results
	for Project Set 3, Budget of
	\$1500, Select in the 1st, 2nd,
	or 3rd Year, Decision Rule

Analytical Results Simulation Results TEPW 76,600 = 1.0082,600 86,210 = 0.75 79,200 = 0.5092,100 82,300 = 0.25 93,600 84,300 109,200 = 0.0093.800 CH = 1.00230,600 218,900 = 0.75 240,300 273,200 = 0.50 255,800 273,900 = 0.25 259,700 274,200 = 0.00 298,900 276,700

TEPW= Total expected present worth CH = Cash at the horizon 65

.....

Figure 4-4. Time Progression of Efficiency Frontiers, Set 1, Budget of \$6000,Select in 1st, 2nd, or 3rd Year.

for the one point at $\lambda = 1.0$. The overall frontier is given by the frontier for "select in first, second or third year" plus the dashed line in figure 4-5.

Computational Statistics

The program uses a core memory of 74,000, although this could be reduced by reprogramming. Also, for the analytical procedure the "average run" uses 26 sec. of CPU time (CDC Cyber 74); therefore, for each project set the total computation time is :

26 sec * 45 runs = 1170 sec.

On the other hand, for the simulation, the "average run" uses 130 sec. of CPU time. Thus, for project sets 1 and 2 the total computation time for each is:

130 sec * 26 runs = 3380 sec.
and for project set 3:

130 sec * 10 runs = 1300 sec.

Summary

Three project sets were generated to test the model of chapter 3. This test included an analytical and simulation procedure.

During the analytical solution the main parameters of the model were changed in order to provide the decision maker with a wide span of decision environments. The key values values changed were: I) The decision rules for project selection, II) The risk aversion factor, and III)

Figure 4-5. Comparison of Final Efficiency Frontiers for Three Decision Rules, Set 1, Budget of \$6000.

The annual budget. From these changes some major conclusions were drawn, and then the more interesting decision environments of each project set were simulated.

For project sets one and two the analytical and simulation procedures gave the same results with respect to project selection. On other hand, for project set three, there are enough differences to prevent the decision maker from using only the analytical procedure.

CHAPTER V

CONCLUSIONS AND RECOMENDATIONS

<u>Conclusions</u>

The objectives of this research were:

I) Construct a decision making procedure for selecting investment projects where the returns and variabilities of return depend on the timing of project acceptance.
II) Develop a solution algorithm for this procedure, and
III) Gain some computational experience with the algorithm.

In chapter three the model was described. Specific characteristic considered were flexibility of the model, inclusion of correlated cash flows, and inclusion of a riskaversion parameter. The model uses linear programming to solve periodic selection problems subject to one budget constraint and several contingency constraints. The solution procedure was further developed and tested in chapter four with three sets of projects. Each one assumed fifteen new investment alternatives every year, with a project life of ten years, and a planning period of five years. The results show that the model can give a very good set of different decision alternatives from which the decision maker can select the one which fullfills his goals.

The most important result of this research effort is

the realization of a model which combines capital budgeting theory, new-product development theory, and mathematical and computational tools into a practical and realistic sequential procedure for project selection. Such a model would be useful to any decision maker who faces the problem of allocating limited financial resources of the firm in a periodic sequential decision making environment.

For the first two project sets tested in this work, the ones with small variability ratio (4.38 and 7.17 respectively), the analytical procedure and the simulation give basically the same results. This was not the case for the third project set. Here the large value of the variability ratio (2.36*10⁷) produces enough differences between the portfolios selected by the analytical procedure and the simulation to prevent the decision maker from simply using the analytical procedure.

The best decisions were achieved with the decision rule: select in the first, second of third year. Thus, an aggressive marketing policy, characterized by market leadership in every new product, may lead to suboptimal results. For extremely risk-averse companies, however, other decision rules may be attractive. The efficiency frontiers for "select in the first, second or third year" do not dominate completely those for the other decision rules, and to obtain the best overall frontier, one must usually include portfolios selected by two decision rules.

Recommendations

After making basic assumptions about the model and working with these assumptions, specific recommendations can be made based on difficulties and successes with developing a solution procedure and testing it on problems. These recommendations are:

 An effort should be made to obtain the most realistic estimates of the annual project cash flows, because these are the basic data upon the model is based.

2) The same effort should be given to obtaining autocorrelation and cross-correlation indexes, this will help obtain more realistic solution alternatives.

3) Although the interest rate was considered to be the same for discounting the cash flows and for borrowing and lending small amounts of budget money from one year to another, the model can easily accomodate the use of different rates.

APPENDIX A

COMPLETE RESULTS FOR EACH SET (Tables)

.

Table A-1. Set 1, "first, second or third year" Decision Rule,

	Budg	et 2000		Budget 4000			Budget 6000		
λ	TEPW	SD	CH	TEPW	SD	CH	TEPW	SD	CH
1.00	76,400	99	219,400	123,200	125	363,000	156,600	149	470,724
0.75	76,400	99	219,400	122,900	127	361,700	164,900	191	492,000
0.50	76,400	99	219,400	133,300	189	388,900	171,500	213	509,600
0.25	80,190	109	230,500	137,900	232	400,700	180,300	256	532,700
0.00	94,600	1,217	267,400	156,600	1,261	449,600	200,600	1,295	585,300

<u> </u>	Budget	2000	Budget	4000	Budget 6000		
λ	τC	B	TC	B	TC	В	
1.00	9,800	261	20,100	- 108	29,700	284	
0.75	9,800	261	19,900	282	29,600	387	
0.50	9,800	261	19,900	104	29,900	140	
0.25	10,500	- 545	19,900	85	30,100	-125	
0.00	10,200	- 270	20,000	- 119	30,000	20	

TEPW= Total Expected Present Worth.

SD= Standard Deviation.

CH=Cash at the Horizon.

TC=Total Cost.

B= Budget Money at the End of Planning Period.

74

	Bude	jet 2000		Budget 4000			Budget 6000		
$\overline{\lambda}$	TEPW	SD	СН	TEPW	SD	CH	TEPW	SD	CH
1.00	69,900	90	202,500	115,100	152	342,300	148,200	202	499,300
0.75	69,900	90	202,500	117,600	180	347,700	152,600	220	460,700
0.50	76,900	137	221,800	120,500	177	356,400	155,700	225	468,600
0.25	76,900	138	221,500	121,600	201	358,500	164,900	305	493,300
0.00	91,300	1,200	258,500	150,000	1,200	432,600	190,200	1,270	558,500

Table A-2. Set 1, "only first year" Decision Rule.

	Budget	E 2000	Budget	4000	Budget	6000
$\overline{\lambda}$	TC	В	TC	B	TC	B
1.00	9,800	226	20,400	- 244	30,700	220
0.75	9,800	226	19,600	357	30,700	- 35
0.50	10,300	- 368	20,200	- 323	30,600	281
0.25	10,000	- 214	19,800	207	30,200	-266
0.00	10,000	- 57_	20,000	- 138	30,100	- 61

TEPW= Total Expected Present Worth. SD= Standard Deviation. CH= Cash at the Horizon. TC= Total Cost. B= Budget Money at the End of Planning Period.

.

Table A	-3.	Set	1,"	only	second	year	only"
		Deci	sio	n Rul	.e.		

	Budge	et 2000		Budget 4000			Budget 6000		
λ	TEPW	SD	СН	TEPW	SD	СН	TEPW	SD	CH
1.00	49,400	71	149,700	73,000	96	233,000	82,500	106	276,000
0.75	49,400	71	150,000	76,400	125	242,000	91,200	151	301,700
9.50	49,400	71	150,000	79,300	148	248,500	103,600	223	331,600
0.25	56,000	154	166,700	87,900	207	271,100	107,500	246	342,000
0.00	61,400	294	181,400	95,600	343	290,900	114,700	358	360,300

	Budget	2000	Budget	: 4000	Budget 6000		
$\overline{\lambda}$	TC	B	TC	B	TC	В	
1.00	9,900	69	20,200	-155	30,200	1744	
0.75	10,000	- 55	20,200	-310	30,000	-131	
0.50	10,000	- 55	19,200	313	28,800	1310	
0.25	9,800	174	19,800	200	28,900	1146	
0.00	10,300	-324	19,700	284	28,800	1300	

SD= Standard Deviation.

CH= Cash at the Horizon.

TC= Total Cost.

.

B= Budget Money at the End of Planning Period.

	Budge	et 2000		Budget 4000			Budget 6000		
λ	TEPW	SD	СН	TEPW	SD	CH	TEPW	SD	CH
1.00	63,700	99	187,400	102,900	139	310,800	124,500	153	388,200
0.75	65,900	106	193,100	102,300	149	308,300	130,600	183	404,100
0.50	68,000	124	198,700	105,900	159	318,000	139,500	228	427,100
0.25	68,000	124	198,700	113,700	236	337,800	149,600	279	452,400
0.00	83,400	936	237,500	135,500	1,048	395,100	179,000	1,500	529,100

Table A-4. Set 2, "first, second or third year" Decision Rule.

	Budget 2000			Budget	4000	Budget 6000		
$\overline{\lambda}$	TC		В	TC	В	TC	B	
1.00	10,300	-	347	20,200	- 314	30,100	- 261	
0.75	10,300	-	335	19,800	139	30,200	- 202	
0.50	10,300	-	373	20,000	- 74	30,500	- 315	
0.25	10,300	-	373	19,900	128	29,600	440	
0.00	9,700		291	20,300	- 263	30,200	24	

TEPW= Total Expected Present Worth. SD= Standard Deviation. CH= Cash at the Horizon.

TC= Total Cost.

B= Budget Money at the End of Planning Period.

Table A-5. Set 2, "only first year" Decision Rule.

Budget 2000				Budget 4000			Budget 6000		
<u>λ</u>	TEPW	SD	CH	TEPW	SD	CH	TEPW	SD	CH
1.00	49,900	105	151,600	73,500	151	230,300	73,500	151	230,300
0.75	47,500	104	144,200	78,200	188	246,300	87,600	199	276,200
0.50	52,200	139	157,300	86,000	208	266,100	100,200	244	314,200
0.25	50,200	144	151,300	95,300	285	290,400	123,200	362	383,400
0.00	77,900	942	233,600	130,800	1,454	382,700	159,500	1,470	479,200

	Budget	2000	Budge	t 4000	Budget 6000		
$-\lambda$	TC	B	TC	B	TC TC	B	
1.00	10,200	279	19,000	2,174	19,000	15,605	
0.75	9,500	490	20,400	- 45	23,600	9,916	
0.50	10,100	-148	20,000	203	25,900	6,703	
0.25	9,600	353	20,000	-1	30,200	716	
0.00	9,800	168_	20,100	- 180	30,000	- 214	

.

TEPW= Total Expected Present Worth.

SD= Standard Deviation.

CH= Cash at the Horizon.

TC= Total Cost.

B= Budget Money at the End of Planning Period.

Table A-6.	Set 2, "	only second	year"
	Decision	Rule.	

	Budge		Budget 4000			Budget 6000			
<u> </u>	TEPW	<u>Š</u> D	CH	TEPW	SD	СН	TEPW	SD	CH
1.00	39,400	74	123,500	57,900	105	191,500	65,700	115	232,200
0.75	39,700	75	125,000	59,300	115	195,400	69,200	133	242,400
0.50	41,500	89	129,400	65,400	151	211,200	87,000	223	292,100
0.25	46,700	144	142,900	74,000	211	233,300	92,400	251	306,400
0.00	52,300	304	157,200	81,400	338	252,500	99,300	361	323,100

	Budget	: 2000	Budget	4000	Budget 6000		
<u> </u>	TC	B	TC	B	TC	B	
1.00	9,900	142	19,000	1223	30,000	1982	
0.75	10,000	131	19,100	1041	30,600	1217	
0.50	9,900	- 3	19,000	1076	30,800	-823	
0.25	10,000	- 58	18,800	1359	30,800	-1047	
0.00	9,900	42	18,800	1232	30,400	-389	

SD= Standard Deviation.

CH= Cash at the Horizon.

TC= Total Cost.

.

B= Budget Money at the End of Planning Period.

Table A-7.	Set 3,	"first,	second	or	third	year"
	Decisio	n Rule.				

	Budget 500			Budget 1000			Budget 1500		
$\overline{\lambda}$	TEPW	SD	СН	TEPW	SD	CH	TEPW	SD	CH
1.00	46,100	4,929	124,300	65,400	5,275	180,400	82,600	5,616	230,500
0.75	50,700	5,490	137,500	68,200	5,830	187,800	86,210	6,230	240,300
0.50	55,300	10,273	149,200	75,300	10,681	206,400	92,100	10,830	255,800
0.25	55,300	10,273	149,200	75,300	10,681	206,400	93,600	13,062	259,700
0.00	67,600	3*106	181,100	90,000	3*106	243,900	109,200	3*106	298,900

	Budget	500	Budge	t 1000	Budget 1500		
$\overline{\lambda}$	TC	B	TC	В	TC	B	
1.00	2,033	501	4,959	72	7,529	-85	
0.75	2,837	-359	5,059	-60	7,778	-292	
0.50	2,727	-205	5,072	-81	7,902	-472	
0.25	2,727	-205	5,072	-81	7,895	-383	
0.00	2,735	-238	4,807	237	7,139	341	

SD= Standard Deviation.

CH= Cash at the Horizon.

TC= Total Cost.

B= Budget Money at the End of Planning Period.

Table	A-8.	Set3,	"only	first	year"
		Decisi	on Rul	.e.	

	Budget 500				Budget 1000			Budget 1500		
$-\lambda$	TEPW	SD	CH	TEPW	SD	СН	TEPW	SD	СН	
1.00	27,100	2,411	75,300	50,300	4,965	141,100	66,700	5,217	189,500	
0.75	32,000	3,477	89,200	54,700	5,567	153,400	70,600	5,840	200,200	
0.50	32,000	3,477	89,200	54,700	5,567	153,400	70,600	5,840	200,200	
0.25	32,000	3,477	89,200	54,700	5,567	153,400	70,600	5,840	200,200	
0.00	35,800	<u>4*10⁵</u>	98,200	65,000	3*106	179,500	87,300	<u>3*10⁶</u>	243,600	

- <u> </u>	Budge	E 500	Budget	E 1000	Budget 1500		
- <u></u>	TC	B	TC	В	TC	B	
1.00	2,249	309	4,894	133	7,531	- 66	
0.75	2,921	-440	5,236	-322	7,841	-430	
0.50	2,921	-440	5,236	-322	7,841	-430	
0.25	2,921	-440	5,236	-322	7,841	-430	
0.00	2,465	112	4,892	88	7,942	-482	

SD= Standard Deviation.

CH= Cash at the Horizon.

TC= Total Cost.

B= Budget Money at the End of Planning Period.

Table A-9.	Set 3, '	only	second	year"
	Decisior	ı Rule	2.	

	Budget 500			Budget 1000			Budget 1500		
	TEPW	SD	СН	TEPW	SD	CH	TEPW	SD	СН
1.00	26,600	2,051	74,800	38,900	2,992	111,700	48,500	3,208	142,000
0.75	26,200	2,174	73,200	39,900	3,068	114,900	48,500	3,208	142,000
0.50	26,200	2,174	73,200	39,900	3,068	114,900	48,500	3,208	142,000
0.25	26,200	2,17 <u>4</u>	73,200	39,900	3,068	114,900	47,900	3,238	140,700
0.00	30,700	2*10 ⁵	84,500	47,000	2*105	133,000	59,600	<u>3*10⁵</u>	171,200

	Budge	t 500	Budget	1000	Budget	1500
$\overline{\lambda}$	TC	В	TC	В	TC	В
1.00	2,595	-158	5,047	- 11	7,471	19
0.75	2,459	121	5,234	-242	7,471	19
0.50	2,459	121	5,234	-242	7,471	19
0.25	2,459	121	5,234	-242	7,571	-95
0.00	2,179	336	5,090	- 97	7,709	-149

TEPW= Total Expected Present Worth. SD= Standard Deviation.

CH= Cash at the Horizon.

TC= Total Cost.

B= Budget Money at the End of Planning Period.

Table	Simulation Results, Set 1
	"first, second or third year" Decision Rule.

.

٠.

	Budget 2000 Budget 4000								Budg	et 6000		<u> </u>
	MTEPW	SDD	MCH	SD	MTEPW	SDD	МСН	SD	MTEPW	SDD	MCH	SD
1.00	-	-	-		123,204	0	363,200	5,600	156,600		471,000	360
0.75	-	-	-	-	123,190	288	362,780	1,300	166,890	1,260	497,855	2,682
0.50	77,018	58	221,288	657	132,900	450	387,920	1,324	172,200	698	512,148	1,800
0.25	78,790	1,430	226,383	4,662	137,337	558	399,599	1,333	180,300	0	532,963	144
0.00	93,600	990	264,700	3,000	156,600	_ 30	449,700	1,000	200,900	300	586,500	1,430

MTEPW= Mean of the Total Expected Present Worth. SDD= Standard Deviation of the MTEPW.

MCH= Mean of the Cash at the Horizon.

SD= Standard Deviation of Cash at the Horizon.

Table A-ll. Simulation Results, Set 1, "Only first year" Decision Rule.

.

•

۰,

1

	Bud	get 200	0		Budg	et 4000	1		Budge	t 6000		
	MTEPW	SDD	MCH	SD	MTEPW	SDD	MCH	SD	MTEPW	SDD	MCH	SD
1.00	*	-	-	~	115,130	104	342,100	408	148,200	0	449,200	424
0.75	-	-	-	-	117,924	311	349,100	1,038	152,540	62	460,900	384
0.50	76,300	675	219,900	2,330	119,800	800	354,300	2,740	155,800	0	468,700	400
0.25	75,500	1,480	217,600	4,080	122,250	1,670	360,400	5,140	164,800	120	493,200	271
0.00	90,680	445	256,640	75 5	150,000	29	423,900	202	190,200	133	558,300	<u>546</u>

MTEPW= Mean of the Total Expected Present Worth.

SDD= Standard Deviation of the MTEPW.

MCH= Mean of the Cash at the Horizon.

SD= Standard Deviation of the Cash at the Horizon.

Table	A-12.	Simulation Results, Set 2,	
		"first, second or third year" -	
		Decision Rule.	

	Budg	<u>et 200</u>	0		Bud	get 400	0					
	MTEPW	SDD	MCH	SD	MTEPW	SDD	MCH	SD	MTEPW	SDD	MCH	SD
1.00	-	+	-		102,000	980	307,200	3,320	124,550	90	388,300	35
0.75	-	-			102,500	224	308,900	700	130,250	614	402,900	1,395
0.50	68,000	0	198,700	50	105,900	0	318,000	59	139,400	26	427,000	217
0.25	68,000	0	198,700	50	112,900	795	338,500	2,660	150,120	470	454,400	2,456
0.00	83,950	589	240,000	2,690	135,800	1,520	396,650	3,390	174,550	1,100	519,200	2,450

MTEPW= Mean of the Total Expected Present Worth. SDD= Standard Deviation of the MTEPW.

MCH= Mean of the Cash at the Horizon.

SD= Standard Deviation of the Cash at the Horizon.

Table A-13. Simulation Results,Set 2 "only first year" Decision Rule.

ł

	Budge	t 2000			Budg	et 400	D		Bud	get 60	00 00	
λ	TEPW	SDD	MCH	SD	MTEPW	SDD	MCH	SD	MTEPW	SDD	MCH	SD
1.00	-		_	_	73,480	0	230,300	96	73,480	0	230,307	100
0.75	-	-	-	-	78,300	0	246,300	160	87,650	. 0	276,400	208
0.50	52,170	70	157,100	128	86,150	102	266,550	660	100,250	0	314,550	240
0.25	53,370	2,900	160,300	6,270	95,290	0	290,400	307	123,250	0	383,451	309
0.00	78,007	8	224,280	403	130,550	223	383,590	221	159,300	_ 322	480,820	1,900

MTEPW= Mean of the Total Expected Present Worth.

SDD= Standard Deviation of the MTEPW.

MCH= Mean of the Cash at the Horizon.

SD= Standard Deviation of the Cash at the Horizon.

Table A-14(a). Simulation Results for Set 3, "first, second or third year" Decision Rule, Budget 1500.

$\overline{\lambda}$	MTEPW	SDD	MCH	SD
1.00	76,663	6,780	218,960	4,750
0.75	79,215	5,730	273,170	7,670
0.50	82,325	9,788	273,974	12,363
0.25	84,321	11,585	274,214	13,122
0.00	93,767	487,724	276,753	19,6 <u>73</u>

Table A-14(b). Simulation Results for Set 3, "first year only" Decision Rule, Budget 1500.

λ	MTEPW	SDD	MCH	SD
1.00	62,273	5,910	183,770	788
0.75	60,469	5,538	184,246	7,201
0.50	60,902	5,890	184,318	15,183
0.25	61,753	5,958	184,328	15,250
0.00	74,722	<u>590,129</u>	218,541	21,918

MTEPW= Mean of the Total Expected Present Worth.

- SDD= Standard Deviation for the MTEPW.
- MCH= Mean of the Cash at the Horizon.
 - SD= Standard Deviation of MCH.

APPENDIX B

.

PROGRAM USED TO SOLVE THE PROBLEM

.

	T	able B-1	 Project 	ts Seler Budget	t na i an	alytica. ambda 0	Soluti	01	
		i e s u	• • • •		•				
	:								
	STATIS	TICS OF TH	E SINULATI	0H					
MEAN OF T	HE CASH IN	THE NORIZ	ONT	4524.26	•14				·
(·	OF THE CAS	H IN THE N	CRIZENT	•		<u>-</u>			9
PERC. DF	THE TIMES	EACH PROJE	CT IS SELE	CTED IN SI	HULATION			, -	
	<u>.</u>		··			• • •	<u>_</u>	- 	
100.00 100.00 6.00	100.00	100.00 100.00 9.00	100.00 100.00 8.00	D D . DC	6.09 5.00 6.00	5.06 190.00 9.59	100.00 0.00 0.00	100.00	100.00 100.00 0.00
	0.00 0.00					_180.08_	0-8 0	¥. 8	- 188.60
VEAR 2			<u> </u>		<u>, " , ,</u>				
100-00 100-00 0-00 100-00	0.00 0.00 0.00 1.00.80 0.89				0.00 0.00 0.00	400.00	140.00		100.00
	- 0,00	*. *P	100-00	······································					
YEAR 3	8.60 6.08 0.05	8 - 0 8 6 - 8 0 0 - 8		8.89 50.8 5.02	. 50 . 00 . 00	8.10 8.08 8.08	6.90 6.80 1.00 1.80.75	8.85 00 9.00 159.00	8.00 100.00 100.00
	0.00 	140.00 0.00	- 180.00 - 180.00 100.00	100.00 100.00	. 00 		190-99-	.	100.00
YEAR 4	·						. ·	<u> </u>	· · ·
100.00 -	9.00 	8.98	8.98 8.00 8.60 110.00	0.00 0.00 0.00 0.00	- 8.00 	0.60 6.80 0.00 100.00		8.00 6.00 1.00	0.0
100.00 4.00		1.0.00	110.00						
VEAR 5	100.00	100.00	<u> </u>		1:88	1:11	1:88	1:23	1:1
8. 00	180.80			8+ 80 	8.90 	8488 	••••		
100.00		100.00	110.00	100.00	101:10	1:11	100.00	:::	1:1
MEAN OF THE	P.H.	14960	4.76 1	TEAN OF THE		QF P.N.		77967.79	·
• •		•	· •			• •		- •	

•

Table B-2. Projects Selected, Analytical Solution, Set 2, Budget 6000, Lambda 0.75.

.

.

.

WEAN OF	THE CASH IN	THE NOFIZ	ONT	484121	•63		ан с ^{ан} Сай	· .	
<u> </u>	OF THE CAS	H IN THE H	ORIZONT		< 8.81			90	
		•			<u> </u>				
PERC. 0	F THE TIMES	EACH PROJE	CT IS SELE	CTED IN SI	PULATION				
	•	•				· · · ·			
	1			• • • • • • • • •					
100.00			100.80	100.00	1.0.00	100.00	190.00		100.00
		108.08				-186.66			
					· · · · · ·	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
¥EAR : 8.00			199.88	8.99			8.80	8.00	
	8.60		101-00	198.80		110.00			100.00
100.00	1.0.00	1:11	111.11	1:11					
YEAR	3						•		
0.00	9.55 9.00 4.50	100.00	· · · · · · · · · · · · · · · · · · ·				1.00.00	8.85 8.90 8.89	8.84 100.0
100-00 00-00-00				100.00			-184-86-		8+ 9
YEAR 4	4.00	8.95		8.90			8.80	8.00	8.0
180.00 180.00 180.00 108.00	<u> </u>	100.50 100.50	140.40 8.00 8.00 8.00			1.1.1.1		1.06.00	4 05 . 5 8 . 8
100.00	100.00	7 7			· ·	· · ·	•••••		
VEAR	5	· · · · · · · · · · · · · ·						• :	
8.D5 9.00	8.08	101:11	1:11	1:18	8:88	8:00	1:11	8.50	1:8
•		•						•	
100.00	8.00 8.00	100.00	100.00	10 0. 00	1	<u> </u>	1.18:88	1:11	! :
EAN OF TH	F P. N.	1 34L6			E VARIANCE			83733.T1	•
			(+)- 3		* * *.`		· ·		

.

90

. .. .

Table B-3. Projects Selected, Simulation, Set 2, Budget 6000, Lambda 0.0 +

. .

• .•

.

*******	STATIS	TICS OF TH	E SIMULATI	0	•. •				
PEAN OF TH	E CASH IN	THE HORIZ	CHT	454381	.62	<u>_</u>	•	91	·
	F THE CAS	WIN THE H	OR IZ CNT+		2456.82	· •	•		
PERC. OF T	HE TIMES	EACH PROJE	CT IS SEL	ECTED IN SI	PULATION			•	
YEAR 1								· · ·	
177.30 130.30 0.33 100.30 200.00 8.00	100.00 100.00 100.00 9.00	100.00 100.00 0.00 0.00	100.00 100.00 0.00 0.00 4.00	100.00 100.00 0.00 0.00	1 00 00 0 00 0 00 8 59	0.00 100.00 0.00 108.00	100.00 0.00 0.00 0.00	105.02 0.51 100.03 	10. 10. - 153.
YEAR 2 0.00 100-00	0.65	0.00	100.00	0.0ú 8.0ú	0.00	0.00 .00 100.00 100.00	3.03 7.00 100.00 9.00		1(2.
100.00 YEAF 3	180.00 ••••		100.00 0.00 100.00	••••••	8.00				100.
8.69 6.00 0.00 7.30 9.03	8.00 8.00 1.00 100.00 100.00	0.00 0.00 0.00 0.00 100.00	8.80 5.60 5.00 190.99	0.00 0.00 0.00 0.00 100.00	8.88 6.60 8.63 8.03	8.50 6.90 6.50 7.50 7.50	133.00 133.20 133.20	0.00 0.00 0.00 0.00 0.00 0.00	105. 73.
YEAR 4 -	8.00 0.00 1.00.00 1.00.00	0.00 0.00 0.00 0.00 1.00 0.02 0.00	8.88 8.60 8.60 190.08	96 - 90 30 - 9 90 - 9 90 - 9	8 - 80 9 - 80 1 - 6 - 6 -	8.00 0.00 0.00 1.00	0 • 9 D D • 0 0 0 • 0 0	0.30 2.3 1.0 1.0 1.0 1.0	8
YEAR 5_									
8.90 8.90	45.00	100.01 9.00	8.98 8.98	30. 00	1 .00	8.80 8.90	6.60 6.00	8.07 8.17	3
100.00	8.00 3.50 	103-00 89-90	100.00	100.00	1 00:00	.	103.00	e5.00	
		1:011		NEAN OF TH	E VARIANCE	0F P.V.		84762.92	

.

. . . .

********	STATIS	TICS OF TH	E STRULATI	DN				•	
NEAN OF TH	E CASH IN	THE HCRIZ	DNT .	48 29 23				92	
	F THE CAS	H IN THE H	DRIZCHT		1395.08	· · ·	•		
PERC. OF T	HE TIMES	EACH PROJE	CT IS SELE	CTED IN SI	PUL ATI ON	· · ·			
YEAT 1		••		•.**			•	· · · · · · · · · · · · · · · · ·	- , •
130.30 100.30 0.30	100.00 0.00 105.00	100.00	100.00	100.00 .100.00 0.00	8.00 180.00 0.00	100.00 200.00	100.50	100.00	180.00
100.00		100.00		3:80			0.00		9. 9d
YEA 4 2	.00		100.00	1.10	1.00			9.20	
0.00 0.00 0.00 0.00 10.00	100-00 9.00 100-00 9.00	8.00 - 8.00 - 8.00 8.00	100.00 8.00 100.00 -	78.00	5.00 156.00	170.00	0.08 0.00	100.37 0.37 0.00	103.00
YELR 3	-								_
8.00 8.00 0.20	0.00 0.00 0.00	8.80 100.00 100.00 100.00	8.00 8.00 8.00 -200,00	8.00 30.00 8.00	8.90 8.90 8.00	0.00 0.00 0.00	0.00 103.00 8.00	0.00 0.13 0.00 0.00	30.00 3.0 103.0
136.00	103.00	8.00	100.00	190.00					
954R 4	0.08	9.98			8.00		0.00	. 0.00	3.0
100.00 1.00 100.00 100.00	0.00 180.00 180.80	100-00 75-00	100.00	0.00 0.00 0.00 0.00	0.00 0.00 1.60	180.90	0.00	180.33	180.4
YEAR S	-		•					h e f	
8:88	95.00	108.88	:: :::	1 :06	1: 00	4.00 8.00	8:8 8	8:83	
100.00	8.88 8.95 	100.00	100.00	100.00	180.00		100.00	8.81	3: 5
MEAN OF THE		+ 18824	1.71	-	E VARIANCE	0F		83839.72	•
VAR P.N.	•	614.76	•		-				•

.

Table B-4. Project Selected, Simulation, Set 2, Budget 6000, Lambda 0.75

. . .

.

÷

.

,

	A12473121	11513155 €	ភ្លោក ភ្លោក ដ	111101-1	Liniter			an part of the second		
••••••••••••••••••••••••••••••••••••••		به دی کرد می می اور اور اور اور	2716 S-2		- *	م میں اور اور م			93	
	OF THE GASH	I IN THE N		in i serie Sectoria	21 8272.21	·				•
PERC.	e, al internationali				ر هې خېر يې يې د	e station Production				
• • • • • • • • • • • • • • • • • • •	VF 142 114							•	•	
TEAR			مريد ريديد مريد وريد		्यनुभरत्वर १२४-३१म् द्वेल	1				
		، منتعر ، ا)				-101.01	0.00 0.00 0.00		- 8.00 9.00
				5.4 <u>5</u> .4 5.4	يو جويو د <u>و</u>					••••
• • • • • • • • • • • • • • • • • • •	60 0.	-			!: !!	. ::::	4.80 - 9.91	8.00 9.90	0.00 0.00	9.01 9.0
		sale .	1 - Park	川玉水	11379	LH		3.1		100.6
· VEAR	3	، بد ن تر زن	ta a serie da la como de la como En como de la como de la En como de la					· · · · · ·		
100								1.0.0		
							•		•	
		1	1		111	• • • •	:::	1.10		
				11	EII 🔆			188.88	1:88	
FAR STRAK		5					Sala Sala Sala Sala Sala Sala Sala Sala	n		
and the second			a Section of		1.11	i		1:18	1:11	
) 'ī [:							::::::::::::::::::::::::::::::::::::::	11:11	1:11	1:
MEAR OF	THE P.R.		70191-75			ARIANCE				•4.

Table B-5. Projects Selected, Analytical Solution, Set 3, Budget 1500, Lambda 0.25.

,

93

Table B-6. Projects Selected, Simulation, Set 3, Budget 1500, Lambda 0.75

, ,

.

.

.

•

and a second		
		<u></u>
PEAN OF THE CASH IN THE HOFIZCH	94	
WARJALCE OF THE CASH IN THE NORIZENT		• • • ,
PERC. OF THE TINES EACH PREJECT IS SELECTED IN SIPULATION	•.	<u>.</u>
		<u> </u>
	8.00 0.00 0.90	
	0 +60	i
YEAF 1		
36.00 6.61 24.68 66.00 28.00 YEAR 3		.
YEAR 3 9.00	0.85 1.05 1.03	
VEAR A		
	- 8.80 20.30	
	1:11	1:18
	• . 1:80	. 1:93
AGASKTI. 78/18/19. SEORGIA TECH CYNER 74. 17.54.12.JDB.T2180.	. · · · · · · · · · · · · · · · · · · ·	<u> </u>
17.54.12.USER.IE38601 	·`	• <u>·</u>

• र म ĥ . . ----

	PROGRAM THESIS 1(INPUT,OUTPUT,TAPE3,TAPE4,TAPE6=OUTPUT,TAPE5=IMPUT)
- 2	1)
D	REAL INT/ML
5	DIMENSION PE(380,20),ML(380,20),DP(380,20),RC(380),IND(380),PMI(1380),E(380,20),V(380,20),EPW(380),RD(20,20),VPW(380),BDGT(10,15)
	7.NF(10)-FF(380,20)
9	CREASEATHING PROGRAM COMPUTES THE EXPECTED PRESENT WORTH OF ALL PROJETS CREASEAND THEIR VARIABILITY WITH AUTOCORRELATIONS WITHIN EACH PROJECT
	READ(5/8)M
11	READ(5+++)N
12	READ(5,2)HHI READ(5,2)HHH
14	READ(5,*)((BDGT(1,J))J=1,HH1)/I=1,HHN)
15	READ(5+#)(NE(I)-I+1+NM1)
17	H22=HH
	URITE(3:10407HW1) WRITE(3:1041)H
- 20	WRITE(3,1042) N22
21	WRITE(3,1043)(NE(I),I=1,NM1) WRITE(3,1044)(BDDT(1,J),J=1,NM1)
22	1040 FORMAT(I3)
24	1041 FORHAT(15)
25	1042 FORMAT(I3) 1043 FORMAT(515)
27	1044 FORMAT(5F10-2)
28	DO 533 I#1/N READ(5:\$)(PE(I:J),J#1/NN)
30	READ(5)*5(HL(1));)+1, HA)
31	READ(5,8)(DP(1,J),J=1,MM) 533 CONTINUE
33	READ(5/#)INT
34	READ(5,1)(IND(I),I=1,N) READ(5,1)(R(I),I=1,N)
	DO 544 7=1,W
	PHI(I)=R(I) 544 CONTINUE
30	WRITE(6,1000)M
40	WRITE(6;1001)N WRITE(6:100B)INT
43	WRJTE (4,998)I
44	998 FORMAT(10X, APROJECT NO. 8, X5, //) WRITE(6,1022)
46	DD 2 J-1 FMH
47	JN#=J=1 URITE(6;1023)JN/PE(1;J)/AL(1;J)/UP(1;J)
49	2 CONTINUE
50	1022 FORMAT(6X, 818, 4X, 8PESS, VALUES, 4X, 6M, L. VALUES, 4X, 80PP. VALUES) 1023 FORMAT(5X, 12, 4X, F10.2, 4X, F10.2, 4X, F10.2)
52	
▲ · 53	WRITE(6,1010)PHI(I)
55	IF(R(1) .EQ. 0)WRITE(4,330)
5/	IF(R(I) ,EO, I)WRITE(6,331) IF(R(I) ,LT, 1)BO TO 644
56	
51	
<u>60</u>	
62	1 CONTINUE
. 63	
6	332 FORMAT(5X, THE PROJECT IB PARTIAL CORRELATED:)
67	
	334 FORMAT(5x, #AND THE INITIAL CASH FLOW HAS THE SAME RELATION OF THE
- 44 70	IREST OF CASH FLOWS
70	1001 FORMAT(10X, #NUMBER OF PROJECTS#, IS,/)
7	
	1010 FDRHAT(SX)#AUTOCORRELATION VALUE#,2X,F10.2)
7	1011 FORMAT(5X)SINDEPENDENCE INDEX INITIAL C.F.S. 15)
7.	
7	WRITE(4+1090)1
B	DO 11 ب2-HM
6.	
	E(I)+5;75;8(PE(I)+4,4HL(I)+4,4HL(I)+0P(I)+5)
8	5 EE(I+L)+1+/6+#(PE(I+L)+4+#HL(I+L)+0P(I+L))
6	
	EPU(I)=REPU+((E(1,L))/(INT##LL))
9	9 REPWERPW(I) 0 11 CONTINUE
	1 EPW(I)=REPW
· · · · · · · · · · · · · · · · · · ·	
	3 WRITE (4,1049) ((EE (KW,KW2),KW2=1,H22),KW=1,N)
	URITE(4,1049)((V(KW,KWZ),KWZ=1,M22)(KW=1,M)

	75		RITE(4,1049)((KW.KWZ),KWZ=1,H22),KW=1,N)
•	97	1049 F	ORMAT(2X+11F10+2)
	99 99	Ţ	T=0 D 690 I=1/N
	100		RITE(6,802)1,EPW(1)
	101	1	T#TT+EPW(1)
	102	1	TX=TT/N
	104		RITE(4.7654)TTX DRNAT(2X, BAVERADE EPW#, F20, 3, //)
	105		RITE(3,1050)(EPW(KL),KL=1,N)
	107		RITE(4,1050)(EPU(KL);KL=1;N) DRNAT(2X;11F10:2)
	108		
	110		10 12 1=1;A
)	111		₩₩₩₩ 10 13 J=ZrMM
	113	L	
)	114		F(PE(1),), EQ, 0) 00 10 777
	115	777	F(HL(I;L),EU, 0) 60 10 779
۱ <u></u>	117	-778	0 TO 888 (F(0P(1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	118	RRB	L=J~2
	120		F(R(I) ,WE. 0.) BU TU 100 /PW(I)=RVPW+((V(I,L))/(INT##(2#LL)))
	121		
)	123		10 TO 13 [F(R(1) ;HE. 1.) 80 TO 101
	124		(F(IND(1) .NE. 0) 80 TO 102
	125		AAA(1)=KAAAA(1)11()11()111()
	127		ND(I)=1 /*Ww/PW(I)
•	128	(30 TD 13
	130		##(1)=RV##+((V(1+L)#\$0.5)/(INT##LL))
<u> </u>	_131 132		RVPW=VPW(I)
	133		ReadS(R(I))
	134 135	i	IF(RR .UE. 1) WRITE(4,800)
	136		
	- <u>137</u> - <u>130</u>		DD 15 KKL=2+MH KL=KKL=1
•	137	1	
	140 141		IEXP=JAB5(KLL) RO(K,KL)=PHI(I)\$0JEXP
	142	15	CONTINUE
	143	14	CONTINUE UPJ(Y)=RUPU+T(U(Y+L))/(INT##(2#LL)))
	144 145		RUPH=VPH(1)
	146	13	
▶	147		VPW(1)=RVPW- 1F(R(1) .EQ. 0) 80 TO 104
	149		IF(R(I) .NE. 1.) BO TO 104
•	150		UPU(1)=VPU(1)##2.4VPWU 00 TO 106
	152	104	SUN=0.0
) <u>_</u> .	153		IF(IND(1) .NE. 0) BO TO 103
	154		10 16 KK=2,MM R0(KK,1)=0
• • • • • • •	156	16	CONTINUE
	157 159		b0 17 KKL=2,MM RD(1,KKL)=0
	159		CONTINUE
	140	107	INDEED OF CONTRACT OF CONTRACT.
· · · · ·	- 161 162		MM11=N+1 Do 18 KK=2;KM11
	163	_	K-KK-1 DO 17 KL=27NH
	164		DO JY KL=2,AM KLT=KL=K
	166		1F(KLT .LE. 0) 00 TO 1
	- 167 165		IF(KLT .EQ. 0) BO TO 19 KR+K+KL-2
	169		SUM=SUM+((RD(K+KL)#V(I+K)##0.5#V(I+KL)##0.5)/(INT##(KR)))
	170		CONTINUE
	-172		UPU(X)=UPU(X)+Z, HUU
.	173		WRITE(4,803)I,VPW(I)
•	174	12	CONTINUE
	176		RR=RR+VPW(I)
•	177 178	2211	CONTINUE RRX-RR/R
	179		WRITE(6+9876)88%
•	180	7876	FORMAT(2X+ #AVERAGE VAR EPUS+F20,3)
			WRITE(3,1051)(VPW(IT),IT=1,N) WRITE(4,1051)(VPW(IT),IT=1,N)
•	183		WRITE(4,1051)((PE(I,J)+J=1,M22)+J=1,M)
	185		WRITE(4,1051)((HL(I,J),J=1,H22),I=1,H) WRITE(4,1051)((DP(I,J),J=1,H22),I=1,H)
•	186 -		FDRMAT(2X+11F10,2)
· · · · · · · · · · · · · · · · · · ·	187		FORMAT(10X,21HCHECK DATA CORR INDEX)
•	188	1091	FORMAT(4X,12,3X,F34,2,5X,F20,2) Format(5X,8T8,3X,8EXP. Cash Flows,5X,8EXP. Variance C.Flows)
-	190	1090	FORMAT(7+5X+#PROJECT NO.#+15)
_	- 191 - 192-		FORMAT (5X+8KPROJECT+,2X+14+2X+4KEPH+,2X+F20.2) FORMAT (5X+8KPROJECT+,14+2X+4KVPH+,F20.2)
♥	193		ENDFILE 4
-	194		ENDFILE 3
~	195		REWIND 3

1	PROGRAM TESIS(JNPUT,DUTPUT,TAPE4,TAPE4-DUTPUT,TAPE5=INPUT) REAL INT,ML,LEN,LAM,MT
2	INTEGER MATNA
5	3CASK(15) EVCASK(15) A(60,103) BDBT(4) BDDTT(4) V(375,12) EE(375,
7	412);INFIX(8);TOL(4);KOUT(7);ERR(P);JH(60);X(60);P(60); 5KB(101);E(60;60);PSELEC(45;5);PPSEL(45;5);XXTCH(20)
ş	C THIS PROBRAM SASSASSIST FRAME THE MEANS THE PROJETS ONLY ACCEPTED IN THE FIRST
10	C YEARSATATATIF FR-2 HEARS THE PROJECTS ONLY ACCEPTED IN THE SECOND YEAR
13	C AND IF FRED MEANS THE PROJECTS MAY BE ACCEPTED IN THE FIRST, SECOND AND C THIRD YEARXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
13	C WHEN ANA O MEANS THE PROGRAM WILL SINULATE, AND WHEN ANA EQ 1 THEN
<u> </u>	C THE PROGRAM WILL TAKE THE MEAN OF EACH YEAR(ANALITICAL BOLUTION).
. 16	ANA=0
17	C#####################################
19	IF(FR .ED. 1)WRITE(6.5401)
20	IF(FR .EQ, 2)WRITE(6,5402) IF(ANA .EQ, 1)WRITE(6,5403)
21	IF (ANA EG. C)WRITE(6,5404)
23	5400 FORMAT(2X+#TH15 RUN ALLOWS THE PROGRAM TO SELECT PROJECTS IN
24	THE FIRST, SECOND, OR THIRD YEAR OF THEIR LIFES, ///) 5401 Format(2x, This run allows the program to belect projects in
26	1 DNLY THE FIRST YEAR OF THEIR LIFER,///)
27	5402 FORMAT(22, STHIS RUM ALLONS THE PROGRAM TO BELECT PROJECTS IN
28	I ONLY THE SECOND YEAR OF THEIR LIFE*,///) 5403 FORMAT(2X,#THIS RUN SOLVES THE PROBLEM ANALITICALLY*,///)
30	5404 FORMAT(2X+#THIS RUN BOLVES AND BIMULATE #;///)
31	READ(5/#)Z WRITE(6/088)Z
33-	888 FORMAT(2X+ HUMBER OF SIMULATIONS+ F10.2+7/)
	READ(5/#)LSTR
36	READ (5/4) H
37	NH=N+1
	READ(3/#)HM1 READ(4/887)((EE(3)))-1-HH)/1=1/H)
40	READ(4,4433)((V(I+J),J=1,HA),I=1,H)
41 42	READ(5;#)(XLEH(L);L=1;LBTR) READ(5;#)(NE(J);J=1;HM1)
43	
44	READ(4+987)(EPW(3)+I=1+N)
45 46	READ(4,4433)(VPW(1),I=1,N) 4433 FORMAT(2X,11F10.2)
47	READ(5, #)INT
48	READ(4/887)((PE(I)))=1=NN) READ(4/887)((NL(I)))=1=NN)
50	READ(4,887)((DP(1,J),J=1,MN),J=1,M)
51	897 FORHAT(2X,11F10.2)
52 53	DD 181 JJ=1;HH1 DD 18 LT=1;44
54	IPT-LI+1
55	READ(5,8)(CCR(LI,JT,JJ))J(1PT,45)
57	
- 58	
59 60	C234567###CHOOBING A VALUE OF LANNDA NN=N+2
- 42	DO 6973 KUA-1+NM1 DO 6974 KUU-1+45
64	PSELEC (XWW,KWA)=0
65	
	6974 CONTINUE
68	RA=0.69315
69 70	RB=0.15773 \$8=1
71	
72	
/3	
75	
74	
76	DO 3 LI2=1+HH1
79	
81	
82	
03 94	
8:	20 CONTINUE
84	
- B1 B1	
	CERREFISETTTING TINE AND BINULATIONEREEREE
9	2 D0 909 LF=1+#
	5 7/wf1x{\JF}=5
·	

	2 7404 FUNITE LANGE LANG
	4 EYCASH(I)=0
	6 XLAM-XLEM(L)
	8 XNEXBUD=0.
	CERERERETTING TIME AND BINNLATIONERERERE 9
	1 109 NA=NE(J)
	12 D0 909 LF=1;#
	4 909 CONTINUE
	06 DO 911 LL=1,101
	78 711 CONTINUE
	9 910 CONTINUE
	2 912 CONTINUE 3 DU 914 LF=1,7
;)4 KOUT(LF)=0
	95 913 CONTINUE 06 DO 913 LF=2+4
	77 ERR(LF)=0
	00 913 CONTINUE 00 913 LF=1,57
•	IO JH(LF)=0
	11 F(LF)=0 12 X(LF)=0
)	3 Y(LF)=0
	14 915 CONTINUE 15 DU 916 LF=1/101
)	16 KB(LF)=0
	17 916 CONTINUE 18 DO 917 LF=1:57
	20 E(LF,LL)=0
•	22 917 CDHTINUE
	23 DU 1 LJ=1/101 24 IF(J ,EG, 1)LJA=LJ
	25 IF (J) EU - 27 LIA=LJ+46
	27 IF(J.EQ, 4)LJA=LJ+225 28 IF(J.EQ, 5)LJA=LJ+330
	29 IF(LJ-,GT-45) GO TO 2
	30 A(1,LJ)=-(EPW(LJA)-(XLEN(L)#VPW(LJA))) 31 B0 T0 1
	32 2 A(1+LJ)=0
	33 1 CONTINUE 34 DD B3 LJ#1/101
	35 IF(J .EQ. I)LJA-LJ
	36 IF(J .EQ. 2)LJA=LJ+40
	3B IF(J .EQ. 4)LJA=LJ+225
	39 IF(J.EQ. S)LJA=LJ+330 40 IF(LJ.DT. 45)60 TO 4
•	41 IF (ANA .ED. 1)80 TO 7989
	42 1F(J ,ME, 1)BO TO 6793 43 7989 A(2,LJ)=-EE(LJA,J)
•	44 60 TD 93
-	45 6783 HT=HL(LJA+J) 46 AT=PE{LJA+J}
• · -	47 BT=OP(LJA+J)
	48 CALL RVALUE(HT;AT;BT;RA;RB;BETA) 49 A(2;LJ)=-BETA
•	50 60 10 83
-	51 4 IF(LJ .ED. 46)60 TO 5 (52 A(2+LJ)=0
	53 80 10 83
-	IS4 5 A(2;LJ)=1
	56 D0 50 LL=3+12
	157 DO 51 LL1=1,101 158 A(LL,LL1)=0
-	159 SI CONTINUE
	140 50 CONTINUE 161 2F(J) ED. 1900 TO 401
-	142 IF(J .EQ. 2)60 TO 902
-	163 1F(J .EQ. 3)00 TO 903 164 1F(J .EQ. 4)00 TO 904
-	145 IF(J .E9, 3)60 TO 405
_	166 901 A(3,1)=-1 167 A(3,8)=1
-	148 A(3+47)=1
•	169 A(4,13)=-1 170 A(4,15)=1
-	171 A(4,48)=1
_	172 A(5,18)=-1 173 A(5,30)=1
•	174 A(5:49)=1
	175 A(6,33)=-1
•	176 A(4,35)=1 177 A(4,50)=1
	178 A(7+43)-1
•	179 A(7,45)=I 180 A(7,51)=1
	181 60 10 905
•	182
	184 A(3,47)=1

	182 70	2 д ^т)=-1
	- 18 <u>7 - </u> (#	- As 157-1
.	194	A('7)=1
•	184	A(4 - 3)#1
	187	A(5/B)=-1
	- 186 - 187	A(5, 0)=1
	190	A(5/+)=1
	191	p(arr)-1 A{árs }=1
		······································
	174	BO TO YO6
	195 90	A(3,5)=1
	197	A(3,47)=1
	198	A(4,13)=-1
	200	A(4,48)=1
• -	201	A(5,25)=-1 A(5,29)=1
	203	A(5,49)=1
	204	A(6,35)=+1
	205 204	A(6,39)=1
	207	50 TD 904
	208 1	04 A(3,10)==2
	210	A(3,47)=1
	211	
	212	A(4,23)=1
	214	A(5,31)=-1
•	215	A(5:35)=1
	217	A (6,40)==1
)	218	A(6+45)=1
	220	80 TG ₱06
)		
	222	A(3,10)=1A(3,47)=1_A(3,47)=1_A(
)	224	A(4,16)=-1
	225	A(4;20;=1
• • •	227	A(3725)=-1
	229	A(5,30)=1
	230	A(6,39)=-1
	231	
	232	A(6,50)=1
	234	DO 7 LI=13,57
•	235 236	DO V 1.J=1,45 ijz=li-12
	237	IF(LJ, EQ. LJ2)00 10 9
	- 238	A(LI+LJ)=0
•	240	♥ A(LI+LJ)=1
	241	T CONTINUE
· · -	243	D0 10 L1=13+57
	244 245	DO 11 LJ-46+56 R(LT+LJT=0
•		11 CONTINUE
		10 CUNTINUE D0 12 LI#13-57
	248	
	250	
	251	LJ3J-LJ-56 IF(LJ3J .E9. LJ22)00 TO 15
	253	A((I,L))=0
•	254	60 TO 14 IS A(LT)LJ)-1
	256	14 CONTINUE
	257	12 CONTINUE
	259	1(2)=10((J)
•	260	DO 16 L1=3-12 B(L1)=0
	261	14 CDHTINUE
•	263	POB CONTINUE
	264	<u>D0 17 LI=13,57</u>
- 🔴	266	17 CONTINUE
	267	INFIX(1)=4 INFIX(2)=101
-	269	1 14 14 (2)=101 1 14 14 (2)=101 1 14 14 (2)=101 1
	270	INFIX(4)=57
-	271 272	INF1X(5)=2 INF1X(6)=1
	273	INFIX(7)=100
-	274	INFIX(8)=0 TOL(1)=0.00001
	276	70L(2)=0.00001
-	277	TOL (3)=-0.001 TOL (4)=0.000000001
· · · · ·	279	PRH=0
	280	IF(J .EQ. 1)00 TO 1071
-		CALL ANYPRO(NA, J)XSTAROP,A, 3) 071 IF(FR .ED. 1)00 TO 107
	283	17 (FR .EG. 2)00 TO 1091

201		CALL ANYPRO (NA+J+XGTAROP+A+B)
282		IF(FR .EQ. 1)80 TO 107
283		IF(FR,EC, 2)60 TO 1091
264	107	BO TO 106 DO 1068 KT=1,30
284		A(1,KT)=0
287		
289		DO 1099 KT=13;42 B(KT)=0
290		CONTINUE
291		60 TO 106
292		DO 1118 KT=1+15A(1;KT)=0
294		CONTINUE
295		DO 1119 KT-31,45
296		A(1+K7)=0
297 298		CONTINUE DO 1120 KT=13,27
299		1(Kt)=0
300	1120	CONTINUE
301 302		DO 1121 KT=43,57 B(KT)=0
	1121	
304	106	CALL SIMPLX(INFIX+A+B+TQL+PRH+KOUT+ERR+JH+X+P+Y+KB+E)
305		IF(KOUT(1),EG. 4)WRITE(6,1000) IF(KOUT(1),EG. 6)WRITE(6,1001)
	1000	FORMAT(2X, #INFEASIBLE BOLUTION#)
308		FORMAT(2X, #ITERATION LIMIT EXX#)
307		IF(KOUT(1), EQ. 4)STOP
310		IF(ANA .EQ, 0)80 TO 5777 URITE(6,8748)
312	8748	FORMAT(1H1)
313		URITE(6,7000)J
	3777	CONTINUE D0 21 NMLI=1-45
		LV1=KB(MML1)
317	c -	IF(X(EV1) .BT. 1)WRITE(4,1002)
318	1002	FORMAT(2X;#SOLUTION OR THAN 1#) IF(X(LV1) .GE, .5)00 TD 22
317		90 TO 21
321		XSTAROP (HHL1;J)=1
322		PSELEC(HHL1,J)=X8TARDP(HHL1,J)+PSELEC(HHL1,J)
323	7000	FURKAT(////10X+1YEAR OF ANALYSIS=1/15,1
323		WRITE(6,77)HHUI;XTUV;)
326	77	FORMAT(2X+#PROJECT SELECTED#+14+2X+#VALUE OF THE PROJECT#+F10-5)
327	21	CONTINUE
	C\$\$\$\$	ICONPUTATION OF THE EXPECTED PRESENT WORTH VALUE OF THE BER
330		CALL EXPECT(MH,XSTAROP, MA, J,V,CCR, EPU, VPU, INT, TEPU, TVPU)
331		TEPP(SS)=TEPU+TEPP(SS)
332_		TUPP(SS)=TUP¥+TUPP(\$\$) TEPPP=TEP¥+TEPPP
333 334		ICTTTTICTTTICTTT
335	CREAS	ISTHULATION OF THE CASH FLOWS ####################################
336	C####	
337	555	MMMM-H+1 FORMAT(2x,5F10.2)
339		IF (ANA .EQ. 0)60 TO 4743
340		CALL ANAL (J+H+NA+XBTAROP+EE+CASH+TCOBT)
341 342	4743	GD TO 6764 CALL SINUL(J,NM+NA,XSTARDP+RA+RB+HL+PE+DP+CASH+TCOST)
343	6764	CALL NYB (XSTAROP + NA, J+ BDGT+TCOBT+ INT + XNEXBUD)
344		TTCOST=TTCOST+TCOST
345		URITE(6,815)XHEXBUD Codest(104,sabitton of substaction to the Beyl year bungets.
346 347	B12	FORMAT(10X,#ADDITION OR SUDSTACTION TO THE REXT YEAR BUDGET=8;
348		£1. = ₹L
349	C####	DO 29 JCA-JT-MM
350		DU 2Y JLA-JI;RN JC=JCA-1
352		EYCASH(JC)=EYCASH(JC)+CASH(JC)
353	29	CONTINUE
355		1F(J .EQ. HH1) GO TO 108 Jaji1
356		GO TO 109
357		URITE(4)8431)
359	8631	FORMAT(1H1) WRITE(6:8612)TTCOST
359	8632	FORMAT(////SX+\$TOTAL COST OF THE PROJECTS=\$+F10.2)
361		WRITE(6+BI2)(EYCABH(JC)+JC-1+MHM)
362		TCHHT=0, #CASH IN THE ROALZONT#######
363		ICASH IN THE HOWIZONTEEEEEE DD 30 MM5=1+MNNN
342		MNSS=MMMH-MNS
366		TCHHT=TCHHT+(EYCASH(NNS)#(INT##NNSS))
347		TONTINUE
369		XTCH=XTCH+TSHNT
370		WRITE(6,813)TCHNT
371		1F(55 .ED. Z) 00 12 250
372		85-56+1 GO TO 251
) <u>373</u>	250	HRITE(6+7090)
375		FORMAT(1H1,7/7/75X,8
376 377		1
1 377		PRICHERICH/89 WRITE(4)6668)PXTCH
379	6489	FORMAT(5X; THEAN OF THE CARM IN THE HORIZONTE; F20; 2)
380		XX2DH=0
381		NS5-85 DQ 4765 KX-1,MBB

•	374 250 WRITE(4,7090) 375 7090 FORMAT(INS,777,5X,8,BTATIBTICS OF THE SIMULATION
	3/5 7090 FORMAT(1R1///>3X,8
•	3/7 PXTCH=XTCH/88
	370 WRITE (4+6688) PXTCH 379 6688 FURMAT(5X) BREAN DF THE LABH IN THE HURIZUNTE+F20,27
•	380 XXSUM=0
	381 MES#SS
	382 DD 6785 KX=1,HS9 383 VABS=AB5 (FXTCH-XXTCH(ABS))
• 🔁 🛛	383 VABS-ABS (PXTCH-XXTCH(#88)) 384 XXSUM-XXSUM+(VABS882)
	385 6785 CONTINUE
•	
.	389 RXX22=XX228\$,5
•	390 WRITE(6+6786)RXX22 391
-	391 4784 FORMAT(//S3/FEVARIANCE OF THE LAWN IN THE HORIZONIS(FZ0.2) 392 WRITE(6/F091)
•	393 7091 FORMAT (7/7,5X,SPERC. OF THE TIMES EACH PROJECT 38 SELECTED IN SINU
-	394 ILATION\$,//) 395 DO 7001 KY=1/HHI
•	395 D0 7001 KY=1+MH1 396 D0 7002 KYA=1+43
	397 PPSEL (KYA,KY)=(PSELEC(KYA,KY)/#\$)#100
• 🖨 .	398 7002 CONTINUE
- -	399 WRITE(6+7015)KY 400 7015 FURMAT(///+5X+8YEAR8+I4+/)
· ·	400 7015 FORMAT (/// SX-SYEARS - 14-/) 401 WRITE (6,7003) (PPSEL (KYA-KY) - KYA-1+45)
.	402 7003 FURMAT(2X+10F10,2)
	403 7001 CDHTINUE 404 TTTPW-TEPPP/SB
•	404 TTTPU=TEPPP/88405 TTVPV=7EPPP/88
	406 WRITE (6,7020) TTTPH+TTUPH
•	407 7020 FORMAT(//.2X.SHEAN OF THE P.W.S.F20.2.5X.SHEAN OF THE VARIANCE OF THE
	408 1 P.W.#/F20.2///) 409 DD 7010 KY=1/NSS
•	410 VVAB5=ABS(TTTPW-TEPP(MS8))
₩ ••	411 UVA851=AB5(TTUPH-TUPP(MS\$))
	412 YX5UH1=YX5UH1+(VVAB5482) 413 YX5UH2=YX5UH2+(VVAB51482)
•	414 7010 CONTINUE
	415 YYI=YXSUHI/888
C	416 YY2=YX5UH2/\$58 417 RYY1=YY1\$\$.5
	418 R472-473##-3
(419 WRITE(6,7011)RYY1,RYY2
·	420 7011 FORMAT(2X+\$VAR P-M-\$,F20.2+2X+\$VAR U-P-W-\$+F20.2)
	421 IF(L .EQ. LSTR) GO TO 130 422 GO TO 131
i	423 130 CONTINUE
L	424 STOP
()	425 004 FORHAT (5X, BLAM-2, F10.3,/) 426 805 FORHAT (5X, BHA=2, I4, 2X, BHA=2, I4, 2X, BHE=2, I4, 2X, BHT0=2, I4, 2X, BID=2, I
	426 B05 FORHAT(5X+8HA=8+I4+2X+8HA=8+I4+2X+8HB=8+I4+2X+8HTG=8+I4+2X+8HTG=8+I 427 14+2X+8IPCT=8+I4+2X+8HSC=8+I4+2X+8IBD=8+I4+2X+8IAUG=8+I4+2X+8IAUG=8+I4+2X+8IAUG=8+I
C	428 806 FORMAT(5X, #85=#, 2X, F20, 3,/)
	429 B07 FDRMAT(3X+BE=#+2X+F20.3+/)
(430 808 FDRMAT(5X;84=8;2X;8F10.2) 431 809 FDRMAT(5X;8XSTAROP=8;2X;F20.3;/)
•	432 810 FORMAT(5X;#J=#;I4;2X;#TEPP=#;2X;F20;3;2X;#TVPP=#;2X;F20;3;/)
	433 B11 FDRMAT(5X) #EYCASH=#:2X,F20,3;/)
t	434 B12 FORMAT(5x+8EYEASHSUM=\$,2x+F20,3;/) 435 B13 FORMAT(5x+8TCHHT=\$,2x+F20,3;/)
	436 814 FORMAT(5X;#J=#;I4;///)
L	437 STOP
	439 END 439 SUBROUTIRE EXPECTION, XSTARD, NA, J.V.CCR, EPH, VHI, INT, TEPH, TUPH)
ι	440 REAL INT
L.	441 DIMENSION XETARDP(50+5)+CCR(45+45+5)+EPW(375)+V4(375+V(375+12)
	442 TEPN=0,
<u>ر</u>	444 CCF=0.
·	445 00 31 1+1 rMA
	446 IF(XSTAROP(1+J) + E0+ 1+) 80 TD 110 447 50 TD 31
	44/ 60/031 448 110 F(J.EG. 1)IWG=1
	449 IF(J, EQ. 2)1W0=1460
	450 IF(J,EQ, 3)IMQ=I+135
	451 IF(J .ED. 4)142=1+225 452 IF(J .EQ. 5)142=1+225
	453 TEPU-TEPU+EPU(IWO)
	454 TVPU-TVPU4VPU(100)
	455 31 CONTINUE 456 TUVPU=TVPU
÷.	
	458 543 FORMAT(//+10X+#TEPW+#+F10.2+2X+#TVPW+#+F20.2+//)
	459 NHA-NA-1
	460 BO 32 1=1:NNA 461 IF (XSTARDP(1;J) .ED. 1)80 TO 111
	462 60 TO 32
	463 111 IN-1+1 464 DD 33 JA-14-14-MA
	464 DO 33 JA-IV-NA 465 IF(XSTAROP(IN-J) .E9. 1)00 TO 112
	466 00 TO 33
	467 112 IF(J ,EQ, 1)WTJ+1
_	468 7F(J.EQ. 1)NTJJ=JA 467 1F(J.ED. 2)NTJ=1460
	471 IF(J .ED. 3)HTJ=1+135
	472 IF(J ,ED, 3)NTJJ=JA+133 A73 IF(J ,ED, 4)NTJ=JA+135
	474 IF(J ,EQ, 4)NTJ=J4225

•

!

	468	I	ـــــــــــــــــــــــــــــــــــــ
	69	7	F(J .EQ. 2)NTJ=J+60 F(J .ED. 2)NTJJ=J4+60
	470 471	<u>+</u>	F(J. ED. 3)NTJ=1+135
	472	I	F(J .EQ. 3)NJJJJJJJJJJJJJ
	473	- I	F(J .E0, 4)NTJ=1+225 F(J .EG, 4)NTJJ=JA+225
	474		F(J .EQ. 5)NTJ=1+330
	476 _	I	F(J .EQ. 5)HTJJ=JA+330
	477		F(CCR(1)14,1) .E2, 0)60 TO 33
	478 479		
	480	ĸ	2=K-2
	401	R	UI=V(NTJ/KI)\$\$.5 V2=V(NTJJ/KI)\$\$.5
	482 483		CF=CCF+1 (RV1=RV2)/(INT=R(28K2)))
	484	34 C	DNTINUE
	485		CF=2#CCR(NTJ;HTJ;J)#CCF VUPW=TVVPW+CCF
	486 487		
	468	33 0	ONTINUE
	487	32 0	ONTINUE
	490 491 -	- 344 6	RITE(6,544)TVVPW DRNAT(10X,BTVPW WITH CCR=8,F20,2)
	492		ETURN
	493		
	494 495		UBROUTINE BINUL (J-MN-HA-XSTAROP-RA-RB-ML-PE-OP-CASH-TCOST) EAL ML-M
	476		IMENSION X5TAROP(50,5)+HL(375,12),PE(375,12)+OP(375,12)+CASH(
	497	33	3);ESTX(375;12)
	498		0 6 I=1+MM
	500		
	501		C05T-0,
	502		D 700 II-1, NA
	504	3	F(XSTAROP(II+J) .22. 1) 80 TO 701
	505		
	504 507		IF(J .EQ, 1)NR=0 [F(J .EQ, 2)NR=40
	508	3	(F(_) .EQ. 3)NR=133
	507		F(J . EQ. 4) HR=225
	510		(F(J .EQ. 5)NR=330
	512	1	00 702 J11=2+MM
	513		
📥	514		i=ML(1/J1) Lape(1/J1)
	516		B=OP(I+J1)
	317		(F(G) (EU. U) (B) (U 444
	510 517 -		30 TO 450 (F(A , EQ; Q) DO TO 445
	520		30 TO 450
	521		EF(M , EG, Ú) EG TO 702
	522 523		CALE RVALUE(H+A+B+RA+RB+BETA)
	524	333	FORHAT(5X+#BETA+#+F10.2)
	525 526		ESTX(I,J1)=BETA 1F(J1 .EQ. J) BO TO 703
	527		CASHTJ17=CASHTJ17+EBTX(T7J17)
	529		BO TO 702
4	529 530		
•	531		COSTPRY-COSTPRY-EESTX(I,J)
	532		TCOST-TCOST-ESTX(I,J)
	533 534		CONTINUE WRITE(\$\$707)JrTC08T
	535		RETURN
	536 537 -		FDRMAT(5X+\$J1=\$+14+2X+\$CA8H(J1)=\$+F20+3+/) FDRMAT(5X+\$11=*+14+2X+\$COSTPRY=\$+F20+3+/)
	538		FORMAT(5X,#J1=#+14,2X,#CABH(1)=#+F20.3,/)
	539		FORMAT(5X+#J=#+14+2X+#TCOST=#+F20+3+/}
· · · -	540		RETURN
	542		END SUBROUTINE RUALUE(H+A+B+RA+RB+BETA)
	543		REAL M
	544 545		XHU=(48H+A+B)/6.0 XVAR=((B-A))/36.0
	343		BHEAN=(XMU-A)/(D-A)
	547		BUAR#XUAR77((B-A)\$(B-A)}
	548 549		XK1=BHEAN8(BHEAN8(1.0-BHEAN)/BVAR-1.0) XK2=XK1=((1.0-BHEAN)/BNEAN)
	550		CALL GAMMARN(XK1+RA+RB+BAM1)
	551		CALL GAMMARN (XK2+RA+RB+GAM2)
	552 553		BETA= (GAM1/(BAM1+BAM2))#(B-A)+A
	554	_	END
	555		SUBROUTINE DAMMARNITK -RA - RB - BAN)
-	554 557		BANNA=1.0
	558	_	TK1=K1
	559		TALL RANDU(RA, RB, R1)
	560 561		IF(R1-(TK-TK1)) 10,10,20 K1-K1+1
	562	20	DO 303 IW=1+KI
	563		CALL RANDU(RA, RB, R1)
	564		GANNA-GANNA\$R1 GAN= +ALDJ (GANNA)
•	5éé		RETURN
	547		END SUBROUTINE RANDU(RA, RD, YFL)
,	568 569	. <u> </u>	BURGEDTINE MUNICIPALITY TELY

•	357	
	558	CALL RANDURA.RE,RIJ
•	560	16 (R1-(TK-TK1)) 10+10-20
	561 562	10 X1=K141 20 DO 303 TW-1,K1
▲ <u> </u>	563	CALL RANDURA-RB-RB-
	564	303 BAMMA=GAMMA\$R1 GAM= -ALGG(BAMMA)
•	545 566	RETURN
•	-367	END
	548	BUBROUTINE RANDU(RA,RB,YFL).
• -	570	TEMP-RA+RD IF(TEMP ,LE, 1.) 00 TO 535
	571	TENP-TENP-1.0
•	572	555 YFL-TEMP
	573 574	RA=RB RB=TEMP
•	3/3	RETURN
•	576	END
• — — —	577	SUBROUTINE NYB(XBYARGP-MA)J-BOBY-YLUBY-INT-XNEXBUB) REAL INT
•	579	DIMENSION XSTARD (50/3) - DOT(4)
-	580	xyz=ABS(TCDST)
• •	581 582	IF(XXT+EDGY(J)+XYZ IF(XXT+LE, 0) WRITE(4+747)
	- 583	747 FORNAT(IOX) ANEED NONEYA)
.	584	XXTT=XXT\$INT
-	585	J12-J+1 BDGT(J12)-BDGT(J12)+XXTT
·	386	XHEXBUD XXT
•	380	RETURN
		ENDING THE ANYBRA HALL VETABLE A BY
•	590 591	SUBROUTINE ANYPRO(NA, J, XSTARDP, A, B) DINEHSION XSTARDP (50, 5) , A (40, 105) , B (40)
	572	DO 25 HTA-2,J
•	593	M11=NTA=1
	594	DO 26 MT2=16-NA IF(X5TARDP(HT2-MT1) -EG. 1) 00 TO 107
• •	576	BC TO 26
	397	107 HTT3-HT2-15
• ··· —·	578	A(1,HTT3)=0
•	600	B(HT22)=0
	601	Z6 CONTINUE
•	<u>602</u> 603	25 CONTINUE
	604	END
•	605	SUBROUTINE VER (A, B, JH, X, E, KB, Y, N, ME, M, MY, INVC.
- <u>-</u>	606 607	1 NUMUR, NUMPY, INFS, LA, TPIV, TECOL, M2)
	408	C = = = = = = = = = = = = = = = = = = =
•	409	C C
•	<u>610</u> -	C VER TAKES THE BASIS BET OF COLUMNS (AS INDICATED BY
•	612	C NECESSARY, AND FORMS AN INVERSE (E). OTHER OUTPUT
		C INCLUDEST VALUE OF BASIC VARIABLEB (X), CHANGES TO
	613	
•	614	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS
•		C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS C (NUMNUR, NUMPU, INFS, INUC). IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB)
•	614 615 616 617	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS C (NUMUR; NUMPU; INFS, INVC). IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIVOTED INTO THE BASIS, IN WHICH CASE THEY
•	614 615 616 617 618	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS C (MUNNE, NUMPU, INFS, INCO., IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PINOTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN.
• • · ·	614 615 616 617	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS C (NUMNUR, NUMPU, INFS, INVD). IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PLUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED
•	614 615 616 617 618 617 620 621	C DASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS C (NUMUR, NUMPU, INES, INUC). IT MAY MAPPEN THAT C SDME OF THE REAL COLUMNE (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C TO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE
	614 615 616 617 618 617 620 621 622	C BASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS C (NUMNUR, NUMPU, INFS, INUC). IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIVOTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C TO BINPLX. BUSED BY BINPLX AND OUTPUT RETURNED C TO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTIME ARE C UMY (UPDATE OF ENTERING COLUMN) AND PIV (PERFORMS
	614 615 616 617 618 617 620 620 621 622 623 624	C BASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS C (NUMNUR, NUMPU, INFS, INUC). IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDT).
	614 615 616 617 618 617 620 620 621 622 623 624 625	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS C (MUNK, NUMPU, INFS, INCO., IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE SCALLED BY THIS SUBROUTINE ARE C JMY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDI). C INPUTI AFB, JN, RE, N, HE, A, HF, NUMUR, NUMPU, X, Y
	614 615 616 617 618 619 620 621 622 623 624 625 626	C BASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS C (NUMNUR, NUMPU, INFS, INUC). IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDT).
	614 615 617 618 617 620 620 621 622 623 624 623 624 625 625 628	C BASIS SET OF COLUMNES (KB), AND THE ITERATION STATISTICS C (MUMUR, MUMPU, INFS, INVC), IT MAY MAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C CARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C INT (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDT). C INTERNING COLUMN, NUMPU, X, Y C INPUTI A, B, IN, KB, N, HE, R, HF, NUMUM, NUMPU, X, Y C C C OUTPUTI X, E, KB, INDE, MUMUM, HUMPU, X, Y
	614 615 617 618 617 620 620 622 623 624 625 624 625 626 628 628 629	C BASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS C (NUMUR, NUMPU, INFS, INUC). IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNES (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE CALLED BY THIS SUBROUTINE ARE C JMY (UPDATE OF ENTERING COLUMN) AND PIU (PERFORMS C INPUTI AFB, JH, KB, N, HE, N, HE, NUMUR, NUMPU, X, Y C INPUTI X, E, KB, NUMUR, NUMPU, INFE
• • • • • • • • • • • • • • • • • • •	614 615 617 618 617 620 620 621 622 623 624 623 624 625 625 628	C BASIS SET OF COLUMNES (KB), AND THE ITERATION STATISTICS C (MUMUR, MUMPU, INFS, INVC), IT MAY MAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C CARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C INT (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDT). C INTERNING COLUMN, NUMPU, X, Y C INPUTI A, B, IN, KB, N, HE, R, HF, NUMUM, NUMPU, X, Y C C C OUTPUTI X, E, KB, INDE, MUMUM, HUMPU, X, Y
	614 615 616 617 618 640 647 640 640 642 642 642 642 642 642 642 642 642 642	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (MUNNE, NUMPU, INFS, INCO, IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE SCALLED BY THIS SUBROUTINE ARE C JAYS (UPDATE OF ENTERING COLUMN) AND PIU (PERFORMS C ACTUAL PIUDT) C TIMPUTI AFB, JN, RE, N, HE, N, HE, N, HUMUN, NUMPU, X, Y C OUTPUTT X, E. KB, INVE, ALHUN, NUMPU, INFS C DUTPUTT X, E. KB, INVE, ALHUN, NUMPU, INFS C DIMENSION JN(1), X(1), E(1), KB(1), Y(1), A(1), B(1)
	614 615 616 617 618 617 622 623 624 625 624 625 624 625 627 628 627 628 627 630 633 632 632 632 632 632 633	C BASIS SET OF COLUMNES (KB), AND THE ITERATION STATISTICS C (MUNUR, MUNPU, INFS, INVC), IT MAY MAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C CARE REPLACED BY AN ARTIFICAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C JO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JO BINPLX. BUBROUTINE, AND PIU (PERFORMS C ACTUAL PIUDT). C INPUTI A.B., JN, ME, N. HE, N. HUMPU, JNES C OUTPUTT X, F. KB, JNUC, MUNUPU, JNES C OUTPUTT X, F. KB, JNUC, MUNUPU, JNES C DIMENSIDN JH(13), X(13), E(13), KB(13), Y(13), A(13), W(13) C INITIATE
	614 615 616 617 618 640 647 640 640 642 642 642 642 642 642 642 642 642 642	C BASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS C (HUNUR, HUNPU, INFS, INC), IT MAY HAPPEN THAT C SDME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C CARNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C CARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C THEY SUBROUTINES CALLED BY THIS SUBROUTINE ARE C THE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C THEY SUBROUTINES CALLED BY THIS SUBROUTINE ARE C TAPUTI ARE, NUMERA, HUMP, AND PIU (PERFORMS C TIMPUTI ARE, NUME, NUMPU, INFE C OUTPUTI X, F. RB, THOC, MUNA, HUMPU, INFE C OUTPUTI X, F. RB, THOC, MUNA, HUMPU, INFE C DUNENSIDE JUNUE, ACLI, KB(I), Y(I), ACLI, TOTO DIMENSIDE JUNUE, ACLI, KB(I), KB(I), Y(I), ACLI, TOTO
	614 615 616 617 620 622 622 623 624 625 628 628 628 628 628 629 630 633 634 633 634 635 634	C BASIS SET OF COLUMNES (KB), AND THE ITERATION STATISTICS C (MUMUR, MUMPU, INES, INUC). IT MAY MAPPEN THAT C SOME OF THE REAL COLUMNES (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE SOLUTINE CALLED BY THIS SUBROUTINE ARE C JAY (UPDATE OF ENTERING COLUMN) AND PIU (PERFORMS C JAY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C JAY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C JAY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C JAY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C JAY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C JAY (UPDATE OF ENTERING COLUMN, NUMPU, X,Y C OUTPUTT X,E.KB, INCE, MUMUM, NUMPU, INFE C OUTPUTT X,E.KB, INCE, MUMUM, HUMPU, INFE C INTERNETINETINETINETINETINETINETINETINET
	614 615 616 617 618 617 621 621 622 623 624 627 628 627 628 627 630 632 633 634 635 636 636 636 636 636 636 636	C BASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS (NUMUR, NUMPU, INFS, INUC), IT MAY MAPPEN THAT SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C TO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JMY (UPDATE OF ENTERING COLUMN) AND PIU (PERFORMS C ACTUAL PIUDT). C TRPUTI A/B,JM,RE/N,HE/R/HF/NUHUM,NUMPU/X.Y C OUTPUTI X/E/RB/N/HE/R/HF/NUHUM/NUMPU/X.Y C DITENTIBUTETESTEETES
	614 615 616 617 620 622 622 623 624 625 628 628 628 628 628 629 630 633 634 633 634 635 634	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (MUNUR, MUNPU, INFS, INVC, IT MAY MAPPEN THAT SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C JAY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDT). C INPUTI A.B.JH,KB,W.ME,A.MF,NUMUW,MUMPU,X.Y C OUTPUTI X.F.KB,INCC,MUNC,MUMPU,INFS C DIMENSION JH(I), X(I), E(I), KB(I), Y(I), A(I), W(I) C INPUTI J.I. JI21, JI22 ITTI INC = 0 JI22 MUNUR = MUMUR +1 DU JIOL I = 1, M2 JIOL I(I) - 1, M2
	614 615 616 617 618 620 620 622 623 624 625 628 628 628 628 628 628 628 628 633 633 633 633 633 634 638 638 638 639 649	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (HUNUR, HUMPU, INFS. INFC.) IT MAY HAPPEN THAT SDME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C AARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C TO BIMPLX. BUBROUTINES CALLED BY THIS BUBROUTINE ARE C ACTUAL PIUDT). C INPUTI A.B., H.KB.N.HE.A.HF.NUMUR, HUMPU, X.Y C OUTPUTI X.E.KB.THUC.HUMMA, HUMPU, INFE C OUTPUTI X.E.KB.THUC.HUMMA, HUMPU, INFE C DUTPUTI X.E.KB.THUC.HUMMA, HUMPU, INFE C DITPUTI X.E.KB.THUC.HUMA, HUMPU, INFE C DITPUTI X.E.KB.THUC.HUMMA, HUMPU, INFE C DITPUTI X.E.KB.THUC.HUMMA, HUMPU, INFE C DITPUTI X.E.KB.THUC.HUMA, HUMPU, H
	614 615 616 617 618 627 622 623 624 625 624 626 627 628 627 628 627 638 632 633 634 635 639 639 639 639 639 647	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (MUNUR, MUNPU, INFS, INVC), IT MAY MAPPEN THAT SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE SCALLED BY THIS SUBROUTINE ARE C JAY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDT). C ZIMPUTI A.B.JN.KB.N.HE.A.HF.NUHUW, NUMPU.X.Y C OUTPUTI X.E.KB.INVC.MUNUW.WUMPU.INFS C OUTPUTI X.E.KB.INVC.MUNUW.WUMPU.INFS C THENSIDETESTERSTERSTERSTERSTERSTERSTERSTERSTERS
	614 615 616 617 618 620 620 622 623 624 625 628 628 628 628 628 628 628 628 633 633 633 633 633 634 638 638 638 639 649	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (MUNUR, MUNPU, INFS, INCO., IT MAY MAPPEN THAT SDME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C AARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE SCALLED BY THIS SUBROUTINE ARE C JMY (UPDATE OF ENTERING COLUMN) AND PIU (PERFORMS C ACTUAL FILOT). C INPUTI A.B., M.KB.N.HE.A.HE.NUMUR, HUMPU, X.Y C OUTPUTI X.E.RB.TINUC.HUMUR, HUMPU, INFS C OUTPUTI X.E.RB.TINUC.HUMUR, HUMPU, INFS C THENSIDE JETETETETETETETETETETETETETETETETETETE
	614 615 616 617 618 620 622 623 624 625 624 625 626 626 627 628 626 627 628 626 630 633 634 633 634 635 636 638 638 638 638 642 643 644 644 644 644 644	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (MUNUR, MUNRU, INFS, INCC, IT MAY HAPPEN THAT SDME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C AARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE SCALLED BY THIS SUBROUTINE ARE C JMY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDI). C INPUTI AFB, M, KE, N, HE, N, HE, NUMUR, NUMPU, X, Y C OUTPUTT X, E-RB, INUC, NUMUR, NUMPU, INFS C OUTPUTT X, E-RB, INUC, NUMUR, NUMPU, INFS C DIMENSION JH(I), X(I), E(I), KE(I), Y(I), A(I), T(I) C INPUT AFB, INIC, NUMUR (NUMPU, INFS C INTIGET INIC SUBROUTINE IS SUBROUTINES SUBROUTINES C INTERSTITUTES SUBSTANDAS SUBSTANDAS SUBROUTINES SUBROUTINES C INTERSTITUTES SUBSTANDAS SUBROUTINES SUBROUTINES SUBROUTINES C INTERSTITUTES SUBROUTINES SUBROUTINE, INFS C INTERSTITUTES SUBROUTINES SUBROUTINE, INFS C INTERSTITUTES SUBROUTINES SUBROUTINES SUBROUTINES SUBROUTINES C INTERSTITUTES SUBROUTINES C INTERST SUBROUTINES C INTERST SUBROUTINES C I
	614 615 616 617 618 620 620 622 623 624 625 628 626 628 628 628 628 628 628 638 638 638 638 638 638 638 638 643 643 643 643 644 645	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (HUNUR, HUNPU, INFS. INFC), IT MAY HAPPEN THAT SDME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C AARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C TO BIMPLX. BUBROUTINES CALLED BY THIS BUBROUTINE ARE C ACTUAL PIUDT). C THEY SUBROUTINES CALLED BY THIS BUBROUTINE ARE C ACTUAL PIUDT). C TAPUTI ATB, JH, KB, W, ME, A, HF, NUMMF, HUMPU, X, Y C OUTPUTI X, E, KB, INDE, HUMMF, HUMPU, INFE C OUTPUTI X, E, KB, INDE, HUMMF, HUMPU, INFE C DUTPUTI X, E, KB, INDE, HUMF, HUMF, HUMPU, INFE C DUTPUTI X, E, KB, INDE, HUMF, H
	614 615 616 617 618 620 622 623 624 625 624 625 626 626 627 628 626 627 628 626 630 633 634 633 634 635 636 638 638 638 638 642 643 644 644 644 644 644	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (MUNK, MUNRU, INFS, INCO, IT MAY HAPEN THAT SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C THE SUBROUTINE SCALLED BY THIS SUBROUTINE ARE JHY (UPDATE OF ENTERING COLUMN) AND PIU (PERFORMS C ACTUAL PIUDT) C TRPUTI AFB, JN, RE, N, HE,
	614 615 616 618 620 621 622 623 623 625 625 626 627 628 632 632 633 633 634 633 634 635 636 632 637 638 638 639 640 642 644 644 645	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (MUNUR, MUNPU, INFS, INVC, IT MAY MAPPEN THAT SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THEY ARE REPLACED BY AN ARTIFICIAL COLUMN, C THE SUBROUTINE IS USED BY BINPLY AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLY AND OUTPUT RETURNED C THE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C JAY (UPDATE OF ENTERING COLUMN, AND PIU (PERFORMS C ACTUAL PIUDT). C INPUTI A.B.JH,KB,W.ME,A.MF,WUMW,MUMPU,X.Y C OUTPUTI X.F.KB,INCC,MUMVA,MUMPU,X.Y C OUTPUTI X.F.KB,INCC,MUMVA,MUMPU,X.Y C DIMENSION JH(I), X(I), E(I), KB(I), Y(I), A(I), W(I) C INTIATE IF (LA) 1121, 1121, 1122 1121 INC = 0 D 1101 I = 1, R2 100 1103 I = 1, R2 100 1113 I = 1, M E(MM) = 1.0 X(I) = B(I) 113 M = NM + M + I D 1100 I = 10, M KF = 1
	614 615 616 617 618 620 621 623 624 623 624 623 624 623 624 628 624 628 629 630 631 632 633 637 638 639 643 645 645 645 645 645 645 645 645 645 645	C PASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS (MUNAW, NUMPLY, INFS, INVC). IT HAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PINOTED INTO THE BASIS, IN UNICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINFLX AND OUTPUT RETURNED C TO BINFLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JMY (UPDATE OF ENTERING COLUMN) AND PIN (PERFORMS C ACTUAL PINOT). C TOPUTI A.B., M.KB.N.HE.N.HE.N.HMPV.X.Y C OUTPUTI X.E.KB.THVC.MUNA.HUMPV.INFE C OUTPUTI X.E.KB.THVC.MUNA.HUMPV.INFE C TIMUTI A.B., M.KB.T.HE.N.HE.N.HE.S. C TIMUTI A.B. JAI.KB.T. KB.(I), KG(I), KG(I), KG(I) C TIMUTI A.B. JAI.KB.T. KB.(I), KB.(I), KG(I), KG(I) C TIMUTI A.B. JII. JII. JII. C TIMUTI A.B. JII. JII. JII. C TIMUTI A.B. JII. JII. JII. JIII A.B. JII. JII. JII. C TIMUTI A.B. JII. JIII A.B. JII. JIII A.B. JII. JIII A.B. JII. JIII A.B. JII. JIII A.B. JII. JIII A.B. JII. JII. JIII A.B. JII. JIII A.B
	614 615 616 618 620 621 622 623 623 625 625 626 627 628 632 632 633 633 634 633 634 635 636 632 637 638 638 639 640 642 644 644 645	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS C (MUNN, NUMPU, INFS, INVC). IT HAT HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PINOTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND DUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLX AND DUTPUT RETURNED C THE SUBROUTINE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C JMY (UMDATE OF ENTERING COLUMN) AND PU (PERFORMS C ACTUAL PINOT). C TOUTPOTT A.B.JM.REJN.ME.M.HF.NUMUM.NUMPU.X.Y C OUTPOTT X.E.KB.INOC.MUMM.NUMPU.INFE C STRETTETETETETETETETETETETETETETETETETET
	614 615 616 617 618 620 622 623 624 625 628 628 628 628 628 628 628 633 633 633 633 634 633 634 635 638 638 638 644 645 645 648 645 645	C BASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS (NUMUR, NUMPU, INFE, INVC). IT MAY MAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS, IN WHICH CASE THET C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY SINCLX AND OUTPUT RETURNED C THE SUBROUTINES CALLED BY THIS SUBROUTINE ARE C JHY (UPDATE OF ENTERING COLUMN) AND PIU (PERFORMS C ACTUAL PIUDT). C INPUTI A, B, JH, RE, N, HE, N, HE, N, HE, N, HE, NUMUR, NLMPU, X, Y C OUTPUTT X, E, KB, INVC, MLMUR, MLMPU, X, Y C INFUST SISTESTESTESTESTESTESTESTESTESTESTESTESTES
	614 615 616 617 618 620 622 623 624 625 625 626 625 627 628 637 637 638 637 637 638 637 637 637 637 637 637 637 637 637 637	C BASIS SET OF COLUMNE (KB), AND THE ITERATION STATISTICS (NUNUR, NUNPU, INFE, INVC). IT HAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIVOTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C THE SUBROUTINE SCALLED BY THIS SUBROUTINE ARE C JNY (UPATE OF ENTERING COLUMN) AND PIU (PERFORMS C ACTUAL PIVOT). C INPUTI A,B,JH,RE,N,ME,N,ME,NUMPV,IMPV.X,Y C OUTPUTT X,E,RB,THAE,N,ME,NUMPV,IMPV.X,Y C OUTPUTT X,E,RB,THAE,N,ME,NUMV,IMPV,IMFE C INFORMATION STATESTICATION STATESTICATION STATESTIC C INPUTI A,B,JH,RE,N,ME,NG,NME,NERFU,SAMESTICATESTICATIONS C INPUTI A,B,JH,RE,N,ME,Y,ME,Y,ME,Y,ME,Y C OUTPUTT X,E,RB,THAE,N,ME,Y,ME,Y,ME,Y C INFORMATION STATESTIC C INFORMATION STATESTICATION STATESTIC C INFORMATION STATE
	614 615 616 617 618 620 621 622 623 624 623 624 628 628 628 629 628 629 639 639 639 639 639 639 639 639 639 63	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATIBITCS (MUNUR, NUMPU, INFES, INC). IT MAY HAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE FIVOTED INTO THE BASIS, IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BIMPLX AND OUTPUT RETURNED C TO BIMPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JAY (UPDATE OF EATERING COLUMN) AND PU, (PERFORMS C ACTUAL PIVOT). C ACTUAL PIVOT). C TAPUTI A.B.JH.KBIN.ME.A.M. MUMUR.MLMPU.X.Y C C C OUTPUTI X.F.KB:INME.A.M. MUMUR.MLMPU.X.Y C C C OUTPUTI X.F.KB:INME.A.M. MUMUR.MLMPU.X.Y C C DIMENSION JH(I). X(I). E(I). KB(I). T(I). A(I). T(I) C INTIGATE IF (LA) 1121. 1122 1121. TRUC = 0 1122 MUMUR = MUMUR +1 DO 1101 I = 1 MZ 1101 MA I = 1 4. M E (I) = 0.0 X(I) = D(I) III I MA I M + I + I IIII MA I M + I + I IIII MARE DO 1102 J = 1. M. IF (KR(J) 7 400 ; 1102 . 400 AOD CALL JAY (J). A E.(N.Y.ME) C CMODER PIVOT
	614 615 616 617 618 620 621 622 623 624 625 624 625 626 628 624 625 628 624 625 626 630 631 632 633 634 643 643 643 644 645 645 645 645 650 651 655 655 655 655	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATIBITCS (MUNUR, NUMPU, INFES, INC). IT MAY MAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE FIVOTED INTO THE BASIS, IN WHICH CASE THEY ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED C TO BINPLX. BUBROUTINES CALLED BY THIS SUBROUTINE ARE C JAY (UPDATE OF EATERING COLUMN, AND PU, CREEFORMS C ACTUAL PIVOT). C TOPUTT X.B.JARETA.HE.A.HE.A.HE.A.HE.A.HE.A.HE.A.HE.A.H
	614 615 616 617 618 620 622 622 623 624 628 628 628 628 628 633 633 633 633 633 634 633 634 638 639 643 644 645 644 645 650 655 655	C BASIS SET OF COLUMNE (KB): AND THE ITERATION STATISTICS C (MUNUR, NURPU, INES, INUC). IT MAY IMPERITARY C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIUDTED INTO THE BASIS. IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTIME IS USED BY BINPLY AND OUTPUT RETURNED C THE SUBROUTIME IS USED BY BINPLY AND OUTPUT RETURNED C JMY (UPDATE OF ENTERING COLUMN) AND PIU (PERFORMS C ACTUAL PIUDT). C IMPUTI A/S.JM/RE/R.H.H.F. MUMUM./MLMPU.X.Y C C C OUTPUTI X.F.F.KD.INVC./MLMW./MLMPU.X.Y C C C THENTSTETETETETETETETETETETETETETETETETETE
	614 615 616 617 618 620 621 622 623 624 625 624 625 626 628 624 625 628 624 625 626 630 631 632 633 634 643 643 643 644 645 645 645 645 650 651 655 655 655 655	C BASIS SET OF COLUMNS (KB), AND THE ITERATION STATISTICS C (MUNUR, NUTPU, INFS, INVC). IT MAY MAPPEN THAT C SOME OF THE REAL COLUMNS (AS INDICATED BY KB) C CANNOT BE PIOUTED INTO THE BASIS. IN WHICH CASE THEY C ARE REPLACED BY AN ARTIFICIAL COLUMN. C THE SUBROUTINE IS USED BY SIMPLY AND OUTPUT RETURNED C THE SUBROUTINES CALLED BY THIS BUBCOUTH RETURNED C THE SUBROUTINES CALLED BY THIS BUBCOUTHE ARE C

·	F (K8(J) 1 400 ; 1102 ; 200
652	600 CALL JHY (J) AT ET HT YT HE)
• 633 654	CHOISE PIVOT
655	DD 1104 I = MFr H
656 657 657	IF (JH(I) - 12345) 1104, 1105, 1104 1105 IF (ABS(Y(I))-TY) 1:04, 1104, 1106
658_	1106 IR • I
659	TY=ABS(Y(I)) 1104 CONTINUE
<u> </u>	C TEST PIVOT
642	IF(TY-TPIV) 1107,1108,1108 C BAD PIVOT, ROW IR, COLUMN J
- <u>463</u> 664	C BAD PIVOT, ROW JR, COLUMN J 1107 KB(J) = 0
e 665	GO TO 1102
666	C PIVOT
660	KB(J) = IR
649 670	POO CALL PIV (IR, Y, H, E, X, MUMPU, TECOL) 1102 CONTINUE
371	C RESET ARTIFICIALS
672	DD 1109 I = 1, N IF (JH(I) - 12345) 1109, 1112, 1109
673	1112 JH(I) = 0
675	
676	
678	SUBROUTINE HEN (M+N+ JH+ KB+ A+ B+ HF+ HE)
679	┎ ┎╻┎╓┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰┰
682	C NEW SCANS "A" OF THE INITIALLY FORMULATED TABLEAU OF A
484	C USED_INSTEAD OF_ARTIFICIAL COLUMNS IN THE INITIAL BASIS
685	C TO BE ELIGIBLE, A COLUMN MUST MAVE ONLY ONE NON-ZERO C Element, and it must have the same sign as the corre-
•	CELEMENT, AND IT HUST HAVE THE SAME SIGN AS THE CORRE
689	C NEGATIVE BASIC VARIABLE HUST BE ARTIFICIAL.)
689	C THE SUBROUTINE IS USED BY SIMPLX AND OUTPUT RETURNED
	C TO SIMPLX.
	C
674	
695	
696	C
678	<u>c</u>
<u>499</u> 700	DIMENSION JH(1), KB(1), A(1), B(1)
701	I400 DC 1401 I = I+ N
702	1401 JH(I) = 0
704	XT = 0
705	DO 1402 J W 1, N KB(J) = 0
707	KTA = KT + WF
708	KTB = KT + M C TALLY ENTRIES IN CONSTRAINTS
710	KD = 0
711	DD 1403 L = KTAIKTH 2F (A(L)) 1404, 1403, 1404
713	
714	L0 = L
715	C CHECK WHETHER J IS CANDIDATE
717	IF(K0 -1) 1402;1405;1402
718	1405 IQ + LQ- KT IF (JH(IQ)) 1402, 1406, 1402
720	1406 IF (A(LQ)#8(IQ)) 1402, 1407, 1407
721	1407 JH(10) = J
723	KB(J) - 10
724	
725 726	END
727	
• • 728	C C+155×265×265×255×150×150×25×25×25×25×25×25×25×25×25×25×25×25×25×
730	6
731	
733	C COMPUTED IN SUBROUTINE DEL). THE COLUMN NUMBER BELECTED
734	
736	C THE SUBROUTINE IS USED BY SINPLX AND OUTPUT IS RETURNED
737	
739	
740	C INPUT: N+M+A+P+K+B+HE+TCOST+1R+TPIV+Y
74	
74	
74	5 2
	6 DIMENSION P(1), KB(1), Y(1), A(1)
74	8 DA = TCOST
74	14-0
75	
71	
· · · · · · · · · · · · · · · · · · ·	

/10	
717	IFIKD -13 1402-1405-1402
	1405 ID + LO- KT
720	1404 IF (A(LB)8B(IG)) 1402, 1407, 1407
	JIE CANDIDATE, INSTALL 1407 JM(ID) = J
723	
724_725	<u>1402 KT = KT + HE</u>
726	END BUBROUTINE HIN (JT. N. H. A. P. KB. HE, TCOBT. IR, TPIU, Y. JIN)
727	
729 730	Cátátátátátátátátátátátátátátátátátátát
731	C MIN SELECTS THE COLUMN TO ENTER THE BASIS. IT SELECTS
732	C THE COLUMN WITH THE MOST NEGATIVE REDUCED COST (AS C COMPUTED IN SUBROUTINE DEL). THE COLUMN NUMBER SELECTED
734	C (JT) IS RETURNED TO THE CALLING SUBROUTINE.
735 736	C THE SUBROUTINE IS USED BY SIMPLX AND OUTPUT IS RETURNED
737	C TO STAPLY, SUBROUTINE DEL'IS CALLED TO COMPUTE THE
738	C
740	C INPUT: WYHYAYPYKYBYMEYTCOBT/IR/TPIW/Y
742	C DUTPUTI JT+ JIN
743	
745	E
746	DIMENSION P(1), KB(1), Y(1), A(1)
748	
749	IS=0 PIV = -TPIV
751 752	JIN = 0 PIVD = -TPIV
753	
754	C
756	C SKIP COLUMNS IN BASIS
757 758	703 IF ("KB(JH)) 702, 300, 702 300 CALL DEL (JH, DT, N, A, P, ME, IR, DP, Y)
759	IF (IR - 1) 705,705,2705
760 761	C DUALE RATIO TEST 2705 IF (ABB(DT) + TCDST) 2706,2708,2708
762	C ZERD RATIO - USE MOST NEGATIVE PIVOT ELEMENT
763	2706 IF (DP - FIV) 2707,762,702 2707 FIV = DP
765	
766	18 = 1 60 10 762
768	C HONZERD RATIO
770	C IF DUAL INFEASIBLE, SET JIN AND EXIT
771	
773	<u> </u>
	GO TO 2702 C SKIP_POBITIVE (J WEAR ZERO) PIVOT ELEMENTS
776	
. 778	C BAVE NINIHUM RATIO
779	IF (RATIO - AA) 702,2713,2715 C IF RATIO TIE, USE NOST NEGATIVE PIVOT ELEMENT
781	2/13 1F (DP - P100) 2/14,702,702
782 783	
784	
784	C PRIMALA DJ TEBT
787 788	
787	
790 791	
792	RETURN
793	
795	
796 797	
798	C INY UPDATES COLUMN IT OF THE ORIGINAL CONSTRAINT-SET
799	C UPDATED COLUMN IS RETURNED AS Y. THE MULTIPLICATION
80) 802	C IS DONE IN COLUMN RATHER THAN ROW ORDER.
803	3 C THE SUBROUTINE IS USED BY SINPLY AND VERY AND RETURNS
B04	
804	6 C INPUTE JT#A#E#NME
B05	
801	
81 91	
81)	2 DIMENSION E(1), V(1), A(1)
B1	3 C
\$1 -	
	5 413 Y (X) = 5.6

	805 C
	805 C 804 C IMPUTI JT.A.E.M.ME
	807 C
	808 C DUTPUT: Y
	B12 DIMENSION E(1), Y(1), A(1) B13 C
	814 600 DD 610 I= 1-N
	B15 610 Y(I) =0.0 B16 LP = JT#HE - ME
	816 LP = JT#ME - ME
	918 D0 405 I* 1.H
	819 LP = LP + 1 820 JF (A(LP)) 601, 602, 601
	821 601 DD 606 J = 1+M
	822 LL = LL + 1
	823 606 Y(J) = Y(J) 4 A(LP) # E(LL) 824 BD TD 603
	825 602 LL + LL + N
	826 605 CONTINUE 827 699 RETURN
	827 697 RETURN
	BUDROUTINE PIV (IR; Y; N; E; X; NUMPV; TECOL)
	B30 C B31 Catabatababatabatabatabatabatabatabataba
	832 C
	833 C FIO, USING AN UPDATED COLUMN, Y, PIVOTS THE COLUMN
	B34 C INTO THE BASIG, PLUOTING ON ROWLIR (ESTABLISHED IN B35 C SUBROUTINE ROW), AFTER PLUOTING, THE DABIC VARIABLES
•	835 C ARE UPDATED.
	938 C THE SUBROUTINE IS USED BY SIMPLX AND VER, AND RETURNS 939 C DUTPUT TO CALLING SUBROUTINE.
•	840 C
•	841 C INPUTE IRTTATET THUNPUTECOL. 842 C
•	
-	844 C
• 🔁 👘	845 CUITTETTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	847 DIMENSION Y(1), E(1), X(1)
•	848 C
	847 900 NUMPU = NUMPU F 1
· · · ·	851 T2 = -Y(IR)
•	852 Y(1R) = -1.0
•	853 C TRANSFORM INVERSE
• • • • • • • • • • • • • • • • • • • •	855 903 DO 904 JP= 1, N
•	857 IF(ABS(E(L))-TECOL) 914,914,905 858 914 LL = LL + H
-	859 SO TO 904
• 🐨	860 905 T3 = E(L) / T2 861 E(L) =0.0
-	862 DD 906 I = 1; N 863 LL= LL +1
•	
	864 906 E(LL) = E(LL) 4738 Y(I) 865 904 CONTINUE
•	ess C Transform X
-	
· · · · · · ·	868 X(IR) = 0.0 869 D0 908 I = 1, M
•	670 - +08 X(I) = X(I) +T38 Y(I)
	871 C RESTORE Y(1R) 872 Y(IR) = -T2
•	873 C
	874 999 RETURN 875 END
-	8/5 ERU 8/5 Subroutine Del (JR, BT, N, A, P, NE, IR, DP, Y)
	B77 C
•	679 Casasasatasasasasasasasasasasasasasasasa
	880 C DEL COMPUTES THE REDUCED COST FOR THE COLUMN JN.
•	881 C
	B82 C THIS BUBROUTINE IS USED BY MIN AND DUTPUT IS RETURNED
• • • • • •	884 C
	BBS C INPUTE UNINIAIPINEIERY
• • • • • • •	887 C DUTRUTE DI
	988 C
•	887 C THE ARCOMENT WARIABLES USED IN THIS SUBROUTINE ARE AS
-	891 C DT- REDUCED COBT
-	B92 C P= BIHPLEX MULTIPLIERS (P1)
-	893 C 874 C#\$\$\$\$\$\$#\$############################
	895 C
• .	894 DIMENSION P(1), V(1), A(1) 897 300 DT = 0.0
	ev
• •	877 KDEL = (JN ~ 1) 8 ME
	900 C 901 201 DU 201 THEL = 1, N
•	902 KDEL=KDEL+1
	903 IF TAKKEL)3204, 303, 304
· · · · · · · · · · · · · · · · · · ·	904 304 IF (P(IDEL)) 302,2303, 302 905 302 DT # DT 4 P(IDEL) 8 A(KDEL)
-	906 C DO BECOND PRICING VECTOR (IF NONZERO COEFFS)

•	879		Deliberturg vers a vers a vers a vers a
	897	300	py = 0.0 DP=0.0
•	877		RDEL @ (JR ~ 1) B HE
·		101	DU 303 IDEL + 1, W
	902		KDEL#KDEL#1
·	903		IF (A(KDEL))J04, 303, 304 IF (P(IDEL)) 302,2303, 302
		302	DT # DT + P(IDEL) # A(KDEL)
·	906	C	DO SECOND PRICING VECTOR (IF NONZERO CDEFFB)
•	908		IF (IR-1) 303,303,2304 IF (Y(IDEL)) 2305,303,2305
	909	2305	UP=UP+Y(IUEL)#ATKDEL)
	<u>910</u> 911	- 303	CONTINUE
••	912	399	RETURN
	913 914		END BUBROUTINE ERR (Nr Ar Br TERRr JHr Xr Pr Yr MEr LA }
•			
.		CREAR	***************************************
•	918	C	ERR CALCULATES THE SOLUTION ERROR ACCUMULATED AND
-	*19 *20	С. С.	STORES IT SO THAT IT MAY BE PRINTED IN THE OUTPUT, IF Desired,
•	921	C	
		<u> </u>	THE SUBROUTINE IS USED BY BINPLX AND OUTPUT RETURNED
•	924	č	
-	925	Ċ.	INPUTI H.A.B.TERR.JH.X.P.Y.NE.LA
• •	924	<u> </u>	DUTPUT I TERR
	928	<u> </u>	
•	929 930	C	THE ARGUMENT TERR IS EQUIVALENCED TO ERR IN THE SIMPLX SUBROUTINE.
	931	- с	
	932	C####	***************************************
	934		DIMENSION JH(1), X(1), P(1), Y(1), TERR(@), A(1), B(1)
•	935 936	401	DD 401 I = I; H Y(I) ==B(I)
	937		DC 402 I = 1, H
•	<u>6</u> 26- 628-		JA = JH(I) IF (JA) 403, 403, 403
	940	403	IA=HEx(JA-1)
•	941 942		DO 405 IY = 1, M IA = IA + 1
	943		IF(A(IA)) 415, 405, 415
• •	944 945		Y(IT) =Y(IT) 4X(I) # A(IA)
	746		CONTINUE
•	947	- C	DO ARE T - 1- M FIND SUM AND MAXIMUM OF ERRORS
- <u>-</u>			DO 481 I = 1, M YI = Y(I)
• .	950		IF (JH(I)) 472, 471, 472 - YI = YI + X(I)
	952	472	TERR(LA41)=TERR(LA41)+ABS(YI)
۲	\$53 \$54	487	IF(AB5(TERR(LA+2))-AB5(YI)) 482+481+481 TERR(LA+2) = YI
	955	491	
۹	954	C	STORE P TIMEB BASIS AT DT
	956		DO 411 I = 1 + H
۲	-** 959 960		JM = JH(2) 2F (JH) 300 + 411 + 300
		300	CALL DEL (JH' DT, N, A, P, ME, IR, DP, Y)
•	962 963	410	TERR(LA+3)=TERR(LA+3)+AB8(DT) IF(ABS(TERR(LA+4))-AB8(DT)) 413+411+411
	964		I TERR(LA+4) = DT
- C 🛑	765 966		CONTINUE CONTINUE
	967		
	768 768		BUDRGUTINE BET (N+ NC+ NF+ JH+ X+ Y+ P+ E+ IR+ PHIX)

۲	971 972		BET OBTAINS THE VECTOR OF BINPLEX HULTIPLIERS TO BE
	973	- C	UBED TO CALCULATE REDUCED COBTS. IN A NORMAL, PHASE 2
۰.		<u> </u>	ITERATION, THIS IS JUST THE FIRST ROW OF THE CURRENT Inverse. In phage 1, however, special procedures are
	976	¢	USED TO AVOID EXPLICITLY STATING THE INFEASIBILITY FORM.
• •	977		THE SUBROUTINE IS USED BY SINPLY AND OUTPUT RETURNED
	978		TO SINPLX.
•	980		THEUTT BHENES MAXIES IRSPHIX
	981 982		
	963	C	
-	+84 +85		***************************************
6	78d	с _	
	987		BINENSION UN(3), X(3), P(3), \$(1), Y(1)
•	9 89	,	hHI = IR
			P6 = 1.0 IF (JH(IR)) 502,2502,502
• •	992	250	2 28 = -1.0
-	991		1F (X(1R)) 3502,502,502 2 PS = 1.0
•		5 ° C ° ° ° °	PRIML PRICES
	······································		2 DO 503 J = 1+ N P(J) = E(MM)
۲	791		IF (IR - 1) 503,303,2503

į

	997 (J) = E(MM) 998 JF (JR - 1) 503,503,2503
	998 IF (IR - 1) 503,2503 997 2503 Y(J) = PBBE(NMT)
	1000 MHI - MHI + M
	1661 503 NHA FRAM F N
	1002 IF (IR + 1) 599,501,599 1003 C COMPOSITE PRICES
	1004 501 D0 504 J = 1, N
	1005 504 P(J) = P(J)# #NIX
	1006 DO 505 Z = NF, N
	1007 HAH -1 1008 IF (X(1)) 504, 507, 507
	1007 504 DD 508 J = 1, M
	1010 P(J) = P(J) + E(MM)
	1011 508 HKH A HAN + H
	1012 BD TD 505 1013 507 IF (JH(1)) 505, 509, 505
	1014 S09 DD S10 J = 1, N
	1015 P(J) - E(NNN)
	1016 510 MHH = MHH +N
	1017 505 CONTINUE
	1019 59V RETURN
	1020 END
	1021 BUBROUTINE XCK (H; NF; JH; X; TZERG; JIN)
	1022 C 1023 CEREBBERERERERERERERERERERERERERERERERER
	1023 C####################################
•••	1025 C XCK EXAMINES THE CURRENT BASIC BOLUTION (X) FOR TWO
	1026 C TESTS, FIRST, IT LOOKS FOR ANY VARIABLES THAT CAN BE
	1027 C SET TO ZERD BY COMPARING TO YHE ESTABLISHED ZERO 1028 C TOLERANCE (TZERO), BECOND, IT DETERMINES IF ANY ARTI-
	1028 C TOLERANCE (TZERO), BECOND, IT DETERMINES IF ANY ARTI- 1029 C FICIAL VARIABLES ARE NON-ZERO, IN THE SECOND TEST,
	1030 C THE ROW INDEX OF THE NON-ZERD ARTIFICIAL VARIABLE (JIN)
	1031 C IS RETURNED YO THE CALLING SUBROUTINE AS AN INDICATION
	1032 C OF THE PHASE THE ALGORITHM IS IN.
	1033 C 1034 C THIS BUBROUTINE IS USED BY SIMPLY AND OUTPUT RETURNED
	1035 C TO SIAPLX.
_	1036 C
	1037 C INPUTT N-78F, JH-X, TZERU 1038 C
	1038 C 1039 C DUTPUTT JIN
	1040 C
-	1041 CXXVVVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-	1042 C
	1043 BIMENBION JHCITO X(1)
	1045 C RESET X AND CHECK FOR INFEASIBILITIES
	1046 1212 JIN = 0
	1048 DD 1201 I = MF, M 1047 If (AB5(X(I))-TZERO) 1202,1203,1203
	1050 1202 X(I) = 0.0
	1051 GD TO 1201
	1052 1203 IF (X(I)) 1204+ 1201+ 1205 1053 1205 IF (JH(I)) 1201+ 1204+ 1201
	1053 1205 IF (JH(I)) 1201+ 1204+ 1201 1054 1206 IF (XI - ABB(X(I))) 1207+1201
	1055 1207 XI - ABE(X(1))
	1056 JIN - I
-	1057 1201 CONTINUE
	1058RETURN
	1040 BURROUTINE ROW (IR, N, NF, JN, X, Y, TPIV)
	1041 C
	1062 <u>C************************************</u>
	1063 C 1064 C ROW PERFORMS THE DPERATION FOR THE EXIT CRITERION OF
-	1045 C THE PRIMAL SIMPLY ONLY THE ROW CHOSEN IS DETERMINED
	1066 C IN THE FOLLOWING ORDER:
	1067 C 1) X(IR)=0, ARTIFICIAL
	1068 C 2) X(IR)=0, REAL Y(IR)>0 1069 C 3) X(IR)=NON-ZERO, X(IR)/Y(IR)= MIN(I)FOR
	1070 C (X(I)/Y(I))(X(I)/Y(I))>0)
	1071 C
	1072 C THE BUBROUTINE IS USED BY SIMPLX AND DUTPUT IS RETURNED 1073 C TO SIMPLX.
	1073 C TO BINPLX.
	1075 C INPUT: N+NF-JH-X+Y+TP1U
	1074 C
	1077 C DUTFUT] IR 1078 C
	1078 C THE ARGUMENT IN IS THE INDEX OF THE ROW BELECTED TO
	1060 C EXIT THE BASIS.
• -	10Bi C
_	
-	1083 C 1084 DIMEWSION _M(1), X(1), Y(1)
	1085 1000 BIRENSLOW W(1), K(1), Y(1)
	1086 AA = 0.0
	1087 IA = 8
	1088 BD 1050 I = MF, M 1089 IF (X(I)) 1050, 1041, 1050
	1089 IF (AII) 1050, 1041, 1050
	1091 IF (YI - TPIV) 1050+ 1050+ 1042
	1092 1042 IF (JH(I)) 1043, 1044, 1043
	1093 1043 IF (IA) 1050, 1048, 1050
	1094 1048 IF (Y(I)) 1050, 1050, 1045
	1076 1045 IF (YI - AA) 1050+ 1050- 1047
	1097 1046 IA = 1
	1077 1048 IN - I 1098 1047 AA - YI

.

.

-	1078	104/ AA = 11
	1077	IR = 1 1050 CONTINUE
	1100 1101	IF (IR)1099,1001,1099
	1102 1103	1001 AA = 1.0E+20 E FIND HIN, PIVOT AHONO PODITIVE EQUATION
•	1104	DO 1010 2T = HF , M 1F (Y(1T) - TPIV) 1010; 1010; 1002
	1105	1002 IF (X(IT)) 1010, 1010, 1003
	1107 1108	1003 XY = X(11) / Y(17) IF (XY - AA) 1004, 1005, 1010
• •	1109	1005 IF (JH(11)) 1010, 1004, 1010
	1110 1111	1004 AA = XY
	1112	1010 CONTINUE C FIND PIVOT AMONU WEDATIVE EDUATIONS, IN WHICH X/Y IS LESS THAN THE
	1114	C NINIHUM X/Y IN THE POSITIVE EDUATIONS, THAT HAS THE LARGEST ABSF(Y) N
	1115 1116	1016 BB = - TPIV DD 1030 I = HF , N
	1117	1012 IF (Y(I) - BB) 1022; 1030; 1030
	1119	1022 IF (Y(I) # AA - X(I)) 1024
	1120 1121	<u>Catatatatatatatatatatatatatatatatatatat</u>
•	1122_	1024 BB = Y(I)
	1123	18 = I
	1125	1099 RETURN
•	$\frac{1126}{1127}$	SUBROUTINE BINPLX (INFIX,A,B,TOL,PRN+KOUT,ERB,JH,X,P,Y+KB,E,KPRNT)
	1128	
•	1130	c
	1131 1132	C SIMPLY IS THE PRINCIPAL CONTROLLING SUBROUTINE FOR C THE SOLUTION OF THE SIMPLEX ALGORITHM. ONLY THE PRIMAL
•	1133	C SOLUTION CAN BE OBTAINED BY USING SIMPLX IN ITS PRESENT
	1134	C SOLUTION.
•	1136 1137	C THE SUBROUTINE RECEIVED AND OUTPUTS DATA AS INSTRUCTED
	1130	C BY AN EXTERNAL INPUT/DUTPUT PROGRAM. SUBROUTINES USED
•	1139 1140	C IN SOLVING THE SIMPLEX ALGORITHM ARE AS FOLLOWSI C , 1) NEW
	1141 1142	C 2) VER C 3) XCK
•	1143	C 4) GET
······································	1144-1145	C 5) MIN
	1146	C 7) ROW
•	1148	C 9) ERR
	1149	C INPUT: INFIX-A-B-TOL-PRN
• • • • • • • • • • • • • • • • • • • •	"115 <u>1</u> "	
	1152	
• • • • •	1154	C DUTPUTI KOUT+ERR+JH+X+KB
• •	1154	C ARGUMENTS WHICH MUST BE INITIALIZED ARE AS FOLLOWS:
•	1157 1158	C 1> INFIX- AN INTEGER VECTOR CONTAINING 8 INPUT QUANTITIES
•	1157	C REPRESENTING THE FOLLOWING VALUESI C (1) INFLAGA INPUT CONDITIONI O OR 4 MEANS NEW PROBLEM.
• • • • •	1161	(2) Nº THE NUMBER OF COLUMNS IN THE "A" HATRIX.
•	1162 1163	C (3) ME= THE LENOTH OF ONE COLUMN IN THE 'A' MATRIX. (The first dimension of the 'a' matrix)
	1164	C (4) M- THE ROW NUMBER OF THE FINAL CONSTRAINTS IN
•	1166	C (5) HF- THE ROW NUMBER OF THE FIRST CONSTRAINT IN
	-1167 1160	C THE "A" MATRIX (HF(OR-M). C (4) MC- THE ROW MUMBER OF THE OBJECTIVE FORM (COBTS)
• • • •	1147	C IN THE "A" MATRIX (MF>MC>0), C (7) NCUT= THE MAXINUM NUMBER OF ITERATIONS THAT
• • • • • • • • • • • • • • • • • • • •	1171	C WILL BE ALLOWED TO BOLVE THE PROBLEM.
•	1172 1173	
	1174	C 2) AF REAL VALUED COEFFICIENT NATRIX, STORED IN
	1176	C 3) SH REAL VALUED VALUES OF RIGHT HAND SIDE.
•	1177 1178	C 47 YOLF A VECTOR CONTAINING THE 4 ALLOWABLE REAL C VALUED TOLLERANCES AS FOLLOWS:
	1179	C TIT TELERANCE.
- a	- 1191	C (3) TCOST= REDUCED COST IS CONSIDERED TO BE REDATIVE
-	1182 1183	
•	\$184	C ARE ASSUMED ZERO IF MAGNITUDE BELOW THIS
	1185 1186	C SUBRDITINE).
•	1187	
	1187	C INTERNEDIATE ARGUMENTS USED ARE AS FOLLOWET
-	1170	
	_ 1192	C2) Y+ REAL VALUED TEMPORARY MORKING AND STORAGE VECTOR.
•	1173 1174	C INVERSE IN COLUMN ORDER.
<u> </u>	1195	
	1197	C ARE AS FOLLOWS!
• • • • • •	1179	E IN KOUT- AN INTEGER VECTOR CONTAINING 7 OUTPUT QUANTITIES
-	1200	C REPRESENTING THE COLOURN VALUES

	1195 C 1194 C 1197 C	ARGUMENTS RETURNED AS DUTPUT TO INITIATING PROGRAM
	1198 C 1199 C	1) KOUT- AN INTEGER VECTOR CONTAINING 7 OUTPUT OUANTITIES
	1200 0	REPRESENTING THE FOLLOWING VALUESS
	1201 C 1202 C	3- FENSIBLE AND OPTIMAL.
	1203 0	
	1204 C 1205 C	G ITERATION LIMIT EXCEEDED.
	1204 0	
	1207 L 1208 L	
	1209 0	
	1210 C 1211 C	
	1212 0	CAN THE ASTREASTREASTREASTREASTREASTREASTREASTRE
	1213 C 1214 C	
	1215 ((7) JT- FINAL PIVOT COLUMN SELECTED.
	1214 0	
	1210 0	DPERATIONS REPRESENTING THE FOLLOWING VALUES:
	1219	(1) SUM OF THE FEASIBILITY ERRORS. (2) MAXIMUM FEASIBILITY ERROR.
		37 SUH OF THE REDUCED COSTS IN THE BASIS.
		C (4) MAXINUM REDUCED COST (IN ABSOLUTE VALUE) IN THE BASIS. IF A FINAL INVERSION IB PERFORMED, THEN THE PARAMETERS
		C (1) THRU (4) WILL BE ERRORS BEFORE THE INVERSION AND
	1225	PARAMETERS (5) THRU (8) WILL BE THE CORRESPONDING
	1226 1	C ERRORS AFTER THE INVERSION. C J) JN- an "N" Element integer vector containing the
	1220 1	C REAL INDEX OF THE BASIC VARIABLES. EXAMPLE:JH(3)=27
	1229 0	
	1231	THEN THE 'I'TH BASIC VARIABLE IS ARTIFICIAL.
	1232 0	
		BASIS INDEX OF THE REAL VARIABLES. EXAMPLE:KB(27)=3
		C HEANS THAT THE 27TH VARIABLE IN THE CONSTRAINT
	1236	C MATRIX IS THE THIRD BASIC VARIABLE. IF KB(J)=0; C THEN THE "J"TH VARIABLE IS NON-BASIC.
	1230	
		CHYVYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
• -	1241	
<u> </u>	1242	INTEGER XXAUX+OUTPUT+IIII DIMENSION INFIX(8)+ KOUT(7)+ ERS(8)+ ZZ(4)+ IOFIX(16)+ TERR(8)+ T
	1244	1DL(4)
	1245	DIMENSION A(1); B(1); JH(1); X(1); P(1); RB(1); E(1)
	1246	EQUIVALENCE (INFLAG,IOFIX(1)),(N,IOFIX(2)), 1 (HE,IOFIX(3)), (N,IOFIX(4)), (HF,IOFIX(5)),
	1248	2 (MC+ IOFIX(6))+ (NCUT+ IOFIX(7)) + (NVER+ IOFIX(8))#
	1247	3 (K, IDFIX(Y) 7; (ITER; IDFIX(10) ;; (INVC ; IDFIX(11)) ; 4 (NUHUR; IDFIX(12)); (NUMPV; IDFIX(13)) ;
	1251	5 (INFS, IDFIX(14)) + (JT, IDFIX(15)) + (LA + IDFIX(16))+
	1252	6(TPIV-ZZ(<u>t))+</u> (TZERO-ZZ(<u>2))+(TCOBT-ZZ(3))+(TECOL-ZZ(4))</u>
	1254	DD 1340 I= 1. 8
	1255	TERR(I) = 0.0 IDFIX(I+8) = 0
U ·	1257	1346 10F1X(1) = INF1X(1)
	1258	DD 1308 1e1,4
	1259	ZZ(1)=TOL(1)
	1241	1108 CONTINUE
	1262 -	PHIX = PRM TCOST=-ABS(TCOET)
	1244	IPRNT = 1
	1245 1266	NZ = N832 ; INFS = 1
	1267	
	1248	C CHECK FOR ILLEGAL INPUT
	1270	WRITE(4,24) MIL
	1271	22 FORMAT(IB)
· · · - — -	1272	IF (N) 1304, 1304, 1371 1371 IF (H - HF) 1304, 1372, 1372
	1274	1371 IF (H - HF) 1304, 1372, 1372 1372 IF (HF - HC) 1304, 1304, 1373
	1275	1373 IF (HC) 1304, 1374 1374 IF (HE - M) 1304, 1375
)	1277	1304 K # 7
	1278	BO TO 1392
)	1280	41 FORMAT(15H DK TO 1375 \$1)
•	1281 1282	1400 CALL NEW (M.N. JH, KB, A, B, NF, ME)
, –	1283	1320 IF (KPRNT.BT.2) WRITE (4,5000)
·	1284	42 FORMAT(20H OK TO 1320 SINPLX)
	1285	5000 FORMAT ('OINVERT')
· ··	-1287	CALL VER CAY BY JHY XY EY KBY YY NY NEW HEY THUCH
	1289	1 NUMVR: NUMPU, INFS; LA; TPIU; TECOL; N2) C PERFORM ONE ITERATION
•	1290	100 TA = TZERD
	1291	IF (INTLAS - W) 301,2101,2101 2101 TA # TEOST
	1293	101 CALL RCK (H, W, JH, X, TA, IR)
	1294	IF (INFLAG - 0) 102,2102,2102
•	1295	2102 IF (IR) 2103+2103-500 2103 CALL & BET (M, MC, MF, JN, X, Y, P, E, IR, PMIX)
		60 10 203

-

.

..

.

		TA = TCOBT TALL XCK (N; NF; JH; X; TA; IN)
	294	IF (INFLAG - 9) 102,2102,2102
	295 2102	IF (IR) 2103,2103,500
		CALL BET (N. HC, HF, JM, X. Y. P. E. IR, PHIX) GD TD 203
		JIN = (IR+W)/(N+1)
	299	
	300 C	CHECK CHANGE C" PRASE. BO BACK TO INVERT IF BONE INFEAS.
	301 C	IF (INFS - JIN) 1320, 300, 200
	303 C	BECONE FRASIBLE
1	304 200	INFS = 0
		PHIX = 0.0 CALL GET (A) HCI # JHI X, YI P) E/ IR/ PHIX J
	308	CALL HIN (JT, N, H, A, P, KB, ME, TCOST, IR, TRIV, Y, JIN }
	309	ज्य <u></u>
	310 311	J = JM IF (1K - 1) 202,202,2202
	312 202	IF (JN) 203, 203, 222
	313 2	ALL COSTS HON-NEGATIVE K = 3 OR 4
		x = 3 + INF9
	1315 1316 2202	BO TO 257 IF (INFE - JIM) 1320,2204,2203
	317 2203	
1	318 2204	IF (JH) 207;207;222
	1319 C	NORMAL CYCLE
	320 222	CALL JHY (J, A, E, H, Y, HE) IF (IR = 1) 223,223,2223
	1322 2223	IF (INF8) 210,210,2224
	323 2224	YI = TPIU
	1324	IR = 0 DO 2226 I * NF,M
	1325 1326	$10 2226 I = M_{2}, M_{1}$ If (Y(I) - YI) 2226,2223,2223
	1327 2225	1R • 2
:	1320 2226	CONTINUE
	1329 1330 223	GO TO 206 Call Row (IR, M, MF, JM, X, Y, TPIV)
	1330 223 1331 C	TEST PIVOT
:	1332 204	IF(IR) 207, 207, 210
	1333 C	NO PIVOT
		K = 5 IF (PHIX) 201, 400, 201
	1336 C	ITERATION LIMIT FOR CUT OFF
	1337 210	IF (ITER -NCUT) 208, 140, 140
	1330 C	
		CALL PIV (IR, Y, N, E, X, NUMPO, TECOL) JOLD = JH(IR)
	1341	1F (JOLD) 213, 213, 214
		KB(JOLD) = 0
	1344 1345	
	1346	ITER = ITER +1
	1347	
U	1348 1349	IF (KPRNT.LE.2)00 TO 2214
	1350 2212	WRITE (DUTPUT+5501)
	1351 5501	FORMAT (* ITER*;2X;*PHASE*;5X;*IN*;4X;*OUT*;4X;*ROW*;7X;*OBJ*)
	1352 1353 2213	IPRNT = 0 IPHS = 2 - INFS
	1354	
	1355	WRITE (OUTPUT, 3502) ITER, IPHE, M, JOLD, IR, DBJ
		FORHAT (1X, 14, 4(2X, 15), 2X, E14, 7)
	1357 C	INVERSION FREQUENCY
	1358 2214 1359 C	IF (INVC - NVER) 100, 1320, 100 CUT OFF TOD WANY ITERATIONS
	1360 160	
	1361 400	CALL ERR (N; A; B; TERR; JH; X; P; Y; HE; LA)
	1362 1363 191	IF (LA) 193, 191, 193
	1364	XXAUX - INFLAG
·	1365	IF (XXAUX - W) 192:196:190
		XXAUX = XXAUX - B
		IF (XXAUX - 4) 1320, 193, 193 IF (K-5) 1392, 194, 1392
		CALL JRY (JE AF EF Ny YE ME)
	1370 C	SET EXIT VALUEB
	1371 1392	
· · · ·	1372 1309 1373	ERS(1) • TERR(1) DO 1327 I • 1, 7
		KOUT(I) = IDFIX(I+B)
	1375 C	URITE (OUTPUT, 10 04) (P(IXX), IXX=1,N)
	1374 C1004 1377 C	FDRMAT(* P*,5X,11E10.2/(7X,11E10.2)) D0 B02 IXX=1;H
		D0 802 1XX=17A WRITE (DUTPUT,10 08)(E(IXX+(JXX-1)8N)+JXX=1,N) {
	1379 C1009	FORMAT(* E*,5X,11E10.2/(7X,11E10.2))
	1390 C	WRITE (DUTPUT,10 09)(X(IXX),IXX=1,H)
	1381 TCT007 1382 C	<pre>/ FDRMAT(* X*,5X,11EI0(2777X,11EI0.2)) WRITE (DUTPUT,10 10)(JM(IXX),IXX=1,N)</pre>
· · -	1383 E1014	PORMAT(* JHBHP*/2215/(6X/2215))
	1384	RETURN
•	1305	END
	1386	SUBROUTINE ANAL(J+NN+NA+XSTAROP+EE+CASH+TCOST)
	1380	KEAL ML+M DIMENSION XBTAROP(50,5),CASH(15),EBTX(373,12),EX(375,12)
	1389	ba é 1-1-MM
-		CASH(1)=0,
	1390	
,		CONTINUE WRITE(6,712)

.

111

.

-	1370 C BET EXIT VALUES
	1371 1392 DC 1309 I= 1, 8 1372 1309 ERS(1) = TERR(1)
<u> </u>	1374 1329 KOUT(1) = 10F1X(1+8)
	1374 C1006 FURMAT(* P*+5X+11E10+2/(7X+11E10+2))
	1379 C1008 FORMAT(* E*,5%,11E10.2/(7%,11E10.2))
	1380 C WRITE (DUTPUT,10 09)(X(1XX),1XX=1,M)
	1382 C WRITE (DUTPUT, 10 10) (JK(1XX), 1XX=1+M)
	1383 C1010 FORMAT(* JHGHP*,2215/(4X,2215)) 1384 RETURN
	1305 END
	1386 SUBRDUTINE ANAL(J, NH, NA, X8TAROP, EE, CABH, TCOBT) 1387 REAL HL, M
) 🔴 -	1388 DIMENSION X8TARDP(50,5),CASH(15),ESTX(375,12),EE(375,12)
	1390 CA5H(I)=0,
)	1371 4 CONTINUE 1372 WRITE(6,712)
	1392 WRITE(60712)
	1394 TCDST=0, 1395 DD 700 II=1,NA
	1394 COSTPRY=0.
	1397 IF(XSTAROP(11, J) .EU. 1) UU TU 701 1398 00 TO 700
	1399 701 1F(J.EG. 1)NR=0
	1400 IF(J.EG. 2)HR=40 1401 IF(J.EG. 3)HR=135
	1402 IF(J.EQ. 4)NR=225
•	1403 IF(J.EQ. 5)NR=330 1404 I=II+NR
	1405 DO 702 J11=2/HH
•	1406 J1=J11-3 1407 IF(EE(I,JI) .EQ. 0)80 TO 702
	140B ESTX(I,J1)=EE(I,J1)
	1409 IF(J1 (EG. J) GO TO 703 1410 CASH(J1)=CASH(J1)+EBTX(1,J1)
	1411 50 TO 702
	1412 703 CASH(J1)=0. 1413 702 CONTINUE
	1414 WRITE(6/710)
	1416 WRITE(6,709)11,(ESTX(1,J1A),J1A=1,HWT)
	1417 710 FORMAT(////20X:#CASH FLOWE
•	1418 709 FORMAT(5x,#PROJECTS)14,2X,11=10.2) 1419 COSTPRY=CO
	1420 TCDST=TCDST+ESTX(I,J) 1421 700 CDNTINUE
	1421 700 CONTINUE 1422 WRITE(6,707)J;TCDST
	1423 RETURN 1424 704 FORMAT(5x,#J1=#,14,2x,#CA5H(J1)=#,F20.3,/)
	1425 705 FDRHAT(5X,#11=#,14,2X,#COSTPRY=#,F20,3;/)
• ·	1426 706 FORMAT(5x,\$J1=\$,14,2X,\$CASH(1)=\$,F20,3,/) 1427 707 FORMAT(7/,5X,\$YEAR\$,14,3X,\$TOTAL COST OF THE YEAR\$,F20,2,/)
-	1428 RETURN
	1429 END SCAN 1429 EOR 1429
ч. — — — — — — — — — — — — — — — — — — —	
(
ι	
- •	1
(
ι	
-	

APPENDIX C

EFFICIENCY FRONTIERS

Figure C-2. Efficiency Frontiers for Set 1, Budget \$6000, "second year only" Decision Rule.

BIBLIOGRAPHY

- Baumol, W.J., "An Expected Gain-Confidence Limit Criterion for Portfolio Selection", <u>Management Science</u>, Vol. 10, No.1, October 1963, pp. 174-182.
- 2. Bernhard, R.H., "Mathematical Programming Models for Capital Budgeting--A Survey, Generalization, and Critique" <u>Journal of Financial and Quantitative Analysis</u>, Vol. 4, 1969, pp. 111-158.
- 3. Bey,R.P. and Porter R.B.," An Evaluation of Capital Budgeting Portfolio Models Using Simulated Data", <u>The</u> Engineering Economist, Vol. 23, No.1, Fall 1977.
- Bierman, H.J. and W.H. Hausman, "The Resolution of Investment Uncertainty Through Time", <u>Management Science</u>, Vol. 18, No. 12, August 1972, pp. 654-662.
- 5. Canada, J.R. and H.M. Wadsworth, "Methods for Quantifying Risk in Economic Analysis of Capital Projects", <u>The</u> <u>Journal of Industrial Engineering</u>, Vol.19, No. 1, Jan. 1 1968, pp. 32-37.
- 6. Cramer, H., "<u>Mathematical Methods of Statistics</u>, Princeton University Press. 1946.
- FitzRoy, P.T., <u>Analytical Methods for Marketing Management</u>, 1976, McGraw-Hill, pp.251-257.
- 8. Hertz, D.B., "Risk Analysis in Capital Investment," <u>Harvard</u> <u>Business Review</u>, January-Rebruary 1964, pp.95-105.
- 9. Hillier, F.S., "The Derivation of Probabilistic Information for the Evaluation of Risky Investments", <u>Management</u> Sci <u>Science</u>, Vol. 9 No.44, April 1963, pp.443-457.
- 10. Hillier, F.S., <u>The Evaluation of Risky Iterrelated</u> Invest Investments, Amsterdam, North Holland, 1969.
- 11. Hillier, F.S., " A Basic Model for Capital Budgeting of Risky Interrelated Projects", <u>The Engineering Economist</u>, Vol. 17, No.1, Fall 1971, pp.1-30.
- 11A.Hines,W.W. and D.C. Montgomery, Probability and Statistics, In Engineering and Management Science, The Ronald Press Co. 1972.

- 12. Kahak, I.W. and J. Owen, "Random Variables, The Time Value of Money and Capital Expenditures", <u>Management Science</u>, Vol. 17, No. 3, November 1970, pp. 142-145.
- 13. Kotler, P., Marketing Management, Analysis, Planning, and Control, 2nd. Ed., Prentice-Hall, 1972, pp.229-270.
- 14. Lintner, J., "The Valuation of Risk Assets and the Selection of Risky Investment in Stock Portfolios and Capital Budgets", <u>The Review of Economics and Statistics</u>, XLVII February 1965, pp.13-37.
- 15. Mantell, E.H., "A Central Limit Theorem for Present Values of Discounted Cash Flows", <u>Management Science</u>, Vol.19,No. 3, November 1972,pp.314-318.
- 16. Mao, J.T., "Models of Capital Budgeting E-V Vs. E-S", Journal of Financial and Quantitative Analysis, 1969 pp. 657-675.
- 17. Mao, J.T., "Survey of Capital Budgeting: Theory and Practice", Journal of Finance, May 1970, pp. 349-360.
- 18. Mood, A., Introduction to the Theory of Statistics, 1st. Ed., McGraw-Hill, 1950.
- 19. Markowitz, H.M., Portfolio Selection, New-York, John Wiley and Sons, 1954.
- 20. Naslund, B., "A Model of Capital Budgeting Under Risk", Journal of Business, Vol. 24, April 1966, pp.257-271.
- 20A.Parra-Vasquez and O. Oakford, "Simulation as a Technique for Comparing Decision Procedures," <u>The Engineering</u> Economist, Vol. 21, No.4, Summer 1976, pp.221-236.
- 21. Percival, J. and R. Westerfield, "Uncertainty Resolution and Multiperiod Investment Decision", <u>Decision Sciences</u>, Vol. 7, 1976, pp. 343-357.
- 22. Pessemier, E.A., New Product Decision, An Analytical Approach, 1966, McGraw-Hill.
- 23. Porter, R.B., Capital Budgeting, <u>Unpublished Manuscript</u>, The Pennsylvania State University, 1973.
- 24. Porter,R.B., "An Empirical Comparison of Stochastic Dominance and Mean-Variance Portfolio Choice Criteria", <u>Journal of Finance and Quantitative Analysis</u>, Vol 8, Sept. 1973,pp. 565-586.

- 25. Quirin, G.D., The Capital Expenditure Decision, Homewood, Illinois: Richard D. Irwin, Inc. 1967.
- 26. Robichek, A. and C. Myers, "Conceptual Problems in the Use of Risk-Adjusted Discount Rates", Journal of Finance, Vol. 21, May 1966, pp.161-179.
- 27. Salazar, R.C. and S.K. Sen, "A Simulation Model of Capital Budgeting Under Uncertainty", <u>Management Science</u>, Vol. 15 Dec. 1968, pp.161-179.
- 28. Seavoy,G.E., "An Art, A Science or a Gamble" in Splitz A. Edward, <u>Product Planning</u>, Averbach Publishers Ind, 1972.
- 29. Sharp G.P., "Dealing with Correlated Cash Flows" Class Notes, Spring 1978, Georgia Institute of Technology.
- 30. Thuesen H.G., Fabrycky W.J., Thuesen G.J., Engineering Economy, 5th, Ed., Prentce-Hall, 1977, Chapter 17.
- 30A.Thuesen,G.J., "Decision Techniques for Capital Budgeting Problems", Unpublished Ph.D. Dissertation, Shool of Industrial Engineering, Stanford University, 1967.
- 31. Tobin, J., "Liquidity Preferences as Behavior Towards Risk", <u>Review of Economic Studies</u>. 25,1957-1958,pp.65-68.
- 32. Van Horne, J, C., Financial Management and Policy, 2nd. Edition, Englewood Cliffs, Prentice-Hall, 1971.
- 33. Van Horne.J.C., "The Variation of Project Life as a Means for Adjusting for Risk", <u>The Engineering Economist</u>, Vol. 21,No. 3, Spring 1976.
- 34. Wagle, B., "A Statistical Analysis of Risk in Investment Projects", Operational Research Quarterely, Vol.8, March 1967, pp.13-33.
- 35. Weingartner, H.M., <u>Mathematical Programming and Analysis</u> of Capital Budgeting Problems, Englewood Cliffs, New Jersey Prentice-Hall, 1963.
- 36. Weingartner, H.M., "Capital Budgeting of Interrelated Projects:Survey and Synthesis", <u>Management Science</u>, Vol. 12, March 1966, pp.485-516.
- 37. Young, D. and L. Contreras, "Expected Present Worths of Cash Flows Under Uncertain Timing", <u>The Engineering</u> Economist, Vol. 20, No. 4, Summer 1975.