Prova de Esforço Cardiopulmonar

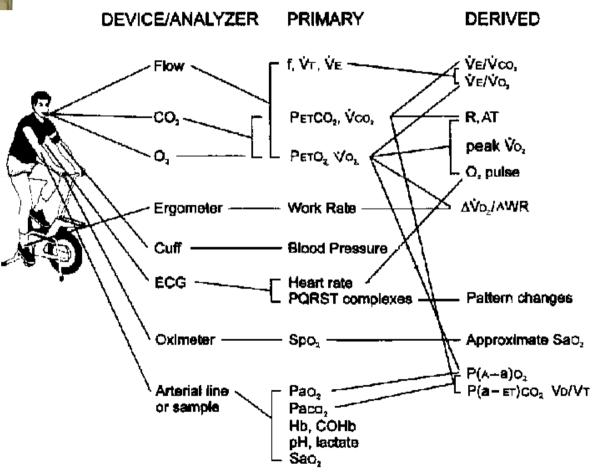
Variáveis estudadas

Valores de referência

Hermínia Brites Dias Área Científica de Cardiopneumologia Escola Superior de Tecnologia da Saúde de Lisboa

18 Março de 2005

Variáveis estudadas - Valores de referência


Objectivos:

- identificar as principais variáveis estudadas na PECP
- caracterizar as suas respostas normais durante a PECP
- discutir a selecção dos valores de referência

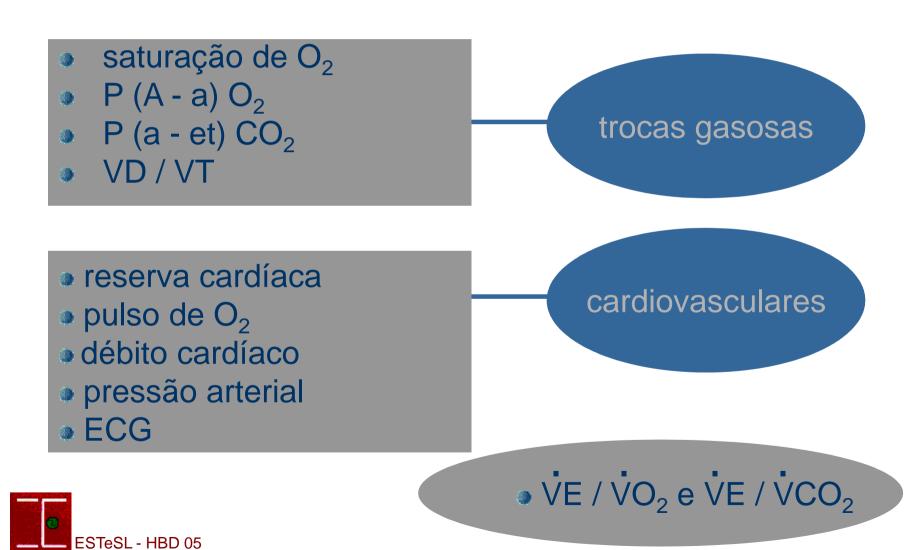
Variáveis estudadas

http://www.cpxtesting.com/cpxframe.html

Variáveis estudadas (2)

potência máxima

- VO₂ máx
- VCO₂
- limiar anaeróbio
- RQ e RER
- volume minuto
- reserva ventilatória
- VT/IC
- curvas débito-volume


metabólicas

ventilatórias

equilibrio ácido-base

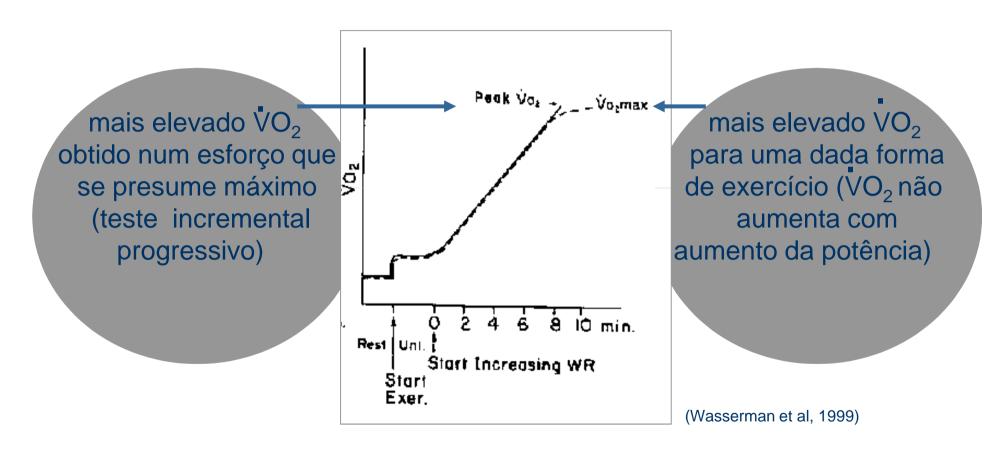
Variáveis estudadas (3)

Parâmetros Metabólicos

- ●VO₂ máx
- •VCO₂
- limiar anaeróbio
- RQ e RER

Consumo de O₂

$$\dot{V}O_2 \sim \dot{V}E \times (F_1O_2 - F_EO_2)$$

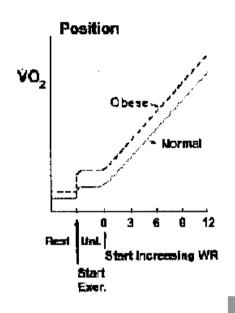

indivíduo normal (repouso) ≈ 250 ml/min ou ≈ 3.5 ml/min/Kg
 (exercício) até ≈ 4000 ml/min

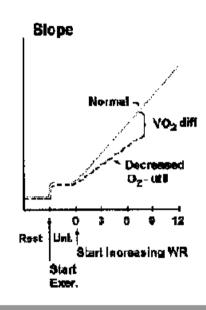
atleta ≈ até 20 vezes o seu valor basal

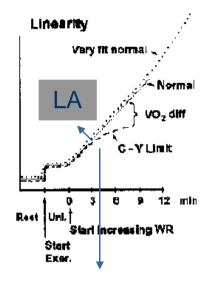
(ATS / ACCP, 2003)

Consumo Máximo de O₂

Relação VO₂ - Potência


normalmente o \dot{VO}_2 aumenta quase linearmente com o aumento da potência.


- descreve relação do VO₂ com a quantidade de trabalho externo realizado
- reflecte a eficácia da conversão de energia química em trabalho mecânico e a eficácia mecânica do sistema músculo-esquelético


(ATS / ACCP, 2003)

Relação $\Delta \dot{VO}_2$ - $\Delta Potência(2)$

Limitação no Aporte O₂

- UVO_{2 MAX}

- inclinação ↓

aumento exagerado da potência para a capacidade do indivíduo

Relação ΔVO_2 - $\Delta Potência$

valor normal (teste incremental progressivo)

8,5 -11 ml/min/watt (ATS/ACCP, 2003)

independente do sexo, idade ou altura

Produção de CO₂ e Limiar Anaeróbio

Produção de Co₂

$$\dot{V} CO_2 \cong \dot{V}E \times (F_E CO_2 - 0.0003)$$

vco₂

0.20 l/min (indiv. saudável em repouso)

> 4 l/min (indiv. treinado exerc. máx.)

Limiar Anaeróbio

AT (LA)

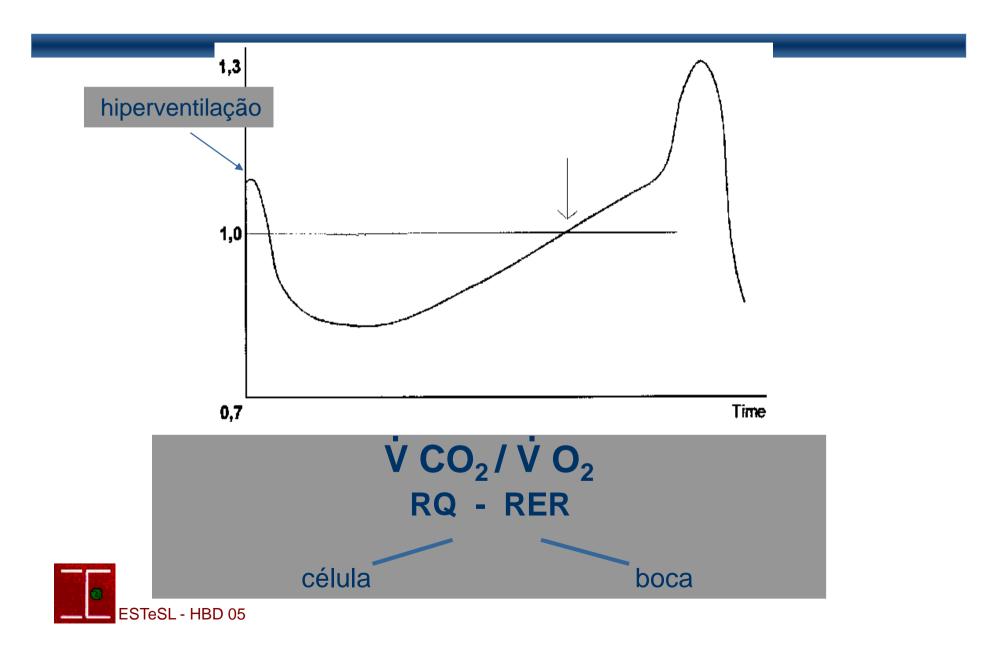
indicador do "início" da acidose metabólica causada predominantemente pelo aumento da concentração do lactato arterial durante o exercício

(ATS / ACCP, 2003)

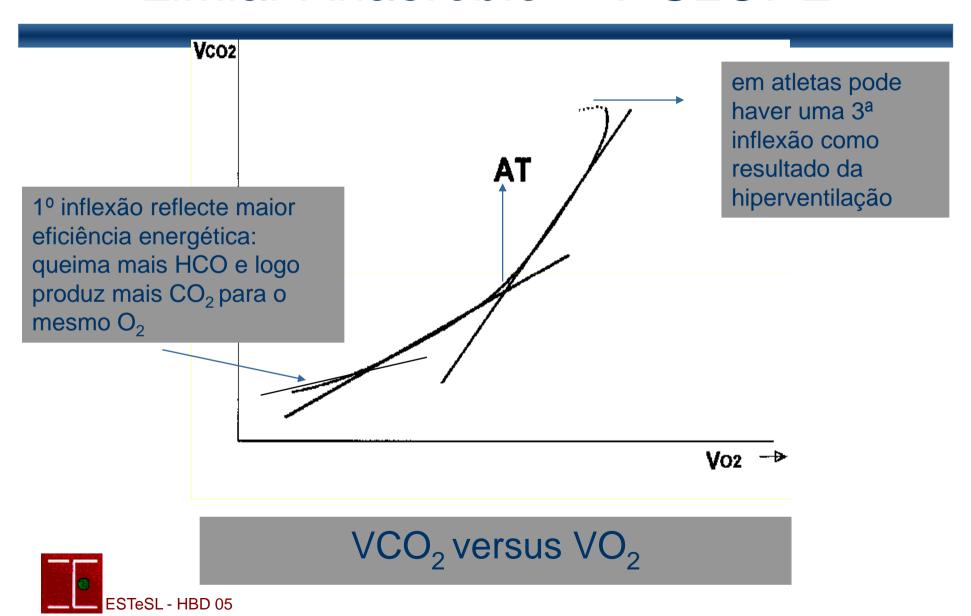
Exprime-se em unidades de consumo de O₂ ou como percentagem do VO₂ máx previsto

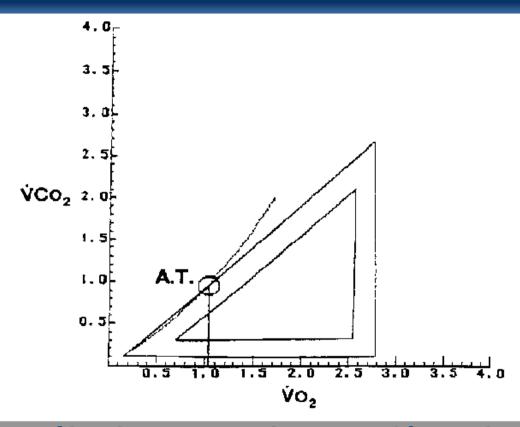
(Wasserman et al., 1999)

Limiar Anaeróbio


Gold Standard: determinação directa do lactato (método invasivo)

Base das determinações não invasivas :


- produção de CO₂ aumenta com tamponamento do lactato pelo bicarbonato.
- análise dos padrões de VO₂, VCO₂ e VE
 V-SLOPE (mais popular)


RER

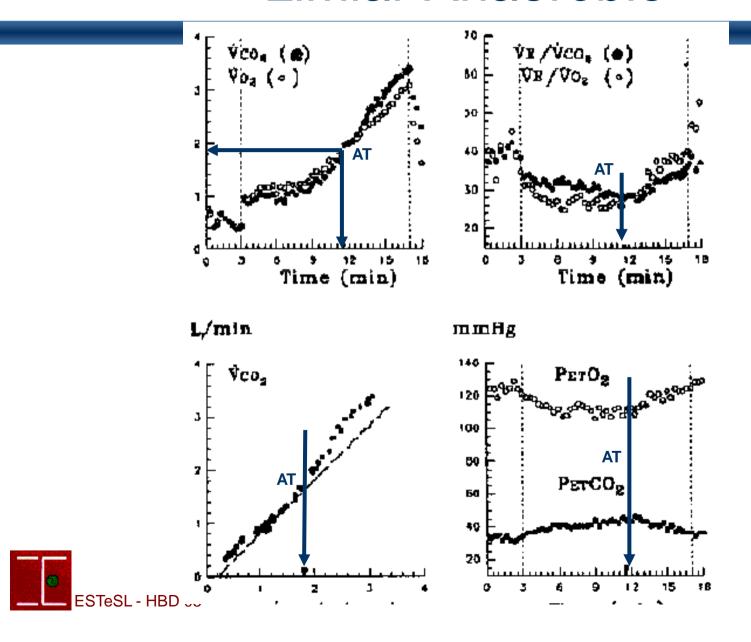
Limiar Anaeróbio – V-SLOPE

Limiar Anaeróbio – V-SLOPE Modificada

- permite cálculo manual com triângulo isósceles
- não influenciado pela ventilação

Equivalentes Ventilatórios

exprimem a ventilação necessária ao consumo / eliminação de 1 litro de O₂ / CO₂


Limiar Anaeróbio – Equivalentes Ventilatórios

VE/VO₂, VE/VCO₂

- VE, VO₂ e VCO₂ ↑ linearmente até exercício abaixo do LA
- acima do LA, $VCO_2 \cap mais que VO_2 (V-SLOPE)$
- no início: VE acompanha VCO₂ (tampon. isocápnico)
 (mas ↑ em relação ao VO₂)
- com ↑ da potência VE ↑ mais que VCO₂
 (↑ VE / VCO₂, ↓ PaCO₂ e PETCO₂)

Limiar Anaeróbio

Limiar Anaeróbio – valores normais

- 50 a 60 % do VO₂ máx previsto
- 40 80% (grande variação da normalidade)
- inferior a 40 % possível limitação cardíaca, pulmonar, ou outra alteração no aporte ou utilização de O₂

(ATS / ACCP, 2003)

Parâmetros Ventilatórios

- volume minuto
- reserva ventilatória
- VT/IC
- curvas débito-volume

Parâmetros Ventilatórios

- •aumenta para manter pressões arteriais de O₂ e CO₂
- •inicialmente por aumento do VC (à custa de VRE e

- contribuição para a inspiração seguinte
- aumento do comprimento dos músculos inspiratórios
- volume pulmonar mobilizado permanece na porção linear da curva pressão -

volume

Parâmetros Ventilatórios

volume corrente e capacidade inspiratória

VT/IC

(Wasserman et al. 1999)

- VT (exercício) raramente excede 75% da CPT (basal)
- FR (normal no pico do exercício): < 60/min</p>

(ATS / ACCP, 2003)

Volume minuto - indivíduo normal

exercício leve e moderado

VE ↑ linearmente com ↑ do trabalho (↑ do VO2)

níveis elevados de exercício (>60% VO₂ MÁX)

necessária a via anaeróbia láctica

↑ VE acompanha o ↑ do VCO2

Volume-minuto (VE)

normal: 5 a 10 L/min

exercício: > 100 L/min (indivíduo normal)

> 200 L/min (atleta)

Capacidade Ventilatória

Máxima Ventilação Voluntária (MVV)

•directo:

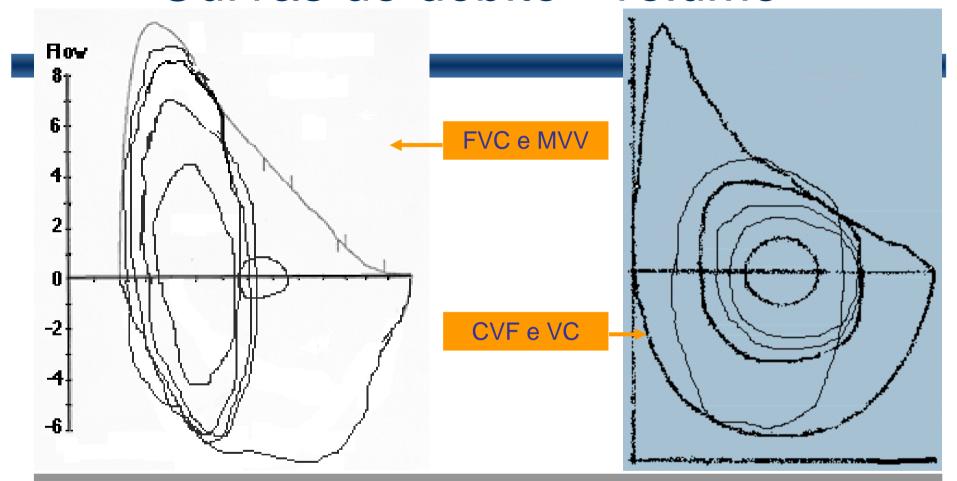
MVV (L/min) = MVV em 12 s x 5

•indirecto:

 $MVV (L/min) = FEV1 \times 40$

Reserva Ventilatória (BR)

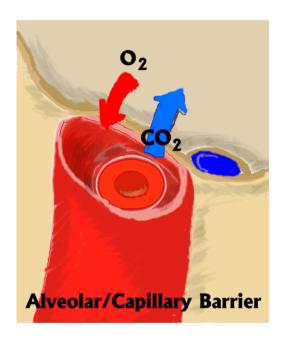
• (VE_{MÁX} / MVV) × 100


(ind. normal até ~ 50%; lim. inferior da normalidade - 15%)

MVV – VEmax (normal > 11L/min)

(ATS / ACCP, 2003)

Curvas de débito - volume



MVV pode sobrevalorizar a capacidade ventilatória:

- esforço breve de grande intensidade e impossível de ser sustido
- padrão ventilatório provavelmente diferente do adoptado durante o exercício (e também diferente padrão de activação muscular)

Trocas gasosas

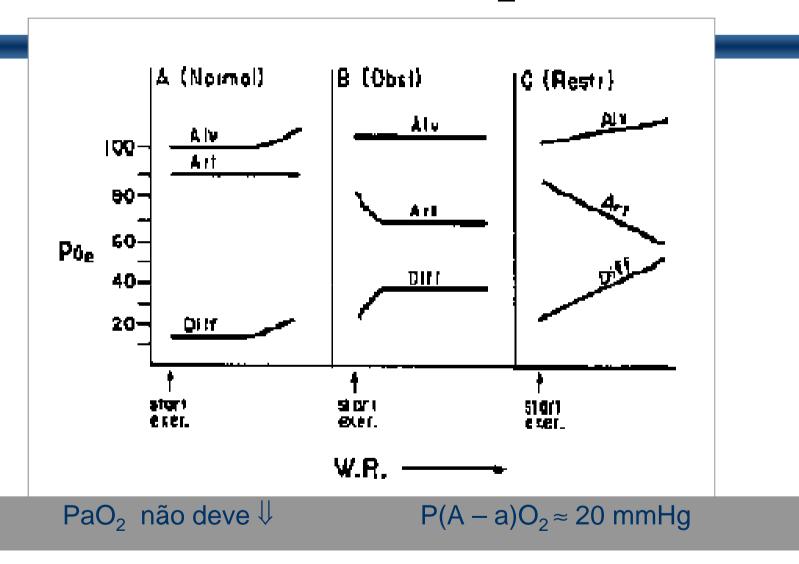
- P(A-a)O₂
- VD / VT
- PaO₂
- PaCO₂
- P(a ET)CO₂
- VE/VO₂ e VE/VCO₂

Gradiente Alvéolo-arterial de O₂

$$P(A-a)O_2$$

 medida da eficiência das trocas gasosas do alvéolo para o capilar pulmonar

 mede a diferença entre a PO₂ alveolar ideal e a PO₂ arterial


$P(A-a)O_2$

- valor normal (repouso): ~ 6 mmHg (inf. a 10 mmHg)
- valor normal durante exercício (máx): ~ 20 mmHg
- Limite da normalidade: ~ 35 mmHg
- Cálculo

$$P(A-a)O_2 = (PIO_2 - PaCO_2 / R) - PaO_2$$

$P(A-a)O_2$

VD / VT

a partir da PaCO₂ e Peco₂

$$VD / VT = (PaCO_2 - PECO_2) / PaCO_2$$

(subtrair o espaço morto da peça bucal: 30 – 110 ml)

PECO₂: P do gás alveolar e do espaço morto expirado (mmHg)

Espaço Morto

(EQUAÇÃO BOHR)

$$VD(L) = VT(L) \times (PaCO_2 - PECO_2) - VDm (L)$$

$$PaCO_2$$

$$PECO2 = VCO2(L/min) X (PB - 47 mmHg)$$

$$VE (L/min)$$

→ PaCO₂ E NÃO PETCO₂ (ATS / ACCP, 2003)

VD/VT - resposta ao exercício

podem provocar modificação da VD/VT:

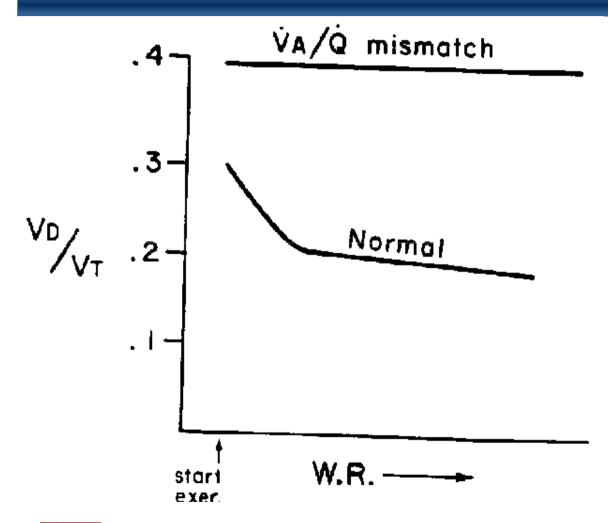
- aumento VT
- Broncodilatação induzida pelo exercício → aumento do

volume vias aéreas intrapulmonares (tb de condução)

agravamento ligeiro das V/Q – aumenta VD/VT

tendem a aumentar VD / VT prevalece aumento do volume corrente:

VD / VT diminui



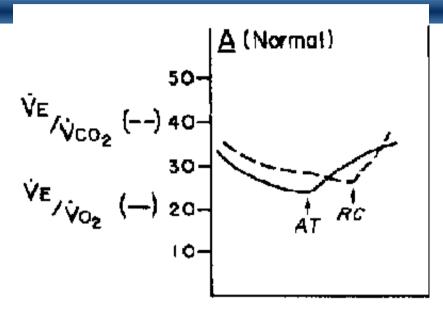
VD/VT - resposta ao TECP

valor normal em repouso - 0.30 a 0.40

- valor normal no pico exercício:
- jovens = < 0.20
- adultos < 40 A = < 0.28
- adultos > 40 A = < 0.30

VD/VT

Adapt. Wasserman et al, 1999

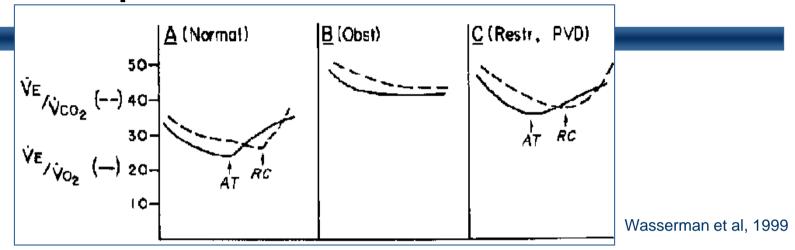


VD/VT - limitações

 não é sensível nem específica para as doenças pulmonares (deve ser interpretada cuidadosamente)

 muito afectada pelo padrão ventilatório (assim deve ser também considerado o volume de espaço morto (valor absoluto)

Equivalentes Ventilatórios

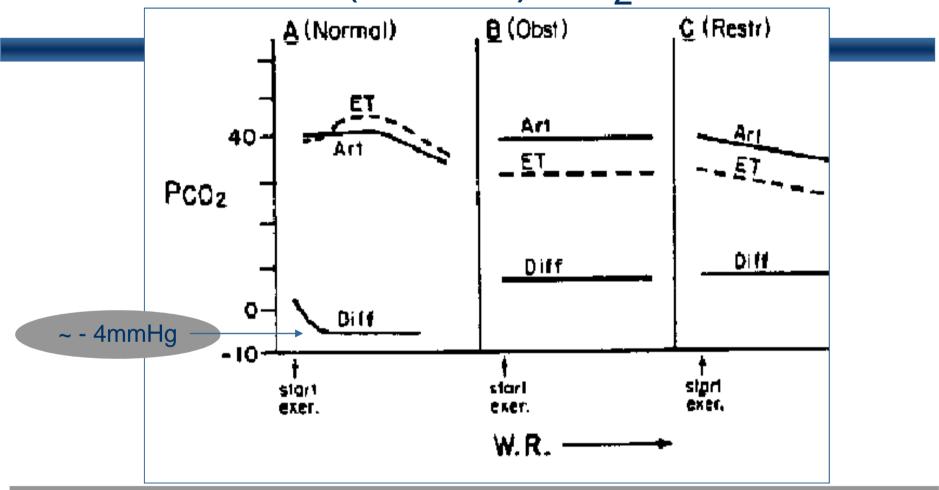

Adapt. Wasserman et al, 1999

valor normal no nadir

- VE / VCO₂ 26 a 30 (lim. normal: 34) (ATS/ACCP, 2003)
- VE / VO₂ 22 27

Equivalentes Ventilatórios

→ VE / VO₂, VE / VCO₂ - avaliação não invasiva V/Q


nadir VE / VCO₂ – estima alterações V/Q

AT: VE / VO₂ , VE / VCO₂ ↑ – hiperventilação ou ↑ espaço morto (V/Q)

♦ medir PaCO₂

$P(a - ET)CO_2$

P(a – ET)CO $_2$: espaço morto alvéolos ventilados e não perfundidos \implies [CO $_2$] \bigvee PETCO $_2$ < PaCO $_2$)

Equilíbrio Ácido-base

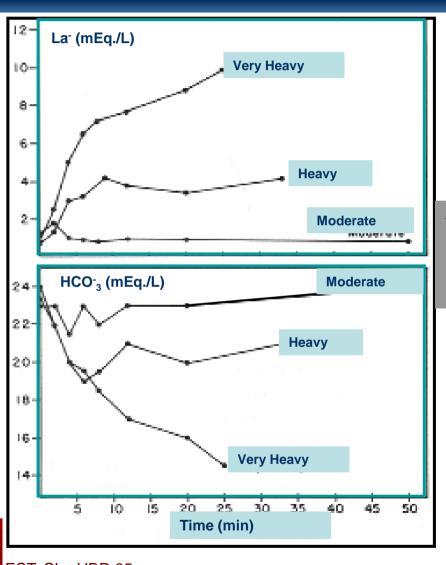
lactato em repouso < 1 mmol/l

ácido láctico: CH3CHOHCOOH

exercício pesado: acidose metabólica intensa

Upper de la participa de la

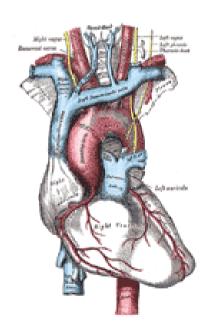
↓ HCO₃⁻ e ↑ lactacto (mmol/l)


fim do teste: 6 (<u>+</u> 2) e 4 (<u>+</u> 2,5)

idosos

2 min rec.: 8,4 (+ 2,5)

Aumento do lactato e diminuição do bicarbonato


variação quantitativamente semelhante mas em sentido oposto

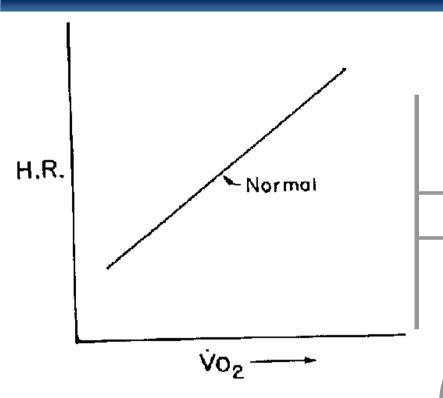
Wasserman et al., 1999

_____e

ESTeSL - HBD 05

Parâmetros Cardiovasculares

- frequência e reserva cardíaca
- pulso de O₂
- débito cardíaco
- pressão arterial


Frequência Cardíaca

- relação quase linear com VO₂
- atingir FCmáx (prevista) indicador de esforço máximo (ou quase) e portanto de VO₂máx.
- parar o teste por se verificar uma FC igual à teórica NÃO é recomendado

 variação de 10 a 15 bpm verificada em grupo com a mesma idade

Relação entre FC e VO₂

adapt. Wasserman et al., 1999

normal:

relação quase linear

-início – por vezes não linear

- potência – quase linear

inclinação é função do volume sistólico

•maior VS - menor FC

•menor VS - maior FC

Frequência Cardíaca estimada

mais usados:

• 220 - idade

parece subestimar FCmáx em idosos

● 210 – (idade x 0.65)

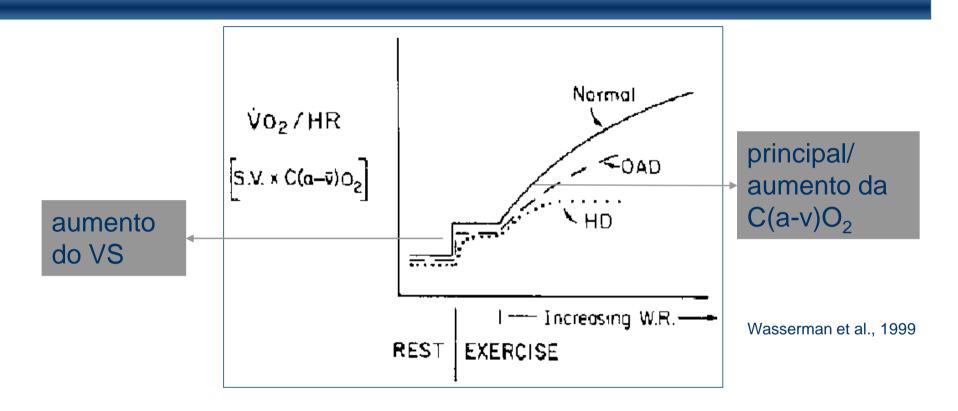
valores semelhantes até aos 40 anos

(ATS/ACCP, 2033)

Reserva Cardíaca:

- Diferença entre a frequência cardíaca máxima prevista e a frequência máxima no exercício
- Expressão do potencial aumento da FC no fim de um teste de exercício máximo

valores normais:


FC máx > 90% referência (idade)

RC < 15 bpm

(ATS/ACCP, 2003)

Pulso de 0_2 (VO₂/HR)

• valor normal: > 80 % (ATS/ACCP, 2003)

Pulso de O₂

VO₂/FC= volume sistólico x C(a - v) O₂

 estima volume sistólico (extracção normal de O₂) (controverso)

> extracção máxima de O₂ em ind. normais: ~ 75% do conteúdo arterial

Débito Cardíaco (Q)

- melhor índice da performance cardíaca no exercício

VO₂ e Q variam linearmente (indivíduos saudáveis)

Q - Método de Fick indirecto

Q (I/min) = VCO_2 (mI/min) / $C(v - a)CO_2$ (mI CO_2 /I sangue)

- PaCO₂ (não estimar por PeτCO₂)
- PvCO₂ rebreathing CO₂
- CO₂ > PACO₂ (**7 15%**) (ref: PETCO₂)
- 1 a 2 vezes vol. corrente (1 − 3 L)
- CO₂ equilíbrio entre saco e alvéolo
- $[CO_2] \equiv capilar pulmonar$
- PvCO₂ estimada pela curva dissoc. Hb (Wasserman et al, 1999)

VO_2 medido e $C(a - v)O_2$ estimado

Princípio de Fick

- utiliza VO₂
- pressuposto: C(a v)O₂ aumento linear
 (15 ml/dl)

(Wasserman et al, 1999)

Pressão Arterial


Pressão arterial

- Sistólica aumenta com a potência
- Diastólica aumento inferior ou quase nulo

• valores normais: < 220 / 90 (ATS/ACCP, 2003)

Resposta normal

Normal changes from rest (A), after three minutes' exercise (B), and after six minutes' exercise (C). Note the upsloping ST segments

Depressão do ponto J (máxima no pico do exercício) logo
ST em rampa ascendente

BMJ, 2002

Valores de referência

SELECTED REFERENCE VALUES FOR MAXIMAL INCREMENTAL EXERCISE TEST

Variable	Equations*	SEE
Work rate, kpm/min	20.4 (ht) - 8.74(age) - 288(sex) - 1909	216
Vo ₂ , L/min	0.046(ht) - 0.021(age) - 0.62(sex) - 4.31	0.458
HR, beats/min	202 - 0.72(age)	10.3
O ₂ pulse, ml/beat	0.28(ht) - 3.3(sex) - 26.7	2,8
ÝE, L/min	26.3(VC) 34	23.1
AT, L/min (Vo ₂)	0.024(ht) - 0.0074(age) - 2.43	0.316

Definition of abbreviations: HR = Heart rate; SEE = standard error of estimate; \dot{V}_E = minute ventilation; \dot{V}_{O_2} = oxygen uptake. Adapted by permission from Reference 427.

^{*} Sex, male, 0; female, 1; age, years; height (ht), centimeters.

Valores de referência

SELECTED REFERENCE VALUES FOR MAXIMAL INCREMENTAL CYCLE EXERCISE TEST

Variables	Equations*	
Vo ₂ , ml/min, male	W × [50.75 - 0.372 (A)]	
Vo ₂ , ml/min, female	$(W + 43) \times [22.78 - 0.17 (A)]$	
HR, beats/min	$210 \times 0.65 (A)^{\dagger}$	
O ₂ pulse, ml/beat	Predicted Vo₂max/predicted HRmax	
VE/MVV, %		
AT, L/min (Vo ₂)	> 40% Vo ₂ pred	

Definition of abbreviations: AT = Anaerobic threshold; HR = heart rate; \dot{V}_E = minute ventilation; $\dot{V}o_2$ = oxygen uptake.

Data from References 235, 533, and 210.

* Age (A): years; height (H): centimeters; weight (W), kilograms.

Predicted weight men: $0.79 \times H - 60.7$. Predicted weight women: $0.65 \times H - 42.8$. When actual weight > predicted, the predicted weight should be used in the equations. Wasserman and colleagues introduced new corrections factors (3, 210), which have not yet been published in peer reviewed journals.

Valores de Referência

VO₂ Peak

sobrecarga ponderal – aumentar o VO₂ Peak previsto em 6 ml/min por kg de peso acima <u>do previsto</u> para o sujeito se for usado um cicloergómetro

peso previsto:

homens: $W = .79 \times H - 60.7$

mulheres: $W = .65 \times H - 42.8$

treadmill – multiplicar VO₂ Peak previsto por 1.11

Valores Normais

SUGGESTED GUIDELINES FOR NORMAL MAXIMUM CARDIOPULMONARY EXERCISE VARIABLES DURING CYCLE ERGOMETRY TESTING IN ADULTS.

Vo, Responses

Vo₂max >84% predicted

>40% Vo₂max predicted Anaerobic threshold

>8.29 mL/min/W ΔVo√ΔWR.

Heart Response

>80% O. pulse

Heart rate reserve (beats/min) <15 bpm \leq 220/90

Blood pressure

Breathing Responses

Breathing reserve Vemax/MVV >75%: MVV-Vemax >11 L

V_T/V_C < 55

Frequency (breaths/min) < 60 brpm

Pulmonary Gas Exchange (Peak Values)

VENCO, at anaerobic threshold ≤ 34 Vo/Vt < 0.28

P(a-et)co. ≤ 0

>80 mm Ha Pao <35 mmHg $P(A-a)O_{2}$

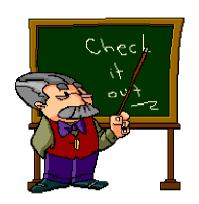
Data from multiple sources

SUGGESTED NORMAL GUIDELINES FOR INTERPRETATION OF CARDIOPULMONARY EXERCISE TESTING RESULTS*

Variables	Criteria of Normality	
Vo₂max or Vo₂peak	> 84% predicted	
Anaerobic threshold	> 40% Vo₂max predicted; wide range of normal (40-80%)	
Heart rate (HR)	HRmax > 90% age predicted ♠	
Heart rate reserve (HRR)	HRR < 15 beats/min	
Blood pressure	< 220/90	
O ₂ pulse (Vo ₂ /HR)	> 80%	
Ventilatory reserve (VR)	$MVV - \dot{V}_{E}max$: > 11 L or $\dot{V}_{E}max/MVV \times 100$: < 85%.	
,	Wide normal range: 72 ± 15%	
Respiratory frequency (fR)	< 60 breaths/min	
VE/Vco, (at AT)	< 34	
VD/VT	< 0.28; < 0.30 for age > 40 years	
Pa _O ,	> 80 mm Hg	
P(A-a)O ₂	< 35 mm Hg	

^{*} Maximum or peak cardiopulmonary responses except for anaerobic threshold and VE/Vco2 at AT. ATS / AARC, 2003

$\Delta VO_2/\Delta WR$


- adultos 10.3 ml/min/W (teste incremental progressivo de 6 12 min)
 SD 1.0 ml/min/W
- limite inferior da normalidade 8.6 ml/min/W

Impossível concluir com base nas respostas individuais

Importante apreciar a evolução durante o teste

Questionar a adequação dos valores de referência

