
Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações
e de Computadores

Relatório Final do Projecto de Mestrado

BAM Framework for OMS using Open Source
Technologies

João Pereira

Dissertação para obtenção do grau de Mestre em Engenharia Informática e de
Computadores

Orientadores:
Carlos Gonçalves
Tiago Esperança

Presidente de Júri:
Manuel Barata

Arguente:
Luís Morgado

Vogais:
Carlos Gonçalves
Tiago Esperança

November 29, 2010

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações
e de Computadores

Relatório Final do Projecto de Mestrado

BAM Framework for OMS using Open Source
Technologies

João Pereira

Dissertação para obtenção do grau de Mestre em Engenharia Informática e de
Computadores

Orientador:
Carlos Gonçalves:______________________

Co-Orientador:
Tiago Esperança:______________________

Presidente de Júri:
Manuel Barata:_______________________

Arguente:
Luís Morgado:________________________

November 29, 2010

Acknoledgments

First of all to my family, thanks for being there when i needed you and for the unconditional
support throughout my academic life. As such this project is dedicated to them.

I wish to express my gratitude to the project mentors, Carlos Gonçalves and Tiago Esperança,
for all the help and advices that allowed me to complete this project.

Finally to all my friends and others that crossed my academic life and contributed to its success.

ii

Resumo

No início da década de 90, as empresas começaram a sentir a necessidade de melhorar o acesso à
informação das suas actividades para auxiliar na tomada de decisões. Desta forma, no mundo da
informática, emergiu o sector Business Intelligence (BI) composto inicialmente por data ware-
housing e ferramentas de geração de relatórios. Ao longo dos anos o conceito de BI evoluiu de
acordo com as necessidades empresariais, tornando a análise das actividades e do desempenho
das organizações em aspectos críticos na gestão das mesmas.

A área de BI abrange diversos sectores, sendo o de geração de relatórios e o de análise de dados
aqueles que melhor preenchem os requisitos pretendidos no controlo de acesso à informação do
negócio e respectivos processos. Actualmente o tempo e a informação são vantagens competitivas
e por esse mesmo motivo as empresas estão cada vez mais preocupadas com o facto de o aumento
do volume de informação estar a tornar-se insustentável na medida que o tempo necessário para
processar a informação é cada vez maior. Por esta razão muitas empresas de software, tais como
Microsoft, IBM e Oracle estão numa luta por um lugar neste mercado de BI em expansão.

Para que as empresas possam ser competitivas, a sua capacidade de previsão e resposta às
necessidades de mercado em tempo real é requisito principal, em detrimento da existência ape-
nas de uma reacção a uma necessidade que peca por tardia. Os produtos de BI têm fama de
trabalharem apenas com dados históricos armazenados, o que faz com que as empresas não se
possam basear nessas soluções quando o requisito de alguns negócios é de tempo quase real. A
latência introduzida por um data warehouse é demasiada para que o desempenho seja aceitável.
Desta forma, surge a tecnologia Business Activity Monitoring (BAM) que fornece análise de
dados e alertas em tempo quase real sobre os processos do negócio, utilizando fontes de dados
como Web Services, filas de mensagens, etc.

O conceito de BAM surgiu em Julho de 2001 pela organização Gartner, sendo uma extensão
orientada a eventos da área de BI. O BAM define-se pelo acesso em tempo real aos indicadores
de desempenho de negócios com o intuito de aumentar a velocidade e eficácia dos processos de
negócio. As soluções BAM estão a tornar-se cada vez mais comuns e sofisticadas.

iv

Abstract

In the early 1990s enterprises began to feel the necessity to have better access to information
for decision making, through visibility at all times into activities at all levels of business. For
this matter emerged the discipline Business Intelligence (BI) composed by data warehousing and
reporting tools. A developer had to extract business data, transform it into structured data and
load it into a data warehouse for reporting and analysis.

Through the years BI evolved according to the companies needs. Activities analysis and moni-
toring business performance turned to be critical aspects in the company management.

Nowadays BI covers areas like data warehousing, data integration technologies, query, report-
ing, and analysis tools which fulfil the requirements of better and controlled access to business
information and processes. Today almost every sector of commerce is event-driven. Time and
information are competitive advantage and due to that fact, managers of event-driven enterprises
are becoming increasingly stressed as time necessary to process data is increasing and simultane-
ously the information amount becomes unbearable. For this reason many software heavyweights,
such as Microsoft, IBM and Oracle, have joined the struggle for a piece of the BI expanding
market.

Staying ahead of the competition requires the ability to predict and respond to trends in the
market in real-time, rather than react. BI products have the reputation of working only with
historical data gathered from data warehouses. To be able to catch business activities issues
before or right after they occur companies can’t rely only on traditional BI systems. The latency
introduced by moving data into a data warehouse is too high to be able to respond in real-time.
BAM technologies can provide real-time business analysis and alerts on information from sources
like Web services, message queues, etc.

The Business Activity Monitoring (BAM) concept emerges in July 2001 by Gartner enterprise,
and it is an event-driven extension of BI. BAM defines the concept of providing real-time access
to critical business performance indicators to improve the speed and effectiveness of business
operations. BAM solutions are becoming increasingly more common and sophisticated.

vi

Contents

Acknoledgments ii

Resumo iv

Abstract vi

Introduction x

1 Business Activity Monitoring 2
1.1 The Concept . 2
1.2 Why Business Activity Monitoring? . 5
1.3 Monitoring . 5

1.3.1 Complex Event Processing . 6
1.3.2 Choosing the Messaging Protocol . 8
1.3.3 Real-Time Data Storage . 8

1.4 Analysing . 11
1.4.1 Constraints . 12

1.5 Reporting . 12
1.5.1 Dashboards . 13
1.5.2 Alerting . 17

1.6 Doing it . 18
1.7 Planning . 18
1.8 State of the Art . 18
1.9 Summary . 19

2 Pre-Requisites and Studying Platforms 22
2.1 The Order Management System . 22

2.1.1 JBoss Application Server . 22
2.1.2 JBoss Enterprise Service Bus . 23
2.1.3 JBoss Messaging . 23
2.1.4 JBoss Business Process Management . 24

viii

ix

2.1.5 Oracle Database Management System . 24
2.1.6 Finding Connection Points . 25
2.1.7 JMS Notifications . 28

2.2 Architecture and Platforms . 32
2.2.1 Complex Event Processing Platforms . 32
2.2.2 Presentation using Dashboards . 43
2.2.3 Application Business Integration . 48
2.2.4 Real-Time Data Storage . 50

2.3 Summary . 53

3 Prototype Development 54
3.1 Development . 55

3.1.1 The Architecture . 55
3.1.2 The Foundations . 56
3.1.3 The Event Engine . 56
3.1.4 The User Console . 59
3.1.5 Data Storage . 66

3.2 Summary . 71

Conclusions 72

Acronyms 74

References 76

List of Figures 82

List of Tables 84

List of Listings 85

A Use Cases 88

B Sequence Diagrams 94

C Project Planning Maps 98

Introduction

This project aims to develop a completely open source oriented BAM solution, which is targeted
to run over an Order Management System (OMS). The targeted OMS framework was developed
by Xpand IT and is focused on a typical services company. This project was developed on an
internship between Xpand IT Solutions and ISEL (Instituto Superior de Engenharia de Lisboa)
under the master’s degree project at ISEL.

At the beginning, BAM concept research and technological comparisons have been performed,
in order to determine the solution main modules and the chosen open source tools, frameworks
and technologies, for later BAM solution development. When necessary, performance tests were
conducted as well. System requirements have been target of a careful analysis, characterised
by the definition of use cases, robustness and sequence diagrams to ease communication, so the
entropy was reduced.

This project report is divided in three main sections; the first one studies this particular dis-
cipline of business intelligence exploring the BAM concept, analysing its current adequacy to
enterprise needs and to technology evolution; the second one presents some of the choices made
on architectural and technological aspects, as well as, the project development and plan; the
third one presents the prototype developed.

x

Chapter 1

Business Activity Monitoring

1.1 The Concept

The Business Activity Monitoring (BAM) concept was created by the organisation Gartner
Research[1] and consists on providing an enterprise solution primarily intended to provide as
possible as real-time insight into daily business activities, detecting events, filtering them and
triggering business process management solutions in order to react instantly.

BAM stands for a class of applications that observe the behaviour of business activities and
provide ways to monitor heterogeneous business applications, aggregated data, provide alerts
and measures relevant business metrics called Key Performance Indicator (KPI). This allows a
quick and effective analysis and presentation of near real-time information about activities within
the organisation. BAM provides visibility into business processes and event-context correlations
extremely quickly, providing accurate information about the status and results of various opera-
tions, processes, and transactions. The near real-time monitoring of operational processes is often
accepted as the key benefit of BAM against conventional Business Intelligence. A basic BAM
system can be represented by the diagram in Figure 1.1. This analytical insight helps enterprises
to react, to make better informed business decisions and quickly address problematic areas by
helping to identify operational inefficiencies, predicting potential problems and improving busi-
ness operations performance. Most of the decisions and actions taken using BAM are reactive
in nature, which means that the user acts after a business situation has occurred. However,
using predictive BI techniques in conjunction with BAM makes it possible to detect patterns
in business operations and predict business issues before they occur (e.g. fraudulent behaviour)
and allow risk preventing measures to be taken (e.g. cancelling a credit card). Therefore and
additionally to monitoring, BAM systems should be able to send automatic alerts that can be
used to notify decision makers about changes in the business scenarios that may require an action.

2

1.1. The Concept 3

Figure 1.1: The basic BAM solution; reads events from enterprise applications but doesn’t interfere
with the communication between them. Activity Monitors use the events to measure the
status which is displayed in a dashboard. Basic BAM uses single events to trigger rules
that notify situations that might affect business.

BAM applies operational business intelligence and application integration technologies to au-
tomated processes to continually refine them, based on feedback that comes directly from knowl-
edge of operational events. Events must be captured and processed with minimum latency and
therefore, BAM is tightly integrated with its operations sources and optimised for event process-
ing and correlating event information with historical or contextual information.

BAM exposes the visibility requirements of the end-to-end business process. The various roles
within the business interact with the business process as well as the data requirements for the
interactions.

BAM solutions can also integrate with online analytical processing (OLAP) and data mining
tools to provide monitoring over analysed information, for example if a data mining tool reports
fraudulent accounts to a BAM tool, it will probably freeze the accounts and alert interested
business users. This behaviour allows BAM to make not only in-line analysis but also off-line
ones. As shown in Figure 1.2 a data warehouse may serve as a historical source for a BAM
system. BAM systems don’t replace data warehousing. A data warehouse (DW) is a place to
accumulate and aggregate data, typically for historical analysis. A data warehouse generally
contains permanent data storage.

4 Chapter 1. Business Activity Monitoring

Figure 1.2: Integration of BI and business transactions; Data warehouse as a source for BAM solutions;
Source: [2, Colin White]

BAM is often associated more with technology infrastructure than business needs and therefore
is often called as operational dashboard builder. A dashboard means more to a business manager
than an acronym such as BAM. Dashboards will be approached later in this chapter.

BAM systems exhibit the following characteristics [3]:

• Event-driven processing model that captures events in real time from multiple sources
- message queues, Web services, databases, context-oriented sources, etc.

• Perform dynamic modelling by integrating event and contextual information on the
fly, producing a stream of analytical models automatically updated on subsequent event or
contextual information, for decision support.

• Robust business rules that let users define alerts, targets, and thresholds for key per-
formance indicators. Generated decisions are transformed to actions which are captured
within the BAM system and forwarded directly into the underlying systems for execution.
Responds are integrated again in to the decision in order to improve the decision support.

• A business-user-friendly dashboard that updates metrics as events flow through the
system and puts metrics into context by relating them to business objectives.

• A collaborative work flow system that lets one set up formal and informal processes
by which users can collaborate and discuss results.

1.2. Why Business Activity Monitoring? 5

This challenges BAM ability to combine high-speed streaming of events with the dynamic mod-
elling needed for event-context correlation.

1.2 Why Business Activity Monitoring?

Enterprises constantly look for ways to increase speed and flexibility inside changing markets.
Nowadays, to make it possible, they use a variety of business applications, such as customer
relationship management (CRM), SAP, and order management, purchased or developed inter-
nally over time. These applications frequently use distinct technologies (from COBOL to C#
and Java) and run on heterogeneous operating systems. Nevertheless, a typical enterprise deals
frequently with processes that are still based on human actions, such as phone calls, faxes, and
e-mail. It turns to be increasingly difficult to see the activity in the business in such a complex
environment. This way, it is crucial for enterprises to make quick decisions so they can take
advantage of market opportunities or to prevent losses.

BAM can be used as a monitoring solution by IT managers who want to cut the cost of their
distributed IT environments while improving service quality. BAM provides management over-
sight of the business critical operations improving its effectiveness through access to real-time
KPI’s. BAM offers a vertical view of high-performance workstations and applications and leads
to ways to optimise performance.

Having BAM concept and utility clarified it is possible to identify the concept main compo-
nents as monitoring events, analysing data fetched, and reporting it.

1.3 Monitoring

Monitoring involves tracking and collecting information about a business operation, which is
easier if the operation being tracked has been implemented in terms of the business activities
required to carry out the operation. This granularity enables the monitoring task to track just
those activities that are important from a performance perspective. Otherwise the monitoring
task can only track the complete business operation.

One might have the impression that speeding up a data warehouse to a near real-time pro-
cessing can be called, BAM solution, which is completely wrong. To better understand it there
are some characteristics [4] that makes that impossible such as:

• DW can not be rule driven like BAM due to data reloading and cube processing which
makes it impossible to dynamically change business rules.

• Data modification in the DW even if its made in near-real time, no one in the enterprise

6 Chapter 1. Business Activity Monitoring

will notice that it happened. In BAM analytics run on the events as they are generated.

• Loading large volumes of data into a DW can delay events and reports can only be
produced after that. This makes it impossible to warn users about trend exception when
they occur. In BAM, exception are acted upon as soon as they occur due to its highly
optimised latency between event and action.

• BAM handles information of specific business processes. DW deals with a wider
range.

1.3.1 Complex Event Processing

In many applications, events have to be inferred in real-time and the applications simply can’t
wait for the raw data to be persisted and analysed. BAM is an event driven solution which is
capable of monitoring a stream of business transactions and providing near real-time reports and
dashboards. Business processes can be quite complex since they require communication between
multiple entities. This style of analytical processing involves what is known as stream analytical
because the events are analysed as they flow across networks and systems. Stream analytics
requires massive amounts of event processing and the underlying technology that supports it is
known as complex event processing (CEP). Thus CEP is an essential component of BAM solu-
tions.

Applications have implemented functionality for inferring events from existing data for a very
long time. The current data avalanche is rapidly changing design-detection algorithms and the
need for a configurable and flexible way to detect patterns is becoming more vital. CEP is a
parallel running platform that analyses and processes events. It deals with the event-driven be-
haviour and so the task of processing multiple events. According to Colin White[5], president of
BI Research, the trend of the market is to move towards real-time processing involving stream
analytics and complex event processing for certain types of businesses. CEP solutions can anal-
yse and correlate multiple streams of current data looking for patterns and trends. Therefore
BAM turns into an intermediate layer between business users and information flow in business
processes as shown in Figure 1.3. CEP engine deals with heterogeneous events from various
sources. Events such as messages passing between applications over a middleware system, or
transactions detected within a database log file, are processed by the CEP engine. Additionally
new events can be inferred by correlating data from multiple primary data sources. From a
black box view, a CEP engine takes as input a set of streams, database files, or Java Message
Service (JMS) objects like queues and topics (to be explained in the next chapter), and as output
produces event pattern matching and event correlations. The CEP platform can gather events
fired by business process and also by external sources.

There are quite a few CEP products in the market nowadays and there is a need to filter

1.3. Monitoring 7

Figure 1.3: BAM as a layer over CEP engine

them in order to choose the most effective. When filtering this products it should be taken into
consideration the following characteristics [6]:

• The performance of the non-core parts of the system (e.g. plugins) can also have a
dramatic impact on the overall performance of a CEP application.

• Infrastructure fit: refers to how well the platform fits into their overall environment since
some are difficult to connect with (e.g. Can the CEP engine connect to the messaging bus?).

• Application development model: refers to the ease of actually building and deploying
applications in the system.

• Total cost of ownership (TCO): Even the platform itself must be deployed and managed
which as a cost.

1.3.1.1 Patterns

Live analytic applications allow to filter, aggregate, slice and dice data and require the ability to
run dynamic queries against the real-time data being managed in the CEP engine.

The event modeller defines event patterns for a BAM view on the basis of an Event Process-
ing Language (EPL). Nowadays there is no standard EPL [7] although there are some solutions
for event processing languages. Some provide SQL-like (Structured Query Language) language,
rule-based EPL or abstract user interface that generate code like Java. Patterns are found when
events occur regularly and always lead to the same result. After a pattern has occurred CEP is
able to create a complex event which may trigger proactive reactions. The CEP engine queries

8 Chapter 1. Business Activity Monitoring

the event streams according to predefined CEP patterns for detecting relevant complex events.
These events are displayed within a BAM component in dashboard views.

1.3.2 Choosing the Messaging Protocol

Choosing the correct messaging protocol for the data stream, can fully leverage the high-
performance of a CEP engine. There are some criteria to be considered [8] when choosing a
messaging bus for the CEP needs, such as:

• Maximum Latency: is a concern for developing a successful application, even if the total
average latency of a system is low, if it periodically experiences lags, that can cause a
serious competitive disadvantage.

• Managing network bandwidth efficiently.

• Quality of Service (QoS) for data streams: QoS refers to a service contract made
between two entities. Each data stream has unique attributes or characteristics.

• Number of messages per second: Use cases requiring CEP typically demand that
messages be transmitted at a rate of 1,000/second to 500,000/sec. This is understandable
considering that the CEP application typically integrates with edge devices or, as in trading
applications, process a large amount of market data from multiple exchanges to make trend
inferences.

• Supporting heterogeneous platforms: data streams from different sources. While dif-
ferent data streams can use their own messaging protocols, this poses a needless headache
for application architects by having multiple technology stacks for their data stream imple-
mentations. Messaging protocols like JMS are supported on major enterprise platforms.

"The end result of an ideal event-processing application is that the business logic is a clean,
declarative expression of the relevant business rules, yielding a system infinitely easier to de-
velop, maintain, and extend."
[6, Chait, D.]

1.3.3 Real-Time Data Storage

Although BAM is not a data warehouse, for most solutions, storing event data, even if temporary,
is important because it allows further operations and analysis. Storing data is also useful for the
application that is using the data, which exits for any reason, when comes back the current state
of the data can be retrieved where it left off.

1.3. Monitoring 9

A message between applications is related to a set of structured data that might contain in-
formation about a customer’s order as shown in Table 1.1. The fields Customer, URL and Item
are often related with characteristics that specify the data and by which data is analysed. One
might want to know how many orders came through each website, whereas another might want
to know how many specific items were ordered. The fields Quantity and Price contain the actual
measurements. There can be more than one value in the same time interval sample. This is re-
ferred to as multi-dimensional data which are several columns of data related by a common time
stamp. This nature influences how data will be analysed and visualised. Monitoring applications

Timestamp Customer URL Item Quantity Price
10:34 Mary www.a.com Perfume 1 25
10:35 John www.b.com Toy 2 5

Table 1.1: Set of Structured Data

are typically developed with independent processes running on one or more systems [9]. Each
process performs a separate task such as communication to other systems, I/O, control logic, etc.
For matters of analysis each data row must be stored long enough to compare with previous data.

For this reason much real-time data arrives asynchronously meaning that events from differ-
ent sources may occur at different times and out of sync. Real-time data comes in and is gone
by the time the next record shows up, therefore all real-time data must contain a time stamp
which is necessary to perform trend analysis.

In this situation the system needs to maintain a current value table (CVT) [10]. The CVT
is seen as the central data component and can be used in a wide range of applications. It allows
other applications to share a common data repository and have direct access to the most up-
to-date values used between them. This way, operations such as alarm detection, user interface
updates, process logic, etc. are handled by separate processes that share the same data reposi-
tory. The CVT is indexed by the columns of data that uniquely identify the source of the data,
providing access to the latest data for each uniquely indexed record. However it is a complex task
to maintain a CVT with a relational database. It would be necessary to perform continuously a
query against a large set of data to determine the latest value for a specific source. Instead, the
ability to create a CVT in memory is an important feature for the BAM solution.

Like the CVT the in-memory cache of prior data must be indexed as well. This system pro-
vides efficient access to a time window of stored data which is essential for performing analytics
on the data in real-time such as detection of anomalous changes in trends.

Real-time data from most BAM sources is also in row form so it seems natural to archive data in
a relational database and this way reporting tools to process historical data and generate reports

10 Chapter 1. Business Activity Monitoring

Figure 1.4: Placing the CVT in context of the application functional blocks. Source: [9]

could be used.

The display can obtain historical data from the database making SQL queries or metrics

Figure 1.5: Real-time data flow with relational database as persistent storage

from the data server memory which can also be archived. The memory cache provides efficient
access to short-term data for analysis while database provides access to long-term data for longer
periods. The problem is that it is not possible to perform time-range aggregations on historical
data in a way that is portable across all databases. Because of it memory cache is used to per-
form such functions. Another way to do this is to use OLAP database that perform time-series
functions in-memory, although OLAP queries syntax and cube configuration is quite complicated.

A Relational Database Management System (RDBMS) offers too many features, is often to
large and complicated. On the other hand the file system is underpowered since it offers few
or none of the integrity, concurrency and performance advantages of a database system. There
are some products specialised in time-series data storage. Usually these products are able to
compress a set of data into a single record if that data is unchanged. Average is a possibility

1.4. Analysing 11

to reduce the amount of memory required to store large amounts of such data. Since data in
BAM is typically multi-dimensional this introduces a complexity that makes them difficult to
use. Multiple related measures need to be stored together in a single record. For this reason
only few products have penetration in BAM solution. Some open source products are: Round
Robin Database (RRDtool) and Oracle Berkeley DB Java Edition.

1.4 Analysing

The analysis step processes the information collected by the monitoring step and creates a set
of metrics documenting the performance of the monitored business activities [2]. This analy-
sis can be done synchronously and in-line as a part of the main business process, or it can be
done outside of the main business process. In this later case, the monitoring information can be
routed to an asynchronous in-line process for analysis, or it may be stored in a message queue
or persistent store for off-line analysis by an independent application. The method chosen will
depend on how the timing requirements of the business application.

Analysis and visualisation of real-time data are highly related. There are commonly used an-
alytic functions like averages, totals, least-square trends, etc. Much useful information can be
extracted using simple aggregations and breakdowns. A CEP engine is a valid solution in various
situations, such as fraudulent detection. Nevertheless, a large percentage of BAM requirements
are a tight coupling between analytical functions and graphical objects.

Functions provide aggregation and breakdown of multi-dimensional data and graphical objects
directly display the results of the analysis. This analysis functions are, therefore, transforma-
tions of tabular data from one form to another. This way, imagining a store’s sales data in a
table structure, is possible to transform that table into a smaller one breaking down the number
of sales of each day by each employee and fed it into a bar chart to display the information.
The advantage is to eliminate or reduce programming involved in a sophisticated BAM solution
development. Common patterns are: aggregation and breakdown - group by, and baseline trends
[10]:

• The group by operates on data tables, aggregating the data in different ways (sum, count,
average, min, max, etc) and showing them directly on a bar chart, table, area graph, map,
etc.

• The baseline trends in BAM applications refer to typical range where data should stay
within for the current time period as shown in Figure 1.6. Data being monitored may
fluctuate wildly in circles up and down during the day, for example the number of sales in
a Web site will vary according to the time of the day and day of the week. Alerts can be

12 Chapter 1. Business Activity Monitoring

configured to fire only when the value of interest goes outside the baseline.

Figure 1.6: Baseline trend; source: http://chartsgraphs.wordpress.com/2009/01/19/GEORGE-
WILLS-INTERPRETATION-OF-GLOBAL-TEMPERATURE-TRENDS-IS-FLAWED/

1.4.1 Constraints

A BAM tool should allow monitoring for a certain policy which is not to be violated by the
business policy of the enterprise. For example if there is a sale made and the business process
automatically order a restock event, there are some situations that might not be necessary to
order like if there is still a high stock of that particular stock. In that case, would be interesting
to enforce the constraint: Don’t order stock until it reaches a critical level. The BAM tool
interface should provide changing constraints on the fly. This way complexity is kept out of the
business processes. [11]

1.5 Reporting

The reporting step involves displaying or delivering the results of the analysis step. This may be
done via a portal, dashboard, e-mail, instant message, etc, depending on the preference of the
user and how quickly the information must be acted upon. In some situations, an alert may also
be sent to highlight important information.

1.5. Reporting 13

The decision and action step that follows the report of information is the most critical aspect.
This enables business users to optimise business operations and align those operations with the
goals of the company.

In Business Activity Monitoring the process being monitored is typically abstract. Dashboard
is definitely the most common way for actual BAM solutions to report its monitoring results
such as work flow statuses, work flow instances, KPI’s results, etc. Business processes are often
represented as "bubbles" with an icon inside indicating the process nature. The state of each
process can be represented as values, colours or icons on the bubbles. Values representing the
time difference between process steps can be shown on the lines connecting the bubbles.

A display used for visualisation of real-time data must be designed with reference to data el-
ements whose values will be shown in the objects on the display. In order for a display to be
used multiple times against different sources of data, those references need to be parametrised.
When a user selects an object in a display or a row in a data table, there needs to be an easily
configurable way for the system to pick up the value of the parameter driving the selected object,
and pass that value down as a parameter to a new display invoked in the drill down process.
How to develop parametrised displays that can be reused in a variety of situations is the real
problem.

1.5.1 Dashboards

One of the most common features of BAM solutions is the presentation of information on dash-
boards that contain KPIs used to provide assurance, visibility of activity and performance.

In the 90s, companies began experimenting ways to give business users direct and timely ac-
cess to critical information. This way emerged the idea of having a "Business Cockpit" to drive
the organisation, inspired in automobile and aircraft data presentation panels. However, in con-
trast to an aircraft or automobile, each organisation has a set of KPIs that differs significantly
between organisation. At the dawn of the 21st century, BI converged with performance manage-
ment to create the performance dashboard.

For enterprises, dashboards characteristics and benefits turned out to be pretty clear [3, 12]:

• Interactive and visually appealing: Should allow the user to drill down and get to
details, root causes, etc, in an ergonomically and visually effective screen view with different
aspects of the business.

• Status on the fly: provides a clear real time picture of the strategic objectives and what

14 Chapter 1. Business Activity Monitoring

is required in all areas to achieve their goals. Provides alerts in addition to the visual
presentation on the dashboard (e.g. sound, e-mails, pagers) to draw immediate attention.

• Refine strategy: performance dashboards are like a steering wheel to make a series of
minor corrections. Information being presented must be entirely accurate in order to gain
full user confidence. It should allow each user to customise the metrics.

• Increase visibility: access to daily operations and performance by collecting relevant
data and forecasting trends based on past activity. Must display critical KPIs for effective
decision. The dashboard should allow users to review the historical trend for a given KPI.

• Consistent View: consolidate and integrate business information using common defini-
tions, rules, and metrics. This creates a single version of business information.

• Self-service: easy access to information, eliminating reliance on the IT department to
create custom reports.

• Team work: encourage different departments to work more closely together. Collabora-
tion would serve as a communication platform.

• Motivation: compels people to work harder out of pride and desire for extra pay when
compensation is tied to performance results.

• Personalised: The dashboard presentation should be specific to the user’s domain of
responsibility, privileges and data restrictions.

• Intuitive: Users learning curve should be a short one.

• Secured and Scalable through the Web: should be accessed through the Web with
data encryption to secure sensitive data transmission. A huge number of users may access
the dashboard without crashing the system or causing it to slow down below predefined
value.

Dashboards are more than just a screen populated with fancy performance graphics: it is a
business information system designed to help organisations optimise performance and achieve
strategic objectives. It provides a set of indicators about the state of a process (e.g. stock, sales
by shop in a specific month, energy consumption, etc) as shown in 1.7. An enterprise dashboard
is designed to be an effective tool to be deployed at various levels within the organisation. It
should not be used as a simple report distribution tool for KPI viewing as it can also warn the
user in an effective manner when any relevant metrics are out of acceptable boundaries, fulfilling
BAM’s alerting purpose.

In general, organisations use dashboards to monitor operational processes. Some authors use

1.5. Reporting 15

Figure 1.7: A museum Dashboard example; source: http://dashboard.imamuseum.org/

the term scoreboard when referring to the displays used to monitor tactical and strategic goals.
Dashboards and scorecards are visual display mechanisms within a performance management
system that convey critical performance information at a glance.

Dashboards allow supervisors to monitor performance through events generated by key busi-
ness processes displayed visually, using charts or simple graphs.

A scoreboard informs if the company is meeting its objectives in terms of vision and strat-
egy providing information like for example, call center sales or frequency of potential customer
contacts. Scorecards usually display monthly summarised data for business executives who track
strategic and longterm objectives, or daily and weekly snapshots of data for managers who need
to chart the progress of their group or project toward achieving goals.
The combination of both information presentation forms, as in Figure 1.8, generates a full and
controlled understanding about the enterprise performance.

1.5.1.1 Layers

A performance dashboard is a multilayered application. Each successive layer provides additional
details, that enable users to understand the problem better and identify what is necessary to
address it [3]:

16 Chapter 1. Business Activity Monitoring

Figure 1.8: Performance dashboard example; source:http://www.enterprise-
dashboard.com/2006/10/11/communications-performance-management-dashboard-
using-xcelsius-to-display-internal-communication-kpis/

• The Summarised Graphical layer provides a summarised view, usually graphical, of
the status of key performance metrics and exception conditions. Exceptions can be in the
form of alerts that pop up on users screens or arrive via e-mail, etc.

• The Multidimensional layer provides the data behind the graphical metrics and alerts.
Users navigate the data by dimensions and hierarchies (applying slice and dice, drill down
or up, etc).

• The Reporting layer lets users view detailed reports and transaction records. The
resulting report or query results are then usually displayed in a separate window, which
users can view or print.

1.5.1.2 Types of Dashboards

There are three types of performance dashboards [3, 12]:

1. Operational or performance dashboards monitor core operational processes and de-
liver detailed summarised information. Operational dashboards emphasise monitoring more
than analysis and management

1.5. Reporting 17

2. Tactical or divisional dashboards monitor departmental processes and projects that
are of interest to a limited group of people of the organisation. Operational managers
require dashboards that display performance metrics and numbers specific to their areas
of responsibility. Usually updated daily or weekly with both detailed and summary data.
They tend to emphasis analysis more than monitoring or management.

3. Strategic dashboards monitor the execution of strategic objectives. The goal is to get
the entire organisation marching in the same direction. Usually updated weekly or monthly,
provides a powerful tool to communicate strategy, gain visibility into operations, and iden-
tify the key drivers of performance and business value. Emphasise management more than
monitoring and analysis.

Although BAM systems usually use a dashboard to present data, BAM is distinct from the
dashboards used by BI. BI dashboards refresh at predetermined intervals by polling or querying
databases, whereas BAM events are processed in real-time or near real-time and are pushed to
the dashboard. Depending on the refresh interval selected, BAM and BI dashboards can be
similar or vary widely.

1.5.1.3 Portal vs Dashboard

A dashboard is an application with a collection of metrics, results, alerts, etc, whereas a portal
is a collection of applications presented together within a personalised framework [12]. For this
reason a dashboard could be part of a portal, but not the other way around. A dashboard is
intended for the presentation of organisational and individual performance metrics and alerts.
On the other hand, a portal might have a dashboard, an events calendar, weather conditions,
etc.

1.5.2 Alerting

There is no doubt that alerts are an integral component in BAM concept since they turn a
graphical information monitor into an organisational manager. A rules engine helps in manag-
ing the business rules allowing the dashboard to drive the alerts by monitoring the rules. Using
complex rules helps in grouping them such that if any is triggered, the same action is instantiated.

For a better KPI monitoring, different users have distinct domain responsibility and each one
of them may create personal alerts whose the recipient would be that specific individual only.
The ability to create public and critical alerts may be confined to a restricted user base like an
administrator who may select any number of users and user groups to receive a given alert.

18 Chapter 1. Business Activity Monitoring

The effectiveness of a rules engine in a BAM is all about its flexibility on adapting to any
possible business rule required.

1.6 Doing it

By cooperating with the department or even with the management level of an enterprise, the
event modeller has to define which BAM view has to be monitored in a dashboard, which alerts
are to send to which roles in the organisation and which actions shall be started automatically
if a certain event pattern occurs.

Once BAM views are defined, the event modeller looks for the needed event types and their
instances flowing through the event streams of an enterprise or which are saved in an event store.
It is a highly skilled task to define the right event patterns for a near real-time BAM view. The
event modeller has to know the different event sources like messages types in the Java Message
Service (JMS) which are realised on the basis of a publish/subscribe model. He has to install
the corresponding event adapters delivered by the CEP platform as "out of the box" pre-built
features or the event modeller has to care about the development of not yet existing adapters.

1.7 Planning

This project plan was divided into three different stages. The first stage refers to the BAM
concept investigation, state of the art definition and platform analysis. According to planned
this first stage took approximately 2 months to accomplish.

The planned second stage is about performing a system requirement analysis and defining the
solution foundations, such as base concepts and choosing the supporting technologies, based on
the solution’s needs. This stage took about three weeks to accomplish, one more than planned.

The third and last stage of development took about three months to accomplish and has to
do with the prototype development process.

The project planning chart is available in appendix for consult.

1.8 State of the Art

Ever since the BAM concept was born in 2001, enterprises have gradually shown interest in this
kind of BI solutions. Organisations are beginning to understand that they need to use these
technologies in order to control their business processes in a more effective way.

1.9. Summary 19

In this late years a few other concepts like CEP and business dashboards also emerged, which
made BAM solutions a viable scenario in enterprise business management. Processing event
streams requires robust and quick solutions. For this reason many analysts claim that BAM and
CEP are complementary.

Existing BAM solution functionalities consist mainly of monitoring user-defined KPI’s and visu-
alisation of real-time colourful graphs. These functionalities use a first generation BAM environ-
ment which is not enough for a real-time enterprise. These solutions work mainly on reporting
instead of analysing, and in addiction only past activities are considered without predictions for
future business.

Today vendors have some interesting CEP, and dashboard tools. Some have also tried for a
complete set of tools to build BAM solutions. Progress Software’s Apama[13], Coral8 (merged
with Aleri)[14], Oracle[15] and SL - real time visibility[16], are some of the vendors that have
a complete set of tools for BAM solutions development. However, these are not open source
platforms, which is the main interest of this project. As an open source CEP solution, there are
only few available like Esper and Pion, nevertheless Esper Tech is widely referred as "the only
open source option"[17].

Today’s CEP platforms in the market are mainly divided into three Event Pattern Language
(EPL) different approaches [7]:

• SQL-like (e.g. Coral8, Esper, Oracle, StreamBase);
• Rule-based (e.g. AMiT from IBM or Reaction RuleML from RuleML);
• Abstract user interface and java-like code generation (e.g. Tibco, AptSoft).

On dashboard domains, performance dashboards are one of the latest creations of business in-
telligence. These solutions were built on years of technical and process innovation. Performance
dashboards meet the users requirements when speaking of enterprise business intelligence and
more specifically by reporting and analysis capabilities within an intuitive dashboard interface.
Performance dashboards aim to deliver access to the right data to the right people at the right
time to optimise decisions and accelerate results. There are some interesting dashboard builders
in the market such as Progress Software, Coral8 but once again, they are not open source so-
lutions. Pentaho also shows a powerful dashboards platform, however it integrates Pentaho’s
enterprise edition which is commercial.

1.9 Summary

After studying the Business Activity Monitoring concept, as a conclusion it is possible to say
that a BAM solution provides three main features to the user:

20 Chapter 1. Business Activity Monitoring

• Near real-time business key performance indicators monitoring. This feature usually uses
charts to display the information in order to ease its reading by the user. This is called the
dashboard component of a BAM solution.

• Alerts to notify target users about important previously defined business behaviours. This
may require event correlation and pattern detection. Notification can be any way to alert
someone but in general is also email oriented. This is often called the alarmist component
of a BAM solution.

• Detailed report generation with system behaviour important information. Since we’re
dealing with a BAM solution and not a data warehouse one, it is not expected from to
deliver long reports. According to the BAM concept it is acceptable for it to deliver at
maximum the last 24 hours behaviour report.

Due to the fact that there are no free open source solutions in the market, there is no way to
compare directly the BAM prototype against other existing solutions. Nevertheless, this BAM
solution tends to implement main features that other BAM solutions provide.

Chapter 2

Pre-Requisites and Studying
Platforms

Before studying which are the best open-source platform available for the production of a BAM
solution, it is necessary to introduce the conditions on which the product will be running. This
BAM solution is targeted to run over a Order Management System (OMS). The targeted OMS
framework was developed by Xpand IT and is focused on a typical services company.
This chapter will describe the needs and requirements that the OMS has and which will influence
the platforms selection.

The studied platforms characteristics will also be described, as well as their advantages and
disadvantages and matched against each other in order to choose the platform to be later used
in the solution implementation.

2.1 The Order Management System

An OMS is a software system for order processing within an organisational business process which
empowers the coordination and execution of an order, given the priorities, error handling and
data transformation, measuring the results and informing the interested systems. The targeted
OMS uses jBPM, JBoss ESB, JBoss Messaging technologies and Oracle DBMS. Let’s start by
understanding the OMS’s supporting technologies with a general study for each one of them.

2.1.1 JBoss Application Server

JBoss Application Server (JBoss AS) is a free software/open-source Java EE-based application
server which makes it cross-platform. Its a Java EE certified platform for developing and de-
ploying enterprise Java applications, Web applications, and Portals.

22

2.1. The Order Management System 23

JBoss AS supports the addition of some Modules/Enterprise Applications with integration pur-
poses, including clustering, caching, and persistence. JBoss AS was developed by JBoss, now a
division of Red Hat.

For more information about JBoss AS please consult [18].

2.1.2 JBoss Enterprise Service Bus

The JBoss Enterprise Service Bus (JBoss ESB) project provides a lightweight standalone ESB
server. It can be used as a standalone server or it can be used to integrate several JBoss applica-
tion server. JBossESB is part of a Service Oriented Infrastructure (SOI). As shown in Figure 2.1,

Figure 2.1: JBoss ESB architecture
Source: JBoss at http://www.jboss.org/jbossesb/

JBoss ESB uses a flexible architecture based on Service Oriented Architecture (SOA) principles
such as loose-coupling and asynchronous message passing, emphasising an incremental approach
to adopting and deploying a SOI.

For more information about JBoss ESB please consult [19].

2.1.3 JBoss Messaging

JBoss Messaging is composed of several services working together to provide Java Message Service
(JMS) API level services to client applications. JBoss Messaging is JBoss’s JMS implementation

24 Chapter 2. Pre-Requisites and Studying Platforms

and therefore is a Message-Oriented-Middleware (MOM). JBoss Messaging only runs with Java
5 or later.

For more information about JBoss Messaging please consult [20].

2.1.4 JBoss Business Process Management

BPM deals with the management of business with the approach to increase the eficiency, fexibility
and technology integration of the business. Business processes describe the unique way of doing
business. Today they are seen as the most valuable asset of a corporation.[21]

Business process management (BPM) promotes a model-based approach to task definitions:
it encourages a top-down approach to service orchestration and requirements. Since the process
are defined by the businessmen this should ensure that they drive the business the way they
want. BPM attempts to improve processes continuously.

JBoss Business Process Management (jBPM) is a flexible, extensible framework for process lan-
guages. JBoss Process Definition Language (jPDL) is one process language that is built on top of
that common framework. It is a process language that expresses business processes graphically
in terms of tasks, wait states for asynchronous communication, timers, automated actions and
other components.

jPDL has minimal dependencies and can be used as easy as using a Java library. In addi-
tion, it can also be used in environments where extreme throughput is crucial by deploying it
on a Java Enterprise Edition (JEE) clustered application server. It can be configured with any
database and can be deployed on any application server.

Unlike Business Process Execution Language (BPEL), which is tightly coupled to Web Ser-
vices and Web services invocation (in BPEL, every activity has to be implemented as a Web
service), jBPM is more of a component framework, allowing direct invocations of the Java han-
dlers (similar to an ESB service execution pipeline).

For more information about JBoss jBPM please consult [22].

2.1.5 Oracle Database Management System

Oracle Database Management System (DBMS) is a database management system produced and
marketed by Oracle Corporation. Oracle offers the following editions:

• Enterprise Edition: Has no memory and no Central Processing Unit (CPU) limits. It
can use clustering with Oracle Real Application Clusters (RAC) software.

2.1. The Order Management System 25

• Standard Edition: Typically used for servers running from one to four CPUs. has no
memory limits, and can utilise clustering with Oracle RAC.

• Standard Edition One: Has some additional feature-restrictions. Oracle Corporation
markets it for use on systems with one or two CPUs. It has no memory limitations.

• Express Edition: To be distributed on Windows and Linux platforms. It uses a maximum
of 1GB of memory, is restricted to the use of a single CPU, and a maximum of 4 GB of
database size.

• Oracle Database Lite: intended for running on mobile devices. Oracle DBMS enter-
prise edition protects from server failure, site failure, and human error. It enables data
warehousing, online analytic processing, and data mining.

For more information about Oracle DBMS please consult [23].

2.1.6 Finding Connection Points

Through an OMS it is possible to decompose an order, allowing to automatically determine
the systems to be used, as shown in Figure 2.2, sending specific messages to each one and this
way controlling the assumed commitments. To be able to structure the BAM solution being

Figure 2.2: High level perspective of an Order Management System. Source: XPand-IT documenta-
tion. Submission - Receives the client request and produces the representation of one or
more actions taken by the client application. Validation - Guarantees the quality of data
being submitted. Decomposition - The request is transformed into smaller granularity
technical requests, which are going to be executed in the respective systems. Sequencing
– Orders the technical requests so the execution success is guaranteed, as well as the final
state coherence. Execution - Represents the technical request execution on the target
system. Triggers the execution state update as well as the conclusion notification to the
order source system.

developed and to define the essential requirements, that the technologies being concerned in the
development should fulfil, there are a few questions to be answered:

• Available connection points for event gathering and processing;

• Estimated event flow to define CEP engine minimum performance required.

26 Chapter 2. Pre-Requisites and Studying Platforms

2.1.6.1 Event Sources

Figure 2.3: OMS architecture. Source: XPand-IT documentation.

As shown in Figure 2.3, there is a clear connection point for event fetching which is the

2.1. The Order Management System 27

OMS Notifications Topic. There are other connection points that are not represented in the
architecture diagram such as JMS Notification Queues along with the order flow. Both produce
various types of events which are to be studied later in this report.

2.1.6.2 OMS Event Flow

In the OMS built by Xpand-IT, it is expected for the worst case performance that the event
flow generates around 100.000 events per day. For a normal behaviour, the expected are 10.000
events per day. This means that since a day has (60× 60) × 24 = 86400 seconds, there will be
approximately 100.000

86400 ≈ 1.16 events per second in the worst case.

28 Chapter 2. Pre-Requisites and Studying Platforms

2.1.7 JMS Notifications

The Java Message Service (JMS) defines the standard Enterprise Messaging also known as MOM
which is recognised as an essential tool for building enterprise applications. The JMS API
provides a powerful tool for enterprises by combining Java technology with enterprise messaging.
Enterprise messaging provides a reliable and flexible service for the asynchronous exchange of
critical business data and events within an enterprise. JMS provides two ways of asynchronous
messaging: Queues (point to point - PTP) and Topic (Publish/Subscribe Model - multiple
Senders and multiple Receivers). Table 2.1 presents a corresponding between point-to-point
model preferred interfaces and Publisher/Subscriber model preferred interfaces.

JMS Common Interfaces PTP Domain Interfaces Pub/Sub Domain Interfaces
ConnectionFactory QueueConnectionFactory TopicConnectionFactory
Connection QueueConnection TopicConnection
Destination Queue Topic
Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver TopicSubscriber

Table 2.1: Corresponding PTP interfaces with Publisher/Subcriber interfaces.

2.1.7.1 Point to Point

Point-to-point (PTP) systems are about working with queues of messages. When one process
needs to send a message to another process, PTP Messaging can be used. However, this may or
may not be a one-way relationship. The client to a Messaging system may only send messages,
only receive messages, or send and receive messages. At the same time, another client can also
send and/or receive messages. In the simplest case, one client is the Sender of the message and
the other client is the Receiver of the message.

To achieve this behaviour a message publisher acquires a reference to a JMS Queue and when
a message arrives, it persists in a Queue until either it times out, or until some receiver comes
along to retrieve the message (one-to-one).

2.1.7.2 Publishing and Subscribing

When thinking of a messaging system the wanted behaviour is an operation where a single pub-
lisher sends each message to multiple subscribers with a single method call. In JMS behaviour
there is a catch which is the existence of a messaging server, also known as JMS provider, between
the publisher and the subscriber as shown in picture 2.4. To achieve this behaviour a message
publisher acquires a reference to a JMS Topic or Queue on a server, and sends messages. When
a message arrives, the JMS Topic provider notifies all message consumers subscribed (one-to-
many). By contrast, in point-to-point messaging, a persistent message sits in a Queue until

2.1. The Order Management System 29

Figure 2.4: In JMS, publish/subscribe messaging uses a JMS-managed object called a Topic to
manage message flow from publishers to subscribers. Source: SUN Microsystems at
http://java.sun.com/developer/EJTechTips/2003/tt0415.html.

either it times out, or until some receiver comes along to retrieve the message (one-to-one). The
JMS provider (optionally) receives acknowledgement of the message receipt each time it sends
the message.

In JMS, messaging can be object-oriented, transactional, synchronous or asynchronous and in-
tegrated with underlying third-party products. A message may be sent to a message consumer
(QueueReceiver or TopicSubscriber) that is not running at the time the message is sent. The
JMS provider stores messages that can’t be delivered because the subscriber is unavailable. The
stored messages are delivered the next time the subscriber connects. This ensures delivery of all
messages published after the client subscribes to a Topic. A function that sends a message re-
turns as soon as the message is delivered and the message receipt can be acknowledged explicitly
or automatically.

According to specification [24] there might be latency in the system, meaning that the exact
messages seen by a subscriber may vary depending on how quickly a JMS provider propagates
the existence of a new subscriber and the length of time a provider retains messages in transit.
When a new subscriber is created, it may receive messages sent earlier because a provider may
still have them available.

Persistent messages in publish/subscribe messaging are provided by "durable subscriptions". A
durable subscription can be used to preserve messages published on a topic while the subscriber
is not active. At the cost of higher overhead, a subscriber can be made durable. A durable
subscription as an unique identity that is retained by JMS. Subsequent subscriber objects with
the same identity resume the subscription in the state it was left in by the prior subscriber. If
there is no active subscriber for a durable subscription, JMS retains the subscription’s messages
until they are received by the subscription or until they expire. The JMS provider stores mes-

30 Chapter 2. Pre-Requisites and Studying Platforms

sages that can’t be delivered to a subscriber because the subscriber is somehow unavailable. The
stored messages are delivered the next time the subscriber connects. This ensures delivery of all
messages published after the client subscribes to a Topic. This enables subscriber applications
to operate disconnected from the JMS provider for periods of time, and then reconnect to the
provider and process messages that were published during their absence.

Each JMS durable subscription is identified by a subscription name (sub-Name), which is de-
fined when the durable subscription is created. A JMS connection also has an associated client
identifier (clientID), which is used to associate a connection and its objects with the list of mes-
sages (on the durable subscription) that is maintained by the JMS provider for the client. The
sub-Name assigned to a durable subscription must be unique within a given client ID.

If a subscription isn’t durable, any messages published while the subscriber is down are never
delivered to the subscriber.

Clients that desire concurrent delivery can use multiple sessions. In effect, each session’s listener
thread runs concurrently. While a listener on one session is executing, a listener on another
session may also be executing. Note that JMS itself does not provide the facilities for concur-
rently processing a topic’s message set (the messages delivered to a single consumer). A client
could use a single consumer and implement all the multithreading logic needed to concurrently
process the messages; however, it is not possible to do this reliably, because JMS does not have
the transaction facilities needed to handle the concurrent transactions this would require. [25]

2.1.7.3 Message Types

A JMS Message is composed of three parts: Header, Properties and Body. JMS provides five
forms of message body each defined by a message interface:

• StreamMessage: a message whose body contains a stream of Java primitive values. It is
filled and read sequentially.

• MapMessage: contains a set of name-value pairs where names are Strings and values are
Java primitive types. The entries can be accessed sequentially by enumerator or randomly
by name.

• TextMessage: contains a java.lang.String.

• ObjectMessage: contains a Serializable Java object. If a collection of Java objects is
needed, one of the collection classes provided in JDK 1.2 can be used.

• BytesMessage: contains a stream of uninterpreted bytes. This message type is for literally
encoding a body to match an existing message format.

2.1. The Order Management System 31

Although JMS allows the use of message properties with byte messages, they are typically not
used, since the inclusion of properties may affect the format.

2.1.7.4 Sessions restrictions

According to the JMS specification [24], a session is designed for serial use by one thread at a
time. A JMS Session is a single threaded context for producing and consuming messages. Conse-
quently, if multiple threads simultaneously access a session or one of its consumers or producers
the resulting behaviour is undefined. In addition, if multiple asynchronous consumers exist on a
session, messages will be delivered to them in series and not in parallel. The only exception to
this occurs during the orderly shutdown of the session or its connection.

It is erroneous for a client to use a thread of control to attempt to synchronously receive a
message if there is already a client thread of control waiting to receive a message in the same
session.

If a client desires to have one thread producing messages while others consume them, the client
should use a separate session for its producing thread. Once a connection has been started, all
its sessions with a registered message listener are dedicated to the thread of control that delivers
messages to them.

To take advantage of multiple threads with JMS, use multiple sessions. A client may create
multiple sessions. Each session is an independent producer and consumer of messages. For Pub-
lisher/Subscriber, if two sessions each have a TopicSubscriber that subscribes to the same Topic,
each subscriber is given each message. Delivery to one subscriber does not block if the other gets
behind. On the other hand, JMS does not specify the semantics of concurrent QueueReceivers
for the same Queue; however, JMS does not prohibit a provider from supporting this. Therefore,
message delivery to multiple QueueReceivers will depend on the JMS provider’s implementation.
Applications that depend on delivery to multiple QueueReceivers are not portable.

2.1.7.5 QueueBrowsers

A client uses a QueueBrowser object to look at messages on a queue without removing them [26].
This might be usefull when we want to use existing queues in the target system and we don’t
want to consume those events, so the system keeps working as if nothing happened. Nevertheless,
there is an important catch, which is the fact that every time the client goes offline, all messages
that arrive are consumed by the target system’s queue listeners and the messages are forever
lost. In addiction there is no guarantees in the specification that the QueueBrowser listeners are
notified first than the system queue consumers, which might cause messages to be missed. Due
to all the solution is to create client dedicated queues and tell the target system to insert a copy
of event messages in this new queue.

32 Chapter 2. Pre-Requisites and Studying Platforms

2.2 Architecture and Platforms

The diagram shown on Figure 2.5 represents a high level architecture to support the BAM
solution to be developed. First of all, since JBoss AS is the application server being used in

Figure 2.5: The first BAM solution architecture

the OMS development and for a matter of coherence, it will be also the chosen AS for this
BAM solution. This architecture is based on all information searched and gathered on chapter
1. Through this architecture it is possible to identify the three main modules that constitute a
BAM solution and that require a deeper study. Those modules are: the event engine, which is
responsible for fetching events from the OMS sources, the web application presentation, using
dashboards and intuitive User Interface (UI), and finally the web application business integration,
which is responsible for all the application business behaviour.

2.2.1 Complex Event Processing Platforms

This section is about to explore the possible solutions for the project’s CEP component shown
in 2.6.

2.2. Architecture and Platforms 33

Figure 2.6: Solution’s CEP solution component architecture.

2.2.1.1 Esper Tech

Esper is an Event Stream Processing (ESP) and event correlation engine (CEP, Complex Event
Processing), available for Java as Esper, and for .NET as NEsper. Esper is designed to build
CEP and ESP applications. Esper is an open-source software.

Complex Event Processing, or CEP, is a technology to process events and discover complex
patterns among multiple streams of event data. ESP stands for Event Stream Processing and
deals with the task of processing multiple streams of event data with the goal of identifying the
meaningful events within those streams, and deriving meaningful information from them.

Esper and NEsper enable the development of applications that process large volumes of in-
coming messages or events. Esper and NEsper filter and analyze events in various ways, and
respond to conditions of interest in real-time.

Targeted to real-time Event Driven Architectures (EDA), Esper is capable of triggering cus-
tom actions written as Plain Old Java Objects (POJO) when event conditions occur among
event streams. It is designed for high-volume event correlation where millions of events coming
in would make it impossible to store them all to later query them using classical database archi-
tecture.

Esper’s POJO based programming model and core API enable an existing application to be
enriched with Event Stream Intelligence (in Figure 2.7) using some lightweight containers, object
oriented programming techniques and XML document management. Esper can be embeddable
into any Java process, JEE application server or Java-based Enterprise Service Bus.

The Esper engine has been developed to address the requirements of applications that ana-
lyze and react to events such as:

• Business process management and automation (process monitoring, BAM, re-

34 Chapter 2. Pre-Requisites and Studying Platforms

Figure 2.7: Esper’s event stream intelligence;
Source: http://www.espertech.com/products/esper.php

porting exceptions, operational intelligence);

• Finance (algorithmic trading, fraud detection, risk management);

• Network and application monitoring (intrusion detection, Service Level Agreement moni-
toring);

• Sensor network applications such as Radio Frequency Identification (RFID) reading, schedul-
ing and control of fabrication lines, air traffic, etc.

Esper Engine

Esper offers an event pattern language to specify expression-based event pattern matching. Un-
derlying the pattern matching engine is a state machine implementation. This method of event
processing matches expected sequences of presence or absence of events or combinations of events.
It includes time-based correlation of events.

Esper also offers event stream queries that address the event stream analysis requirements of
CEP applications. Event stream queries provide the windows, aggregation, joining and analysis
functions for use with streams of events. These queries follows the EPL syntax. EPL has been
designed for similarity with the SQL query language.

Esper provides a rich EPL which allows expressing rich event conditions, correlation, and joins
possibly over sliding time windows as shown in Figure 2.8, thus minimising the development
effort required to set up a system that can react to complex situations. It also includes pattern
semantics to express complex temporal causality among events.

A listener class, which is basically a POJO, will then be called by the engine when the EPL

2.2. Architecture and Platforms 35

condition is matched as events flow in. The EPL enables to express complex matching con-
ditions that include temporal windows, joining of different event streams, as well as filtering,
aggregation and sorting. Events can be represented as JavaBean classes, legacy Java classes,

Figure 2.8: Esper’s event stream processing and correlation;
Source: http://www.espertech.com/products/esper.php

XML document or java.util.Map, which promotes reuse of existing systems acting as messages
publishers.

Performance

According to Esper’s documentation [27], Esper exceeds over 500.000 event/s on a dual CPU
2GHz Intel based hardware, with engine latency below 3 microseconds average (below 10us with
more than 99% predictability) on a Volume-Weighted Average Price (VWAP) benchmark with
1000 statements registered in the system - this tops at 70 Mbit/s at 85% CPU usage. Esper also
demonstrates linear scalability from 100.000 to 500.000 event/s on this hardware, with consistent
results across different statements.

Other tests demonstrate equivalent performance results (straight through pro- cessing, match
all, match none, no statement registered, VWAP with time based window or length based win-
dows).

Tests on a laptop demonstrated about 5x time less performance - that is between 70 000 event/s
and 200 000 event/s.

36 Chapter 2. Pre-Requisites and Studying Platforms

Main Features

• Support for both the listener (push/subscription) API and the consumer (pull/receive) API
for querying results;

• JMS input and output adapter based on Spring JMS templates;

• Time windows - A time window is a moving window extending to the specified time interval
into the past based on the system time. Time windows allow to limit the number of events
considered by a query;

• Relational database access via SQL-query joins with event streams;

• Multithreaded sends of events into an engine.

Java - Known Limitations

Esper requires a Java Virtual Machine version 5.0 runtime, or above. Esper will not work with
JavaVM versions 1.4.2 or below.

Licence

Esper is open-source software available under the GNU General Public License (GPL).
"software are designed to take away your freedom to share and change it. By contrast, the

GNU General Public License is intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors com-
mit to using it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things". [28]

2.2.1.2 PION

Atomic Labs provide an open source Pion Platform community edition. It is a robust and config-
urable application for data analytics, including a server for data acquisition and transformation.
Pion is a real-time platform which enables both simple and complex event processing using
pipelines of interconnected plug-ins, called Reactors.

Pion’s building-blocks architecture allows to gather data from a wide variety of sources, filter out

2.2. Architecture and Platforms 37

the parts you don’t need, and then keep the useful information. Additionally, Pion allows you
to transform the data according to rules you specify, and you can store the data for compliance
purposes or later review. Some features are only available on Pion’s paid enterprise edition.

Main Features

Pion might be implemented in C++ but is not available for Java or .Net. Is allows integration
with Omniture (http://www.omniture.com/en/), Webtrends (http://www.webtrends.com/), Google
Analytics (http://www.google.com/analytics/) and Unica (http://www.unica.com/). Collects
information from relational databases (Oracle, DB2, MS-SQL, MySQL, Informix, Sybase, SQLite,
ODBC, etc). Pion pull’s in customer information from Enterprise Resource Planning (ERP) and
Customer Relationship Management (CRM) systems, connects to back end log files and provides
a merged stream of data from different sources. Pion is built to be used without requiring a great
amount of technical savvy. The application interface is browser-based, and uses drag-and-drop
items and menus.

To better understand Pion, it is necessary to define the concept of a Reactor. A Pion Reac-
tor performs a specific task. A Reactor can be thought of as atomic in the sense in that it is
the smallest unit of work. Reactors are the basic building blocks which are chained together to
accomplish tasks. There are three types of Reactors:

• Collection Reactors receive some sort of input (either through monitoring a data stream,
an application log, or from a script or another Reactor) and create Events when defined
criteria are met.

• Processing Reactors process and/or change Events. Processing Reactors may interact
with other systems, for example the SQL Reactor interacts with a SQL Database, such as
MySQL.

• Storage Reactors handle the output of one or more Processing Reactors. Depending on
the Storage Reactor, the processed Event may be stored in a database or log file, or it may
be sent to another application. Storage Reactors are needed whenever data needs to be
persisted for later use for reporting or record keeping. For web analytics to take place, a
Pion Workflow must always end with a Storage.

Licence

GNU AFFERO GENERAL PUBLIC LICENSE Version 3, 19 November 2007 "Developers that
use our General Public Licenses protect your rights with two steps: (1) assert copyright on the
software, and (2) offer you this License which gives you legal permission to copy, distribute
and/or modify the software". [29]

38 Chapter 2. Pre-Requisites and Studying Platforms

2.2.1.3 Esper Performance Tests

Esper is a good candidate to support CEP platform. It’s performance is obviously an important
aspect to consider as well. Although the performance results mentioned by Esper are more than
acceptable to satisfy the OMS event flow, Esper’s benchmark deals with socket channel and not
with a JMS messaging system, which, as mentioned before, is a potential way for communication
between the OMS and the BAM solution. Asynchronous communication such as this might drop
considerably the performance results. For this reason two performance tests were developed using
JMS. The test machine is an Intel Core 2Duo CPU 2.5GHz, 4094MB RAM and 6MB memory
cache. The first test developed uses a queue and the second uses a topic. Figure 2.9 represents the
performance test architecture. Since the JMS Session has the restriction of having a single thread
to handle the invocations to the listeners in the session, it is not recommended to block or delay
that thread. This way, when the delivering thread arrives the event process work is delivered
in the Esper engine. The Esper engine has an inner thread-pool which has been configured to
permit multi-thread usage (by default is a single-threaded), as shown in the Listing 2.1, reducing
threads execution delay. The Esper engine threads match the events received against 5 pattern
statements in order to know which listener to call.

2.2. Architecture and Platforms 39

Figure 2.9: Performance test architecture

// s e t t h r e a d i n g
c o n f i g . getEng ineDefau l t s () . getThreading ()

. setThreadPoolInbound (true) ;
c o n f i g . getEng ineDefau l t s () . getThreading ()

. setThreadPoolInboundNumThreads (2) ;

Listing 2.1: Tuning Esper engine thread-pool.

According to the performance chapter 14 section 14.2.3 in Esper’s documentation [27], it is rec-
ommended to process output events asynchronously and not block the Esper engine while an
output event is being processed by the listener. For this reason, Esper engine has also been
configured to allow multi-threaded output, so every time there is a match and the Esper engine
thread is about to process the output event, it delivers the work to a custom thread-pool (which
uses the Java ThreadPoolExecutor). By default the engine guarantees that it delivers a state-
ment’s result events to statement listeners in the order in which the result is generated. Esper’s
threading, concurrency and other operating characteristics will be deeply explored in the next
chapter.

The test results differ by tuning the Esper engine thread-pool and the custom thread-pool.

40 Chapter 2. Pre-Requisites and Studying Platforms

Since JMS specification recommends using multiple sessions to obtain concurrency, and the first
test uses a queue (meaning that each listener remove a message from the queue to be consumed,
they all read different messages), creating multiple session to concurrently fetch from the queue
has also been taken into consideration. All tests use a single message sender generating event
serially. The messages are non-persistent which is the lowest overhead delivery mode because
it does not require the message to be logged to a stable storage and guarantees at-most-once,
meaning it may lose the message but it must not deliver it twice. The receiver’s event processing
operation is simply time measuring.

Because, as previously mentioned, the worst case in the OMS event flow is 100.000 events per
day, the tests were performed considering that all 100.000 events are serially generated. The
following results are the average of a series of test results obtained.

Test 1 - Point-to-Point model

In a real environment the receiver will be processing the senders events in real-time. Never-
theless, since the goal is to measure Esper’s engine performance when processing events from a
JMS queue, in this test, the 100.000 events are already in the queue when the receiver starts
running and processing the events. This way it is possible to ignore the event insertion overhead
caused by the sender, and for that reason one should be aware of that overhead in a real case.
The following results cover only the JMS event receiving operation and Espers engine processing
performance. As seen in Table 2.2 even in the best case it processes 100.000events

85seconds ≈ 1176events/s.

Sessions Esper engine threads myThreadPool threads Time to Process
1 2 2 2m34s
1 2 4 2m43s
1 4 2 2m40s
1 4 4 2m32s
2 2 2 1m29s
2 2 4 1m30s
2 4 2 1m25s
2 4 4 1m29s

Table 2.2: Processing results of 100.000 events using a JMS queue.Each table row shows the results of
a test for a specific number of sessions(number of provider’s threads), a specific number of
threads in Esper engine(frees the provider’s threads by receiving events for pattern process)
and a specific number of custom threads(to whom the engine delivers the work of processing
the events).

So, lets see how 100.000 event processing behaves over time, in terms of process delay, for the
best cases in Table 2.2 when using one session and two sessions: As shown in Figure 2.10 the
process delay grows almost in a linear way over time. On the other hand, 2.11 shows a small,
and nearly constant event process delay over time. This means that, in Figure 2.10, the shown
delay is almost entirely due to the fact that there is a single Provider thread delivering messages

2.2. Architecture and Platforms 41

Figure 2.10: Delay growth between posting an event and being processed. Tested for 100.000 events
posted on the fly using one session.

to the listener. With two sessions (two threads), in Figure 2.11 the delay is considerably lower,
presenting only a few peaks probably due to an OS scheduling to avoid thread starvation.

Even thought the performance is much lower than Esper’s published results it still clearly fulfils
the OMS event flow requirements.

Test 2 - Using a publish/subscribe model

Being a publish/subscribe model test means that messages won’t wait in the topic for subscribers
to show up and consume them as happens in point-to-point model, unless a durable subscription
is used. Even so, durable subscriptions require messages to be stored persistently, like in PTP
queues, and when the provider delivers each message to a subscriber he has to remove it from
storage. This represents a higher overhead cost, causing higher latency and performance damage.
In the previous test the way around was to use multi-sessions (multithreading) to receive messages
from the queue, which reduced the latency. For this test that solution does not apply because
this model is prepared to deliver messages to multiple receivers which means that all receiver
get the same mes sages from the topic(considering message loss-less scenario). For this reason,
in contrast with the PTP test, it is useless to create multiple sessions, for the same receiver, in
order to consume messages concurrently and reduce latency (single-threaded).

42 Chapter 2. Pre-Requisites and Studying Platforms

Figure 2.11: Growth delay between posting an event and being processed. Tested for 100.000 events
posted on the fly using two sessions.

Nevertheless topics are allowed to work without being durable. This way there is no point
in sending 100.000 messages before starting the receivers. Despite the test results contain the
delay caused by sending messages to a topic, it is much lower than the one caused by using
durable subscriptions in order to avoid latency caused by posting. Table 2.3 presents the test

Esper engine threads myThreadPool threads 1P 1S 2P 1S 1P 2S 2P 2S Total
2 2 1m35s 1m38s 2m29s 2m37s 8m20s
4 2 1m38s 1m37s 2m37s 2m29s 8m23s
2 4 1m41s 1m41s 2m32s 2m31s 8m26s
4 4 1m41s 1m42s 2m38s 2m42s 8m44s

Table 2.3: Processing results of 100.000 events using a JMS topic. Each table row shows the results of a
set of tests varying the number of publishers(P) and subscribers(S) for a specific number of
threads in Esper engine(frees the provider’s threads by receiving events for pattern process)
and a specific number of custom threads(to whom the engine delivers the work of processing
the events). The column ’Total’ shows the sum of all the row test results in order to
determine the best thread tuning for all possible situations

results. As seen in Table 2.2, the most significant fact is that there is almost a 1 minute difference
between tests that use 1 subscriber and 2 subscribers. This means that with subscribers growth
the delivery is increasingly slower. Since a subscriber is a session which is a thread consuming
from the provider, and there are sender’s threads writing at the same time there is a concurrency

2.2. Architecture and Platforms 43

in access to the resource. Although this behaviour also happens in a queue by using multiple
sessions(in the queue test there was no concurrency since the 100.000 events were previously sent),
the PTP model is a one-to-one model and not a many-to-many one, like the publish/subscribe
model.

2.2.1.4 Conclusion

Although it allows event processing, Pion CEP Platform lacks the existence of an EPL which is
as important to a CEP as data or event processing, since EPL statements are used to derive and
aggregate information from one or more streams of events, and to join or merge event streams.
Pion’s documentation is weaker than Esper’s, since Esper’s community is much more active. For
this reason too, there are a lot more Esper example code available on the Web than Pion’s, which
makes a huge difference when support is needed for developing a specific solution. According to
a 2009 Forrester research, nine CEP platforms were evaluated using 114 criteria and among all
of them it is said that,
"EsperTech, the only open source option, is also a Strong Performer... EsperTech is the leading
open source CEP provider" [17].

Not even Pion’s enterprise edition is mentioned in the research. Again, in a 2008 Senacor
Technologies Presentation [21] the only open source BAM approach mentioned used Esper as a
CEP solution.

Finally, Esper is able to connect to JMS.

For all reasons above mentioned, including the performance tests, Esper Tech is the chosen
CEP platform and will be target of deeper investigation in order to develop the BAM final
prototype.

2.2.2 Presentation using Dashboards

Figure 2.12: Solution’s user console architecture.

44 Chapter 2. Pre-Requisites and Studying Platforms

This section is about to explore the possible solutions for the project’s presentation compo-
nent shown in 2.12.

When dealing with dashboard solutions for a BAM system, charting existence turns out to be es-
sential. Charting provides an intuitive way to assimilate huge amount of data intrinsic meaning,
which is a powerful feature when the goal is to control the enterprise business by taking quick
decisions based on real-time data. As chart development open source platforms, JFreeChart and
Open Flash Chart 2, will be analysed in this section.

2.2.2.1 JFreeChart

JFreeChart is a free 100% Java chart library that makes it easy for developers to display profes-
sional quality charts in their applications.

Features

JFreeChart’s extensive feature set includes:

• Interactive features like tooltips etc;

• Supports Swing components, vector graphics file format (like PDF, SVG and EPS) and
image files (like JPEG and PNG);

• A consistent and well-documented API, supporting a wide range of chart types;

• A flexible design that is simple to extend. It targets both server-side and client-side appli-
cations;

• Support for many output types such as: Swing components, image files (including PNG
and JPEG), and vector graphics file formats (including PDF, EPS and SVG);

Figure 2.13 shows an example of the final look of a JFreechart pie chart.

Requirements

JFreeChart requires the Java 2 platform (JDK version 1.3 or later). Note that JFreeChart is a
class library for use by developers, not an end user application.

Types of charts available

• Pie charts (2D and 3D);

• Bar charts (regular and stacked, with an optional 3D effect);

• Line and area charts;

2.2. Architecture and Platforms 45

Figure 2.13: JFreechart pie chart example

• Scatter plots and bubble charts;

• Time series, high/low/open/close charts and candle stick charts;

• Combination charts;

• Pareto charts;

• Gantt charts;

• Wind plots, meter charts and symbol charts;

• Wafer map charts.

Refreshment

JFreeChart generates static images to be used over a Web application, such as a web page.
JFreeChart also generates maps to be applied over generated static images in order to allow
interactivity with the chart information (e.g. drill down). This feature is only available for a few
charts. Since the target product is a BAM solution, there will be a permanent necessity to reload
the charts for a near real-time monitoring. Considering this need and since were dealing with
images, AJAX is a possible way to do it in a web page. Nevertheless, according to JFreechart
FAQ,

46 Chapter 2. Pre-Requisites and Studying Platforms

... the chart is completely repainted for each update, which limits the "frames per second" rate
that you can achieve with JFreeChart. Typically, updating once per second is fine, but updat-
ing multiple times per second results in high CPU load. If you want to pursue this, do some
performance testing with your specific configuration and use cases. [30]

Licence

JFreeChart is free software. It is distributed under the terms of the GNU Lesser [31], which
permits use in proprietary applications.
The JFreeChart developer guide is not free.

2.2.2.2 Java API for Open Flash Chart 2

Provides various server side libraries such as PHP, Perl, Python, Ruby, .NET, Google Web
Toolkit and JAVA. Open Flash Chart (OFC) provides a poor documentation. OFC code is
typically easy to read and generates appealing and interactive flash charts by default. Figure
2.14 shows the life cycle of a chart request with OFC. Types of charts available

Figure 2.14: OFC chart request life cycle. Adapted from [32]

• Line Charts

• Bar Charts

• Horizontal Bar Chart

• Stacked Bar Chart

• Candle Chart

• Area Charts

2.2. Architecture and Platforms 47

• Pie Charts

• Scatter Charts

• Radar Charts

Figure 2.15 shows an example of the final look of an Open Flash Chart bar and line chart.

Figure 2.15: Open Flash Chart chart example.

Requirements

Open Flash Chart version 2 requires Adobe Flash Player 9. Nevertheless, ac- cording to Adobe,
flash content reaches 99% of Internet viewers [33].

Refreshment

Open Flash Chart 2 uses JavaScript Object Notation (JSON) to generate charts. Due to OFC
flash characteristic, each chart is bounded to an embedded flash object which is a potential a
chart refreshment bottleneck. For that reason OFC provides a way to load a new JSON (Ajax
can be used to get the JSON string) into the same client flash object avoiding new flash object
creation overhead.

Licence

General Public Licence (LGPL) [28], which permits use in proprietary applications.

Conclusion

Since a goal is to provide attractive dashboards for KPI measuring, the OFC2 platform is a better
solution due to its flash component. OFC2 requirements are considered acceptable. Nevertheless,

48 Chapter 2. Pre-Requisites and Studying Platforms

OFC2 provides a wide range of charts types but doesn’t provide all types. For this reason
JFreeChart might also come in handy.

2.2.3 Application Business Integration

Figure 2.16: Solution’s business logic architecture.

This section is about to explore the solution for the project’s business logic component shown
in 2.16.

JBoss Seam is an open source development platform for building rich Internet applications in
Java. As to the Web application framework, JBoss Seam is emerging and is a progressive ap-
plication framework based on the Java EE platform, that makes writing web-based applications
easier by delivering a unified component architecture. Seam builds on the innovative changes
in Java EE brought by the Enterprise JavaBeans (EJB) 3 specification. Seam spreads EJB 3’s
changes across the platform, leveraging more annotations, more configuration by exception and
extending the platform, weaving functionality into the JavaServer Faces (JSF) life cycle, and
using the unified EL to allow these technologies to communicate. Seam’s core mission is to
get JSF, Java Persistence API (JPA), and POJO components to work together so that the de-
veloper’s focus can be placed on building the application, not on integrating unallied technologies.

The Java EE 5 specification incorporates two key component architectures for creating web-
based business applications:

• JSF 1.2: Standard presentation framework for the webtier that provides both a user-
interface component model and a server-side event model.

• Enterprise JavaBeans (EJB) 3: Standard programming model for creating secure and
scalable business components that access transactional resources. Also encompasses the
JPA, which defines a standard persistence model for translating data between a relational
database and Java entity classes.

2.2. Architecture and Platforms 49

2.2.3.1 Why Seam?

Nowadays, there are several Java Web frameworks. Essentially choosing the best one to use has
become more difficult. To mention a few other open source choices, there are Struts, Spring,
Tapestry, etc. Since Seam is a JBoss framework solution and both this project and the OMS use
JBoss AS, it is a natural choice to make. Nevertheless it is imperative to study Seam in order
to evaluate if it is useful and brings added value to the project.

EJB components are not intended to be called on directly from JSF. EJB components are
scalable, transactional, and secure, but it becomes useless when completely isolated from the
web-tier, and from JSF. This isolation makes them of limited use in web-applications because
of the complexity involved to in- tegrate them. They are not able to access data stored in any
of the web-tier scopes (request, session, and application) and one must be aware of concurrency
problems while dealing with EJB components from the web-tier. The Java EE container is not
required to serialise access to the same stateful session bean, leaving it up to the developer to
take care of this task or catch the exception that can result. The only way the developer can
safely use EJB components in the web-tier is by interfacing with an adapter layer.

Because of this, Seam gives EJB 3 components access to web-tier scopes, offers a way to manage
the state of these components so that they can be used safely in the web-tier, and even serialises
access to stateful components to makeconcurrency issues a responsibility of the infrastructure and
not the developer. Also, there is never a question about thread-safety accessing non-thread-safe
resources since Seam handles the scoping properly. Seam also allows JSF UI components to tap
into the EJB layer by allowing EJB 3 components to be JSF "backing" beans and action listeners.

Seam reduces the declaration of a component to a single annotation, @Name, placed above
the class definition. Seam components can take the place of JSF managed beans. Annotations
are the central piece of Seam’s configuration by exception strategy.

In Seam, configuration by exception goes hand-in-hand with annotations. The annotations give
Seam a hint to apply behaviour and Seam tries to assume as much as possible about the decla-
ration by relying on sensible defaults and standard naming conventions.

As shown in Figure 2.17 Seam wires the object with interceptors, wrapping it in a shell known
as an object proxy, before handing down the newly created instance. This allows Seam to act as
the object’s puppeteer during each method call modifying its behaviour. The unified Expression
Language (EL) is an expressive syntax used to resolve variables and bind components to prop-
erties and methods on JavaBeans. It was introduced to better integrate JSF with JavaServer
Pages (JSP). It is also used by JSF to lookup managed beans and other objects stored in web-tier
scopes and is the basis for the JSF binding mechanism. EL frees you from having to develop

50 Chapter 2. Pre-Requisites and Studying Platforms

Figure 2.17: Seam Interceptors trap method calls. Source [34]

a custom bridge between the variable contexts of the different technologies in your application.
Seam takes advantage of the EL in two ways:

1. Registers a custom EL resolver that is aware of the Seam container, allowing Seam com-
ponents to be accessed using EL notation from anywhere in the application where the EL
is available (which is pretty much everywhere).

2. Allows EL notation to be used in annotations, configuration descriptors, message strings,
EJB Query Language (EJBQL) queries, page flow definitions, and even business processes.

Using Facelets as the view handler for JSF in place of JSP is strongly recommended. Facelets
is a lightweight view technology that is specifically designed for creating JSF pages. It can ac-
commodate JSF component markup natively and builds the UI component tree from it directly,
avoiding the unnecessary JSP tag layer.

All technical characteristics mentioned above makes JBoss Seam one emerging Web framework
and an extremely valid option.

Since this project will be working with java, and my experience on coding in java is eclipse
IDE based, I’m going to work with Eclipse IDE. JBoss provides JBossTools which is an Eclipse
IDE plugin for developing in Seam.

2.2.4 Real-Time Data Storage

Figure 2.18: Solution’s storage architecture.

2.2. Architecture and Platforms 51

This section is about to explore the possible solutions for the project’s storage component
shown in 2.18 in terms of real-time data since it is a critical aspect in BAM solution.

When dealing with a BAM solution, event data storage might be useful for some type of corre-
lations. Since a BAM solution requires support for a high event flow and knowing that for most
BAM systems the important event data is the "right now" data(real or near real time data), this
means that we need a fast way to store data knowing that data persistence is not a critical as-
pect. Following the previously mentioned aspects and as mentioned in section 1.3.3, a time series
data storage is a good option. Only few time-series data storage products have penetration in
BAM solution. Some open source products are: Round Robin Database (RRDtool) and Oracle
Berkeley DB Java Edition.

2.2.4.1 Round Robin Database Tool

RRDtool can be remotely controlled through a set of pipes which saves startup time when RRD-
tool has to do a lot of things quickly. There is also a number of language bindings for RRDtool
which allow you to use it directly from Perl, Python, Tcl, PHP, etc. [35]

RRDtool stores your data in Round Robin Databases (RRDs) that maintain a fixed size over
time by averaging and compressing data on the fly, based on configured parameters. In RRDtool
any data probably fits as long as it is some sort of time-series data.

The data analysis part of RRDtool is based on the ability to quickly generate graphical rep-
resentations of the data values collected over a definable time period.

Licence

Available under the terms of the GNU General Public License. This means you can do most
things you want with this software as long as you do not claim you created the software and
don’t sell it (or modified version of it) under a license other than the GNU GPL.

2.2.4.2 Oracle Berkeley DB

Oracle Berkeley DB is a family of open source, embeddable databases that allows developers to
incorporate within their applications a fast, scalable, transactional database engine. Provides a
Direct Persistence Layer (DPL) API for EJB-style POJO persistence. [36]

Berkeley DB is a high performance, scalable and reliable non-relational storage system, designed
to be an embeddable database engine, so no separate server is required, and no runtime human
administration is needed.[37]

52 Chapter 2. Pre-Requisites and Studying Platforms

Berkeley DB offers concurrency and transactional storage services, so that multiple threads or
processes can operate on the same collection of B-trees and hash tables at the same time without
risk of data corruption or loss.

Sometimes an application needs something less than the full power of a relational engine, but
more than the low-level services of a file system. In those cases, an Relational Database Man-
agement System (RDBMS) offers too many features, is too large and complicated. A file system,
by contrast, offers few or none of the integrity, concurrency and performance advantages of
a database system. Some applications need transactions and recovery, but not the ability to

Figure 2.19: Oracle Berkeley DB Architecture. Source [38]

support arbitrary end-user searches against the data they store. For those applications, non
relational databases are often a better choice than either the file system or a relational database
engine. Berkeley DB combines the file system-style data storage and retrieval with the scalabil-
ity, reliability and transactional guarantees of a high-end relational system like Oracle Database.

Berkeley DB supports a programming interface to insert, update, retrieve or delete information.
Rather passing SQL strings to the database system for interpretation and execution, developers
using Berkeley DB make function or method calls. There is no standalone server and no SQL
query tool for working with Berkeley DB databases [38]. It stores any kind of data in any format
just like the file system, but provides no easy tools for ad hoc queries. Developers must write
code to search a Berkeley DB database.

Relational database engines are heavyweight servers and, by contrast, Oracle Berkeley is a li-
brary. Berkeley DB links into the same address space as the application that uses it. It is possible
for multiple applications to share a single database. Berkeley DB uses shared memory and op-
erating system primitives for mutual exclusion to be sure that each thread of control cooperates
with the others.

2.3. Summary 53

Performance

By avoiding context switches and minimising copies, Berkeley DB gets outstanding performance
on commodity hardware. For example, performance tests of Berkeley DB published in a recent
white paper documented 90,774 sequential inserts per second, using transactions, in a single
thread of control. Read throughput, reading a single record at a time, was 466,623 records
per second. Using a high performance bulk retrieval interface for large sequential scans of the
database, the same system was able to read 13,501,800 records per second.

Licence

According to Free Software Foundation, Berkeley Database License (aka the Sleepycat Software
Product License) is a free software license, compatible with the GNU GPL.[39]

Conclusion

Oracle DB is far better documented than RRDTool, and allows programming in Java. Oracle
DB presents a good performance without RDBMS complexity.

2.3 Summary

In this chapter the target OMS characteristics were analysed. In order to accomplish the requi-
sites, the BAM solution have to easily integrate with OMS. Due to one or another restriction,
from the BAM solution or the OMS, the number of technological options was reduced. This way,
Queues turned to be the chosen channel of communication between both systems because of its
coupling and easy extension characteristics. JBoss AS is the chosen application server since the
OMS is already built on top of that technology.

Further more, some open source platforms and frameworks were studied in order to be able
to build a BAM solution like the one discussed in Chapter 1. From the analysis presented in this
chapter, the technologies chosen to build the solution were: Open Flash Chart 2, for dashboard
display, Esper Tech, for event engine development, and Oracle Berkeley DB, for event data stor-
age. JBoss Seam will be used to build the entire web application, due to its integration through
JBoss tools.

Chapter 3

Prototype Development

This chapter describes the adopted solution in order to accomplish an application that matches
the explored BAM concept.

Before starting the implementation it is necessary to understand the modularity of this pro-
totype solution. There are main features with different purposes which have to be implemented
in separate like the event engine and the website. The event engine is a desktop application
which will be running in the application server, fetching all incoming events, processing them
and depositing in the right destination, which, in this case is a database. It is a J2EE application
developed as an EJB project. The user console is a web application and represents the front end
with the user. The event data storage, as discussed in the previous chapter, is a library and a
non relational database. It is implemented as an J2EE application and was also developed as
an EJB project. EJB is the server-side component architecture and enables the development
of distributed, transactional, secure and portable applications. At last, the common business
objects are in a separate solution as a class library to be used in the event engine, website and
data storage.

It was also necessary to divide the prototype development into different phases in order to
ease and reduce its building effort. This way, requirement analysis is necessary to understand
where to go from here and the decisions to make.

Since this is a quite wide process, some analysis were necessary to realise the complexity of
the problem and to reduce it drastically, identifying the main objectives and the solutions for
them. Some analysis like: sequence diagrams, robustness diagrams and use cases brought an
entirely new perspective over the project and lead to its solution approach. All analysis can be
found in appendix.

54

3.1. Development 55

3.1 Development

3.1.1 The Architecture

According to information gathered, a BAM solution distinguishes quite well what is the event
engine and the user front-end application. The architecture divides both components. Inside the
BAM application it is necessary to identify what main modules support the application features
mentioned as important to a BAM solution. Among this features we can identify the report
generation, alert notification and KPI analysis through charts and dashboard management.

After requirement analysis and platform studies, the previous architecture draft matches with
the chosen technologies and turns into Figure 3.1. When comparing with the previous architec-

Figure 3.1: Final architecture after platform analysis and prototype requisites.
.

ture draft, the rule based engine was replaced by a more specialised tool like Esper Tech since it
already deals with rules and pattern matching which gives flexibility.

56 Chapter 3. Prototype Development

3.1.1.1 Rules Engine versus Complex Event Processing

Although if-then rules might well be the simplest way to understand, rules are only a subset of
CEP techniques since there are other ways to do event filtering, correlation and analysis.

Rule language is also distinct from CEP language. Most rule languages are designed to deal
with information technology data models, not real-time or time-based event models. For this
reason some extensions are necessary before a rule language can be used for CEP.

3.1.1.2 Versions

The used JBoss AS was the 2009-05 release. The used JBoss tools plugin for Eclipse was the 2010-
02 release. The used Eclipse IDE is Galileo, 2010-06 release. The used JBoss Seam framework
was the 2009-07 release. The used Oracle Berkeley DB was the 4.8.24 release.

3.1.2 The Foundations

Before developing any feature there was the need to prepare the basis for the project to be built
on top. After analysing every feature to be developed it became clear that, without the appli-
cation server installed and prepared there was no way to test what was being developed, like
queues being used, since there wasn’t either an event gathering destination for the event engine
nor event reading sources for the website. For that reason before anything else it is necessary to
launch and prepare the application server.

As explained in the previous chapter the chosen application server is JBoss AS. Since the project
is to be developed in Java, the Eclipse IDE will be used. JBoss provides a plugin JBoss tools
for Eclipse. This plugin allows to work with JBoss technologies like Seam and the application
server in a widely used IDE.

3.1.3 The Event Engine

Figure 3.2 represents the event engine diagram class. Before jumping into the event engine
implementation it is necessary to understand a little more what happens inside the esper engine.

3.1.3.1 Esper Engine

As mentioned in section 2.2.1.3 there are some suggestions in the Esper specification which should
be considered. Esper’s specification indicates that by default the engine guarantees that it deliv-
ers a statement’s result events to statement listeners in the order in which the result is generated.

In the Esper’s default configuration the same application thread that invokes any of the sendE-
vent methods into the engine, will process the event fully [27] and also deliver output events to

3.1. Development 57

Figure 3.2: Event engine class diagram.
.

listeners and subscribers.

The Esper engine should not be blocked with output process on the listeners, so the engine
provides a threading mechanism to avoid this. With inbound threading an engine places in-
bound events in a queue for processing by one or more engine managed threads other than the
delivering application threads. The engine receives the event and places the event into a queue,
allowing the delivering thread to continue and not block while the event is being processed and
results are delivered.

As explained previously, in section 2.2.1.3 and shown in Figure 2.9, there is a custom thread-
pool to deal with the delivering thread, avoiding this way engine manage threads to block. As
expected the engine threading was configured according to the results in section 2.2.1.3.

The event engine is a J2EE project. Every time it is started or restarted it initialises all data
sources and alerts defined by the user.

3.1.3.2 Extension Points

The Event Engine has two extension points: data sources and outbound senders.

As shown in Figure 3.2 the core class Engine implements UpdateListener allowing it to pro-
cess new events from the known data sources. In this project there are data source classes like,
MyQueueSource and MyTopicSource that fulfill the idea of using JMS, and also MyTableSource

58 Chapter 3. Prototype Development

for table pooling. All classes implement the interface EventSource and its corresponding meth-
ods, start and stop. The start method is responsible for creating a connection between the real
source and the destination. To be able to add a new data source to the event engine, it is only
necessary to create a new class which implements EventSource. The new data source imple-
mentation connects to the source and sends all information to the destination which ends up
on the engine processing threads. Finally a new instance of that class has to be added to the
EngineStater class so it knows which classes to initialise.

For MyQueueSource and MyTopicSource, the destination is a listener named JMSSourceLis-
tener. The JMSSourceListener receives every event from the source and delivers it to the event
engine to be processed. When dealing with a table source, for example MyTableSource, there
is no need to indicate a listener since there is already a dedicated thread pooling the table and
warning the destination which is the engine.

After processing the event, the engine may deliver the results to an outbound sender. The
outbound senders can also be extended by creating a new class and implementing the Out-
boundSender interface. The current senders are the OutboundDBSender which sends the events
to the database and OutboundAlarmDBSender which sends the alarms to the database.

3.1.3.3 Correlation

Esper engine provides, as previously mentioned, an event pattern language to specify expression-
based event pattern matching. It includes time-based correlation of events. Lets look at the
correlation in Listing 3.1.

stmt = " s e l e c t ∗ from BaseTerminalEvent where type = ’ LowPaper ’ or type = ’
OutOfOrder ’ " ;

statement = epServ i c e . getEPAdministrator () . createEPL (stmt) ;
statement . addLi s tener (new CheckinProblemListener (outboundSender)) ;

Listing 3.1: Esper’s event engine EPL example for event correlation .

This statement notifies the listener with all available information for every time it detected that
the terminal has low paper or is out of order. Listing 3.2 shows how to count all events that
happened, grouped by type for the last 10 minutes. This operation is done every minute and the
output is delivered to the listener.

stmt = " i n s e r t i n t o CountPerType " +
" s e l e c t type , count (∗) as countPerType " +
" from BaseTerminalEvent . win : time (10 min) " +
" group by type " +
" output a l l every 1 minutes " ;

statement = epServ i c e . getEPAdministrator () . createEPL (stmt) ;
statement . addLi s tener (new CountPerTypeListener (outboundSender)) ;

Listing 3.2: Another Esper’s event engine EPL example for event correlation .

3.1. Development 59

Every listener knows what to do with the information that is given to him. In this project
the listener mainly outputs the events to a persistent storage (Database) so later they can be
consumed by the user’s application (Website). This way all correlation can be configured in the
event engine, removing that responsibility to the user’s application and allowing the application
to fetch from storage what is expected and already treated. This way it is possible to configure
the engine to detect events that match the alerts defined by the user. When a user defines an
alert(to be explained further in this chapter) the engine is told to add a new statement at run
time that matches with events that should be detected as an alert. Whenever an alert pattern
matches, the event engine builds a new event of Alarm type, which is dumped into the events
queue, so the target user can be notified according to the notification process chosen (for now
are defined email sending and Jira [40] issue). The alarm event is then read by the respective
user. These events are also used to generate system behaviour reports. This way the user is not
forced to be online to be able to monitor the system.

3.1.4 The User Console

The user console (which is a web application) development was the longest process in all project.
In order to support the main features there are core classes for business management shown
in Figure 3.3. The JBoss Seam framework already supplies some user management logic. The

Figure 3.3: Business management classes diagram.
.

business logic requires some user personal information to be persisted like user configurations in
charts and alerts. For this purpose the support classes in Figure 3.4 were created.

3.1.4.1 Event Types

There is a superclass, named BaseEvent, for every event in the project. If a new event type is
needed its class should extend from BaseEvent. Every new event type also need to implement
Serializable for a matter of storage (to be detailed later in this chapter).

60 Chapter 3. Prototype Development

Figure 3.4: Datatype class diagram.
.

3.1.4.2 Dashboards

Dahsboards can be understood as containers of charts monitoring each one its own KPI. This
way an user is able to add a chart to an existing dashboard or a new one, allowing to organise
the monitoring view. For each chart the user can change its type (line, bar or pie chart are
implemented), refresh time, monitored time range and the KPI being monitored, as shown in
Figure 3.5. Every KPI implementation, like the implemented KPI Simple in Figure 3.6, for test
purpose, has to implement the interface KPI. It is responsible to retrieve the event data it needs
from the data storage. Every time a KPI event is retrieved is wrapped into a ChartTimeUnit
element. The ChartTimeUnit (shown in Figure 3.7.) class represents a time unit in the chart.
This element is then inserted into a ChartBuildingInfo instance that represents all relevant in-
formation in the current chart beside the values themselves. All important information that a
chart should have should be added to the ChartBuildingInfo. This way the ChartManager is
able to work with a "standard" container of values and pass it through as parameter to each
chart implementation to create the chart. This allows the user to dynamically change the chart
he sees. The user can also change the KPI, time range and refresh time dynamically. All changes
are stored in the users configurations.

All charts are displayed using the Java API for Open Flash Chart 2. Every time there is a
chart refresh, the client side issues a request and the ChartManager on the server side generates
the necessary code. Every chart class uses the OFC2 Java API to build the chart and finally gen-

3.1. Development 61

Figure 3.5: Dashboard chart and options
.

Figure 3.6: KPI support class diagram
.

erates a JSON string, which is then sent to the client side, to be loaded into the flash embedded
object. Figure 3.8 shows the BAM solution dashboard layout.

3.1.4.3 Key Performance Indicators and Data Sources

The user has the opportunity to customise the BAM tool by configuring a KPI and a data source.
Starting with the KPI customisation, the user is able to define a name to its new KPI, the name
of the events stored that he wants to monitor and the type of KPI (like the implemented class
Simple, every new KPI type has to be implemented by the developer) as shown in Figure 3.9. This
way the user can monitor different events with the same KPI type. When the user selects a KPI
type, the application shows the additional information that specific type of KPI requires and that

62 Chapter 3. Prototype Development

Figure 3.7: Charts support class diagram.
.

Figure 3.8: BAM solution Dashboard.

are not common to all KPI types, if any. Each KPI, and its additional information, is presented
to the user within a form as shown in Figure 3.10 . The additional information form is created by
the developer that needs to create the XHTML corresponding source. The data sources creation
is very similar to KPI. Even so it is relevant to say that the BAM solution already provides
JMS queue, JMS topic and table connection as data source types. When the user hits the create
button, the event engine is told to connect to a new data source. JMS data source connects to its
queue or topic and defines the listener to process every income message. The table data source
needs a little more concern. For it to work, it expects that the target database administrator

3.1. Development 63

Figure 3.9: Common information in the source creation menu.
.

Figure 3.10: Source type additional information in the source creation menu.
.

creates a trigger to populate a BAM Table called BAM_EVENTS_QUEUE. Every time an event
enters the target table in the target database BAM_EVENTS_QUEUE is populated. This way
the data source creates a thread to be pooling on the BAM_EVENTS_QUEUE, reading each
entry, transform it into a known event, and deliver it to the engine.

3.1.4.4 Alerts

An alert is the concept of notifying someone responsible about a specific problem that requires
urgent attention. From this concept we can extract some important information an alert should
contain, like a person who should be notified and a way to notify that person. In addition,
an alert needs a condition to be fired also known as threshold. As explained in the previous
section 3.1.3.3, when the event engine matches the threshold pattern over the incoming events

64 Chapter 3. Prototype Development

it treats the happening also as an event, generating a new type called Alarm, shown in Figure
3.4. The Alarm events are stored for later consult by the user console. To support alerts and
its configuration, the user has three operations available such as, equal, greater than and lower
than as shown in Figure 3.11. All operations implement the IOperation interface which requires
a method execute for the threshold detection. A user needs to define a way to notify the target

Figure 3.11: Alerts class diagram.
.

user, and for that the class should implement IAlertAction like EmailSender and SendJiraIssue
classes. It requires a way to notify the target user, a description of the action, for combo box
filling purposes, and finally a contact validation that checks if the contact given for the specific
notification process is valid.

An alert is after all an object that encapsulates not only the action to be executed and the
operation to detect the threshold but also the target user, the threshold value, the KPI being
measured and the time window in which the value appears a specific number of times, as shown
in Figure 3.12. The implemented solution does not grant a non administrator user the right to
define alerts whose notification target is not himself, for a matter of security.

After the alert configuration and storage, the event engine is notified so it can define at run-time

3.1. Development 65

Figure 3.12: Alerts menu.
.

a pattern to be listening for, that matches the defined alert. Every time an alert pattern is
detected, the engine informs the target user through the defined action (Jira issue or e-mail).
It also issues an Alarm event (previously described) into the queue in order to be read by the
EventListener and consequently stored for further consulting. So, whenever an alarmist situation
is detected it is treated like an event.

3.1.4.5 Reports

Report generation is an important feature since it allows the user to keep the system behaviour
records or even for auditing purposes. Reports usually present detailed information about what
happened in a specific system in an historical way. The ReportManger in Figure 3.13 generation

Figure 3.13: Reports support class diagram
.

is a feature available for each KPI being measured. The user may choose to generate a specific
KPI and specify the time period in hours for which he wants to generate the report. A report
consists on a pdf document with an initial chart that shows the KPI evolution for the time
specified followed by a section that shows the alarms that occurred in the same period of time.

66 Chapter 3. Prototype Development

By the end of the generation process, the pdf document is sent to the user’s email box. As a
future enhancement the report could also be available for download.

The initial chart on the report is generated with the JFreeChart library mentioned in the previous
chapter. This solution is necessary because the charts shown in the user’s console are generated
using a library for flash (Open Flash Chart) and, in this case, a chart image was necessary to
post on the report’s pdf document.

3.1.5 Data Storage

In Java terms persistence means that we would like the state of our objects to live beyond the
scope of the JVM so that the same state is available later.

The data storage is a very important aspect in a BAM System. As explained in chapter 1,
a BAM system is a near real-time solution which means that a conventional relational database
has too much overhead and complexity to allow it to provide that kind of characteristic. For this
reason Oracle Berkeley Database was chosen for the event data access layer solution’s support.
All data access layer (DAL) classes are shown in Figure 3.14. There are different DALs: the

Figure 3.14: Data Access Layer class diagram.
.

users, the sources, the KPI, the alerts and the events. The last two DAL use the Environment-
Manager for a matter of data storing configurations over Berkeley like transactional aspects,
locking, duplicates, etc.

All DALs except the events use the relational hypersonic hibernate database to store the data,
since there is no advantage in using the Berkeley database because there is no real-time process-

3.1. Development 67

ing required.

3.1.5.1 Oracle Berkeley DB

Even if Oracle Berkeley DB is not a relational Database it supports indexes in order to easily
retrieve data from storage. Berkeley DB also provides a way to retrieve data in a date oriented
manner, since it is allowed to retrieve data fetched between a begin-date and an end-date. This
makes it very useful when dealing with date oriented solutions like BAM.

For this to be possible it is necessary to implement data access object compatible with the
Berkeley DB storage mechanism. The Direct Persistence Layer is intended for applications that
represent persistent domain objects using Java classes. An entity class is an ordinary Java class
that has a primary key and is stored and accessed using a primary index. It may also have any
number of secondary keys. Its entities may be accessed by secondary key using a secondary index.

An entity class may be defined with the Entity annotation as shown in Listing 3.3. For each
entity class, its primary key may be defined using the PrimaryKey annotation and any number
of secondary keys may be defined using the SecondaryKey annotation.

@Entity
public class Completed extends BaseEvent
{

private int _num;

public Completed (int id , int num)
{

super (id) ;
_num = num;

}

private Completed () {super () ; }

public void setNum (int n) {_num = n ; }
public int getNum () {return _num; }

}

Listing 3.3: The Completed event type defined for integration with Oracle Berkeley DB data storage.

Every field or base class must be annotated as persistent and defined as serializable in order to
be compatible with the storing process as shown in Listing 3.4.

@Pers i s tent
public class BaseEvent implements S e r i a l i z a b l e
{

68 Chapter 3. Prototype Development

@PrimaryKey
private Date time = new Date () ;

@SecondaryKey (r e l a t e=R e l a t i o n s h i p .MANY_TO_ONE)
private S t r i n g type ;

private int id ;

protected BaseEvent () {}

public BaseEvent (int id)
{

this . id = id ;
this . type = this . g e tC la s s () . getSimpleName () ;

}
}

Listing 3.4: The BaseEvent class annotated in order to be stored in Berkeley DB.

The SecondaryKey annotation support the many-to-one, one-to-many, many-to-many and one-
to-one relationships. It supports foreign key constraints as well.

It is also important to understand that when the developer creates a new event type he needs
to modify the existing KPI types classes so they can retrieve data from Berkeley referring to the
new type of events. This happens due to the fact that Oracle Berkeley DB does not support SQL
queries which forces the developer to programmatically call the right DAL method to retrieve
the data instead of simply constructing a SQL query string with a different event name and
executing it.

3.1.5.2 Hibernate

Hibernate [41] allows to develop persistent classes following natural Object-oriented idioms in-
cluding inheritance, polymorphism, association, composition, and the Java collections framework.
It requires no interfaces or base classes for persistent classes and enables any class or data struc-
ture to be persistent. Hibernate requires no special database tables or fields and generates much
of the SQL at system initialization time instead of runtime. It also supports Hibernate Query
Language (HQL), Java Persistence Query Language (JPAQL), Criteria queries, and "native SQL"
queries.

Hibernate uses annotations to ease the configuration of a new object that maps a persistent
table just like the example in Listing 3.5.In the Listing we can see an object Source that is
mapped to a table named SOURCES, which has a column representing the automatically gen-
erated ID, and a column NAME with the name of the source. Annotation referring to columns
have to be placed over get methods.

3.1. Development 69

@Entity
@Table (name = "SOURCES")
public class Source implements S e r i a l i z a b l e {

private stat ic f i n a l long se r ia lVers ionUID = 6498883703637089447L ;
private int _id ;
private S t r i n g _name ;

public Source () {}

public Source (S t r i n g name) {
_name = name ;

}

@Id
@GeneratedValue
public int getID () {

return _id ;
}

public void setID (int i) {
_id = i ;

}

@Column(name = "NAME")
public S t r i n g getName () {

return _name ;
}

public void setName (S t r i n g name) {
_name = name ;

}
}

Listing 3.5: Example class annotated in order to be persisted in Hibernate.

After defining every class to be persistent, a file has to be defined for Hibernate configuration
like the one shown in Listing 3.6. This file defines the connection to the Hibernate storage and
the mapping entities.

<hibernate−c o n f i g u r a t i o n >
<s e s s i o n−f ac to ry >

<property name=" connect ion . d r i v e r _ c l a s s ">org . hsqldb . jdbcDriver </property>
<property name=" connect ion . u r l ">jdbc : hsqldb : hsq l : // l o c a l h o s t :1701</ property >
<property name=" connect ion . username ">sa</property>
<property name=" connect ion . password "></property>

<property name=" show_sql ">true</property>
<property name=" d i a l e c t ">org . h ibe rnate . d i a l e c t . HSQLDialect</property>

70 Chapter 3. Prototype Development

<property name=" h ibe rnate . t r a n s a c t i o n . f a c t o r y _ c l a s s ">org . h ibe rnate . t r a n s a c t i o n
. JTATransactionFactory </property>

<property name=" h ibe rnate . t r a n s a c t i o n . manager_lookup_class ">org . h ibe rnate .
t r a n s a c t i o n . JBossTransactionManagerLookup </property>

<property name=" h ibe rnate . sess ion_factory_name ">java : h ibe rnate /
HibernateFactory </property>

<property name=" h ibe rnate . hbm2ddl . auto ">update</property>
<property name=" h ibe rnate . connect ion . autocommit ">false </property>

<!−− Mapping e n t i t i e s −−>
<mapping class="com . xpand . User "/>
<mapping class="com . xpand . A l e r t s "/>
<mapping class="com . xpand . Source "/>
<mapping class="com . xpand . K P I S p e c i f i c a t i o n "/>

</s e s s i o n−f ac to ry >
</hibernate−c o n f i g u r a t i o n >

Listing 3.6: Hibernate configuration.

Finnally, every time a connection to the Hibernate storage is necessary a new session is created.
To ease this task a class named HibernateUtil (Listing 3.7) was created. This class configures
the Hibernate with the annotation configuration provided in the XML file just described and
opens the session.

public class HibernateUt i l {

private Logger l o g g e r = Logger . getLogger (this . g e tC la s s ()) ;

private stat ic f i n a l Sess ionFactory bamSessionFactory ;

stat ic {
try {

// Create the Sess ionFactory from h i b e r n a t e . c f g . xml
Annotat ionConf igurat ion ac = new Annotat ionConf igurat ion () ;
ac=ac . c o n f i g u r e (" /bam . h ibe rnate . c f g . xml ") ;

bamSessionFactory = ac . b u i l dS e s s i o n F a c to r y () ;
} catch (Exception ex) {

throw new E x c e p t i o n I n I n i t i a l i z e r E r r o r (ex) ;
}

}

/∗∗
∗ @return omSessionFactory
∗/

public stat ic Sess ionFactory getBAMSessionFactory () {
return bamSessionFactory ;

3.2. Summary 71

}

public stat ic S e s s i o n g e t S e s s i o n () throws HibernateExcept ion {

return bamSessionFactory . openSess ion () ;
}

}

Listing 3.7: HibernateUtil Class

For object persistence, a simple persist(Object) method is necessary. For object retrieval there
are many ways, including SQL queries. Even so, the simplest way might be the example in
Listing 3.8.

s e s s i o n . beg inTransact ion () ;
Object s r c = s e s s i o n . get (Source . class , srcID) ;

s e s s i o n . d e l e t e (s r c) ;
s e s s i o n . getTransact ion () . commit () ;

Listing 3.8: Hibernate object retrieval

3.2 Summary

To summarise it is important to understand the importance of requisites analysis in order to
decrease the initial complexity of an unknown domain that a solution like this represents. By
the end of this project the importance of these analysis role became notorious and without it the
solution would have some inconvenient rollbacks that would certainly delay the project deadline.

Developing the prototype revealed to be an integration challenge due to the different technologies
in use. While developing there was also concerns about preparing the solution for later extension
and improvement as well as performance aspects since near real time, in a BAM solution, is a
main objective.

Even if unable to fully compare with other existing BAM solutions, this solution provides the
same main features other solutions present.

Conclusions

The initial investigation became crucial so it turned possible to drill down into the problem’s
root and to understand what is necessary to fulfil a BAM solution in its essence. That same
investigation allowed to discover the state of the art as well as the existing frameworks and
technologies available in order to deploy a full open source BAM solution. This way the study
of existing material, to build a BAM, was essential and its analysis was necessary to understand
where to grab each problem and start giving a solution that fits.

This solution provides all three identified main features that a BAM solution should have. They
are, a near real-time business key performance indicators monitoring component, alerts to notify
target users about important previously defined business behaviours and finally a detailed report
generation with system behaviour important information. The feature set provided by this BAM
solution is equivalent to others available in the market. Nevertheless, the solution developed has
a value added: it is open source. Since other BAM solutions are not free nor open source it was
not possible to compare the solution developed with others. This BAM solution is completely
built using a set of carefully chosen open source technologies and provides integration with the
target OMS and fulfils its requirements such as the event flow aspect.

Even if the developed solutions can be seen as a fully operational BAM solution, it does not
provide drill down features. Nevertheless, the solution is prepared to support drill down charac-
teristics.

The solution developed only deals with past activities. The next generation of BAM systems
should be able to infer predictions for future business.

This last two topics could be addressed in future work.

72

Acronyms

• API - Application Programming Interface;
• BAM - Business Activity Monitoring;
• BPEL - Business Process Execution Language;
• CEP - Complex Event Processing;
• CPU - Central Process Unit;
• CRM - Customer Relationship Management;
• DW - Data Warehouse;
• DAL - Data Access Layer;
• DBMS - Database Management System;
• EDA - Event Driven Architectures;
• EJB - Enterprise JavaBeans;
• EJBQL - EJB Query Language;
• EL - Expression Language;
• EPL - Event Processing Language;
• ERP - Enterprise Resource Planning;
• ISEL - Instituto Superior de Engenharia de Lisboa;
• JBoss AS - JBoss Application Server;
• JBoss ESB - JBoss Enterprise Service Bus;
• jBPM - JBoss Business Process Management;
• JEE - Java Enterprise Edition;
• jPDL - JBoss Process Definition Language;
• JMS - Java Message Service;
• JPA - Java Persistence API;
• JSF - JavaServer Faces;
• JSP - JavaServer Pages;
• KPI - Key Performance Indicator;
• OFC - Open Flash Chart;
• OLAP - Online Analytical Processing;

74

3.2. Summary 75

• OMS - Order Management System;
• POJO - Plain Old Java Object;
• PTP - Point to Point.
• RAC - Real Application Clusters;
• RDBMS - Relational Database Management System;
• RFID - Radio Frequency Identification;
• RRD - Round Robin Database;
• SLA - Service Level Agreement;
• SOA - Service Oriented Architecture;
• SOI - Service Oriented Infrastructure;
• SQL - Structured Query Language;
• UI - User Interface;
• UML - Unified Modelling Language;
• VWAP - Volume-Weighted Average Price;
• XML - Extensible Markup Language;

References

[1] D. McCoy, R. Schulte, F. Buytendijk, N. Rayner, and A. Tiedrich, “Business activity mon-
itoring: The promise and reality,” Gartner, July 2001.

[2] C. White, “Is bam alive and well?,” Information Management Mag-
azine, September 2005. Retrieved October 22, 2009, available at
http://www.information-management.com/issues/20050901/1035618-1.html.

[3] W. W. Eckerson, Performance Dashboards, Measuring, Monitoring and Managing your
Business. New Jersey, USA: John Wiley & Sons, Inc, 2006.

[4] D. Nesamoney, “Bam: Event-driven business intelligence for real-time enterprise,” Infor-
mation Management Magazine, March 2004. Retrieved October 29, 2009, availabe at
http://www.information-management.com/issues/20040301/8177-1.html.

[5] W. C., “Operational analytics: Yesterday, today and tomorrow,” BeyeNET-
WORK, November 2007. Retrieved October 23, 2009, availabe at
http://www.b-eye-network.com/view/6536.

[6] D. Chait, “Moving beyond messages per second: Evaluating cep prod-
ucts the right way,” aleri. Retrieved November 3, 2009, available at
http://www.aleri.com/email/issue2/messages_second.html.

[7] F. S. Rainer von Ammon, Christoph Emmersberger and C. Wolff, “Event-
driven business process management and its pratical application taking the
example of dhl,” October 2008. Retrieved October 28, 2009, availabe at
http://icep-fis08.fzi.de/papers/iCEP08_8.pdf.

[8] S. Oberoi, “Introduction to complex event processing & data streams,” RTI, August 2007.
Retrieved November 3, 2009, availabe at www.rti.com/docs/SOAWM7_8_oberoi.pdf.

[9] N. S. group, “Current value table (cvt) reference library,” National In-
struments, October 2009. Retrieved October 27, 2009, available at
http://zone.ni.com/devzone/cda/epd/p/id/5326#toc0.

76

References 77

[10] T. Lubinski, “Business activity monitoring: Process control for the en-
terprise,” ebizq, February 2008. Retrieved October 26, 2009, availabe at
textttwww.sl.com/pdfs/BusinessActivityMonitoring-tom-lubinski.pdf.

[11] D. Luckham, “Bam and cep: A marriage of necessity or: Why bam
must use cep,” ebizq, June 2004. Retrieved October 26, 2009, availabe at
http://www.ebizq.net/topics/cep/features/5102.html.

[12] S. Malik, (Enterprise Dashboards - design and best practices for IT. New Jersey, USA: John
Wiley & Sons, Inc, 2005.

[13] P. Software, “Apama.” Retrieved November 25, 2009, available at
http://web.progress.com/en/apama/index.html, 2009.

[14] Aleri, “Coral8 engine.” Retrieved November 25, 2009, available at
http://www.aleri.com/products/aleri-cep/coral8-engine, 2009.

[15] Oracle, “Oracle business activity monitoring.” Retrieved November 25, 2009, available at
http://www.oracle.com/appserver/business-activity-monitoring.html, 2009.

[16] S. R. T. Visibility, “Business activity monitoring (bam) solution.” Retrieved November 25,
2009, available at http://www.sl.com/solutions/busactivity.shtml, 2009.

[17] M. Gualtieri and J. R. Rymer, “The forrester wave: Complex event processing (cep)
platforms, q3 2009,” Forrester, August 2009. Retrieved December 1, 2009, available at
http://www.waterstechnology.com/digital_assets/1261/progress_apama_forrester

_report.pdf.

[18] J. Community, “Jboss as.” Retrieved December 21, 2009, available at
http://www.jboss.org/jbossas/, May 2009.

[19] O. Feodorov and D. Bevenius, “Jboss esb.” Retrieved December 21, 2009, available at
http://community.jboss.org/wiki/JBossESB, May 2009.

[20] R. Hat, “Jboss messaging.” Retrieved December 21, 2009, available at
http://www.redhat.com/docs/manuals/jboss/jboss-eap-4.3/doc/messaging/

JBoss_Messaging_User_Guide/html/index.html, 2009.

[21] C. E. Rainer V. Ammon, Florian Springer and C. Wolff, “Event-driven business process
management taking the example of dhl,” Senacor Technologies, pp. Retrieved Decem-
ber 1, 2009, available at http://icep–fis08.fzi.de/presentations/iCEP08_9_1.ppsx,
September 2008.

[22] JBoss, “Jboss jbpm.” Retrieved December 22, 2009, available at
http://www.jboss.com/products/jbpm/, 2009.

78 References

[23] O. Corporation, “Oracle database 11g editions.” Retrieved December 21, 2009, available at
http://www.oracle.com/database/product_editions.html, 2009.

[24] S. Microsystems, “Publish/subscribe messaging with jms topics and us-
ing the document object model.” Retrieved November 26, 2009, available at
http://java.sun.com/developer/EJTechTips/2003/tt0415.html, 2009.

[25] M. Hapner et al., Java Message Service Specification - version 1.1. Sun Microsystems, 2002.
available at http://java.sun.com/products/jms/docs.html.

[26] S. Microsystems, “Interface queuebrowser.” Retrieved March 5, 2010, available at
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueBrowser.html, 2002.

[27] Esper, Reference Documentation Version: 3.2.0. Esper Tech, 2009. available at
http://esper.codehaus.org/nesper/documentation/documentation.html.

[28] GNU, “Gnu general public license.” Retrieved December 1, 2009, available at
http://www.gnu.org/licenses/gpl.html, 2007.

[29] GNU, “Gnu affero general public licence.” Retrieved December 1, 2009, available at
http://www.gnu.org/licenses/agpl.html, 2007.

[30] JFreeChart, “Frequently asked questions (faq).” Retrieved January 05, 2010, available at
http://www.jfree.org/jfreechart/faq.html#FAQ5, 2009.

[31] GNU, “Gnu lesser general public license.” Retrieved September 23, 2010, available at
http://www.gnu.org/licenses/lgpl.html, 2007.

[32] J. McAdams, “Open flash chart and perl,” YAPC::EU, 2008. Retrieved January 05, 2010,
available at http://www.slideshare.net/joshua.mcadams/open-flash-chart-and-perl-
presentation.

[33] Adobe, “Flash player penetration.” Retrieved January 05, 2010, available at
http://www.adobe.com/products/player_census/flashplayer/, December 2009.

[34] D. Allen, Seam in Action. Manning, 2008.

[35] T. Oetiker, “Rrdtool overview.” Retrieved March 5, 2010, available at
http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html, 2010.

[36] Oracle, “Oracle berkeley db.” Retrieved March 5, 2010, available at
http://www.oracle.com/us/products/database/berkeley-db/index.html, 2010.

[37] Oracle, “Oracle berkeley db java edition vs. apache derby: A perfor-
mance comparison,” November 2006. Retrieved March 5, 2010, available at
http://www.oracle.com/technology/products/berkeley-db/pdf/je-derby-performance.pdf.

References 79

[38] Oracle, “A comparison of oracle berkeley db and relational database man-
agement systems,” March 2009. Retrieved March 5, 2010, available at
http://www.oracle.com/database/docs/Berkeley-DB-v-Relational.pdf.

[39] F. S. Foundation, “Licenses.” Retrieved March 5, 2010, available at
http://www.fsf.org/licensing/licenses/, 2010.

[40] Atlassian, “Jira.” Retrieved September 27, 2010, available at
http://www.atlassian.com/software/jira/?gclid=CIjIprntp6QCFY0sDgod7ggS6g,
2010.

[41] J. Community, “Hibernate.” Retrieved September 27, 2010, available at
http://www.hibernate.org/, 2010.

[42] H. Kochar, “Business activity monitoring and business intelligence,”
ebizq, December 2005. Retrieved October 23, 2009, available at
http://www.ebizq.net/topics/bam/features/6596.html?&pp=1.

[43] D. Luckham, “The begginings of it insights: Business activity monitoring,”
complexevents, November 2004. Retrieved October 24, 2009, availabe at
http://complexevents.com/2004/11/06/the-beginnings-of-it-insight-business-

activity-monitoring/.

[44] S. Sen, “Business activity monitoring based on action-ready dashboards and
response loop,” October 2008. Retrieved October 27, 2009, availabe at
http://icep-fis08.fzi.de/papers/iCEP08_7.pdf.

[45] W. C., “The extremes of web analytics: From google to bam and business intelli-
gence,” BeyeNETWORK, September 2009. Retrieved October 23, 2009, availabe at
http://www.b-eye-network.com/view/11599.

[46] M. Corporation, “What is bam?.” Retrieved October 18, 2009, available at
http://msdn.microsoft.com/en-us/library/aa560139(BTS.10).aspx, 2009.

[47] S. R. T. Visibility, “Overview.” Retrieved November 16, 2009, available at
http://www.sl.com/products/rtview.shtml, 2009.

[48] S. Microsystems, “J2ee - java message service api overview.” Retrieved November 26, 2009,
available at http://java.sun.com/products/jms/overview.html, 2009.

[49] E. Tech, “Event stream intelligence: Esper & nesper.” Retrieved November 24, 2009, avail-
able at http://esper.codehaus.org/about/esper/esper.html, 2009.

[50] JFreeChart, “Welcome to jfreechart.” Retrieved November 24, 2009, available at
http://www.jfree.org/jfreechart/, 2009.

80 References

[51] Pion, Enterprise Edition - User Guide and Reference. Atomic Labs, 2009.

[52] F. Marchioni, “Esb service orchestration with jbpm,”
2007. Retrieved November 17, 2009, available at
http://www.mastertheboss.com/en/soa-a-esb/120-esb-service-orchestration-with-

jbpm.html.

[53] B. Lublinsky, “Using jboss esb and jbpm for implementing vms so-
lutions,” May 2009. Retrieved November 17, 2009, available at
http://www.mastertheboss.com/en/soa-a-esb/120-esb-service-orchestration-with-

jbpm.html.

[54] JBoss, “jbpm userguide.” Retrieved November 17, 2009, available at
http://docs.jboss.com/jbpm/v4/devguide/html_single/, 2007.

[55] F. S. R. v. Ammon, C. Emmersberger and C. W. Vienna, “Event-driven busines pro-
cess management taking the example of dhl.” Retrieved November 17, 2009, available at
http://www.citt-online.com/downloads/EDBPM-IP-proposal.ppt, September 2008.

[56] S. Microsystems, “Event-driven busines process management taking the example of dhl.” Re-
trieved December 11, 2009, available at http://java.sun.com/products/jms/docs.html,
March 2002.

[57] S. Microsystems, “Java messaging service 1.0.2 api specification.” Retrieved December
11, 2009, available at http://java.sun.com/products/jms/javadoc-102a/index.html,
March 2002.

[58] R. Hat, “Seam framework.” Retrieved January 11, 2010, available at
http://seamframework.org/, 2009.

[59] Oracle, “Berkeley db.” Retrieved March 5, 2010, available at
http://www.oracle.com/database/berkeley-db/index.html, 2010.

[60] T. P. Vincent, “Cep vs business rules.” Retrieved September 19, 2010, available at
http://tibcoblogs.com/cep/2007/10/22/cep-vs-business-rules/, 2007.

List of Figures

1.1 The basic BAM solution . 3
1.2 Integration of BI and business transactions . 4
1.3 BAM as a layer over CEP engine . 7
1.4 Placing the CVT in context of the application functional blocks 10
1.5 Real-time data flow with relational database as persistent storage 10
1.6 Baseline trend . 12
1.7 A museum Dashboard example . 15
1.8 Performance dashboard example . 16

2.1 JBoss ESB rchitecture . 23
2.2 High level perspective of an Order Management System 25
2.3 OMS architecture . 26
2.4 JMS message publish/subscribe model . 29
2.5 The first BAM solution architecture . 32
2.6 Solution’s Complex Event Processing component architecture. 33
2.7 Esper’s event stream intelligence . 34
2.8 Esper’s event stream processing and correlation 35
2.9 Performance test architecture . 39
2.10 Growth delay between. Tested for 100.000 events using one session. 41
2.11 Growth delay between. Tested for 100.000 events using two sessions. 42
2.12 Solution’s user console component architecture. 43
2.13 JFreechart pie chart example. 45
2.14 OFC chart request life cycle. 46
2.15 Open Flash Chart chart example. 47
2.16 Solution’s business logic architecture. 48
2.17 Seam Interceptors trap method calls. 50
2.18 Solution’s storage architecture. 50
2.19 Oracle Berkeley DB Architecture . 52

3.1 Final architecture . 55

82

List of Figures 83

3.2 Event engine class diagram. 57
3.3 Business management classes diagram . 59
3.4 Datatype class diagram . 60
3.5 Dashboard chart and options . 61
3.6 KPI support class diagram . 61
3.7 Charts support class diagram . 62
3.8 BAM solution Dashboard . 62
3.9 Common information in the source creation menu. 63
3.10 Additional information in the source creation menu. 63
3.11 Alerts class diagram . 64
3.12 Alerts menu. 65
3.13 Reports support class diagram . 65
3.14 Data Access Layer class diagram . 66

A.1 Use cases and roles . 88

B.1 Sequence for changing the KPI . 94
B.2 Sequence for alert creation . 95
B.3 Sequence for chart report generation . 96

C.1 Project planning . 99
C.2 Project planning Gantt map . 100

List of Tables

1.1 Set of Structured Data . 9

2.1 Corresponding PTP interfaces with Publisher/Subcriber interfaces. 28
2.2 Processing results of 100.000 events using a JMS queue 40
2.3 Set of Structured Data . 42

A.1 Additional Specification . 93

84

List of Listings

2.1 Tuning Esper engine thread-pool. 39
3.1 Esper’s event engine EPL example for event correlation 58
3.2 Another Esper’s event engine EPL example for event correlation 58
3.3 The Completed event type defined for integration with Oracle Berkeley DB data

storage. 67
3.4 The BaseEvent class annotated in order to be stored in Berkeley DB. 67
3.5 Example class annotated in order to be persisted in Hibernate. 69
3.6 Hibernate configuration. 69
3.7 HibernateUtil Class . 70
3.8 Hibernate object retrieval . 71

86

Appendix A

Use Cases

Figure A.1: Use cases and roles

Authentication

Name: Authentication
Description: User Authentication
Actors: User, Administrator
Preconditions:
Postconditions:
Basic flow:

1. The user wants to be authenticated;

88

89

2. The user inserts the username (see rule R1);

3. The user inserts the password (see rule R2);

4. The user confirms data inserted;

5. The system validates the username;

6. The system validates the password;

7. The use case ends.

Alternative flow:

1. Triggering conditions: On the main flow step 4 or 5, the system won’t validate the inserted
data;

a. The system informs the user that inserted data is invalid;

b. The system returns to its initial state;

c. The use case ends.

View Dashboard

Name: View Dashboard
Description: Shows the dashboard with charts and graphically monitored information
Actors: User, Administrator
Preconditions:
Postconditions:
Basic flow:

1. The user wants to view a dashboard;

2. Include use case Authentication;

3. The systems shows an initial dashboard;

4. The user chooses from a drop down list a new dashboard;

5. The user clicks on load button;

6. The systems shows the real-time monitored information in a dashboard;

7. The user consults the detailed information;

8. The use case ends.

90 Appendix A. Use Cases

Drill Down on Chart

Name: Drill Down on Chart
Description: Shows detailed info when drilling down on a chart after clicking it
Actors: User, Administrator
Preconditions:
Postconditions:
Basic flow:

1. The user wants to drill down on a chart;

2. Include use case View Dashboard;

3. The user clicks on a clickable chart;

4. The systems shows the detailed information in a new window;

5. The user consults the detailed information;

6. The use case ends.

Generate Report

Name: Generate Report
Description: Generate a detailed report
Actors: User, Administrator
Preconditions:
Postconditions:
Basic flow:

1. The user wants to generate a kpi report;

2. Include use case Authentication;

3. The user chooses one kpi chart;

4. The user chooses the time window he wants the report to include (see rule R7);

5. The user confirms on the chosen chart the intention to its report;

6. The use case ends.

91

Configure Alert

Name: Configure Alert
Description: Configure an alert
Actors: User, Administrator
Preconditions:
Postconditions:
Basic flow:

1. The user wants to configure an alert;

2. Include use case Authentication;

3. The user confirms the intention to configure an alert;

4. The system shows an alert form;

5. The user fill in the fields, alert name (see rule R3), alert action (see rule R4) and finally
the threshold parameter that triggers the alert (see rule R5);

6. The user is an administrator so he chooses the target user.

7. The user confirms the form;

8. The system validates the form;

9. The system stores the new personal alert;

10. The use case ends.

Alternative flow:

1. Triggering conditions: On the main flow step 6, the user is not an administrator;

a. The system automatically knows the current user is the target user;

b. This flow returns to the basic flow step 7.

2. Triggering conditions: On the main flow step 8, the system won’t validate the form;

a. The system informs the user that inserted data is invalid;

b. The system returns to the personal alert form;

c. The use case ends.

92 Appendix A. Use Cases

Configure a public Alert

Name: Configure a Public Alerts
Description: Configure a public alert
Actors: Administrator
Preconditions:
Postconditions:
Basic flow:

1. The user wants to configure a public alert;

2. Include use case Authentication;

3. The user confirms the intention to configure a public alert;

4. The system shows a public alert form;

5. The user fill in the fields, alert name, alert action, the group of targeted (see rule R6) users
and finally the threshold parameter that triggers the alert;

6. The user confirms the form;

7. The system validates the form;

8. The system stores the new personal alert;

9. The use case ends.

Alternative flow:

1. Triggering conditions: On the main flow step 7, the system won’t validate the form;

a. The system informs the user that inserted data is invalid;

b. The system returns to the public alert form;

c. The use case ends.

Change Metrics

Name: Change Metrics
Description: Change a chart metric to be monitored
Actors: Administrator
Preconditions:
Postconditions:
Basic flow:

1. The user wants to change the metrics of a given chart;

93

2. Include use case Authentication;

3. The user clicks on the chosen chart metrics drop down list;

4. The user chooses on metric to be monitored on that specific business area;

5. The system refreshes and shows the new graph monitoring the chosen metric;

6. The user confirms that the metric changed;

7. The use case ends.

Additional Specification

Rule number Description
R1 The Username must be alphanumeric and with 4 characters at

least and 12 maximum.
R2 The Password must be alphanumeric and with 6 characters at

least and 25 maximum.
R3 The alert’s name must have a maximum length of 15 characters.
R4 The alert action is either an email or jira.
R5 The threshold parameter is either numeric or textual (for example

representing a state).
R6 The group of targeted users is the user’s role or a group of specific

individuals. A group can, therefore, be one person as a minimum
boundary.

R7 The time window allowed is between 1 and 24 hours.

Table A.1: Additional Specification

Appendix B

Sequence Diagrams

Sequence for Changing the KPI

Figure B.1: Sequence for changing the KPI

94

95

Sequence for Alert Creation

Figure B.2: Sequence for alert creation

96 Appendix B. Sequence Diagrams

Sequence for Chart Report Generation

Figure B.3: Sequence for chart report generation

Appendix C

Project Planning Maps

98

99

Figure C.1: Project planning

100 Appendix C. Project Planning Maps

Figure C.2: Project planning Gantt map

	Acknoledgments
	Resumo
	Abstract
	Introduction
	1 Business Activity Monitoring
	1.1 The Concept
	1.2 Why Business Activity Monitoring?
	1.3 Monitoring
	1.3.1 Complex Event Processing
	1.3.2 Choosing the Messaging Protocol
	1.3.3 Real-Time Data Storage

	1.4 Analysing
	1.4.1 Constraints

	1.5 Reporting
	1.5.1 Dashboards
	1.5.2 Alerting

	1.6 Doing it
	1.7 Planning
	1.8 State of the Art
	1.9 Summary

	2 Pre-Requisites and Studying Platforms
	2.1 The Order Management System
	2.1.1 JBoss Application Server
	2.1.2 JBoss Enterprise Service Bus
	2.1.3 JBoss Messaging
	2.1.4 JBoss Business Process Management
	2.1.5 Oracle Database Management System
	2.1.6 Finding Connection Points
	2.1.7 JMS Notifications

	2.2 Architecture and Platforms
	2.2.1 Complex Event Processing Platforms
	2.2.2 Presentation using Dashboards
	2.2.3 Application Business Integration
	2.2.4 Real-Time Data Storage

	2.3 Summary

	3 Prototype Development
	3.1 Development
	3.1.1 The Architecture
	3.1.2 The Foundations
	3.1.3 The Event Engine
	3.1.4 The User Console
	3.1.5 Data Storage

	3.2 Summary

	Conclusions
	Acronyms
	References
	List of Figures
	List of Tables
	List of Listings
	A Use Cases
	B Sequence Diagrams
	C Project Planning Maps

