
IN PRESENTING THE DISSERTATION AS A PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR AN ADVANCED DEGREE FROM THE GEORGIA
INSTITUTE OF TECHNOLOGY, I AGREE THAT THE LIBRARY OF THE
INSTITUTE SHALL MAKE IT AVAILABLE FOR INSPECTION AND
CIRCULATION IN ACCORDANCE WITH ITS REGULATIONS GOVERNING
MATERIALS OF THIS TYPE. I AGREE THAT PERMISSION TO COPY
FROM, OR TO PUBLISH FROM, THIS DISSERTATION MAY BE GRANTED
BY THE PROFESSOR UNDER WHOSE DIRECTION IT WAS WRITTEN, OR,
IN HIS ABSENCE, BY THE DEAN OF THE GRADUATE DIVISION WHEN
SUCH COPYING OR PUBLICATION IS SOLELY FOR SCHOLARLY PURPOSES
AND DOES NOT INVOLVE POTENTIAL FINANCIAL GAIN. IT IS UNDER
STOOD THAT ANY COPYING FROM, OR PUBLICATION OF, THIS DIS
SERTATION WHICH INVOLVES POTENTIAL FINANCIAL GAIN WILL NOT
BE ALLOWED WITHOUT WRITTEN PERMISSION.

I J /I

7 / 2 5 / 6 8

CONSTRAINED NONLINEAR OPTIMIZATION

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

by

Mark Henry Machina

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in the School of

Industrial and Systems Engineering

Georgia Institute of Technology

June, 1971

CONSTRAINED NONLINEAR OPTIMIZATION

Approved:

1 —

7 W / I U ^ / L ,1

Date approved by Chairm

ACKNOWLEDGMENTS

The author wishes to express his deep appreciation to Dr. G. M

Shetty for his infinite patience and valuable guidance in the prepara

tion of this thesis. The author also thanks Dr. J. J. Jarvis, Dr. D.

Fyfe, and Dr. D. C. Montgomery for their encouragement and assistance

Special thanks are extended to Professor J. J. Goda, Jr. for his in

valuable assistance in preparing the computer program.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

LIST OF TABLES iv

LIST OF ILLUSTRATIONS iv

SUMMARY v

Chapter
I. INTRODUCTION 1

Literature Survey
Unconstrained Maximization
Inequality Constrained Nonlinear Problems

II. THE COMBINATORIAL ALGORITHM 20

Theil and Van de Panne's Quadratic Programming
Algorithm

Geoffrion's Extension of the Combinatorial
Approach

III. SOLVING EQUALITY CONSTRAINED PROBLEMS 30

IV. THE COMPUTATIONAL SCHEME 35

Test Problems
Program Discussion

Initialization Step
Iterative Step

V. COMPUTATIONAL RESULTS 50

The Problem of Complexity

VI. CONCLUSIONS AND RECOMMENDATIONS 63

Appendices

A. TEST PROBLEMS 66

B. COMPUTER PROGRAM 69

BIBLIOGRAPHY 88

Page

iv

LIST OF TABLES

Table Page
1. Execution Times 52

2. Functional Value at Solution Point 53

LIST OF ILLUSTRATIONS

Figure Page
1. Flow Diagram for the Theil and Van de

Panne Algorithm 23

2. Sample Problem 25

3. Solution Procedure 42

4. Powell's Penalty Function Method 44

5. Problem P-l 54

6. Problem P-2 56

7. Problem P-3 57

8. Problem P-4 58

9. Contours of Test Problem P-5 61

V

SUMMARY

The Quadratic Programming algorithm of Theil and Van de Panne and

its extension by Geoffrion for reducing a nonlinear inequality constrained

problem to a sequence of simpler equality constrained subproblems are in

vestigated to determine the feasibility of solving problems with non

linear constraints in a combinatorial manner. This is found to be com

putationally successful, although no theoretical proofs are given.

It is also shown that, by relaxing the exactness with which each sub-

problem is solved, the algorithm still is successful and the efficiency

of the computer program is greatly enhanced from the standpoint of execu

tion time. It is also shown that it is advantageous to use the approxi

mated solution to one-subproblem as the starting point for certain

succeeding subproblems. The solution procedure is illustrated by an

example problem and a computer program is given.

1

CHAPTER I

INTRODUCTION

Constrained nonlinear optimization refers to the determination of

the optimal solution to the problem

Maximize: f(x) 1.1

Subject to: g ±(x) ^ 0, i = l,...,m 1.2

x e X

where f(x) and g^(x) are real valued functions defined on E n and X is an

arbitrary set in E n . If x maximizes 1.1 subject to 1.2, then we will

call x the optimal solution to the problem. All points satisfying

expression 1.2 will be called feasible points.

The above problem reduces to a linear programming problem when f

and g are linear and X = {x : x = 0}. Effective solution procedures

such as the simplex method are available for solving such problems. A

natural extension of the above linear problem is the Quadratic Programming

Problem where the function f is quadratic. Different approaches have

been adopted to solve such a problem, e.g.

1. Adjacent extreme point methods which move from one extreme

point of the constraint set to another. See, for example, Wolfe (41),

Dantzig (7), and Van de Panne and Whinston (40). This approach is per

haps the most effective procedure for quadratic programming.

2

2. Optimizing along directions which lead to improved feasible

points, e.g. Beale (1), Zoutendijk (45).

3. Solving a sequence of equality constrained problems, e.g.

Theil and Van de Panne (39). An outline of this approach is given below

since this study deals with the adaption of this method to a more general

problem. A thorough discussion is given in Chapter II.

The Theil and Van de Panne method maximizes a strictly concave

quadratic function subject to a convex set of linear inequality constraints.

It is an iterative method in which the inequality constrained problem is

solved using a finite sequence of equality constrained subproblems. The

unconstrained problem is first maximized and, if this solution falls

outside the feasible space, we identify those constraints it violates.

Subsets of these violated constraints are then considered in a combina

torial manner and the function again maximized with each subset of con

straints in equational form. Constraints that are violated by each new

subproblem solution are then added to those already imposed. The subsets

are increased in size in an iterative process until either the optimal

is found or it is shown that no feasible solution exists. Theil and

Van de Panne showed quadratic convergence for this method, that is, the

solution procedure will find the optimal in a finite number of steps for

the quadratic objective function.

Geoffrion (19) has extended the Theil and Van de Panne algorithm

to a general concave nonlinear objective function and has suggested that

the requirement for concavity might also be relaxed. However, the pro

cedure still requires that the constraints be linear.

3

This thesis is directed toward the following three objectives:

a. The application of the combinatorial approach to second and

higher order functions with constraints which may not be linear.

b. The Theil and Van de Panne procedure requires determination of

the additional violated constraints at each stage and not the exact solu

tion. Means of taking advantage of this property will be investigated.

c. Since each subproblem is very "similar" to the preceding one,

it seems reasonable to use the optimal solution of one problem in solv

ing the subsequent problem. We will investigate means by which this

can be computationally done.

Since we are dealing with an inequality constrained problem, we

will first look at means of solving such problems. In Chapter II we will

discuss the combinatorial approach and its extension. Since the combi

natorial approach solves the inequality constrained problem by the use

of a sequence of equality constrained subproblems, a discussion of solu

tion techniques for the equality constrained problem and a statement of

the particular solution procedure adopted for this research are given in

Chapter III. The flow charts for the solution procedure used and a dis

cussion of the computer program appear in Chapter IV. Chapter V includes

the computational findings and the conclusions and recommendations are

given in Chapter VI. The problems solved and the computer program are

given in the Appendices.

Literature Survey

It may be recalled that the nonlinear programming problem we are

dealing with is an inequality constrained problem of the form:

4

Max f(x) : x e X, g^(x) = 0 , i = l,...,m . In this section, we will

discuss some of the important methods available, both numerical and ana

lytical, for solving this problem. Since some of the numerical methods

are based on converting the problem to an equivalent unconstrained prob

lem, we will first discuss the methods available for solving an uncon

strained problem.

Unconstrained Maximization

Unconstrained maximization is accomplished generally by an itera

tive search which uses the relation

x. = x. + h.d. 1.3 i+l l l i

where d. is an n dimensional direction vector and h. is a distance l l
moved along it so that

f(x. + 1) ^ f(x.) 1.4

The basic scheme can be summarized as follows: At some iteration we are

given a direction d^. From a point x^ we proceed along d^ to a point

x.,- = x . + h.d. . At x . w e determine a new direction d.., and repeat i+l l 1 1 i+l i+l r

the procedure.

Iterative optimization techniques can be classified generally into

two categories: gradient free methods and gradient methods. Gradient

free search methods are those methods not requiring explicit evaluation

of any partial derivatives of the function, but rely solely on values of

the objective function f along with information gained from earlier

5

iterations.

Some of the algorithms based on the above scheme are discussed

below.

Cyclic Coordinate Method. In this method, the directions d^ are
th

the coordinate directions. These directions are the same for every n

iteration (i.e., d. = d.) . The step length h. along direction d. is
1 l+n 1 i

found by optimizing f along d^.

Sequential Simplex Method. In this method, the direction of search

is determined at each stage and this direction changes at each iteration.

However, the step length at each iteration is fixed. More specifically,

this technique (1) creates a regular geometric figure, called a simplex,

(2) experiments at the vertices of the figure, and (3) moves away from

the worst experimental point through the center of the figure locating a

new experimental point at the mirror image of that point just rejected.

As the search nears the optimal, the size of the simplex is reduced until

it is adequately small to give an acceptable estimate of the optimal.

The basic simplex method has been modified by Nelder and Meade (27) and

Box (3) to include acceleration of the search when successes are en

countered. These modifications will be considered later in this chapter

when the inequality constrained problem is discussed.

Hooke and Jeeves Pattern Search. In this method, again the direc

tion of search is determined at each stage based on local explorations.

This direction changes from iteration to iteration, and the step length

is varied to reward success in the direction of search. The details of

the procedure are as follows:

6

Starting from some feasible base point, which we will call x^, local ex

plorations are made at some 6 distance to either side of the base point

in all n directions. If improvement of the functional value is ex

perienced, the base point is moved to this new location, and its subscript

advanced by 1. When the local exploration phase of the method is con

cluded, the newest temporary base point would be x^. If at this time

is different from x,, a step is taken in the direction (x - x n) . The
1 r n V

step length is some constant, c, times this distance, that is, the step

length is c(x^ - x ^) . If the new base point established after this step

shows improvement, the method is restarted from that point. If no im

provement is found, the last temporary base point that showed improvement

is taken as the new base point and the method restarted. If at the end

of the exploration phase x^ = x^, the distance 8 is reduced and the method

restarted. When 8 is sufficiently small, we assume that we have found

the optimal.

Powell's Conjugate Gradient Algorithm. Here again, the direction

of search changes from iteration to iteration; however, the attempt is to

obtain n mutually "conjugate" directions of search. The step length is

determined by optimization along the direction of search. The conjugate

directions are important since it can be shown that, if we optimize along

n conjugate directions, we will reach the optimal when the objective

function is quadratic. The basis of the method used to generate the con

jugate directions is that, if we optimize a quadratic function along a

direction a. (starting from two different points) to give points x^ and

x 0 , then oi and (x- - x„) are mutually conjugate.

7

Rosenbrock Method. In this method the direction of search d. is 1

determined so as to align it along the axis of ridges or valleys based

on the results of past success in local searches. The distance of move-

ment also changes from iteration to iteration. Some details of the pro

cedure are as follows. For a problem with n variables, n orthonormal

directions are used. Initially, unit vectors are used along the coordi

nate axes and, after initial exploration, a new set of directions is

determined that is orthogonal to the previous set. The sequence of

searches along each of these new directions is repeated. Whenever a

success is followed by a failure, new directions are computed from the

old and the aggregate results of each successful evaluation. Success is

rewarded by increasing the step length in the successful direction by

some factor greater than one and failure by multiplying the step length

in a direction that fails by some negative factor less than one. Success

is defined as an exploration resulting in a functional value that is

greater than or equal to the previous value. One drawback of the Rosen-

brock method is that, if too long a step is made, the search must back-up

much more slowly with a series of shorter steps, each having n local

searches. This is time consuming and detracts from the efficiency of the

method. The modification of Davies, Swann, and Campey helps eliminate

this deficiency by maximizing in each direction, thus avoiding the exces

sive step length.

Davies, Swann, and Campey (38) have considered a modification
using optimization along the direction of search. However, computational
results show the modification gives no improvement in the convergence
property.

8

Computational experience has shown that the above methods generally

improve in the order in which they were presented, with the Cyclic Coordi

nate method being the least desirable and the Rosenbrock method being,

perhaps, the most desirable. This is attributed to the fact that the

Rosenbrock method permits change in step length and direction to acceler

ate convergence.

We now turn our attention to gradient methods. Gradient methods

are generally accepted as being the more powerful, although other con

siderations sometimes make a gradient method undesirable. Setup time can

often be a drawback since gradient methods are not as straightforward as

the gradient free search procedures making them more difficult and time

consuming to program. In addition to this, they are not as flexible as

the gradient free search methods, as some functions are not differentiable

or the gradient may not be available in closed form. In such a case, it

is necessary to determine them by local exploration using several experi

ments, a procedure that in itself is time consuming. The effort spent

along this line can outweigh the benefits of using the gradient search

technique. These considerations and others discussed in Chapter III lead

us to the use of a gradient free unconstrained search procedure in this

study. Therefore, we will discuss below only the Davidon-Fletcher-Powell

Method (18) which is considered to be the most powerful among the gradient

algorithms.

In the gradient methods, the direction d^ in 1.3 depends on the

partial derivatives of the objective function, f, with respect to the

independent variables. The Davidon-Fletcher-Powell Method (18) is

9

an improved version of Davidon's method (8). It is based on the idea of

generating the inverse of the matrix of second partial derivatives of the

function at the optimal point by a series of searches. This matrix,

called the Hessian matrix, will be denoted by H. This is accomplished

without the use of the second partial derivatives. An outline of the

method is as follows.
th

At the i stage of the procedure we are given a feasible point

x^ and an approximation H^ to the Hessian at the optimal point. The

point ^ is found by optimizing f(x) in the direction p^ where

p. = H.q.(x) 1.5
1 ini

where q^(x) is the gradient of the objective function at x_

Letting

and

B. = x. - x. 1.6
i l+l i

J 1 nl+l 1

the approximation to the Hessian is changed to

where

H., = H. + A. + B. 1.8
l+l i i i

T
h ^

A = - - i - i 1.9
P. y.
i J i

and

10

B. = 1 1.10

The procedure is started with some feasible point XQ and initial

approximation H n = I, an identity matrix. The procedure is stopped when

Inequality Constrained Nonlinear Problems

In this section we will look at some of the methods of solving the

nonlinear problem with only inequality constraints. The classical ap

proach to this problem is via the Lagrangian function defined by

where s. is the slack variable associated with the i constraint and X.
L i

th

is the Lagrange Multiplier associated with the i constraint. Here the

objective function, f(x), is penalized by any violated constraint, as

g^(x) < 0 when violated. Taking partial derivatives of the above defined

function (1.11) and then solving the simultaneous equations resulting,

we are able to determine the stationary point. However, solving the

simultaneous equations is difficult for large problems. In recent years

attention has been directed at methods such as the "generalized Lagrangian

multiplier" approach (12).

For certain specially structured problems, we also have special

methods of solution which have been found to be computationally very

the step length ||p || b

of p..
i

ecomes sufficiently small, where | (3. is the norm

m
1.11

i=l

th

11

efficient; for example, the simplex method for linear programming and

the simplex-like procedures for quadratic programming.

Yet another approach is to solve the nonlinear programming problem

by solving a series of simpler problems. One such approach is the "com

binatorial approach" which is the subject of this investigation and will

be dealt with in detail in later chapters. Another approach is via

"penalty functions" where we solve a series of unconstrained problems of

the form

F = f(x) + ^ P(g.(x)) 1.12
i

where the ^ P(g^(x)) term is the penalty term that penalizes the function
i

if the constraints are violated. This approach to solving the constrained

nonlinear problem can be divided into two classes. Interior penalty func

tion methods are those which start from a feasible point and approach the

optimal at the boundary of the feasible space as if it were a barrier.

Exterior methods are those which start from some point outside the feasible

space, normally the solution to the unconstrained problem, and then pro

ceed to close on the optimal from outside the feasible region. In the

exterior methods, the objective function includes only those constraints

that are violated.

There are several interior methods, some of which have been in use

for several years. The most widely known and used of the interior methods

is Fiacco and McCormick's (13) SUMT (Sequential Unconstrained Minimization

Technique), which is a modification of the Created-Response Surface Tech

nique of Carroll (6). Another interior method is due to Zangwill (44).

12

Since all of these approaches are similar, we will look at Fiacco and

McCormick's SUMT as an example of interior penalty function methods as

applied to a maximization problem.

SUMT is based on the transformation

m
F(x,r) = f(x) + r £ l/g.(x) 1.13

i=l 1

where r is a sequence of decreasing values, r > 0. The method begins

with the location of a feasible start point. F(x,r) is then minimized

for succeeding decreasing values of r. As r approaches zero, the value

of F(x,r) approaches that of f(x), since the penalty term decreases to

wards zero. Thus, at the optimal, the values of F(x,r) and f(x) are

equivalent and both the penalty function and the objective function reach

minimums simultaneously. One of the most serious shortcomings of this

method is the difficulty encountered in the selection of the initial

value of r and the rate at which it should be decreased, as the product

of a very small number, r, and a very large number, l/g^(x), can cause

difficulty in the convergence of the method.

Exterior methods are relatively new in the field of nonlinear

optimization. In 1967, exterior techniques were introduced by Fiacco and

McCormick (14) and Zangwill (43). In 1968, Lootsma (25) presented a com

bination of the interior point methods and the exterior methods for solv

ing the constrained nonlinear problem and also in 1968, Powell (29)

introduced another exterior method which appears to be the best attempt

thus far.

13

Powell uses the transformation

m
1.14

i=l

where s and r are sequences of decreasing values with r > 0 and

s < 0. In all of the penalty function methods mentioned, F is minimized

for a sequence of values of r, giving a sequence of minimums that close

on the true minimum. In those methods other than Powell's, F and f

are equal at the optimal solution. Powell has added the second parameter

s^ to reduce the difficulties encountered with the product of large and

very small numbers near the optimal. Thus, in this method it is not

necessary for F(x,r,s) to equal f(x) at the optimal solution, rather they

must simply reach their respective minimums at the same time, i.e. if x

minimizes F(x,r,s) then x minimizes f(x) also. Notice that both param

eters r and s are subscripted to correspond with the constraints

g^(x). This allows them to be reduced independently so that only those

parameters corresponding to the constraints not converging to zero fast

enough need be reduced. This allows those parameters whose constraints

are converging sufficiently fast to remain unchanged, thus speeding the

overall rate of convergence. When it becomes necessary to reduce r,

it is accomplished by the following relation

where the factor of 10 is arbitrary, but recommended by Powell. If the

i ^ constraint is converging fast enough, the parameter s. is reduced as

r. = r./lO 1.15

i

14

follows

s . = s . + g. (x) 1.16
i i i

Recall that only those constraints which are violated are included in the

penalty term and, therefore, the g^(x) is less than zero and s^ is mono-
th

tonically decreasing. If the i constraint is not decreasing to zero

fast enough, both r^ and s^ are decreased together, both by the factor of

10. A flow chart and further discussion of Powell's method can be found

in Figure 4 and Chapter IV.

There are also several numerical methods that have been reasonably

successful in solving nonlinear programming problems. These are exten

sions of gradient and gradient free methods discussed earlier. Some of

the gradient free search methods discussed in an earlier section have been

useful in solving the nonlinear constrained problem, for example, the

Hooke and Jeeves Pattern Search (23). In this technique, fixed search

directions and step lengths are used. When applied to the constrained

problem, each test point is checked for feasibility. Should such a point

prove infeasible, a different search direction is tried. If all search

directions giving improvement lead to infeasible points, the step length

is shortened and the same directions tried. Due to the fixed directions

of search, this technique may fail to find the true optimal since the

search will be halted when the step length becomes sufficiently small and,

if we reach a point where the only directions giving functional improve

ments lead to infeasible points, the search will be stopped even though

the optimal has not been found.

15

The Sequential Simplex of Spendley, Hext, and Himsworth (35), also

discussed earlier is another method that has been extended for constrained

optimization. This method is different from the pattern search technique

in that the direction of search is not fixed. With inequality constraints,

each new vertex must be checked for feasibility. When an infeasible one

is encountered, it is assigned a large negative value which penalizes it

enough to cause the search to reflect back in a feasible direction.

Should all possible directions offer infeasible vertices, the length of

the sides of the simplex is decreased and the search continued.

Nelder and Mead (27) have modified the above method to include an

expansion and contraction of the simplex to award success by extending

the simplex in the successful direction and punish failure by contracting

the simplex in directions which fail to bring improvement in the functional

value. Should the contraction fail to bring improvement, the size of the

entire simplex is reduced.

The sequential simplex method has also been modified by Box (3)

who named his new modification the Complex method. It differs from the

simplex method in that there are k > n+1 points in the figure that is

created. The sides of the figure are not necessarily of equal length.

Once again, the vertex with the worst reading is rejected and reflected

through the centroid of the figure, but some a > 1 times as far from the

centroid as the rejected point, to establish a new point. Should this

point be infeasible, it is moved back, halfway towards the centroid.

This process is repeated as many times as necessary until a feasible point

is found. Thus, as we would expect, the complex method tends to flatten

16

out along the binding constraint. The complex can then move along the

constraints to the optimal. It stops when five consecutive evaluations

give the same functional value within the acceptable tolerance, which

means the complex has essentially collapsed into its centroid. An im

portant advantage of the complex method over the simplex is exactly the

relaxation of the requirement for a regular geometric figure. Starting

procedures are also easier due to this property since only one feasible

point need be found and the irregular figure is constructed from this

one point.

Powell's conjugate direction method is not suitable for use with

constrained problems since the solution to such problems is likely to lie

on a boundary and the basis for the effectiveness of conjugate direction

methods is the existence of an optimal at a stationary point. It is in

that situation that the function can be approximated by the quadratic

form.

Rosenbrock's unconstrained search, on the other hand, can be

successfully applied to constrained problems. The procedure starts with

a feasible point and proceeds in the same manner as the unconstrained

search technique, except that each new point is tested for feasibility.

A "boundary region" is defined along the boundary of the feasible space.

When we detect that the search has entered or passed through the "boundary

region," it is assumed that the function optimal probably lies outside the

feasible region and the function is modified so that it will remain within

the feasible region. The search is retracted a distance (depending upon

the amount of penetration into the "boundary region") back towards the

17

last feasible point encountered. The search is then continued and further

modification to the function is made as the "boundary region" of other

constraints is entered.

We will now consider some of the gradient methods of approaching

the constrained nonlinear problem. Several such methods have been de

veloped; however, no one best method exists and each seems to be better

suited for a particular type problem. Those to be discussed here are the

method of Glass and Cooper (20), Zoutendijk's method of feasible direc

tions (45), Rosen's projected gradient method (31), and Davidon's method

with linear constraints (18) as modified by Fletcher and Powell.

The method of Glass and Cooper is essentially a steepest ascent

method that follows the gradient as far as possible. Starting from a

feasible start point, we move in the direction of the gradient a predeter

mined distance s. If the functional value is improved and no constraints

are violated, we continue in the same direction a distance cs where c

is some constant greater than 1. This procedure is repeated until failure

is encountered. If the failure is due to a poorer functional value, the

last successful point is used as a new base point and a new direction

determined. If the failure is due to a constraint violation, a new base

point is established some 6 distance inside the binding constraint and a

new rule for the selection of search direction is adopted, since the gra

dient takes us outside the feasible space. The step length s is reduced

and shorter moves are taken along the binding constraint. When the point

is found from which no direction offers improvement in the functional

value, we have arrived at a local optimal.

18

Zoutendijk's method of feasible directions is restricted to prob

lems with linear constraints only. It also starts from a feasible point

and proceeds in a direction determined by linearizing the objective func

tion in the vicinity of the start point and solving the linear program

ming problem. This direction is the feasible direction which makes the

smallest possible angle with the gradient at that point and offers the

greatest possible improvement in the objective function. Once the search

direction has been determined, a one-dimensional search is conducted to

determine the optimal in that direction. A large step is then taken to

the optimal in that direction if one exists, or to the first binding con

straint encountered. In either case, a new base point is thus located

and the procedure repeated. When there exists no direction in which

functional improvement can be gained, we have located a local optimal.

The gradient projection method of Rosen is different from the pre

ceding two methods in that rather than search around the interior of the

feasible space, it moves along the boundaries from the start. If equality

constraints are present in the problem, this method starts from their

intersection and proceeds as directed by the projection of the gradient

of the objective function. If equality constraints are not present in

the problem, a feasible start point is chosen and the gradient followed

directly until one or more constraints are binding. The projection of

the objective function gradient is then taken on the intersection of bind

ing constraints. This direction is followed until the next binding

constraint is found. At that time the procedure is repeated and we con

tinue in this manner until the optimal is located.

19

The Davidon-Fletcher-Powell method has also been applied to con

strained problems. Recall from the previous discussion of this method

that the i*"*1 direction of search is obtained from the product of the i*"*1

til.

approximation of the Hessian and the i gradient of the function, i.e.

p^ = H^q^(x). The basic difference in the method when applied to con

strained problems is in the calculation of this direction, p^. The con

straints are taken into consideration in the formulation of the approxima

tion of the Hessian, so that if k constraints are binding at a particular

stage, the new direction is determined by p. = H. q.(x) where H. is the
1 X k 1 x k

new approximation of the Hessian which will yield a feasible direction

taking the constraints, k, into account.

We will now proceed with a discussion of the combinatorial ap

proach of Theil and Van de Panne for solving the constrained quadratic

problem and Geoffrion's extension of it to include problems of higher

order than the quadratic.

20

CHAPTER II

THE COMBINATORIAL ALGORITHM

Theil and Van de Panne's Quadratic Programming Algorithm

Perhaps the first combinatorial approach for solving nonlinear

programming problems is that proposed by Theil and Van de Panne (39) for

maximizing a strictly concave quadratic function subject to linear inde

pendent, inequality constraints. Dependent constraints can give rise to

the degenerate case and, therefore, Theil and Van de Panne assume all

constraints are independent. As discussed in Chapter I, it is an itera

tive procedure in which they consider a finite sequence of equality con

strained subproblems beginning with the unconstrained problem and con

tinuing with additional subproblems, each considering, in equational

form, a subset of constraints. The sequence of subproblems continues

until either the optimal is found or it is shown that no feasible solu

tion exists. The combinatorial approach of Theil and Van de Panne and

Geoffrion's extension of it will be discussed in detail below, since

this study is concerned with testing its computational feasibility for

more general problems.

It will be helpful to begin with the definition of some notation

M : the set of all constraints = {l,2,...,m}

S : the set of constraints held in equational form in each sub-

problem, S C M, called a Trial Set

21

Pg : the subproblem corresponding to a set SCZ M:

Maximize: f(x)

Subject to: g (x) = 0, i e S
g

x : the solution to Pg
S

Tg : those constraints in (M - S) that are violated by x

T s = {i e M-S: g.(x S) < 0}

S : the set of constraints satisfied as equalities at the optimal

solution, x, to the nonlinear programming problem defined by

equations 1.1 and 1.2.

We will now discuss the method proposed by Theil and Van de Panne

(39) to solve a quadratic programming problem. The method is based on

the following three rules.

Rule 1: If x° (the vector of the unconstrained optimal) violates

certain constraints, then x (the optimal vector) satisfies at least one

of these exactly.

Rule 2: Suppose that two or more constraints are satisfied

exactly by x and partition the set of these constraints into two subsets,
g

S and S 1 , containing at least one constraint each. Then x (the vector

which "maximizes" F subject to the constraints in S in equational form)

violates at least one constraint which is an element of S'.
g

Rule 3: Suppose that for some subset S of the constraints, x
S —

exists and violates none of the constraints; then x = x if and only if

every x^ violates the h*"*1 constraint, where
S h = S - {h}

22

If S is known, then x = x, the optimal solution. Our attempt is

to obtain S by solving a series of equality constrained problems. Sup-
th

pose, at the k stage, we have a set U whose elements are k-element
subsets of M. The elements of U are called the current generation of

k

trial sets and we would like to test whether any element, S, of the set

is equal to S. Each such S is called a trial set. Recall that T denotes

the constraints violated by x^.

At some stage, if each element of ^ has been tested, we will be

defining a new generation of trial sets. This is given by

U k = {{S,t} : S e U k _ r t e T g) 2.1

It may be noted that each succeeding generation of trial sets has one

more element than the previous one.

The procedure starts with S = $ so that

U o = T0 = { 1 6 M : S i (x 0) K °]

Figure 1 gives the flow diagram for the combinatorial approach

and the following clarification may be helpful.

BLOCK 1: The solution procedure begins with the determination of

the optimal of the unconstrained problem (1.1) where S = The solution

vector x° is then used to identify U. Should U° = we have the case

where the unconstrained optimal is within the feasible space and x° = x.

When U ^ $ we begin the iterative process with Block 2.

23

1.
Unconstrained Problem
Let S = 0
Let
U = {i e M : g.(x S) < 0}

2.

Let x^ be optimal
associated with P g

Let
T g = {i e M-. 3 : g.(x S) < 0}

Yes

If U has not been exhaus
ted, replace S by next
set in U. Otherwise,
replace U by:

{S* : S' = S+T for some
S e U and t e T g } and put
S equal to the first set in
U

Initiali-
zation

* Terminate Iterative

J

Figure 1. Flow Diagram for the Theil and Van de Panne Algorithm

24

BLOCK 2: Take a subset S of U and solve P for x . Now use x
o

s
to identify T , those constraints (not in S) that are violated by x .

BLOCK 3: (Test x for optimality.) If T = 0, we apply Rule 3,
o

S — S — otherwise x ^ x and we move on to Block 4. If x = x we have solved the

problem and terminate.

BLOCK 4: We choose another untested element S in U and return to

Block 2. On the other hand, if all elements of U have been tested, we

redefine U with a new generation of trial sets. Each element ^ of

the previous generation of trial sets gives rise to one or more elements

of the new generation of trial sets. The new elements are given by

S, = S, 1 + t , where t e T n 2.2 k k-1 S, 1 k-1

Now return to Block 2.

To illustrate the algorithm we will consider the example given in

Figure 2.

The first step (Block 1) is to determine the unconstrained solu

tion, x°, and in Fig. 2 we see that x° violates constraints 3 and 4.

Therefore, contains the subsets {3} and {4} which will now be con

sidered as we move to Block 2.

In Block 2, we take the first subset of U, say {3} and solve our

first subproblem with constraint 3 in equational form. The solution vec-

(3)
tor to this subproblem will be written x . We now use the solution

(3)

vector, x , to determine which, if any, constraints it violates. Fig.

2 shows that it violates constraint 4.

25

Figure 2. Sample Problem

Having a violation, we move through Block 3 to Block 4. Here we

see that U is not exhausted and therefore return to Block 2 to consider

constraint 4 in equational form.
(4)

Once again we have a violation, as x violates constraint 2.

Having not found the optimal, we move on to Block 4 and see that U has

now been exhausted and must be redefined. The new generation of trial

sets, U, now contains the elements {3,4} and {2,4}.
(3 4) (2 4)

In the next iteration we then solve for x ' and x ' and find
that both may be optimal as neither solution vector violates any further

(3 4)

constraints. Rule 3 is now applied and we first consider x ' and ob

serve that {3,4} is the set of constraints satisfied in equational form,

so the sets S to be analyzed are the set {3}, obtained by excluding

26

constraint h = 4, and the set {4}, obtained by excluding h = 3. Hence
(3)

we must verify whether it is true that x violates constraint 4 and

(4)
that x violates constraint 3. An inspection of Figure 2 shows that this is the case for x ^ , but not for x ^ ; this vector violat es con

straint 2, not 3, and we therefore have a feasible solution, but not the
(2 4)

optimal. We move on to x ' , which satisfies constraints 2 and 4

exactly. Does x ^ ^ violate constraint 2, and x ^ ^ violate constraint 4?

The answer is affirmative as seen in Figure 2 and we can therefore con-
(2 4) -

elude that x ' = x. While this result is obvious for so few variables,

an algebraic device such as Rule 3 is necessary when we deal with more

than a few variables.

Geoffrion's Extension of the Combinatorial Approach

As mentioned above, the method discussed was developed for qua

dratic objective functions. Geoffrion (19) presented an extension to

the combinatorial approach by considering nonquadratic concave functions

(1.1) with a set of linear inequality constraints. This extension also

entails the solution of a sequence of equality constrained subproblems

which terminates with the optimal solution x or with the conclusion that

no feasible solution exists.

It may be recalled that, corresponding to a subset S C M , we have

defined a subproblem Pg as

P : Maximize: f(x) 2.3

Subject to: g±(x) = 0 , i e S 2.4

x e X

27

The Theil and Van de Panne approach solves for the solution x and looks

at the violation of the constraints in M - S. In Geoffrion's approach,

the Lagrangian multipliers (dual variables) associated with the above

solution are also considered. If they are of the wrong sign, the cor

responding constraint is deleted from the succeeding generation of trial

sets. This ability to reduce the elements of the trial sets permits

Geoffrion to start with an arbitrary trial set, S°.

While the extension considers the nonquadratic concave function,

only linear constraints are included in the iterative combinatorial

execution of the solution procedure. Nonlinear constraints must be in

cluded in the definition of the set X.

The procedure begins by considering 2.3 and 2.4 where S = S°; S°

being the initial subset of M to be considered in equational form and

may be the null set or some subset of the constraints known to be satis

fied as equalities at the optimal, x. If U, the current generation of

trial sets, does not contain the optimal, we redefine U. The first gen-

eration U*o equals S alone (i.e. U = [[ij : i e S j). The next generation

is defined by S = S° ± t for some t e T . At any particular iteration,
th

say the k where k = 1, S. = S, - ± t for some trial set S, .. in the J k k-1 k-1
s t

(k-1) generation and t e T . The set S .. is called the immediate
bk-l k _ i

lineal predecessor of and either C S ^ or ^. Obviously,

S° is a lineal predecessor of all trial sets. The decision to add or

subtract t depends on the sign of the Lagrangian multiplier from the solu

tion of the dual subproblem. If it is negative, t is subtracted from

S, as we have found an S. ., such that S CL S, where S = (i e M : g.(x) k-1 k-1 k-1* L I

= 0}. Essentially, the expression S ± {t} denotes SU{t} when {t} fi S

28

and S - {t} otherwise. The iterative process of defining U, then test

ing its elements for optimality and redefining U continues until we are

able to find the optimal combination of equational constraints, S, or we

determine that no feasible solution exists. Normally, if S° differs from

S by more than a half dozen indices, the technique fails to be computa

tionally efficient. If there are only a few constraints in the problem

or it is known that only a small number are in S, then S° = 0 can be a

satisfactory starting subset.

Now suppose x is the optimal solution to the nonlinear programming

problem with associated values \^ of the optimal Lagrangian multipliers.

For convenience in the discussion that follows, we will assume \. > 0 for
_ l

i S S where S = [i E M : g^(x) = 0}. Clearly, we have x = x. We will

denote by P,(K) the number of elements in a set K, e.g. for K = 1,3,5

U.(K) = 3.

We would like to define a "distance" between S° and S which is

correlated to the computational efficiency of the combinatorial approach.

Such a measure is given by the following definition of distance d.

d(S°,S) = u.(S° - S) + u.(S - S°) 2.5

Geoffrion (19) has shown that, starting from S°, the optimal subset, S,

of constraints is obtained in exactly d(S°,S) generations of trials.

From experimental results, we know that, as d(S°,S) increases, the number

of subproblems required to reach the optimal increase very rapidly. From

this it is clear that the combinatorial approach is not practical if the

29

optimal subset of equational constraints is very different from S .

When considering the Theil and Van de Panne algorithm where we always

have S° = 0 and constraints are added one at a time, this can be inter

preted as saying that, as the optimal subset of equational constraints

becomes large, the efficiency of the method decreases rapidly.

While the extension to the combinatorial approach is primarily

concerned with the strictly concave f(x), as suggested by Geoffrion (19),

it may be possible to apply this technique to the nonconcave f(x) as well.

Possible modification of the algorithm to address the nonconcave function

might be the setting of T equal to the indices of the constraints that
V , V .

are violated by any sequence <x > feasible in P for which <f (x)> -» °°.

That is, violated by a sequence of points for which the functional value,
v

f(x), is unbounded, but which are feasible for the particular subproblem,

P , at hand. Further discussion of the problem of nonconcavity and/or

nonconvexity appears later.

The solution procedure used in this research uses a numerical

algorithm for the solution of P which does not yield the Lagrangian mul-

tiplier used by Geoffrion to redefine his generations of trial sets.

Without the knowledge of the Lagrangian multiplier, it was necessary to

follow the Theil and Van de Panne algorithm of starting with S° = 0 and

redefine U via

U = {S 1 : S' = S + t, for some S e U and {t} e T }

as shown in Block 4 of Figure 1.

30

CHAPTER III

SOLVING EQUALITY CONSTRAINED PROBLEMS

As seen from Chapter II, the Theil and Van de Panne procedure

requires us to solve a sequence of equality constrained problems. If we

begin with the solution of the unconstrained problem with S = 0, we nor

mally find ourselves outside the feasible space. Solving the sequence

of combinatorial subproblems then brings us back to the point on the

feasible space boundary that is the optimal point. In this chapter we

will discuss the means used to solve these constrained subproblems.

One of our objectives was to take advantage of the fact that each

subproblem differs from its lineal predecessor by only one constraint.

Because of this "closeness" between the problems, it seems reasonable

that the solution to one subproblem would be a good start point for its

successor. This is facilitated by adopting a numerical solution procedure

rather than an analytical method (even if one were available) for solving

the subproblem, P . Additionally, numerical methods are more easily pro-

grammed than analytical methods.

s t
Consider, again, the subproblem P in the (k-1) iteration of

bk-l
some subproblem where the trial set S of constraints are held to equal-

K— J.
th

ities. Recall from Chapter II that, when moving to the k iteration, S^
was constructed by the addition of one constraint to S, , by: S, =

k-1 J k
k-1

S, + t, where t e T . Now if the solution x ~ to the subproblem
bk-l

P is used as the start point for P , we see that this start point is
bk-l S

31

"exterior" to P„ since S. contains the elements of S. _ plus an addi-S. k _ k-1
k Sk-1

tional constraint that was violated by x . B y "exterior" we mean out
side the feasible space of P . Thus, each subproblem is solved starting

b k

from a point that is exterior to its feasible space. It is this precise

point that governs our selection of numerical solution techniques. Those

techniques requiring a feasible start point were eliminated from consider

ation in view of this. However, certain penalty function methods do

start from an infeasible point and are discussed below.

Penalty function methods essentially solve a sequence of uncon

strained problems whose values tend toward the true value of the objec

tive function. The unconstrained problem has the form

F = f ± £ p (g i) 3.1
i

v
where the term ^ P(g^) is a penalty term that is a function of the con-

i

straints and that drives the value of the penalty function F towards the

true constrained optimal. Once the penalty function F has been defined,

one of the unconstrained optimization techniques can be used to solve it.

Fiacco and McCormick's technique uses the transformation
m

F(x,t,r) = f(x) - r" 1 Y (g.(x) - t .) 2 3.2
i=l 1

where f(x) is the original function to be optimized, g^(x) represents the

constraints, r is a monotonic decreasing sequence approaching zero, and
th

t^ is the i non-negative slack variable. A sequence of subproblems is

32

then solved, each with decreasing values of r. The solutions to this

sequence move closer to the true optimal as r is decreased.

Zangwill's method is a variation of the above and uses the form

m
F(x,r) - f(x) - r" 1 £ Min(g.(x), 0) 2 3.3

i=l

Here again, r is a monotonic decreasing sequence approaching zero and

f(x) and g^(x) have the same significance as in (3.2).

Both of the above methods can be used with equality as well as

inequality constraints and are based on the idea that, as the parameter

r decreases toward zero, the penalty term also reduces to zero. Thus,

the entire penalty function approaches the value of the original function

being optimized as we close in on the true optimal. It is here that the

difficulty arises and the selection of r is critical as the product of

a very large number, 1/r, and a very small number, g^, tends toward zero.

Minimization under these circumstances is often difficult.

To overcome this problem, Powell (29) suggested that it is neces

sary for the penalty function, F, and the original function, f(x), to

have their minima occur at the same point but that they need not be equal

at that point. To accomplish this, a second parameter, s, is added to

the penalty term, thereby reducing the sensitivity in the selection of r

which is present in Fiacco and McCormick's and Zangwill's methods. The

transformation used is

V 2 F(x,r,s) = f(x) + I (g (x) + s) IT 3.4
i e T c

 1 1 1

33

where T is as defined in Chapter II. Again, r is a sequence of decreas-

ing values tending toward zero. The parameter s is a decreasing nega

tive value. Notice that both parameters r and s are subscripted so

that each constraint has associated with it a parameter r and s.

Since only those constraints that are violated are included in the penalty

term, this allows selective reduction of the parameters to assist con

vergence of the particular subproblem being considered without affecting

the parameters associated with constraints not included in the current

subproblem being solved. It further allows the reduction of only those

parameters associated with constraints that are not converging to zero at

a satisfactory rate as the penalty function tends toward the true optimal.

As in the previously mentioned penalty function methods, the penalty

term includes the square of the constraints involved to insure continuity

and differentiability. This also increases the probability of finding a

global minimum. A flow chart of the Powell penalty function method ap

pears in Figure 4 found in Chapter IV along with a more detailed discus

sion of the method. At this point, it is sufficient to say that this

property of a set of parameters for each constraint makes the Powell method

desirable to use in conjunction with the combinatorial approach. Addi

tionally, Sasson (34) reports successful application of the Powell algo

rithm and states that it is more desirable than those of Fiacco and McCor-

mick or Zangwill. For these reasons, it was decided to apply the Powell

penalty function method in the solving of the subproblems of the combina

torial approach.

With this choice of penalty function method, we have now to choose

34

an unconstrained optimization technique to optimize the penalty function,

F. Box, Davies, and Swann (5) report that, when using gradient methods

for optimizing the penalty functions, one can encounter serious problems

since the penalty functions introduce steep valleys or ridges. Disconti

nuities may also arise in the second derivatives of the penalty function.

Therefore, a gradient free method was desirable for the solution of the

unconstrained problem produced by Powell's penalty function.

In Chapter I, several gradient free techniques were discussed that

could be used to solve the unconstrained probl em. One of the methods dis

cussed was that due to Rosenbrock (33) along with its modification due to

Davies, Swann, and Campey (38). This technique has been compared by

Fletcher (17) with other unconstrained methods and is considered to be

favorable over Powell's conjugate direction method when the number of

variables is large and generally better compared with other approaches

for solving unconstrained problems. In this study we have used Rosen-

brock's unconstrained search for solving Powell's penalty function.

The procedure adopted in this study may, therefore, be summarized

as follows. A sequence of equality constrained problems is formulated via

Theil and Van de Panne's approach. These are converted into equivalent

unconstrained problems using Powell's penalty function which, in turn,

are solved using Rosenbrock 1s unconstrained search. A flow chart of the

complete solution procedure appears in Chapter IV (Figure 3). Explana

tions of the block titles are given in the discussion of the program in

Chapter IV.

35

CHAPTER IV

THE COMPUTATIONAL SCHEME

In the previous chapters we discussed briefly the techniques used

in the solution of the constrained nonlinear problem (1.1) and (1.2).

We shall now show how these techniques were fitted together to form the

exact solution procedure used. We will discuss the decision rules used

to take advantage of Theil and Van de Panne's approach of not solving

each subproblem exactly. We will also present the test problems used.

To take advantage of Theil and Van de Panne's approach of not

solving each subproblem exactly but only close enough to determine which,

if any, constraints in the set (M - S) that particular subproblem vio

lated, five different decision rules discussed below were tested. Each

used different criteria for stopping the search in the subproblem.

Rules 3 and 4 were tested at two levels of tolerance to see the effect of

relaxing the exactness of the solution in each subproblem. Rules 1, 2,

and 5 were run with four different levels of exactness. The attempt

being made to relax exactness far enough to gain efficiency without

identifying the wrong constraint in (M - S) as being violated. These are

hueristic rules which we feel are useful in measuring the progress in

convergence of each subproblem and can be stated as follows.

Discontinue the search when:

1. Max {|g.(x)|} = 8: This rule continues the search for a
i e T s

 1

36

more exact solution until the greatest constraint violation

is less than some acceptable value, 6 . The idea here is

that, if the constraint in S with the greatest violation has

been driven to within some small distance, 6 , of zero, all

the other constraints of S must be even closer to equalities

and therefore the desired level of exactness has been

reached in the solution.

violation, the sum of all violations is considered. This

rule prevents one constraint, which may be converging to

zero slowly, from holding back the solution procedure when

the other constraints of S may be at the exact solution.

The sum of all constraint violations is driven to within

some 6 of the exact solution.

Max I x " ^ - x^ ..I = 6 where x. = x"̂ ... x^ is the solution at
1 J J-l 1 J J J

th

the j step: The step length taken in each of the n di

rections is measured here. When the largest step is less

than 6 , we know that the step lengths in the other (n - 1)

directions is even smaller and the search is halted.

that, if the step lengths in all but perhaps one or two di

rections are close to zero, we are close enough to the exact

solution to determine T accurately. Therefore, the sum of

the step lengths in the N directions is driven to within 6

of zero.

Here, rather than consider the greatest

i e n
As in the second test rule, it is hoped

37

5 . f. - f. -1 = 6 : The search is halted in this case when the
1 J J-l 1

functional improvement resulting from the most recent step

is less than 6 . While it is possible that flat plateaus can

"fool" this decision rule, presumably 6 can be made small

enough to avoid this in most cases. It is assumed that,

when a step brings sufficiently small functional improve

ment, we are close enough to the exact optimal to determine

T accurately.

The computer program was modified for each of the five decision

rules and the following data were collected for each test problem and for

various levels of desired exactness.

1. Execution time required.

2. Number of steps made (corresponds to the number of times the

search routine was called).

3. Accuracy of the final solution.

Test Problems

Four test problems taken from the literature were used in this

study and are listed in Appendix A. Problems P-l through P-3 have qua

dratic objective functions with linear constraints in problems P-l and

P-3, and nonlinear convex constraint set in problem P-2. Problem P-4 is

a fourth order polynomial with a saddle-point optimum and with convex

nonlinear constraints. Problem P - 5 in Appendix A is a third order poly

nomial with a nonconvex constraint set. This was used essentially to

demonstrate the problems that arise in using the Theil and Van de Panne

procedure for the case with nonconvex constraints.

38

The results of the analysis of these problems are presented and

discussed in Chapter V.

Program Discussion

The program consists of a MAIN program which drives nine subpro

grams. Essentially it selects the constraint sets, S, to be held as

equalities for each subproblem, creates the penalty function, and solves
S S

the now unconstrained problem for the solution vector, x . This x is

then tested for optimality. If it is optimal, the program terminates,

otherwise the next subproblem is solved by repeating the same process.

To assist in the explanation of the program, listed in Appendix

B, it will be helpful to first define some terms used in the program.

CUTOF : The exactness with which we solve each subproblem, i.e. the

6 distance from the exact optimal to which we drive the

solution of each subproblem.

R : The initial value of the parameter r in Powell's penalty

function. Read in from data card.

RN(I) : Updated value of the parameter r in Powell's penalty

function.

S : The initial value of the parameter s in Powell's penalty

function. Read in from data card.

SN(I) : Updated value of the parameter s in Powell's penalty

function.

N : Number of variables in the problem at hand. Read from data

card.

39

Number of constraints in problem at hand. Read from data

card.

Number of iterations in each Rosenbrock search.

Number of stages permitted in each Rosenbrock search.

The vector of the unknown variable.

The number of the iteration. Corresponds to the number of

constraints in the current generation of trial sets.
S

Total number of constraint violations for a given x .

A zero/one matrix indicating a violated constraint by a one

and a constraint not violated by a zero. The columns cor

respond to the M constraints and the rows to the set of

current trial sets.

An "address" matrix whose rows identify those sets of con

straints to be held as equalities in the current generation

of subproblems. The number of non-zero columns corresponds

to the iteration number, K.

A counter which indicates the number of rows in the VIOLATE

and MOLD matrices which corresponds to the number of elements

in the current U.

A counter indicating the number of times the Rosenbrock

search has been called.

A dummy variable used to save the solution to the uncon

strained problem to be used as a start point for the sub-

problems of the first iteration.

A dummy variable used to save the solution to the first

40

iteration subproblems to be used as start points for subse

quent subproblems.

W(I) A zero/one coefficient used to select those constraints

identified in the MOLD matrix as part of the penalty func

tion.

Initialization Step

The initialization step consists of moving from some start point to

the unconstrained optimal and determining which constraints are violated

at that point. Once initial values of various variables are inserted

into memory, we are prepared to solve the unconstrained problem using

Rosenbrock's method. This is accomplished by calling subroutine ROSENB,

which is a program of the unmodified Rosenbrock search (11). ROSENB be

gins with the start point and takes its exploratory steps, evaluating

the problem function by calling on subroutine FOFX, which has been loaded

with the function statement. This function subroutine evaluates the func

tion itself, constructs the penalty function (4.1), and evaluates it. In

the initialization step we are considering the unconstrained case and,

therefore, the penalty

function has no penalty term (i.e. W(I) [(CI(I) + SN(I)) /RN(I)] = 0) .

iterations of ROSENB. If the problem function is nonconvex and the solu

tion to the unconstrained problem is unbounded, the program senses this

m
FOFX = FOFX 4.1

The result is the solution x° to the unconstrained problem after 1000

41

when the functional value exceeds 10 at which time ISWIT is set equal

to 1 indicating that the unconstrained problem is unbounded, and we are

returned to the MAIN program. Here x° at the point of cutoff of the

search is divided by 1000 and saved to be used as a future start point.

(The choice of 1000 is arbitrary.) The solution, x°, is now substituted

into the constraints to determine violations. This is accomplished by

calling subroutine CI(I) a functional subroutine that evaluates the con

straints. Any constraint evaluation that is negative indicates a viola

tion and another entry is made in the first column of the MOLD matrix.

If all constraint evaluations are = 0, we have an unconstrained optimal

that is feasible and the problem is solved. If this is not the case, the

initialization step is completed and we move on to the first iterative

step and Block 3 of Figure 3.

Iterative Step

Each iterative step begins with the updating of the iteration

counter K. If this counter exceeds M, the number of constraints in the

problem, we know that no feasible solution has been found to this point

and either the program has failed to find the true solution, no feasible

solution exists, or the problem is of such a form, e.g. nonconvex con

straint set, that the solution technique cannot solve it. The program is

therefore halted in this case. When K =i M, we continue by addressing the

first subproblem of the iteration.

The current generation of trial sets of constraints to be held as

equalities is stored in the MOLD array, each row identifying the trial

set for one subproblem. Assume that, in some problem with M = 6, x°

42

U _

ROSENB:
Solve Unconstrained
Problem

Determine U

GETWS:
Determine (0,1) Coefficients
to Construct Penalty Function

4.
PENSOL:

Bring x Sufficiently close
to exact solution
--uses

ROSENB:
--uses
FOFX
CI

8.
Construct
New U

No

Yes

^ 5. Violations
CTEST J

No
Violations

CHEC
S

X

t
K:

= X ?

Yes
9.

[Terminate

No

Figure 3. Solution Procedure

43

violates constraints 2, 4, and 6. At the first iteration we will have a

MOLD matrix of the form

2 0 0 0 0 0
MOLD = 1 4 0 0 0 0 0

6 0 0 0 0 0

indicating that we now will solve three subproblems, one for each row of

the MOLD matrix. For example, in the first subproblem, constraint 2 alone

will be included in the penalty function.

To select a single constraint to appear in the penalty function, a

(0,1) coefficient, W(I), is used in the subroutines GETWS and FOFX. In

GETWS, the appropriate row of the MOLD matrix is taken and the W(I) which

corresponds to the constraint indices in that row are set equal to one.

All others are set to zero. When the penalty function (4.1) is later

evaluated during the search, only those terms with a nonzero W(I) coeffi

cient will be included. Thus, only those constraints identified for

that particular trial set by the MOLD matrix will be included.

Once these (0,1) coefficients have been determined, the penalty

function parameters are initialized and subroutine PENSOL (Powell's

penalty function method) is called to drive the solution to within CUTOF

of the exact solution. It is this subroutine that is the heart of the

solution procedure, controlling the convergence and calling the search

routine. A flow chart of PENSOL appears in Figure 4. Some deviations

from Powell's method occur in the execution of Block 2 where start points

44

1.
K = 0
SN(I) = S
RN(I) = R
t = 0.1
COLD = 10
L = 0

30

K = K+l
Calculate x(RN(I),SN(I))

to minimize FOFX
CNEW = MAXJg i(x)|

RETURN r
Yes

Yes

I CNEW - COLD

Yes

No

7.
SN(I) = S0(I) |

Yes
9.

SN(I) = = SN(I)/10
RN(I) •-= RN(I)/10

10,
L = 0

No

No

Yes
12.

"CNEW ^ COLD/4"

Yes

No

13.
S0(I) = SN(I)
SN(I) = SN(I) + § i (x)
L = 1

= SN(I) + § i (x)

g.(x) denotes the absolute
value of violated con
straints .

Figure 4. Powell's Penalty Function Method

45

for the search are determined and the Rosenbrock search is called. For

the first iteration, the unconstrained solution is used as a start point.

Thereafter, the solutions from the first iteration subproblems are used

for subsequent start points for those problems which have the same first

element of their MOLD row. That is, a problem holding constraints 2 and

5 as equalities used as its start point the solution to the subproblem

that held 2 alone as an equality. A second difference occurs in the solu-
S

tion for x in Block 2. If the search detects that the current penalty
20

function is unbounded, the search is halted when FOFX = 10 and the cor

responding solution vector saved to test for further constraint viola

tions. The unbounded subproblem is then abandoned and the next subproblem

considered.

Block 3 is where the different rules were inserted to control the

search. The first rule is that shown where the search is discontinued

when the maximum constraint violation, g^(x), is within some 6 distance

of the exact optimal for the subproblem in question. Thus, by control

ling the value of CUTOF, we are able to control the exactness with which

each subproblem is solved. It is CUTOF that was varied to determine the

effects of relaxing the exactness of each solution.

In Block 4 we test for convergence. If the procedure is converg

ing satisfactorily (i.e. the maximum violation is decreasing), we reduce

parameter SN(I) (Block 13), making it more negative by the relation

SN(I) = SN(I) + CI(I)

where the CI(I) are the evaluations of the violated constraints only and

46

therefore less than zero. This counters the decrease in magnitude of

CI(I) which is a result of convergence, thus maintaining the effectiveness

of the penalty term. If, on the other hand, we are not converging at a

suitable rate, both parameters RN(I) and SN(I) (Block 9) corresponding to

those constraints converging too slowly, are decreased by the same factor

of 10 recommended by Powell (29). This has the effect of increasing the

magnitude of the penalty term, giving more weight to the binding con

straints in an effort to move the search closer to the point where they

are satisfied as equalities.

Once we have driven the subproblem to within 6 of the exact solu-
S

tion, we have an x which we are ready to test for constraint violations.

The subroutine CTEST (Block 5, Fig. 3) calls the function subroutine CI(I)

to evaluate the constraints, and if a violation occurs, the appropriate

(0,1) entry is made in the VIOLAT matrix. The rows of VIOLAT correspond

to the various trial sets of a particular iteration, and the columns cor

respond to the M constraints. Again, an entry of one indicates a vio

lation and zero is entered otherwise. To illustrate, consider once again

the hypothetical problem considered above. Suppose the first subproblem
S

of the first iteration is the current trial set. Solving for x where

S = 2, we find that constraints 1, 4, and 5 are violated. The resulting

MOLD and VIOLAT matrices at this point are

MOLD =
2 0 0 0 0 0
4 0 0 0 0 0
6 0 0 0 0 0

VIOLAT =
1 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

47

Encountering violations and seeing that U is not exhausted, the next sub-

problem with S = 4 is considered. Assume now that this second subproblem

has been solved to within 6 of the exact solution and when CTEST is

called no violations are detected. The VIOLAT array would remain as

shown above and this time we have a suspected optimal. CUTOF is reduced

by

CUTOF = CUTOF/100

in this case and the search resumed to give a more exact solution. Since

we suspect we are near the optimal solution, the iterations of ROSENB are
g

also reduced by a factor of 2. Should this further search produce an x

which still causes no violations, we are ready to check for optimality

via Theil and Van de Panne's Rule 3.

Rule 3 is executed in the subroutine CHECK (Block 6, Fig. 3) .

CUTOF is again reduced by a factor of 100 and the iterations of ROSENB by

another factor of 2. Constraints are removed one at a time from S leav

ing S-h, and the search resumed. When this new search is within CUTOF of
th

its exact solution, a check is made to see if the h constraint is vio-
th

lated. If one or more of the h constraints is not violated, we have
failed to find the true optimal, the CUTOF and ITRMAX are restored to

their original values and the next subproblem is considered. Should we
th

find each h constraint violated in this check, we have found the optimal

solution.

Block 7, Fig. 3 tests U for exhaustion. We have discussed what

happens when we enter this block and U is not exhausted and will now

48

briefly explain the steps taken at the point when U îs exhausted. When

this situation arises, the MAIN program reconstructs a new MOLD corres

ponding to a new U for the next generation of trial sets (Block 8) . A

dummy matrix MNEW is formed which, one row at a time, copies the K entries

of that row from MOLD each time a one is encountered in the corresponding

row of the VIOLAT matrix and then adds the constraint index of the newly
s t

encountered violation in the (k+1) column of MNEW. Consider the above

example at the point where the first iteration has been completed and the

optimal has not been found. Suppose the corresponding MOLD and VIOLAT

matrices are

MOLD =
2 0 0 0 0 0
4 0 0 0 0 0
6 0 0 0 0 0

VIOLAT =
1 0 0 1 1 0
0 0 0 0 1 0
1 0 1 0 0 0

indicating that, where S = 2, x violates constraints 1, 4, and 5. With

S = 4, constraint 5 is violated and for S = 6, 1 and 3 are violated. The

MNEW matrix formed will be

MNEW =

2 1 0 0 0 0
2 4 0 0 0 0
2 5 0 0 0 0
4 5 0 0 0 0
6 1 0 0 0 0
6 3 0 0 0 0

49

MNEW is now relabeled as MOLD and we are ready to start the second itera

tion with a new U containing six elements rather than the three of the

first iteration.

50

CHAPTER V

COMPUTATIONAL RESULTS

As mentioned in the introduction, the objectives of this research

were essentially threefold. Firstly, we wanted to investigate computa

tionally whether the Theil and Van de Panne algorithm could be used on

nonlinear constraints. We also wished to investigate means of taking

advantage of only approximating the optimal solution at each subproblem

rather than solving it exactly, and wanted to use the approximated opti

mal solution to one subproblem as the starting point for the next sub-

problem. In this chapter, we will discuss the results of our experi

mentation and the successes and failures encountered in the pursuit of

our objectives.

Recall that, in Geoffrion's extension to the combinatorial approach,

he included all nonlinear constraints in the set X and addressed only

linear constraints in a combinatorial manner. In this study, it was de

cided to treat all constraints in the combinatorial manner. Test prob

lems with nonlinear constraints posed no computational difficulty even

though no complete theoretical proofs are available for their convergence

to the optimal. In this connection, the reader may refer to (10) where

the proof of convergence for the general case contains an error. There

is some reason to believe that the approach is still theoretically valid

as borne out by the computational results here.

51

The five test problems used in this study are listed in Appendix A

and were discussed in Chapter IV. The results of analysis are presented

in Tables 1 and 2. To investigate the effect of relaxing the exactness

with which each subproblem had to be solved, the five different rules

discussed in Chapter IV were tested at different levels of exactness

(values of 6) . This was done for each of the four problems, P-l through

P-4. As would be expected, relaxing the exactness (increasing the value

of CUTOF in the program) with which each subproblem is solved leads to

reduced execution times (Table 1). As shown in Table 2, this was achieved

with no appreciable loss in accuracy of results. It appears further that

varying the decision rules had no effect on accuracy, but only on execu

tion times.

In test problem P-l, all five exactness rules reacted similarly

when exactness was relaxed (Figure 5) . Rule 1, the greatest violation

driven to less than 6, recommended by Powell when he introduced the penalty

function used, was most efficient, taking less time for execution than the

other rules by more than one second at CUTOF = .001 and .1 and nearly one

second at CUTOF = .01. The fifth rule, using function evaluation improve

ment as a criterion for stopping the search, was least efficient by far,

even when the exactness was relaxed beyond the other rules by a factor of

10. When relaxed by a factor of 100, rule 5 finally took less time than

the fourth rule at its strictest CUTOF value. As the CUTOF value was in

creased, execution times for rules 2 and 4 decreased most rapidly, as

might be expected, since they are dependent upon summations. This suggests

that, if one continued to relax the exactness, these rules might prove to

Table 1. Execution Times

Decision 6 Problem
Rule CUTOF P-l P-2 P-3 P-4

Icount Execution Icount Execution Icount Execution Icount Execution
Time (sec) Time (sec) Time (sec) Time (sec)

1. .001 90 15.548 44 9.837 11 2.371 7 1.818
.01 74 13.997 41 9.174 7 1.844 8 1.660
.1 61 10.391 35 7.305 5 1.394 7 1.536

1.0 48 8.322 25 4.736 4 1.126 *

2. .001
.01
.1

1.0

79
80
59
45

17.272
14.679
11.857
7.586

84
47
33
25

19.723
8.676
6.689
5.229

11
7
5
4

2.484
1.715
1.365
1.090

1.807
1.848
1.518

3. .001 102 19.018 65 12.473 8 2. ,208 10 2, ,227
.01
i

89 16.622 41 9.598 7 1. .747 9 2. .230
. i

1.0

4. .001 104 21.010 67 13.068 8 2. ,101 10 2. ,458
.01

1
89 16.894 45 10.433 8 1. ,982 9 2. ,061

. 1
1.0

5. .001 129 28.619 * 9 2. ,277 21 4. ,226
.01 112 25.005 127 28.681 8 2. ,149 21 4. ,234
.1 121 23.630 73 11.740 t 21 4. .035

1.0 90 18.638 39 8.381 t 10 2. .055

*
Problem would not solve in alloted time. t

No feasible solution indicated--see page 55.

53

Table 2. Functional Value at Solution Point

Decision 6 Problem # X
Rule CUTOF P-l P-2 P-3 P-4

1. .001 99.99978 -44.00000 .1111121 -12.58607
.01 99.99919 -44.00016 .1110956 -12.58634
.1 100.0011 -44.00059 .1109440 -12.58669

1.0 100.4059 -44.00201 .1089062 it

CM .001 99.99996 -44.00215 .1111121 -12.58607
.01 99.99915 -44.00006 .1110956 -12.58634
.1 99.99969 -45.08987 .1109440 -12.58669

1.0 100.0243 -44.00262 .1089062

3. .001 99.99983 -44.00001 .1111155 -12.58612
.01 99.99953 -44.00016 .1110920 -12.58612

4. .001 99.99983 -44.00001 .1111155 -12.58612
.01 99.99953 -44.00009 .1111155 -12.58612

5. .001 100.0000 * .1111155 -12.58608
.01 100.0000 -44.00003 .1111083 -12.58607
.1 99.99999 -44.00040 t -12.58607

1.0 100.0019 -44.00058 t -k

Problem would not solve in alloted time.
No feasible solution indicated—see page 55.

54

CUTOF

Figure 5. Problem P-l

55

be most efficient for this problem, and, at CUTOF = 1.0, we notice that

rule 2 becomes more efficient than all others.

In test problem P-2 (Figure 6) the second rule, the sum of viola

tions being driven to less than 6, was least efficient with CUTOF = .001

but most efficient with CUTOF = .01 and .10. As the exactness was re

laxed further, rule 1 became the most efficient; however, the x vector

solution obtained for rule 1 is not as exact as that obtained by rule 5

starting with the third decimal place. Should no greater accuracy be

required, rule 1 would be the most desirable. Throughout, the x vectors

agree out to three or four decimal places, indicating that the exactness

could be relaxed even further and still maintain a fair degree of accuracy

giving shorter execution times.

Test problem P-3 showed little response to change in CUTOF (Figure

7). At all CUTOF values all rules were within one second of each other

in execution time. In this problem, rule 2 held both extremes, fastest

with CUTOF = .01, .10, and 1.0 and slowest with CUTOF = .001. As indi

cated in Tables 1 and 2, this problem did not solve for 6 = .1 and 1 using

rule 5. At these values the change in functional evaluation is so slight

that the search for optimum is halted before all constraints are driven

to equalities. The solution procedure therefore passes S and reports no

feasible solution, indicating that we have exceeded the level to which

exactness can be relaxed for this problem.

In problem P-4, rule 1 proved again to be most efficient overall,

and rule 5 the least efficient (Figure 8) . All rules proved to be only

slightly sensitive to changes in CUTOF.

Figure 6. Problem P-2

Figure 7. Problem P-3

.001 .01 .1 1.0
CUTOF

Figure 8. Problem P-4

59

In general, it was noticed that the fewer elements in S, the less

the effect of relaxing CUTOF. It was also noticed that the accuracy of

the solution, x, was reduced with the relaxation of CUTOF. Execution

time was used as a measure of effectiveness for the rules used on each

problem. A second statistic that can be used for the same purpose is

ICOUNT, the number of times that the search subroutine, ROSENB, is called.

This gives the number of x vector solutions, x , tested for optimality.

A glance at Table 1 shows that these values correlate very closely with

the execution times, but they were not used as a basis of comparison

between decision rules since the program differed slightly from one rule

to the next and the same number of calls on the search routine may take

longer in one rule than in another. Trends are more apparent when using

execution times, indicating more precisely which rules benefit most from

relaxing the exactness with which the problems are solved.

One of the objectives of the study was to investigate how to take

advantage of the closeness between various subproblems. It will be re

called that two successive subproblems derived from the same generation

of trial sets may differ substantially from each other. In fact, the

solution of one may not be an exterior point to the other, which is criti

cal from the standpoint of the penalty function used. However, it may

also be recalled that a problem in one generation of trial sets was de

rived from a previous generation (lineal predecessor) by adding a con

straint as given by equation 2.2. Hence it is reasonable to expect that

starting from the optimum of the lineal predecessor would be helpful. Be

sides, this start point is exterior to the new problem as desired.

60

The Problem of Convexity

For nonconvex problems where the unconstrained solution may be

unbounded, recall from Chapter II that Geoffrion (19) recommends setting

T_ equal to the indices of the constraints violated by some sequence

<x V> feasible in P for which <f (x V) > -* c o . While this is not directly

applicable to our solution procedure since we use an exterior penalty

function method and remain outside the feasible space, similar steps were

attempted in this study.

Test problem P-5 is an example of this situation, as the uncon

strained problem is unbounded. The contours in the (x^,x^) plane of this

problem are shown in Figure 9. Difficulties one might encounter in such

a case are as follows.

When the search for the solution of the unconstrained problem or

the unconstrained penalty function of a subproblem is cutoff at some

preset bound due to the unboundedness of the problem, those constraints

at the cutoff point were used to define T for the succeeding generation

of trial sets. It was also necessary to insure that the start point to

the succeeding subproblems was moved away from the cutoff point since,

due to the nature of the Rosenbrock unconstrained search technique, a

start point at the bound will cause the search to be cutoff again immedi

ately and the next subproblem to be called. Any rule which will move the

start point away from this bound will suffice, as long as the new start

point found is still exterior to the subproblem being considered. In

this study the arbitrary rule of dividing the unbounded point by factors

of 100 and 1000 were tried successfully.

Figure 9. Contours of Test Problem P-5

62

In nonconvex problems the setting of the parameters r and s in

the penalty function is also critical as arbitrary setting of r and s

may not prevent the search from proceeding without bound as was the case

in problem P-5. Sasson (34) recommends the following rules for setting

r and s. Initialize r by: r^ = g^(x)/f(x) and initialize s by:

s^ = 0, i = l,...,m. Use of these rules kept the search in problem P-5

from proceeding without bound as it did when the parameters were arbi

trarily set.

The combinatorial approach and its extension address only problems

where the constraint set is convex. The constraint set of problem P-5

is nonconvex. Attempts to solve this problem were unsuccessful until

the cause of the nonconvexity of the constraint set was removed. When

the problem was redefined without constraint 2, it solved with no

difficulty.

63

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

In attempting to determine if the combinatorial approach could be

applied to higher than second order functions, it was found that, for the

convex functions tested with convex constraints, it can be applied with

out any difficulty. It was also found that nonlinear convex constraints

could be included in the combinatorial treatment of constraints, although

no theoretical proofs were found for the convergence of such a problem.

This does, however, imply a hueristic notion that the combinatorial

approach may be more general than suggested by Geoffrion (19).

Five different rules for terminating the optimization search were

tested and it was found that, in each rule, as the exactness of the solu

tion of each subproblem was relaxed, the execution time for the entire

problem decreased, sometimes with no loss in accuracy. This effect is

magnified as the number of constraints in S is increased.

Using the optimal of a lineal predecessor to a subproblem as the

new start point also proved useful. This approach insured that the

search for the solution to each subproblem began from an exterior point

which is essential when an exterior penalty function method is used for

solving the sequence of subproblems.

Test problems made clear the difficulties encountered when noncon

vex constraints and/or nonconvex functions are addressed. No sure means

of solving such problems was found; however, a greater understanding of

64

the subject of convexity was gained through the attempts to solve them.

It is recommended that further investigation be made into the

solution of nonconvex problems. Geoffrion recommends that the unbounded

problem might be handled by setting T (T_ = [i e M-S : a.x + b. < 0})
o o X X

equal to the indices of constraints that are violated by any sequence

<x V> feasible in (P_) for which <f (x V)> -» <». In the solution procedure

used, <x V> is not feasible, but exterior to the feasible space, and it is

possible that future research could pursue a means of bringing the un

bounded solution (obtained when the search is artifically cut off) to be

feasible in (P Q) , perhaps by adjusting the parameters in the penalty

function at the point where the search is halted.

It is also recommended that another means of defining succeeding

generations of trial sets be investigated. Although the Lagrangian mul

tiplier was not available in the solution to the numerical methods used

in this study, it seems reasonable that its sign, which is the primary

interest, might be determined for the problem

Maximize: f(x)

Subject to: g^(x) = b^

by using the relation

X = df/db
i i

If b^ were perturbed so as to relax g^(x) slightly, the resulting change

in f would indicate the sign of X^. This would permit the use of Geof-

frion's method of updating the generation of trial sets, allowing S° to be

65

other than 0. Further investigation of this approach might lead to an

efficient means of addressing the constrained nonlinear programming

problem.

66

APPENDIX A

TEST PROBLEMS

2 2

P-l Maximize fCx^.x^) = 10x^ + 25x2 - 10x^ - x^ - 4x^x^

Subject to: 1. x 1 + x 2 - 9 = 0

2. x + 2x 2 - 10 = 0

3. x ^ 0

4. x 2 ^ 0

Start point: (1,1)

Solution point: x = (0,5) f(x) = 100

Binding Constraints: 2 and 3

Source: Gue and Thomas (22)
2 2 2 2

P-2 Minimize: f(x^,x 2,x^,x^) = x^ + x 2 + 2x^ + x^ - 5x^ - 5x 2 - 21x^
+ 7x 4

2 2 2 2 Subject to: 1. -x- - x - x_ - x, - + x 0 - x„ + x. + 8 = 0 1 2 3 4 1 2 3 4
2 2 2 2 2. - x, - 2x„ - x_ - 2x, + x. + x, + 10 = 0 1 2 3 4 1 4
2 2 2 3. - 2x_. - x„ - x„ - 2x., + x 0 + x. + 5 = 0 1 2 3 1 2 4

Start point: (0,0,0,0)

Solution point: x = (0,1,2,-1) f(x) = -44

Binding Constraints: 1 and 3

Source: Kowalik and Osborn (24) but originally due to Rosen and

Suzuki (32)

67

2 2 2

P-3 Minimize: i X x ^ x ^ x ^) = 9 - 8x^ - 6X2 - 4x^ + 2x^ + 2x^ + x^

+ 2x^x 2 + 2x^x^

Subject to: 1. x_L ^ 0

2. x 2 - 0

3. X 3 - O

4. -x 1 - x 2 - 2x 3 + 3 ^ 0

Start point: (1,1,1)

Solution point: x = (4/3, 7/9, 4/9) f(x) = 1/9

Binding Constraints: 4

Source: E. M. L. Beale (1)
2 4 3 2 P-4 Minimize: f(x^,x 2) = x^ + 3x 2 - 4x 2 - 12x 2

Subject to: 1. x 1 ^ 0

2. x 2 i= 0

3. -x 1 - x 2 + 3 ^ 0

4. -x 2 + 3x x - 4 x 2 + 2 ^ 0

5. -x 2 - 2.5 ^ 0

Start point: (1,1)

Solution point: x = (1.28, 1.05) f(x) = -12.58

Binding Constraints: 4

Source: C. R. Swenson (37)

68

3 2
P-5 Minimize: f(x^,x 2,x 3) = x^ - 6x^ + llx^ + x,

2 2 2 Subject to: 1. -x^ - + x^ == 0
2 2 2

2. x 1 + x 2 + x 3 - 4 = 0

3. -x 3 + 5 = 0

4. x = 0

5. x 2 = 0

6. x 3 = 0

Start point: (0,1,1)

Solution point: x = (0, ̂ 2, 7~2)

Binding Constraints: 1, 2, 4

Source: Fiacco and McCormick (15)

APPENDIX B

COMPUTER PROGRAM

BFOR#IS MAIN
FOR S 9 A - 0 b / 2 2 - 1 2 : 2 5 (#0)

M A I N P K O G R A M

S T O R A G E U S E D : C O D E (L) 0 0 0 4 6 6 1 D A T A (0) 0 0 0 1 1 5 1 B L A N K C O M M 0 N (2) 0 0 0 0 0 0

C O M M O N B L O C K S :

0 0 0 3 B L Q K A 0 0 0 1 5 0
0 0 0 4 B L O K B 0 6 4 5 7 3
0 0 0 5 B L O K C 0 0 0 0 0 4
0 0 0 6 B L O K D 0 0 0 0 0 1
0 0 0 7 B L O K E 0 0 0 0 1 3
0 0 1 0 B L O K F 0 0 0 0 0 1
0 0 1 1 B L O K G 0 0 0 0 2 4
0 0 1 2 B L O K H 0 0 0 0 0 2

E X T E R N A L R E F E R E N C E S (B L O C K , N A M E)

0 0 1 3 R O S E N B
0 0 1 4 C I
0 0 1 5 G E T W S
0 0 1 6 P E N S O L
0 0 1 7 C T E S T
0 0 2 0 C H E C K
0 0 2 1 N I N T H S
0 0 2 2 N R D U S
0 0 2 3 N I 0 1 S
0 0 2 4 N I 0 2 S
0 0 2 5 M W D U S
0 0 2 6 N S T O H S

S T O R A G E A S S I G N M E N T (B L O C K , T Y P E , R E L A T I V E L O C A T I O N , N A M E)

0 0 0 0 0 0 0 0 1 2 I F 0 0 0 1 000160 1 0 L 0 0 0 0 0 0 0 0 5 0 1 2 F 0 0 0 1 0 0 0 0 2 3 125S oooo 000056 13F
0 0 0 1 0 0 0 0 3 1 132G 0 0 0 1 0 0 0 2 0 4 14L 0(101 0 0 0 0 6 2 145G oooo 000062 1 5 F 0 0 0 1 000102 157G
0 0 0 0 000076 16F 0 0 0 1 000266 2 0 L 0 0 0 1 000146 2 0 0 G 0 0 0 1 000312 2 2 L 0 0 0 1 000221 231G
0 0 0 1 000342 24L 0 0 0 1 0 0 0 2 3 3 240G 0 0 0 1 000234 2 4 2 G 0 0 0 1 0 0 0 3 4 3 25L 0 0 0 1 000246 251G
0 0 0 1 000255 2 5 5 G 0 0 0 1 000316 2 7 7 G 0 0 0 1 0 0 0 4 3 3 2 9 L oooo 000U16 3 F oooi 000364 320G
0 0 0 1 0 0 0 3 7 3 3 2 3 G 0 0 0 1 000464 3 3 L 0 0 0 1 0 0 0 4 0 1 3 3 0 G 0 0 0 1 0 0 0 4 2 2 337G 0 0 0 1 0 0 0 4 4 4 3 5 2 G
0 0 0 1 000456 356G 0 0 0 1 0 0 0 0 7 3 5 L 0 0 0 1 0 0 0 1 1 3 6L 0 0 0 1 0 0 0 1 3 1 7 L oooo 000024 8 F
0 0 0 0 000036 9F 0 0 1 1 K 0 0 0 0 1 2 A X 0 0 1 4 R oooooo C I 0 0 0 4 R 064b71 C U T O F 0 0 0 4 R 064572 F O
0 0 0 0 I 0000U6 I 0 0 0 6 I oooooo I C O U N T 0 0 0 0 I 0 0 0 0 0 7 I R O W 0 0 0 5 O O O o O O ISTA6E 0 0 0 5 I 0 0 0 0 0 3 I S T G M X
0 0 1 0 I oooooo I S W I T 0 0 0 5 I 0 0 0 0 0 2 I T R M A X 0 0 0 0 I ooooio J 0 0 0 3 I 000147 K oooo I 0 0 0 0 1 1 L
0 0 0 5 0 0 0 0 0 1 L C O U N T 0 0 0 3 I 000145 M 0 0 0 4 I 0 4 3 1 2 0 MNEW 0 0 0 4 I 0 2 1 4 5 0 MOLD 0 0 0 3 I 000144 N
0 0 0 7 I oooooo P oooo I 0 0 0 0 0 2 Q oooo R 0 0 0 0 0 4 R 0 0 0 3 R 0 0 0 0 5 0 R N oooo R 0 0 0 0 0 5 S
0 0 0 3 R 000106 SN 0 0 1 2 R 0 0 0 0 0 1 S U S M I N 0 0 0 7 R 0 0 0 0 0 1 S U S P 0 0 0 0 I 0 0 0 0 0 1 T 0 0 1 1 R oooooo T E M P X
0 0 0 4 I 0 6 4 5 7 0 T O T V 0 0 1 2 K oooooo T R U V A L 0 0 0 3 I 0 0 0 1 4 & U 0 0 0 4 I oooooo V I O L A T 0 0 0 3 0 0 0 0 1 2 w

0 0 0 3 K oooooo X 0 0 0 0 I oooooo Y oooo I 0 0 0 0 0 3 z

00100 1* C
00100 2 * C
00100 3* C
00100 4* C
00100 5* C
00101 6 *
00103 7*
00103 b*
00104 9*
00105 1 0 *
00106 1 1 *
00107 1 2 *
00110 1 3 *
00111 1 4 *
00112 1 5 *
00113 1 6 *
00114 1 7 *
00131 IB*
00134 1 9 *
00134 2 0 * c
00134 2 1 * c
00134 2 2 * c
00136 2 3 *
00137 2 4 *
00141 2 5 *
00143 2 6 *
001HH 2 7 *
00147 2 8 *
00150 2 9 *
00150 3(J* c
00150 3 1 * c
00150 3 2 * c
00150 3 3 * c
00153 3 4 *
00154 55*
00155 3 6 *
00156 3 7 *
00161 3 8 *
00163 3 9 *
00164 4 0 *
00165 4 1 *
00166 H 2 *
00167 H 3 *
00170 4 4 *
00171 4 5 *
00171 4 6 * c
00171 H 7 * c
00171 H 8 * c
00171 H 9 * c
00173 5 0 *
00175 5 1 *
00204 5 2 *
00204 53*
00205 5 4 *

FORTRAN V FOR UNIVAC 1108
CONSTRAINED NONLINEAR OPTIMIZATION

WITH POWELL PENALTY FN AND ROSENBROCK SEARCH

C0MM0N/8L0K A/X(10) ,W(30)TRN(30)TSN(30)TN,M,U,K
COMMCN/BLOK B/VIOLAT(300,30)»MOLD(300,30),MNEW1300130)TTOTV,CUTOFT

* FO
COMMON/BLOK C/ISTAGE»LCOUNT»iTRMAXrISTGMX
COMMON/BLOK D/ICOUNT
COMMON/BLOK EVP»SUSP 110)
COMMON/BLOK F/ISWIT
COMMON/BLOK b/TEMPX(10)r AX(10)
COMMON/BLOK H/TRUVAL»SUSMIN
INTEGER Y»U»T»P#Q#Z#TOTV»VIOLAT

1 FORMAT (3F10.7»4I5»/(10F10.3>)
READ (5>1) CUTOF»RfS,N»M»ITRMAX,ISTGMX»(X(I)»I=1»N)
DO 2 1 = 1 »N

2 TEMPX(I)=X(I)

SOLVE UNCONSTRAINED PROB. USING ROSENBROCK

CALL ROSENB
IF (ISWIT ,NE. 1) GO TO 5
WRITE (6,3)

3 FORMAT (1X»28HUNC0NSTRAINED SOL. UNBOUNDED)
DO 4 I = 1»N
AX(I) = X(I)

4 IF (ISWIT ,E<4. 1) AX(I) = AX(I)/1000

USING UNCONSTRAINED SOLUTION DETFRMINE WHICH
CONSTRAINTS ARE VIOLATED AND FILL VIOLAT MATRIX

5 ICOUNT = 0
IROW = 0
K=0
DO 7 I=1,M
IF (CHI) .LT. 0.0) 60 TO 6
VIOLAT(I,l)=0

GO TO 7
6 TOTV = TOTV+1

IROW=IROW+l
VIOLAT(IROW»I)=l
MOLD(IROW»l)=I

7 CONTINUE

IF NO CONST. ARE VIOLATED BY SOL. TO UNCONSTRAINED PRoB»OPTIMAL
OCCURS IN FEASIBLE SPACE

IF (TOTV ,NE. 0) GO TO 10
WRITE <6»8) FO»(X(Y)»Y=1»N)

8 FORMAT (14X»6HF(X) =tlPE17.6/17Xt3HX =tlP6El7.6/
1 (20X»1P6E17.6))
WRITE (6»9)

00207 55* 9 FORMAT <10X»50HUNCONSTRAINED OPTIMAL OCCURS WITHIN FEASIBLE SPACE)
00210 56* 60 TO 33
00211 57* 10 TOTV = 0.0
00212 58* 11 K = K+l
00212 59* C
00212 60* C IF ITERATION NUMBER EXCEEDS NO. OF CONSTRAINTS* NO FEASIBLE SOL.
00212 61* c EXISTS
00212 62* c
00213 63* IF (K tLE. M) GO TO 14
00215 64* WRITE (6,12)
00217 65* 12 FORMAT (10X»27HNO FEASIBLE SOLUTION EXISTS)
00220 66* WRITE (6,13) ICOUNT
00223 67* 13 FORMAT (10X»6HICOUNT =,15)
00224 68* GO TO 33
00225 69* 14 WRITE (6,15) K,FO,(X(I),I=1,N)
00235 7u* 15 FORMAT (14X»3HK =,I2»5X,6HF(X) =,1PE17.6/5X,3HX =,1P6E17.6/
00235 71* * (20X»1P6E17.6))
00236 72* WRITE (6,16) ((MOLD(I,J),J=1»10),I=l,IROW)
00247 73* 16 FORMAT (10X#10I2)
00250 74* 17 00 25 U=1,IR0W
00250 75* c
00250 76* c DETERMINE THE PENALTY FUNCTION AND SOLVE FOR A NEW X VECTOR
00250 77* c
00253 78* CALL GETWS
00254 79* DO 18 I =1,M
00257 80* RN(I)=R
00260 81* 18 SN(I)=S
00262 82* 19 CALL PENSOL
00262 63* c
00262 64* c DETERMINE IF NEW X VECTOR VIOLATFS ANY CONSTRAINTS
00262 85* c
00263 86* 20 CALL CTEST
00264 87* 21 IF (TOTV .ML. 0) GO TO 24
00266 88* IF (P .NE. 0) GO TO 22
00266 89* c
00266 90* c IF WE HAVE A SUSPECT£D OPTIMAL, REDUCE THE CUTOF VALUE TO MOVE
00266 91* c CLOSER TO THE EXACT OPTIMAL AND SEE IF OPTlMALITY TEST STILL
00266 92* c SATISFIED
00266 93* c
00270 94* ITRMAX=(ITRMAX/2)
00271 95* CUTOF=(CUTOF/100)
00272 96* P=l
00273 97* CALL PENSOL
00274 98* ITRMAX=2*ITRMAX
00275 99* GO TO 20
00276 100* 22 DO 23 I=1,N
00301 101* 23 SUSP(I)=X(I)
00303 102* SUSMIN = TRUVAL
00304 103* ITRMAX=(ITRMAX/4)
00305 104* CALL CHECK
00306 105* IF (P .EQ. 868) GO TO 33
00310 106* ITRMAX=4*ITRMAX
00311 107* GO TO 25
00312 108* 24 TOTV=0

003X3 1 0 9 *
00315 1 1 0 *
00316 1 1 1 *
00317 1 1 2 *
00322 1 1 3 *
00325 1 1 4 *
0 0 3 2 7 1 1 5 *
00332 1 1 6 *
00335 1 1 7 *
00336 1 1 8 *
00341 11 9 *
00343 1 2 0 *
00344 1 2 1 *
00345 1 2 2 *
00347 1 2 3 *
00351 1 2 4 *
00354 1 2 5 *
00355 1 2 6 *
00360 1 2 7 *
00362 1 2 8 *
00364 1 2 9 *
00365 1 3 0 *
00366 1 3 1 *

25 CONTINUE
26 Z=IR0W

IROWrO.O
DO 30 Q=l» Z
DO 29 L=1.M
IF IVI0LATIQ,L) .Evi. 0) 60 TO 29

DO 2 7 T = l»K
27 IF IL ,EQ. MOLD(Q , T)) GO TO 29

IR0W=IR0W+1
DO 28 J=1»K

28 MNEwURQW,J)=MQLDlQ,J)
T=(K+1)
MNEW(IROW»T)=L

29 CONTINUE
30 CONTINUE

DO 32 I=l»IROW
T=(K+1)
DO 31 Y=1,T

31 M O L D (1 1 Y) = M N E W (I » Y)
32 CONTINUE

GO TO 10
33 CONTINUE

END

end o f c o m p i l a t i o n : no d i a g n o s t i c s .

I3F0FUIS GETWS
FOK S9A-06/22-12:25 <»0)

S U B R O U T I N E G E T W S E N T R Y P O I N T 000050

S T O R A G E USED*. C O D E Q) 000055J D A T A < 0) 000021, B L A N K C O M M O N (2) O o O O O O

C O M M O N B L O C K S :

0003 P L O K A 000150
0004 B L O K B 064573

EXTERNAL REFERENCES (BLOCK, NAME)

0005 NWDUS
0006 NI02S
0007 NERH3S

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

0000 000002 IF 0001 000015 112G 0001 0 0 0 0 3 o 122G 0001 OoOu23 3L 0000 I 000000 B
0004 061571 CUTOF 000*t 064572 FO 0000 000007 lNJPS 0000 I 000001 J 0003 I 000147 K
0003 1 000145 M 0004 Q43120 MNEW 0004 I 021450 MOLD 0003 000144 N 0003 000050 RN
0003 000106 SN 0004 064570 TOTV 0003 I 000146 U 0004 OOOoOQ VIOLAT 0003 I 000012 W
0003 OOOOOO X

00101 1* SUBROUTINE GETWS
00103 2* WRITE (6,1)
00105 3* 1 FORMAT (1X,5HGETWS)
00105 4* c
0010b 5* c THE VALUS IN THE MOLD MATRIX IDENTIFY THE CONSTRAINTS THAT ARE TO
00105 6* c BE DRIVEN TO EQUALITIES IN THE NEXT ITERATION
00105 7* c
00106 6* COMMON/BLOK A/X(10)»W(30),RN<30),SN(30)»N,M,U»K
00107 9* COMMON/BLOK b/VIOLAT(300»30)»MOLD(300»30)»MNEW(300130)»TOTV»CUTOF»
00107 10* * FO
00110 11* INTEGER B»U»W
00111 12* DO 2 B=1,M
00114 13* 2 W(B)=0
00116 14* IF(K .NE. 0) GO TO 3
00120 15* K=l
00121 16* 3 DO 4 J=1,K
00124 17* B=MOLD(U,J)
00125 18* 4 W(B)=1
00127 19* RETURN
00130 20* END

CF0R»IS PENSOL
FOR S9A-Q6/22-12:25 (,0)

SUBROUTINE PENSOL ENTRY POINT 000404

S T O R A G E U S E D : C O D E (l) 0 0 0 4 1 5 , D A T A (0) 0 0 0 6 5 3) B L A N K C O M M O N (2) OoOOOO

C O M M O N B L O C K S :

0 0 0 3 B L 0 K A 0 0 0 1 5 0
0 0 0 4 E L O K B C 6 4 5 7 3
0 0 0 5 B L O K D 0 0 0 0 0 1
0 0 0 6 B L O K F 0 0 0 0 0 1
0 0 0 7 B L O K G 0 0 0 0 2 4

EXTERNAL REFERENCES (BLOCK, NAME)

0010 CI
0011 ROSENB
0012 NWDUS
0013 MI02S
0014 NI01S
0015 NERR3S

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

0000 000557 IF 0001 000155 10L 0000 000570 H F 0001 000202 12L 0001 000025 123G
0001 0002U7 13L 0001 000041 130G 0001 000225 14L 0001 000u54 1416 oooi 000227 15L
0001 000065 150G 0000 000576 16F 0001 000111 164G 0001 000^66 17L 0001 000271 18L
0001 000273 19L 0000 000607 20F 0001 000161 207G 0001 000351 22L oooi 000356 23L
0001 000221 232G 0000 000621 24F 0001 000233 242G 0001 000J64 25L oooi 000366 26L
0001 000321 271G 0001 000045 3L 0001 000337 302G 0001 000U50 4L oooi 000060 6L
0001 000100 7L 0000 000562 9F 0000 R 000552 ALARGE 0007 R 000012 AX oooo R 000074 BX
0010 R oooooo CI 0000 R oooooo CK 0000 R 000556 CNEW 0000 R 000553 COLD 0004 R 064571 CUTOF
0004 K 064572 FO 0000 1 000554 I 0005 I oooooo ICOUNT 0000 000o33 INJPS 0006 I oooooo ISWIT
0000 I 000555 J 0003 I 000147 K oooo I 000551 L 0003 I 000145 M 0004 043120 MNEW
0004 I 021450 MOLD 0003 1 000144 N 0003 R 000050 RN 0003 R 000106 SN oooo R 000036 SO
0007 000000 TEMPX 0004 064570 TOTV 0003 I 000146 U 0004 oooooo VIOLAT 0003 I 000012 w
0003 K oooooo X 0000 1 000550 ZULU

00101 1* SUBROUTINE PENSOL
00103 2* WRITE (6,1)
00105 3* 1 FORMAT (1X,6HPENS0L)
00105 4* C
00105 5* C PENSOL CONSTRUCTS THE POWELL PENALTY FUNCTION, VARYING THE
00105 6* C PARAMETERS AS NECESSARY
00105 7* C

00106 6* COMMON/BLOK A / X U O) t W (30) , RN (30) , SN (30)»N, M (
-u.

00107 9* COMMON/BLOK ti/VIOL AT 1300»30)»MOLD (300,30) ,MNEW(300
00107 10* * FO
00110 11* COMMON/BLOK D/ICOUNT
00111 12* COMMON/BLOK F/ISWIT
00112 13* COMMON/BLOK G/TEMPX<10)>AX(10)
00113 m* DIMEN5I0N CK130),50(30),BX(30,10)
00114 15* INTEGER w,U»2ULU
00115 16* L=0
00116 17* ALARGE = 10.0**30
00117 l{j* COLDrALARGE
00120 19* IF (K .EQ. 1) GO TO 4 00122 20* DO 3 I=1,M
00125 21* IF (I »NE« MOLD(U»D) GO TO 3 00127 22* DO 2 J=1,N
00132 23* 2 X(J)=BX(I,J)
00134 2<+* GO TO 19
00135 25* 3 CONTINUE
00137 26* GO TO 19
00140 27* 4 DO 5 I = 1,N
00143 28* 5 X(I)=AX(I)
00145 29* GO TO 19
00146 30* 6 J - 0
00147 31* DO 7 I=1»M
00152 32* IF (W(I) ,EQ. 0) GO TO 7
00154 33* J=J+1
00155 34* CK(J)=CI(I)
00156 35* 7 CONTINUE
00160 36* CNEWrO.O
00161 37* IF (J .EQ. 0) GO TO 25
00163 38* DO 8 I=1»J
00166 39* 8 IF (ABS(CK(I) > .GT. CNEW) CNEW=ABS(CK(I)) 00171 40* WRITE (6,9) CNEW,J
00175 41* 9 FORMAT (14X,6HCNEW =,1PE17.10,5X,3HJ =,12)
00176 «+2* IF (CNEW .LT. CUTOF) GO TO 26
00200 43* IF (CNEW ,GE. COLD) GO TO 13
00202 44* IF (L .NE. 1) GO TO 10
00204 45* IF (CNEW .GT. COLD/4) GO TO 15
00204 46* C
00204 47* C CONVERGING FAST ENOUGH RtDUCT PARAMETER S ONLY
00204 48* C
00206 49* 10 DO 12 I=1,M
00211 50* IF U (I) .EQ. 0) GO TO 12
00213 51* SO(I)=SN(I)
00214 52* SN(I)=SN(I)+CI(I)
00215 53* WRITE (6,11) SN(I),1
00221 5if* 11 FORMAT (10X»4HSN =,1PE17.10,5X,3HI =,12)
00222 55* 12 CONTINUE
00224 56* L=l
00225 57* GO TO 18
00226 58* 13 CNEW=COLD
00227 59* IF (L .NE. 1) GO TO 15
00231 60* DO m I=1,M

0 0 2 3 4 6 1 * I F (W (I > . E Q . 0) G O T O 1 4
0 0 2 3 6 6 2 * S N (I) = S 0 m
0 0 2 3 7 6 3 * 1 4 C O N T I N U E
0 0 2 3 7 6 4 * C
0 0 2 3 7 6 5 * C N O T C O N V E R G I N G F A S T E N O U G H R E D U C E P A R A M E T E R S R A N D S
0 0 2 3 7 6 6 * C
0 0 2 4 1 6 7 * 1 5 DO 1 7 I = 1 » M
0 0 2 4 4 6 8 * I F (W U) . E Q . 0) GO TO 1 7
0 0 2 4 6 6 9 * I F (A B S (C K I)) . L T . C O L D / 4) G O T O 1 7
0 0 2 5 0 7 0 * S N (I) = S N (D / 1 0
0 0 2 5 1 7 1 * R N (I) = R N (I) / 1 0
0 0 2 5 2 7 2 * W R I T E (6 # 1 6) SN(X)fRN(X)fX
0 0 2 5 7 7 3 * 1 6 F O R M A T (1 0 X » 4 H S N = » 1 P E 1 7 . 1 0 » 5 X , » 4 H R N = , 1 P E 1 7 . 1 0 » 5 X , 3 H I = » I 2)
0 0 2 6 0 7 4 * 1 7 C O N T I N U E
0 0 2 6 2 7 5 * L = 0
0 0 2 6 3 7 6 * 1 8 C O L D = C N E W
0 0 2 6 3 7 7 * C
0 0 2 6 3 7 8 * C I F C U R R E N T P R O B W A S U N B O U N D E D , R E S E T S T A R T pT A N D T R Y N E X T S U B P R O o
0 0 2 6 3 7 9 * C
0 0 2 6 4 8 0 * 1 9 C A L L R O S E N B
0 0 2 6 5 8 1 * I C O U N T = I C O U N T + 1
0 0 2 6 6 8 2 * W R I T E (6 » 2 0) F O , (X (I) , I = 1 » N)
0 0 2 7 5 8 3 * 2 0 F O R M A T (1 4 X » 6 H F (X) 1 P E 1 7 . 6 / 1 7 X , 3 H X = , 1 P 6 E 1 7 . 6 /
0 0 2 7 5 8 4 * * < 2 0 X » 1 P 6 E 1 7 . 6))
0 0 2 7 6 8 5 * I F (K . N E . 1) G O T O 2 2
0 0 3 0 0 8 6 * Z U L U = M O L D (U , l)
0 0 3 0 1 8 7 * D O 2 1 I = 1 » N
0 0 3 0 4 8 8 * B X (Z U L U » I) = X (I)
0 0 3 0 5 8 9 * 2 1 I F (I S W I T . E Q . 1) B X (Z U L U » I) = B X (Z U L U , I) / 1 0 0 0
0 0 3 0 5 9 0 * C
0 0 3 0 5 9 1 * C I F C U R R E N T S U B P R O B , U N B O U N D E D * M O V E O N T O N E X T S U B P R O B .
0 0 3 0 5 9 2 * C
0 0 3 1 0 9 3 * 2 2 I F (I S W I T . E Q . 1) G O T O 2 3
0 0 3 1 2 9 4 * GO T O 6
0 0 3 1 3 9 5 * 2 3 W R I T E (6 » 2 4)
0 0 3 1 5 9 6 * 2 4 F O R M A T (1 X , 9 H U N B 0 U N D E D)
0 0 3 1 6 9 7 * G O T O 2 6
0 0 3 1 7 9 8 * 2 5 C A L L R O S E N B
0 0 3 2 0 9 9 * 2 6 R E T U R N
0 0 3 2 1 1 0 0 * E N D

E N D O F C O M P I L A T I O N : N O D I A G N O S T I C S .

- J
—J

CFOR,IS CTEST
FOR S9A-0fa/22-12:25 (#0)

SUBROUTINE CTEST ENTRY POINT 000051

STORAGE USED*. C O D E U)

COMMON ELOCKS:

0003 BLOKA 000150
0004 BLOKB 064573

000055> DATA(0) 000015J BLANK C0MM0N(2) OOOOOO

EXTERNAL REFERENCES (BLOCK, NAME)

0005 CI
0006 NWDUS
0007 NI02S
0010 NERR3S

STORAGE ASSIGNMENT (BLOCK, TYPE» RELATIVE LOCATION, NAME)

0000 P00001 IF
0004 K 06^571 CUTOF
0003
0003
0003

000145 M
000106 SN
OOOOOO X

0001
0004
0004
0004

000011 112G
064572 FO
043120 MNEW
064570 TOTV

0001
oooo
0004

000026 2L
000000 I
021450 MOLD

0003 I 000146 U

0001 000036 3L
0000 000U05 1NJPS
0003 000 .144 N
0004 R 000000 VIOLAT

0005 R 000000 CI
0003 000147 K
0003 000050 RN
0003 000012 W

00101 1* SUBROUTINE CTEST
00103 2* WRITE (6,1)
00105 3* 1 FORMAT (1X,5HCTEST)
00105 4* c 00105 5* c CTEST DETERMINES WHICH CONSTRAINTS ARE VIOLATED BY THE PRESENT
00105 6* c SOLUTION
00105 7* c 00106 8* COMMON/BLOK A/X(10),w(30)»RN(30)»SN(30)»N#M,U,K
00107 9* COMMON/BLOK b/VIOLAT1300»30)»MOLD(300,30),MN£W(300» 30) »TOTV»CUTOF»
00107 10* * FO
00110 11* INTEGER U
00111 12* DO 3 1=1»M
00114 13* IF (CKI) .LT, (-CUTOF)) GO TO 2 00116 14* VIOLAT(U»I)=0.0
00117 15* GO TO 3
00120 16* 2 TOTV=TOTV+l 00121 17* VIOLAT(UiI)=l 00122 18* 3 CONTINUE
00124 19* RETURN
00125 20* END

00

G F O R , I S CHECK
FOR S 9 A - 0 6 / 2 2 - 1 2 . 2 5 W O)

SUBROUTINE CHECK ENTRY POINT 000130

STORAGE USED: C O D E U) 000137) D A T A (0) 000052) BLANK C0MM0N<2) 000000

COMMON BLOCKS:

0003 BLOKA 00Q150
0004 BLOKB 064573
0005 PLOKD 000001
0006 BLOKE 000013
0007 BLOKH 000002

EXTERNAL REFERENCES (BLOCK* NAME)

0010 PENSOL
0011 CI
0012 MWDU1
0013 NI02S
0014 N I O U
0015 NERR3S

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

oooo 000003 I F 0001 000011 115G 0001 000024 120G 0001 000u73 144G . oooi 000033 3L
oooo 000005 5F 0000 000012 6F oooo 000024 7F 0001 000110 8L oooi 000114 9L
0011 R oooooo C I 0004 R 064571 CUTOF oooo I oooooo F 0004 064572 FO oooo I 000001 G
0005 I oooooo ICOUNT 0000 000034 INJPS 0003 I 000147 K 0003 I 000145 M 0004 043120 MN£
0004 I 021450 MOLD 0003 I 000144 N 0006 I oooooo P 0003 000u50 RN 0003 000106 SN
0007 R 000001 SUSMIN 0006 K 000001 SUSP 0004 064570 TOTV 0007 oooooo TRUVAL 0003 I 000146 U
0004 oooooo VIOLAT 0003 1 000012 w 0003 oooooo X 0000 I 000002 Y

00101 1* SUBROUTINE CHECK
00103 2* WRITE (6 , 1)
00105 3* 1 FORMAT (1X,5HCHECK)
00105 4* C
00105 5* C CHECK DETERMINES IF THE SUSPECTED OPTIMAL IS I N FACT THE TRUE OPT
00105 6* C
00106 7* COMMON/BLOK A / X (1 0) , W (3 0) , R N (3 0) , S N (3 0) » N , M » U , K
00107 6* COMMON/BLOK B / V I O L A T (3 0 0 , 3 0) , M O L D (3 0 0 , 3 0) , M N E W (3 0 0 , 3 0) , T O T V r C U T O F ,
00107 9* * FO
00110 10* COMMON/BLOK D/ICOUNT
00111 11* COMMON/BLOK t / P , S U S P (1 0)
00112 12* COMMON/BLOK H/TRUVAL,SUSMIN
00113 13* INTEGER F , G » W , U » Y » P

00114 14* DO 4 F = 1 . K
00117 15* DO 2 G=1,M
00122 16* IF U G - M O L D l U , F >) . E Q . 0) GO TO 3
00124 17*

CM CONTINUE
00126 18* 3 W (G) = 0
00127 19* CUTOF = (C U T O F / 1 0 0)
00130 20* CALL PENSOL
00131 21* W (G) = 1
00132 22* IF (C I (G) . b E , (- C U T O F)) GO TO 6
00134 23* 4 CONTINUE
00136 24* WRITE (6 , 5)
00140 25* 5 FORMAT (10X»20HOPTIMAL SOLUTION I S :)
00141 26* WRITE (6 , 6) SUSMIN, (S U S P l Y) » Y = 1 » N)
00150 27* 6 FORMAT (1 4 X » 6 H F (X) = , 1 P E 1 7 . 6 / 1 7 X , 3 H X
00150 2d* 1 (2 0 X # 1 P 6 E 1 7 . 6))
00151 29* WRITE (6 , 7) ICOUNT
00154 30* 7 FORMAT (10X»6HICOUNT = , 1 5)
00155 31* P=688
00156 32* GO TO 9
00157 33* 8 P=0
00160 34* CUTOF = (CUTOF*10000)
00161 35* 9 CONTINUE
00162 36* RETURN
00163 37* END

END OF COMPILATION; NO D I A G N O S T I C S .

Q F O R » I S FOFX
FOR S 9 A - 0 6 / 2 2 - 1 2 . 2 5 l i O)

FUNCTION FOFX ENTRY POINT 000060

S T O R A G E U S E D : C O D E (l) 0 0 0 0 6 4 ; D A T A (O) 0 0 0 0 1 5 } B L A N K C O M M O N (2) O Q O O O O

C O M M O N B L O C K S :

0003 BLOKA 000150

EXTERNAL REFERENCES (BLOCK, NAME)

0004 CI
0005 NERR3S

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

0000 I 000002 I
0003 R 000050 RN
0003 R 000000 X

00101 1* FUNCTION FOFX(DUM)
00101 2* C
00101 3* C FOFX EVALUATES THE PENALTY FUNCTION FOR THE CURRENT VALUES OF X (I)
00101 4* C
00101 5* C IF A M I N I M I Z A T I O N PROBLEM,
00101 6* c ALTERNATE METHOD CHANGE . G E . TO . L E . AFTER COMMENT C9999 .
00101 7* c
00103 8* COMMON/BLOK A / X (1 0) , W (3 0) » R N < 3 0) , S N (3 0) » N , M , U , K
00104 9* INTEGER W
00105 10* F O F X = - 1 0 * (X (1)) - 2 5 * (X (2)) + (l O * (X (l) * * 2)) + ((X < 2)) * * 2) + 4 * ((X (l)) * (X (
00105 11* * 2)))
00106 12* TRUVAL = FOFX
00107 13* DO 1 I = 1 , M
00112 14* I F (W l l) . E Q * 0) GO TO 1
00114 15* F O F X = F O F X + W (i) * < (C I (I) + S N (I)) * * 2) / R N (I)
00115 16* 1 CONTINUE
00117 17* RETURN
00120 18* END

END OF COMPILATION: NO D I A G N O S T I C S .

0001 000044 1L 0001 000026 H O G
0000 000006 INJPS 0003 000147 K
0003 R 000106 SN 0000 R 000001 TRUVAL

0004 R O O O O O q CI 0000 R 000U00 F O F X
0003 I 000145 M 0003 000144 N
0003 000146 U 0003 I 000012 W

00

C F O R r l S C I
FOR S 9 A - 0 6 / 2 2 - 1 2 . 2 5 (, 0)

F U N C T I O N C I E N T R Y P O I N T 0 0 0 0 5 0

S T O R A G E U S E D ! C O D E (L) 0 0 0 0 5 4 1 D A T A (0) 0 0 0 0 1 2 1 B L A N K C 0 M M 0 N (2) O O O O O O

C O M M O N B L O C K S :

0 0 0 3 B L O K A 0 0 0 1 5 0

E X T E R N A L R E F E R E N C E S (B L O C K , N A M E)

0 0 0 4 N E R R 2 1
0 0 0 5 N E R R 3 S

S T O R A G E A S S I G N M E N T (B L O C K , T Y P E , R E L A T I V E L O C A T I O N , N A M E)

0 0 0 1 0 0 0 0 1 2 1 L 0 0 0 1 0 0 0 0 2 1 2 L 0 0 0 1 0 0 0 0 3 1 3 L
0 0 0 0 0 0 0 0 0 4 I N J P S 0 0 0 3 0 0 0 1 4 7 K 0 0 0 3 0 0 0 1 4 5 M
0 0 0 3 0 0 0 1 0 6 S N 0 0 0 3 0 0 0 1 4 6 U 0 P 0 3 0 0 0 0 1 2 W

0 0 1 0 1 1 * F U N C T I O N CI(I)
0 0 1 0 1 2 * C
0 0 1 0 1 3 * C C I (I) E V A L U A T E S T H E C O N S T R A I N T S
0 0 1 0 1 4* C
0 0 1 0 3 5 * C O M M O N / B L O K A / X (1 0) , W (3 0) t R N (3 0) , S N (3 0) » N , M , U , K 0 0 1 0 4 6* G O T O (1 , 2 , 3 , 4) , 1
0 0 1 0 5 7 * 1 C I = - X (l) - X (2) + 9
0 0 1 0 6 8 * R E T U R N
0 0 1 0 7 9 * 2 C I = - X (1) - 2 * (X (2)) + 1 0
0 0 1 1 0 1 0 * R E T U R N
0 0 1 1 1 1 1 * 3 C I = X (1)
0 0 1 1 2 1 2 * R E T U R N
0 0 1 1 3 1 3 * 4 C I = X (2)
0 0 1 1 4 1 4 * R E T U R N
0 0 1 1 5 1 5 * E N D

E N D O F C O M P I L A T I O N : N O D I A G N O S T I C S *

0 0 0 1 0 0 0 0 3 6 4 L
0 0 0 3 0 0 0 1 4 4 N
0 0 0 3 R OOOuOO X

0 0 0 0 R 0 0 0 0 0 0 C I
0 0 0 3 0 0 0 0 5 0 RN

CO
s3

D F O R , I S ROSENB
FOR S 9 A - 0 b / 2 2 - 1 2 : 2 5 (,0)

S U B R O U T I N E R O S E N B E N T R Y P O I N T 0 0 0 6 2 1

S T O R A G E U S E D : C O D E (l) 000636; D A T A (O) 0006101 B L A N K C0MM0N(2) O O O O O O

C O M M O N B L O C K S :

0003 B L O K A 000150
0004 B L O K B 064573
0005 B L O K C 000004
0006 B L O K F 000001

E X T E R N A L R E F E R E N C E S (B L O C K , N A M E)

0 0 0 7 F O F X
0 0 1 0 L I N E S
0 0 1 1 B U M P
0 0 1 2 N W D U S
0 0 1 3 N I 0 2 *
0 0 1 4 S Q R T
0 0 1 5 N S T O P S
0 0 1 6 T J E R R 3 $

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

oooo 000534 IF 0001 000163 11L 0001 000222 13L 0001 000*44 14L o o o i 000104 1<*3G
o o o i 000105 146G 0001 000121 155G ono i 000305 16L 0001 000142 lb5G o o o i 000315 17L
o o o i 000201 201G 0001 000274 224G o o o i 000345 244G 0001 000346 247G o o o i 000360 255G
o o o i 000374 260G 0001 000377 263G o n o i 000424 274G 0001 000067 3L o o o i 000561 30L
0001 000437 302G 0001 000447 307G o o o i 000565 31L 0001 000466 313G o o o i 000470 317G
0001 000570 32L 0001 000476 324G o o o i 000577 33L 0001 000522 334G o o o i 000534 342G
0001 000553 352G 0001 000115 6L 0001 000127 8L 0001 000131 9L oooo R 000454 A
oooo R oooooo ALPHA 0000 k 000144 BETA 0004 064571 CUTOF oooo R 000466 D oooo R 000532 DOT
oooo R 000521 DUM oooo K 000500 E 0004 R 064572 FO 0007 R oooooo FOFX oooo R 000525 F l
oooo 1 000524 I oooo 1 000523 IK oooo 000557 INJPS 0005 I oooooo ISTAbE 0005 I 000003 ISTGMX
0006 I oooooo ISWIT oooo I 000516 I T R I A L 0005 I 000002 1TRMAX oooo I 000522 J 0003 000147 K
oooo I 000526 L 0005 I 000001 LCOUNT 0003 000145 M oooo I 000531 MMO 0004 043120 MNEW
0004 021450 MOLD 0003 1 000144 N 0000 I 000515 NCASE oooo I 000517 NL oooo I 000520 NXTMAX
0003 000050 RN 0003 000106 SN 0000 R 000513 STG oooo R 000527 SUM oooo R 000533 SUMRT
oooo K 000530 SUMRT1 0004 064570 TOTV oooo R 000514 TRI 0003 000X46 U oooo R 000310 V
0004 oooooo VIOLAT 0003 I 000012 W 0003 R oooooo X oooo I 000512 Y

00101 1* SUBROUTINE ROSENB
00103 2 * WRITE (6 , 1)
00105 3* 1 FORMAT (1X,6HR0SENB)

00106 <l* COMMON/BLOK A / X (1 0) » W (3 0) t R N (3 0 > tSN(30)tN,M,U,K
00107 5* COMMON/BLOK b / V I O L A T l 3 0 0 t 3 0) t M O L D (3 0 0 , 3 0) , M N E W (3 0 0 » 3 0) » T O T V » C U T O F ,
00107 6* * FO
00110 7* COMMON/BLOK C/1STAGE tLCOUNT tITRMAX.ISTGMX
00111 6* COMMON/BLOK F / 1 S W I T
00112 9* DIMENSION A L P H A (1 0 » 1 U) » B E T A (1 Q , 1 0) » V (1 0 , 1 0) , A (1 0) » D (1 0) » E (1 Q)
00113 10* INTEGER Y»W
00114 11* DATA S T G / 6 H S T A G E S / , T R I / 6 H T R I A L S / ROSE
00117 12* NCASE=0
C0120 13* 2 I T R I A L = 0
00121 14* ISTAGE=0
00122 15* LCOUNT=0
00123 16* NCASE=NCASE+1
00124 17* NL=N+8
00125 18* IF (N . G T . 6) NL=2*N+9
00127 19* NXTMAX=75*N
00130 20* IF (ITRMAX . L T . 1) ITRMAX=50*N
00132 21* IF (ISTGMX . L T . 1) ISTGMX=25*N
00134 22* FO=FOFX(DUM)
00135 23* IF (A B S (F O) . L T . 1 0 . 0 * * 2 0) GO TO 3
00137 24* I S W I T = 1
00140 25* GO TO 33
00141 26* 3 CALL L I N E S (N L)
00142 27* DO 5 J=1#N
00145 28* DO 4 I K = 1 » N
00150 29* 4 V (J # I K) = 0 . 0
00152 30* 5 V (J t J) = 1 . 0
00154 31* 6 DO 7 J=1#N
00157 32* A (J) = 2 . 0
OOlbO 33* D (J) = 0 . 0
00161 34* 7 E (J) = 0 . 1
00163 35* 8 1 = 1
00164 36* 9 DO 10 J = 1 » N
00167 37* 10 X (J) = X (J) + E (D * V (I # J)
00171 38* F l=FOFX(DUM)
00172 39* IF (A B S (F l) . L T . 1 0 . 0 * * 2 0) GO TO 11
00174 40* I S W I T = 1
00175 41* GO TO 33
00175 42* C
00175 43* C FOR MIN PROB, CHANGE , G E . TO , L E . IN NEXT STATEMENT
00175 44* C
00176 45* 11 IF (F l . L E . FO) GO TO 13
00200 46* DO 12 Y=1#N
00203 47* 12 X (Y) = X (Y) - E (I) * V (I » Y)
00205 48* E (I) = - . 5 * E (I)
00206 49* IF (A (I) . L T . 1 . 5) A (I) = 0 . 0
00210 50* GO TO 14
00211 5 1 * 13 D (I) = D (I) + E (D
00212 52* E (I) = 3 . * E (I)
00213 53* F0=F1
00214 54* IF (A (I) . G T . 1 . 5) A (I) = 1 . 0
00216 55* 14 I T R I A L = I T K I A L + 1
00217 56* IF (I T R I A L . G T . ITRMAX) GO TO 30
00221 57* IF (NXTMAX . L Q , I T R I A L) CALL B U M P (X , N » N X T M A X » F O » E » D » W)

00
-p-

00223 56* DO 15 J = 1 » N
00226 59* IF < A U) . G T . 0 . 5) GO TO 16
00230 60* 15 CONTINUE
00232 6 1 * GO TO 17
00233 62* 16 IF (I . E Q . N) GO TO 8
00235 63* 1 = 1 + 1
00236 64* GO TO 9
00237 65* 17 ISTAGE=ISTAGL+1
00240 66* IF (ISTAGE . G T . ISTGMX) GO TO 31
00242 67* NXTMAX=ITRIAL+75*N
00243 68* DO 18 J = 1 » N
00246 69* DO 18 I K = 1 , N
00251 70* 18 A L P H A (J f I K) = 0 . 0
00254 71* DO 20 J-lth
00257 72* DO 20 Y = 1 » N
00262 73* DO 19 L = J » N
00265 74* 19 ALPHA(J tY)=ALPHA(J»Y)+D(L)*V(L»Y)
00267 75* 20 B E T A < J » Y) = A L P H A (J » Y)
00272 76* SUM=0.0
00273 77* DO 21 Y = 1 » N
00276 76* 21 SUM=SUM+BETA U , Y) * * 2
00300 79* SUMRT1=SQRT(SUM)
00301 80* DO 22 Y = 1 » N
00304 81* 22 V (l » Y) = B E T A (l » Y) / S U M R T l
00306 82* DO 28 Y = 2 » N
00311 83* MMO=Y-l
00312 84* DO 25 J=l»MMO
00315 85* DOT=0.0
00316 86* DO 23 I K = 1 » N
00321 87* 23 D O T = D O T + A L P H A (Y » I K) * V (J » I K)
00323 88* DO 24 I K = 1 » N
00326 89* 24 B E T A (Y » I K) = B L T A (Y » I K) - D O T * V (J » I K)
00330 90* 25 CONTINUE
00332 91* SUM=0.0
00333 92* DO 26 I K = 1 » N
00336 93* 26 S U M = S U M + B E T A I Y , I K) * * 2
00340 94* SUMRT=SQRT(SUM)
00341 95* DO 27 I K = 1 » N
00344 96* 27 V (Y » I K) = B E T A I Y , I K) / S U M R T
00346 97* 28 CONTINUE
00350 96* SUM=0.0
00351 99* DO 29 I K = 1 » N
00354 100* 29 SUM=SUM+ALPHA121IK)**2
00356 101* GO TO 6
00357 102* 30 CALL L I N E S (N L)
00360 103* GO TO 32
00361 104* 31 CALL L I N E S (N L)
00362 105* 32 IF <KCASE , G T , 9) STOP
00364 106* 33 CONTINUE
00365 107* RETURN
00366 108* END

END OF COMPILATION: NO D I A G N O S T I C S .

CO

G F O R . I S BUMP
FOR S 9 A - Q 6 / 2 2 - 1 2 ! 2 5 (r 0)

SUBROUTINE BUMP ENTRY POINT 000065

S T O R A G E U S E D : C O D E U) 000111; D A T A (0) 000030; B L A N K C 0 M M 0 N (2) 0Q0000

EXTERNAL REFERENCES (BLOCK. NAME)

0003 L I N E S
0004 FOFX
0005 NEXP1S
0006 NERR3S

STORAGE ASSIGNMENT (BLOCK, TYPE, RELATIVE LOCATION, NAME)

0001 000022 107G 0000 R 000001 DUM 0004 R 00000Q FOFX 0000 I 000U00 I OoOO 000007 INJPS

00101 1* SUBROUTINE B U M P (X , N , K , F » E , D , W)
00103 2* DIMENSION E d O) , D (1 0) , X (1 0)
00104 3* CALL L I N E S (2)
00105 4* K=K+75*N
00106 5* DO 1 1 = 1 , N
00111 6* D (I) = 0 .
00112 7* E (I) = 0 . 1
00113 6* 1 X (I) = X (I) + (X (I) / 8 .) * (- l) * * I
00115 9* F=FOFX(DUM)
00116 10* RETURN
00117 11* END

END OF COMPILATION: NO D I A G N O S T I C S .

00

C F O R , I S L I N E S

F O R S 9 A - 0 6 / 2 2 - 1 2 . 2 5 (r O)

S U B R O U T I N E L I N E S E N T R Y P O I N T 000021

S T O R A G E U S E D : C O D E (l) 0000261 D A T A (0) 0000051 B L A N K C 0 M M 0 N (2) O Q O O O O
C O M M O N B L O C K S :
0003 BLOKC 000004

E X T E R N A L R E F E R E N C E S (B L O C K , N A M E)

0004 NERR3S

S T O R A G E A S S I G N M E N T (B L O C K , T Y P E , R E L A T I V E L O C A T I O N , N A M E)

0000 000000 I N J P S 0003 O O O O O O I S T A G E 0003 000003 I S T G M X 0003 000(j02 I T R M A X 0003 I 000001 L C O U N T

00101 1* S U B R O U T I N E L I N E S (N)
00103 2* C O M M O N / B L O K C / I S T A G E , L C O U N T , I T R M A X , I S T G M X
00104 3* L C O U N T = L C O U N F + N
00105 4* I F (L C O U N T . L T . 57) R E T U R N
00107 5* L C O U N T = N + l
00110 6* R E T U R N
00111 7* E N D

E N D O F C O M P I L A T I O N : N O D I A G N O S T I C S *

88

BIBLIOGRAPHY

1. Beale, E. M. L.; "On Quadratic Programming"; Naval Research Logis
tics Quarterly, V6, 227-243, 1959.

2. Beveridge, G. S., R. S. Schechter; Optimization: Theory and Prac
tice ; McGraw-Hill Book Company, New York, 1970.

3. Box, M. J.; "A New Method of Constrained Optimization and a Compari
son with Other Methods"; Computer Journal, V8, 42, 1965.

4. ; "A Comparison of Several Current Optimization Methods
and The Use of Transformations in Constrained Problems"; Computer
Journal, V9, 67, 1966.

5. Box, M. J., D. Davies, W. H. Swann; Nonlinear Optimization Tech
niques ; Monograph #5; Oliver and Boyd Ltd, London, 1969.

6. Carroll, C. W.; "The Created Response Surface Technique for Opti
mizing Non-Linear Restrained Systems"; Operations Research, V9,
169-185, 1961.

7. Dantzig, G. B.; Linear Programming and Extensions; Princeton Uni
versity Press, Princeton, N. J., 1963.

8. Davidon, W. C ; "Variable Metric Method for Minimization"; A.E.C.
Research and Development Report, ANL-5990 (Rev.), 1959.

9. Davies, D., W. H. Swann; "Review of Constrained Optimization";
Optimization; Academic Press, London, 1969, pp. 187-202.

10. Dragomirescu, M.; "Theil-Van de Panne Algorithm for Convex Pro
gramming"; Studi si Cercetari Matematice, V19:5, 1967.

11. Esterby, B. E.; "Modification of Rosenbrock's Algorithm for the
Nonlinear Programming Problem"; Masters Thesis, Georgia Institute
of Technology, Atlanta, 1970.

12. Everett, H.; "Generalized Lagrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources"; Operations Research,
Vll:3, 399-418, 1963.

13. Fiacco, A. V., G. P. McCormick; "The Sequential Unconstrained Mini
mization Technique for Nonlinear Programming: A Primal-dual Method";
Management Science, V10, 360-366, 1964.

89

BIBLIOGRAPHY (Continued)

14. Fiacco, A. V., G. P. McCormick; "The Slacked Unconstrained Mini
mization Technique for Convex Programming"; SIAM Journal, V15:3,
505-515, 1967.

15. ; Nonlinear Programming Sequential
Minimization Techniques; John Wiley and Sons, Inc., New York, 1968.

16. Fletcher, R.; "Function Minimization Without Evaluating Derivatives
--A Review"; Computer Journal, V8, 1965.

17. ; "A Review of Methods for Unconstrained Optimization";
Optimization; Academic Press, London, 1969.

18. Fletcher, R., M. J. D. Powell; "A Rapidly Convergent Descent
Method for Minimization"; Computer Journal, V6, 163, 1963.

19. Geoffrion, A. M.; "Reducing Concave Programs With Some Linear Con
straints"; SIAM Journal of Applied Mathematics, V15:3, 653-664,
1967.

20. Glass, H., L. Cooper; "Sequential Search: A Method for Solving
Constrained Optimization Problems"; Association for Computing
Machinery Journal, V12, 71, 1965.

21. Goldfarb, D., L. Lapidus; "Conjugate Gradient Method for Nonlinear
Programming Problems with Linear Constraints"; Industrial and
Engineering Chemistry Fundamentals, V7, 1968.

22. Gue, R. L., M. E. Thomas; Mathematical Methods in Operations Re-
search; The Macmillan Company, New York, 1968.

23. Hooke, R., T. A. Jeeves; "Direct Search Solution of Numerical and
Statistical Problems"; Journal of the Association of Computing
Machinery, V8, 212, 1961.

24. Kowalik, J., M. R. Osborne; Methods for Unconstrained Optimization
Problems; American Elsevier Publishing Co., Inc., New York, 1968.

25. Lootsma, F. A.; "Constrained Optimization via Penalty Functions";
Philips Research Reports, V23, 408-423, 1968.

26. Lootsma, F. A.; "Constrained Optimization via Parameter-Free Penalty
Functions"; Philips Research Reports, V23, 424-437, 1968.

27. Nelder, J. A., R. Mead; "A Simplex Method for Function Minimiza
tion"; Computer Journal, V7, 1965.

90

BIBLIOGRAPHY (Continued)

28. Pierre, D. A.; Optimization Theory with Applications; John Wiley
and Sons, Inc., New York, 1969.

29. Powell, M. J. D.; "A Method for Nonlinear Constraints in Minimi
zation Problems"; Conference on Optimization, Institute of Mathe
matics and Its Applications, 283-297, 1969.

30. ; "A Survey of Numerical Methods for Unconstrained
Optimization"; Studies in Optimization 1; Society for Industrial
and Applied Mathematics, Philadelphia, 1970.

31. Rosen, J. B.; "The Gradient Projection Method for Nonlinear Pro
gramming, Part I, Linear Constraints"; Journal of the Society for
Industrial and Applied Mathematics, V8:l, 181, 1960.

32. Rosen, J. B., S. Suzuki; "Construction of Nonlinear Programming
Test Problems"; Communications of the AMC, V8, 1965.

33. Rosenbrock, H. H.; "An Automatic Method for Finding the Greatest
or Least Value of a Function"; The Computer Journal, V3:2, 175-
184, 1960.

34. Sasson, A. M.; "Combined Use of the Powell and Fletcher-Powell NLP
Methods for Optimal Load Flows"; IEEE Transactions on Power Appara
tus and Systems, V88:10, 1530-1537, 1969.

35. Spendley, W., G. R. Hext, F. R. Himsworth; "Sequential Applications
of Simplex Designs in Optimization and Evolutionary Operation";
Technometrics, V4, 1962.

36. Stocker, D. C , D. M. Himmelblau; "Applications of Optimization
Techniques in Chemical Engineering, Part I"; American Institute
of Chemical Engineers; 67th National Meeting, 1970.

37. Swenson, C. R.; Lecture Notes, School of Mathematics, Georgia Insti
tute of Technology, Atlanta, 1971.

38. Swann, W. H.; "Report on the Development of a New Direct Search
Method of Optimization"; I.C.I. Ltd. Central Instr. Lab. Res.
Note 64/3, 1964.

39. Theil, H., C. Van de Panne; "Quadratic Programming as an Exten
sion of Classical Quadratic Maximization"; Management Science,
V7:l, 1-20, 1960.

91

BIBLIOGRAPHY (Concluded)

40. Van de Panne, C., A. Whinston; "The Symmetric Formulation of the
Simplex Method for Quadratic Programming"; Econometrics, V37:3,
507-527, 1969.

41. Wolfe, P.; "The Simplex Method for Quadratic Programming"; Econo
metrics, V27, 382-398, 1959.

42. Wortman, J. D.; "NLPROG (a set of FORTRAN Programs to find the
minimum of a Constrained Function)"; Ballistic Research Labs,
Aberdeen Proving Ground, AD-684343, 1969.

43. Zangwill, W. I.; "Nonlinear Programming Via Penalty Functions";
Management Science, V13:5, 344-358, 1967.

44. ; Nonlinear Programming, A Unified Approach;
Prentice-Hall, Inc., Englewood Cliffs, N. J., Chapter 12, 1969.

45. Zoutendijk, G.; Methods of Feasible Directions; Elsevier Publishing
Co., Amsterdam, 1960.

46. ; "Nonlinear Programming: A Numerical Survey"; SIAM
Journal of Control, V4, 1966.

47. ; "Computational Methods in Nonlinear Programming";
Studies in Optimization I; Society for Industrial and Applied
Mathematics, Philadelphia, 1970.

