
Parafermionic theory with the symmetry Z N, for N odd

Vladimir Dotsenko, Jesper Jacobsen, Raoul Santachiara

To cite this version:

Vladimir Dotsenko, Jesper Jacobsen, Raoul Santachiara. Parafermionic theory with the sym-
metry Z N, for N odd. Nuclear Physics B, Elsevier, 2003, 664, pp.477. <hal-00000238v2>

HAL Id: hal-00000238

https://hal.archives-ouvertes.fr/hal-00000238v2

Submitted on 7 May 2003

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract.

We construct a parafermionic conformal theory with the symmetry ZN , for N odd,
based on the second solution of Fateev-Zamolodchikov for the corresponding parafermio-
nic chiral algebra. Primary operators are classified according to their transformation
properties under the dihedral group DN , as singlet, doublet 1, 2, . . . , N−1

2
, and disorder

operators. In an assumed Coulomb gas scenario, the corresponding vertex operators are
accommodated by the weight lattice of the Lie algebra B(N−1)/2. The unitary theories are
representations of the coset SOn(N)×SO2(N)/SOn+2(N), with n = 1, 2, . . .. Physically,
they realise the series of multicritical points in statistical theories having a DN symmetry.

1Laboratoire associé No. 280 au CNRS



1 Introduction

Parafermionic algebras are associated in a natural way with extra discrete group sym-
metries in two-dimensional statistical systems.

The most used parafermionic conformal theory, which was constructed by Fateev
and Zamolodchikov in Ref. [1], describes the self-dual critical points of the ZN -invariant
generalisations of the Ising model. The values of the spins of the parafermions take the
minimal possible values admitted by the associativity constraints for the corresponding
chiral algebra. In this case, the central charge of the Virasoro algebra is fixed as a function
of N only; there is only one conformal field theory for each N .

In the Appendix A of Ref. [1], the same authors showed that there exists another
associative chiral algebra, with the next allowed values of the spins of the parafermions.
In this second solution, the central charge and the structure constants of the algebra are
given, for each N , as functions of a free parameter.

The conformal field theories which correspond to this second solution are known only
for particular values of N .

The case N = 2 corresponds to the superconformal theory (∆ = 3/2). For N = 4, the
parafermionic algebra turns out to factorise into two independent superconformal chiral
algebras, with fields of dimensions 2 and 3/2. The theory with N = 3 has been fully de-
veloped by Fateev and Zamolodchikov in Ref. [2]. By imposing the degeneracy condition
on the representations fields, they constructed an infinite series of conformal theories.
These theories are supposed to describe the multicritical fixed points of physical statisti-
cal systems with the Z3 symmetry. Indeed, the first theory of this series corresponds to
the tricritical Potts model.

In a recent paper [3], we presented the theory based on the second solution of the Z5

parafermionic algebra. In particular, by studying the degenerate representations of this
algebra we showed that the representation fields are accommodated by the weight lattice
of the Lie algebra B2.

To obtain this result it was useful observing that the central charge of the second
solution of the ZN parafermionic algebra agrees with that of the coset [4]

SOn(N) × SO2(N)

SOn+2(N)
, (1.1)

which is

c = (N − 1)

(

1 − N(N − 2)

p(p + 2)

)

, (1.2)

p = N − 2 + n. (1.3)

It is then natural to look for a Kac formula for the dimensions of the primary operators
based on the weight lattice of the Lie algebra BN−1

2
for N = 2r + 1 (with r ≥ 2), and of

DN
2

for N = 2r (with r ≥ 3).

In the present work we will present in detail the whole class of the conformal theories
based on the second solution of the Z2r+1 parafermionic algebra.
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The paper is organised as follows. In Section 2, we introduce the parafermionic
algebra presented in Ref. [1]. We then discuss the operator content of the theory together
with the modules induced by the primary operators. The commutation relations of
the parafermionic modes in each sector are given and some results of the degeneracy
calculations are shown. These results, together with the properties of the Coulomb gas
realisation of the theory, will be used in Section 3 to fix the values of the boundary
terms characterising each sector. Finally, in Section 4 we determine to which sector each
operator of the theory belongs. The theory we have built is verified by considering the
characteristic equations for three-point functions. The conclusions are given in Section 5.

2 Parafermionic algebra and representation space

As discussed in the Introduction, we will consider the second solution of the associative
algebra presented in Appendix A of Ref. [1]. The operator product expansions, defining
the algebra of the parafermionic currents Ψk (with k = 1, 2, . . . , N − 1), have the form:

Ψk(z)Ψk′

(z′) =
λk,k′

k+k′

(z − z′)∆k+∆k′−∆k+k′

×
{

Ψk+k′

(z′) + (z − z′)
∆k+k′ + ∆k − ∆k′

2∆k+k′

∂z′Ψ
k+k′

(z′) + . . .

}

, k + k′ 6= 0

(2.1)

Ψk(z)Ψ−k(z′) =
1

(z − z′)2∆k

{

1 + (z − z′)2 2∆k

c
T (z′) + . . .

}

. (2.2)

In Eqs. (2.1)–(2.2), the conformal dimension ∆k of the parafermionic current Ψk is
given by:

∆k = ∆N−k =
2k(N − k)

N
, k = ±1,±2, . . . ,±N − 1

2
. (2.3)

Note that in the above equations and in the rest of the present manuscript, the ZN -
charges k and their sums k + k′ are defined modulo N . In particular we write:

ΨN−k ≡ Ψ−k ≡ (Ψk)+, ∆N−k ≡ ∆−k. (2.4)

Within the second solution, the structure constants λk,k′

k+k′ and the central charge c of the
Virasoro algebra are given as functions of a single free parameter v:

(λk,k′

k+k′)2 =
Γ(k + k′ + 1)Γ(N − k + 1)Γ(N − k′ + 1)

Γ(k + 1)Γ(k′ + 1)Γ(N − k − k′ + 1)Γ(N + 1)

× Γ(k + k′ + v)Γ(N + v − k)Γ(N + v − k′)Γ(v)

Γ(N + v − k − k′)Γ(k + v)Γ(k′ + v)Γ(N + v)
, (2.5)

c =
4(N − 1)(N + v − 1)v

(N + 2v)(N + 2v − 2)
. (2.6)

Changing the parametrisation v → n/2, the connection between Eq. (2.6) and the coset
formula (1.2) becomes explicit.
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Among the representation fields, primaries with respect to the algebra (2.1)–(2.2), we
expect to find singlet operators

Φ0(z, z̄) (2.7)

with ZN charge equal to 0, and doublet q operators

Φ±q(z, z̄), q = 1, 2, . . . ,
N − 1

2
, (2.8)

with ZN charge equal to ±q. The singlet and doublet operators (2.7)–(2.8) form the
usual representations of the group ZN .

In fact, the theory we are considering is invariant under the dihedral group DN , which
includes ZN as a subgroup. This can be seen from the symmetry of Eqs. (2.1)–(2.5) under
conjugation of the ZN charge, q → N − q, cf. Eq. (2.4). The representation space should
thus include also the N -plet of Z2 disorder operators, which we denote as:

{Ra(z, z̄), a = 1, . . . , N}. (2.9)

The presence of disorder operators in the spectrum has been shown explicitly in the
case of the first solution for general N [5], and in the case of the second solution for the
theories with N = 3 [2] and N = 5 [3].

The disorder fields thus play a symmetry generating role, since they complete the
cyclic group ZN , generated by the parafermionic currents Ψ±k(z), to the dihedral group
DN . However, the disorder fields are non-chiral representation fields, and in particular
they do not participate in the chiral algebra [3]. The chiral algebra is therefore based on
the abelian group ZN .

Until now we have specified and discussed the operator content of the theory. The next
step is to study the degenerate representations of the algebra (2.1)–(2.2). It is indeed well
established that for a given chiral algebra with a free parameter, the associated conformal
field theory is described by the degenerate representations of that algebra.

In order to study the degenerate representations, we first have to analyse the struc-
ture of the modules induced by various primary fields. In Ref. [3] these modules were
constructed for N = 5. We shall show below how to generalise these results to arbitrary
odd N .

2.1 Singlet and doublet sectors

2.1.1 Modules and mode commutation relations

We start by considering the module of the identity. First of all we place the chiral fields
Ψ±k(z), with k = 1, 2, . . . , (N − 1)/2, and the stress-energy tensor T (z) in the module
of the identity I. The levels of these operators correspond to their conformal dimensions
∆±k. To complete the module with the remaining levels it is sufficient to take into account
that, owing to the abelian monodromy of the fields Ψ±k, the level spacing in each sector
is equal to 1.

In the module of the identity there are no states below I and above Ψ±1. This is
not the case for a more general singlet operator Φ0; the first descendent levels of the

3
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Figure 1: Representation modules for N = 7. We show the level structure of the modules
of a singlet (top left), a doublet 1 (top right), a doublet 2 (bottom left), and a doublet 3
operator (bottom right).

correspondent module are, at least partially, occupied. Let us denote by δ0
k the first

descendent level in the ZN charge sector k. From Eq. (2.3) we readily obtain that

δ0
k = −2k2

N
mod 1. (2.10)

The knowledge of the gaps δ0
k completely fixes the level structure of a generic singlet

module. In the upper left part of Fig. 1 we show, as an example, the module of a singlet
operator for N = 7.

The structure of the doublet q modules is extracted from the module of the identity
by examining its corresponding submodules. The generalisation to the doublet q module
of Eq. (2.10) is:

δq
k = 2

(q2 − k2)

N
mod 1, (2.11)

where δq
k is the first level in the module of the doublet q corresponding to the ZN charge

sector k. From now on we will make extensive use of the above notation. In Fig. 1, the
three possible doublets for N = 7 are shown.

In accordance with the structure of the modules, the developments of the chiral fields
in each sector take, for general N , the form:

Ψk(z)Φq(0) =
∑

n

1

(z)∆k−δq

k+q
+n

Ak
−δq

k+q
+nΦq(0), (2.12)

Ak
−δq

k+q
+nΦq(0) = 0, n > 0. (2.13)
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We remind that the sums k+q of the ZN charges are always defined modulo N . Eq. (2.13)
is the usual highest weight condition which expresses that representation fields are pri-
mary with respect to the parafermionic algebra. As usual, from Eq. (2.12), the action of
the modes in each sector can be given in the form of a contour integral:

Ak
−δq

k+q
+nΦq(0) =

1

2πi

∮

C0

dz (z)∆k−δq

k+q
+n−1Ψk(z)Φq(0). (2.14)

Note that, by Eq. (2.11), the level δq
k+q is equal to zero for k = −2q. This results in the

presence, for each doublet Φ±q, of a zero mode A∓2q
0 which acts between the two states

at the summit of the corresponding module:

A∓2q
0 Φ±q(0) = hqΦ

∓q(0). (2.15)

The eigenvalues hq defined by the above equation characterise the representations, to-
gether with the conformal dimension of the fields Φ±q.

The commutation relations of the mode operators can be deduced from Eq. (2.14)
in a way similar to that used in Refs. [2, 3]. Below we give the general form of these
relations.

In what follows we define the coefficients Dl
α from the development

(1 − x)α =
∞
∑

l=0

Dl
αxl. (2.16)

By Eq. (2.1), the modes of the parafermions Ψk and Ψk′

, where k, k′ = ±1, 2, . . . ,±N−1
2

with k + k′ 6= 0, satisfy the relations:

∞
∑

l=0

Dl
α

(

Ak

−δk′+q

k+k′+q
+s(k,k′,q)+n−l

Ak′

−δq

k′+q
+m+l − Ak′

−δk+q

k′+k+q
+s(k′,k,q)+m−l

Ak
−δq

k+q
+n+l

)

Φq

= λk,k′

k+k′η(k,k′,q)(n,m)Ak+k′

−δq

k+k′+q
+t(k,k′,q)+n+mΦq (k + k′ 6= 0) (2.17)

with

α = ∆k + ∆k′ − ∆k+k′ − 2 (2.18)

η(k,k′,q)(n,m) = ∆k − δq
k+q + n − 1 − ∆k+k′ + ∆k − ∆k′

2∆k+k′

(

∆k+k′ − δq
k+k′+q + t(k, k′, q) + n + m

)

.

In Eq. (2.17), the integers s(k, k′, q) and t(k, k′, q) shift the indices of the parafermionic
modes. They are given by:

s(k, k′, q) = δk′+q
k+k′+q − δq

k+q + α

t(k, k′, q) = δq
k+k′+q − δq

k+q − δq
k′+q + α (2.19)

The remaining commutation relations between the modes of the parafermions Ψk and
Ψ−k (with k = 1, 2, . . . , N−1

2
) realise the connection with the Virasoro algebra. In fact, it

is seen from Eq. (2.2) that the stress-energy operator T (z) is produced in the expansion
ΨkΨ−k. Defining the integers u(k, q) as:

u(k, q) = δ−k+q
q − δq

k+q + β (2.20)
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we can write the following relations:

∞
∑

l=0

Dl
β

(

Ak
−δ−k+q

q +u(k,q)+n−l
A−k

−δq

−k+q
+m+l + A−k

−δk+q
q +u(−k,q)+m−l

Ak
−δq

k+q
+n+l

)

Φq

=
(

κ(n)δn+m+u′(k,q),0 +
2∆k

c
Ln+m+u′(k,q)

)

Φq (2.21)

with

β = 2∆k − 3 (2.22)

κ(n) =
1

2

(

∆k − δq
k+q + n − 1

) (

∆k − δq
k+q + n − 2

)

.

On the right-hand side of Eq. (2.21) we have defined u′(k, q) = −1+u(k, q) for k 6= −2q,
and u′(k, q) = u(k, q) for k = −2q.

In Eq. (2.21), the Ln are the generators of the conformal transformations which form
the Virasoro algebra:

(LnLm − LmLn) Φq =
[

(n − m)Ln+m +
c

12
n(n2 − 1)δn+m,0

]

Φq. (2.23)

Finally, the list of commutation relations in the singlet and doublet sectors are completed
by the commutators between the parafermionic modes Ak and the Ln:

(

Ak
−δq

k+q
+mLn − LnA

k
−δq

k+q
+m

)

Φq =
[

(1 − ∆Ψk)n + m − δq
k+q

]

Ak
−δq

k+q
+m+nΦq. (2.24)

We shall often refer to Eq. (2.17) using the shorthand notation {Ψk, Ψk′}Φq; like-
wise, Eq. (2.21) is referred to as {Ψk, Ψ−k}Φq. The commutation relations (2.17)-(2.24)
given above allow to compute various matrix elements which enter the analysis of the
degeneracies in the modules, to which we now turn our attention.

In Ref. [3], where the case N = 5 was considered, the dimensions of all the fundamen-
tal operators, i.e., the fundamental singlet, doublet 1, doublet 2 and disorder operators,
were calculated by imposing the degeneracy at the first levels of the corresponding mod-
ules.

Below we present the analysis for the degeneracies at the first levels of the singlet
and of the doublet 1 operators for N = 7. In the case of the doublet (N − 1)/2 and of
the disorder operator R we have been able to treat the case of arbitrary odd N . In the
next Section we shall show that the results of this analysis, together with the properties
of the Coulomb gas, will allow us to construct the theory completely.

2.1.2 Identity operator

In the following we shall call a degenerate operator fundamental if its levels of degeneracy
are the lowest possible. It is natural to expect that the fundamental singlet operator is
the identity operator of the theory, with dimension ∆Φ0 = 0. Despite of this trivial value
of the scaling dimension, it is important to analyse the module of the identity operator
properly. Namely, the levels and ZN charges of its degenerate submodules, and their
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multiplicities, provide important information that we shall use in Section 3 to dress the
general theory. This analysis was done for N = 5 in Ref. [3]; we here extend it to N = 7.

In the module of a singlet operator, shown in the top left part of Fig. 1, the first
descendent level is the level 3/7 in the q = 3 sector. By using the commutation relations
{Ψ2, Ψ1}Φ0 and {Ψ−1, Ψ−3}Φ0 (cf. Eq. (2.17)) it is easy to verify that all the possible
q = 3 states at level 3/7 are proportional to one another

A1
3/7A

2
−6/7Φ

0 ∝ A−2
3/7A

−2
−6/7Φ

0 ∝ A2
2/7A

1
−5/7Φ

0 ∝ A−3
2/7A

−1
−5/7Φ

0 ∝ A−1
0 A−3

−3/7Φ
0 ∝ A3

−3/7Φ
0.

(2.25)
The above relations imply that there is only one q = 3 state at level 3/7. Thus, in order
to impose degeneracy at level 3/7, we must require that the state

χ3
−3/7 = A3

−3/7Φ
0 (2.26)

be primary. This amounts to the condition:

A−3
+3/7A

3
−3/7Φ

0 = 0. (2.27)

Using {Ψ3, Ψ−3}Φ0 (cf. Eq. (2.21)), it turns out that the constraint (2.27) is equivalent
to the following relation between certain matrix elements at lower levels2:

(

A3
+24/7A

−3
−24/7 −

27

7
A3

+17/7A
−3
−17/7 +

270

49
A3

+10/7A
−3
−10/7

)

Φ0 =
(

1 +
48

7c
∆Φ0

)

Φ0. (2.28)

Having imposed the constraint (2.27)—or equivalently the relation (2.28)—we can elim-
inate the only state at level 3/7. We thus set

A3
−3/7Φ

0 = 0. (2.29)

We then consider the next available level 5/7 in the q = 1 charge sector. Once the
level 3/7 is empty, there are three main ways of descending to this level:

A1
−5/7Φ

0, A2
0A

−1
−5/7Φ

0, A−1
+1/7A

2
−6/7Φ

0. (2.30)

However, among the above states only two are independent. This is seen from the
commutation relation {Ψ2, Ψ−1}Φ0 from which it follows that

A2
0A

−1
−5/7Φ

0 − A−1
+1/7A

2
−6/7Φ

0 =
λ2,−1

1

6
A1

−5/7Φ
0. (2.31)

In addition to the states (2.30), we have to consider also the states which are obtained
by repeated application of the parafermionic zero modes, like for example the state
A2

0A
−2
0 A2

0A
−1
−5/7Φ

0. By using the commutation relations (2.17) and the condition (2.29),
we have checked that all these states actually decompose into linear combinations of the
states (2.30). To see this, it is sufficent to verify that

A2
0A

−2
0 A1

−5/7Φ
0 = aA1

−5/7Φ
0 + bA2

0A
−1
−5/7Φ

0, (2.32)
2Eq. (2.28) expresses just one of many equivalent ways of transcribing the constraint (2.27) in terms

of relations between lower-lying matrix elements. Using the decompositions (2.25) it may be seen that
among the various choices of rewriting the constraint (2.27), the one that digs least deeply into the
module involves matrix elements up to level 6/7. In any case, the key point is that the matrix elements
occuring in any such relation touch lower levels than those that we degenerate in the present calculation.
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where a and b are some numerical coefficients.

Each state at level 5/7 in the q = 1 sector can thus be written in terms of the states
A1

−5/7Φ
0 and A2

0A
−1
−5/7Φ

0. Then, if we demand the complete degeneracy at level 5/7, we
have to impose the following conditions:

A−1
+5/7

(

A1
−5/7Φ

0
)

= 0, (2.33)

A1
+5/7A

−2
0

(

A1
−5/7Φ

0
)

= 0, (2.34)

A−1
+5/7

(

A2
0A

−1
−5/7Φ

0
)

= 0, (2.35)

A1
+5/7A

−2
0

(

A2
0A

−1
−5/7Φ

0
)

= 0. (2.36)

Using the charge conjugation symmetry, and Eq. (2.32), it is easy to see that if the condi-
tions (2.33)–(2.34) are verified, the remaining equations (2.35)–(2.36) are automatically
satisfied. Once the conditions (2.33)-(2.34) have been imposed, all the states at level 5/7
can then be eliminated.

From the commutation relation {Ψ1, Ψ−1}Φ0 we have that

A−1
+5/7A

1
−5/7Φ

0 =
48

7c
∆Φ0Φ0. (2.37)

The condition (2.33) then implies that

∆Φ0 = 0. (2.38)

We have thus found the trivial scaling dimension of the identity.

The second equation (2.34) simply determines the values of some matrix elements,
starting from the value of the matrix element A1

+5/7A
−2
0 A1

−5/7Φ
0 which is set equal to zero.

By using the algebra of the parafermionic modes, other matrix elements can then be fixed.
For example, from the condition (2.33) and the commutation relations {Ψ−2, Ψ1}Φ0 and
{Ψ1, Ψ1}Φ2, it turns out that

A1
+5/7A

−2
0 A1

−5/7Φ
0 = λ1,1

2 A−2
+6/7A

2
−6/7Φ

0 = 0. (2.39)

Once all the states at level 3/7 and at level 5/7 have been eliminated, it can easily be
shown that the level 6/7 is automatically empty. In fact, according to the commutation
relation {Ψ1Ψ1}Φ0, the only possible state A2

−6/7Φ
0 at level 6/7 vanishes, since

λ1,1
2 A2

−6/7Φ
0 = A1

−1/7A
1
−5/7Φ

0 = 0. (2.40)

Summarising, we see that the fundamental singlet has one degenerate doublet 3 sub-
module at level 3/7 and two degenerate doublet 1 submodules at level 5/7.

2.1.3 Fundamental doublet 1 operator

We here show how to extend the explicit degeneracy analysis of the fundamental doublet
1 operator from the case N = 5 (see Ref. [3]) to N = 7.
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The first descendent states in this doublet (shown in the upper right part of Fig. 1)
are the two conjugate doublet 2 states at level 1/7. We first impose complete degeneracy
of these states; by charge conjugation symmetry it suffices to study the one with q = 2.
The degeneracy condition reads

A−1
1/7A

1
−1/7Φ

1 = 0. (2.41)

By the commutation relations {Ψ1, Ψ−1}Φ1, this determines a matrix element at level
2/7:

µ1,−1Φ
1 ≡ A1

2/7A
−1
−2/7Φ

1 =
(

− 6

49
+

24

7c
∆Φ1

)

Φ1, (2.42)

where ∆Φ1 is the conformal weight of the doublet 1 operator that were are trying to
determine.

We then focus on the next available level, which is the singlet (q = 0) state at level
2/7. Since there are no states left on level 1/7, our candidate for a singular state at level
2/7 reads

χ0
−2/7 = aA1

−2/7Φ
−1 + bA−1

−2/7Φ
1. (2.43)

The degeneracy conditions are A±1
2/7χ

0
−2/7 = 0. Using the charge conjugation symmetry,

they can be summarised by
(µ1,1)

2 = (µ1,−1)
2 , (2.44)

where the matrix element µ1,1 is defined by

µ1,1Φ
1 ≡ A1

2/7A
1
−2/7Φ

−1 (2.45)

and µ1,−1 has been given above. Using {Ψ1, Ψ1}Φ−1 we can evaluate

µ1,1 = λ1,1
2 h2, (2.46)

where the structure constant λ1,1
2 is given by Eq. (2.1), and the zero mode eigenvalue h2

is defined in Eq. (2.15).

It would now appear natural to impose the third (and last) degeneracy condition on
the doublet 3 states at level 5/7. But we shall now show that this level is actually void,
as a result of the degeneracies at levels 1/7 and 2/7. Let us recall that there is by now
zero states at level 1/7, and one state at level 2/7 since we have set

χ0
−2/7 = A1

−2/7Φ
−1 − A−1

−2/7Φ
1 ≡ 0. (2.47)

The potential states at level 5/7 in, say, the charge q = 3 sector therefore read:

A2
−5/7Φ

1, A−3
−5/7Φ

−1, A3
−3/7A

1
−2/7Φ

−1. (2.48)

The first of these states is zero as a consequence of the degeneracy at level 1/7, and of
the commutation relations {Ψ1, Ψ1}Φ1 which imply

A1
−4/7A

1
−1/7Φ

1 =
1

2
λ1,1

2 A2
−5/7Φ

1. (2.49)

By charge conjugation we also have A−2
−5/7Φ

−1 = 0. But the commutation relations

{Ψ−1, Ψ−2}Φ−1 imply that

A−1
0 A−2

−5/7Φ
−1 =

2

3
λ1,2

3 A−3
−5/7Φ

−1, (2.50)
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and we must therefore have A−3
−5/7Φ

−1 = 0 as well. Finally, it is a consequence of

{Ψ1, Ψ3}Φ−1 that

(

A1
−4/7A

3
−1/7 − A3

−3/7A
1
−2/7

)

Φ−1 = −1

4
λ1,3
−3A

−3
−5/7Φ

−1. (2.51)

We have shown that the first term on the left-hand side vanishes, as does the term on
the right-hand side. Therefore A3

−3/7A
1
−2/7Φ

−1 must also vanish. In conclusion, we have
shown that all of the three states (2.48) are zero, and thus level 5/7 is empty.

We therefore try imposing degeneracy on the doublet 1 states at level 1. For defi-
niteness, we consider the charge sector q = 1. There are potentially three states at this
position in the module:

A2
−1Φ

−1, A1
−5/7A

1
−2/7Φ

−1, L−1Φ
1. (2.52)

However, the first of these two states are dependent, as is seen by using the commutation
relations {Ψ1, Ψ1}Φ−1:

A1
−5/7A

1
−2/7Φ

−1 =
1

2
λ1,1

2 A2
−1Φ

−1. (2.53)

It turns out to be most convenient to use this dependency to eliminate the first of the
states (2.52). We therefore demand that

χ1
−1 = ãL−1Φ

1 + b̃A1
−5/7A

1
−2/7Φ

−1 (2.54)

be a singular state. Defining four matrix elements

µ0Φ
1 ≡ L1L−1Φ

1, (2.55)

µ1Φ
1 ≡ L1A

1
−5/7A

1
−2/7Φ

−1, (2.56)

µ2

(

A1
−2/7Φ

−1
)

≡ A−1
5/7L−1Φ

1, (2.57)

µ3

(

A1
−2/7Φ

−1
)

≡ A−1
5/7A

1
−5/7A

1
−2/7Φ

−1, (2.58)

the degeneracy criterion can be cast in the form

µ0µ3 − µ1µ2 = 0. (2.59)

The first three of the matrix elements (2.96)–(2.57) are easily found from the com-
mutation relations (2.23)–(2.24). The results are:

µ0 = 2∆Φ1 , µ1 =
10

7
µ1,1, µ2 =

10

7
, (2.60)

where µ1,1 is defined by Eq. (2.45). The evaluation of the fourth matrix element is slightly
more involved. Letting the commutation relation {Ψ1, Ψ−1}Φ0 act on the state A1

−2/7Φ
−1

we obtain
(

A−1
5/7A

1
−5/7 −

3

7
A−1

−2/7A
1
2/7 + A1

−2/7A
−1
2/7

)

A1
−2/7Φ

−1 =
24

7c
L0

(

A1
−2/7Φ

−1
)

. (2.61)

This implies that

µ3 =
3

7
µ1,1 − µ1,−1 +

24

7c

(

∆Φ1 +
2

7

)

. (2.62)
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The solution of Eq. (2.59), with the ingredients (2.60) and (2.62), depends on the sign
chosen in resolving Eq. (2.44). Choosing µ1,1 = +µ1,−1, we find the solutions

∆
(±)
Φ1 =

1

42

(

36 − c ±
√

(c − 6)(c − 216)
)

. (2.63)

On the other hand, the choice µ1,1 = −µ1,−1 leads to

∆Φ1 =
1

84

(

128 + 5c ±
√

25c2 + 680c + 16384
)

. (2.64)

We shall see below that the solutions (2.63) are physically acceptable, from the point
of view of the general structure of the theory that we are constructing, while (2.64)
must be discarded as non-physical. It is useful to rewrite Eq. (2.63) in terms of the
parametrisation (1.3):

∆
(+)
Φ1 =

5

7

p + 7

p
, (2.65)

∆
(−)
Φ1 =

5

7

p − 5

p + 2
. (2.66)

In summary, the fundamental doublet 1 operator has one degenerate doublet 2 sub-
module at level 1/7, one degenerate singlet submodule at level 2/7, and one degenerate
doublet 1 submodule at level 1.

2.1.4 Fundamental doublet (N − 1)/2 operator

Writing N = 2r + 1, the doublet with the largest possible ZN charge is the doublet r.
The fact that the module of the doublet r has its two summits in adjacent charge sectors
is a help in the degeneracy computations. For this reason, we have been able to treat
the case of arbitrary odd N .

We begin by considering the case of N = 7 in some detail. In this case, the structure
of the doublet r = 3 is shown in the lower right part of Fig. 1. Using the commutation
relations, it is easy to see that all the ways of descending to level 2/7 in the charge sector
q = −1 are in fact linearly dependent:

A3
−2/7Φ

3 ∝ A1
1/7A

2
−3/7Φ

3 ∝ A−3
1/7A

−1
−3/7Φ

3 ∝ A−2
0 A−2

−2/7Φ
3 ∝ A1

1/7A
1
−3/7Φ

−3 ∝ A2
−2/7Φ

−3.
(2.67)

In particular, there is only one q = −1 state at level 2/7. Imposing degeneracy of this
state amounts to the condition

A−2
2/7A

2
−2/7Φ

−3 = 0. (2.68)

This condition does not immediately lead to a fixation of the zero mode eigenvalue h3.
Rather, it gives relations between certain matrix elements deeper down in the module.
The reason is essentially that the commutation relations {Ψ2, Ψ−2}Φ−3 have a high value
of the parameter β, cf. Eq. (2.22), and thus several terms will contribute on the left-hand
side. (We have already encountered a similar phenomenon in Eq. (2.28).)
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The next available level consists of the doublet 2 states at level 3/7. Due to the
degeneracy (2.68), level 2/7 is now empty, and there are a priori two states in the sector
q = −2 at level 3/7:

A2
−3/7Φ

3 and A1
−3/7Φ

−3. (2.69)

These states are however dependent, as is seen from {Ψ1, Ψ1}Φ3. (Further candidate
states obtained by acting by the zero mode at level 3/7 can be similarly eliminated.)
The degeneracy criterion reads

A−1
3/7A

1
−3/7Φ

−3 = 0. (2.70)

By {Ψ1, Ψ−1}Φ−3, this immediately fixes the zero mode eigenvalue:

(h3)
2 = − 5

49
+

24

7c
∆Φ3 . (2.71)

As a consequence of {Ψ1, Ψ2}Φ−3 we have that

λ1,2
3 A3

−4/7Φ
−3 = A1

−2/7A
2
−2/7Φ

−3 = −3

2
A2

−1/7A
1
−3/7Φ

−3. (2.72)

Thus, since levels 2/7 and 3/7 are now empty, there are no states left at level 4/7.

With these simplifications, the next available states are in the q = ±3 sectors at level
1. Focusing on q = 3, the case of q = −3 being equivalent, we form the candidate singular
state

χ3
−1 = aL−1Φ

3 + bA−1
−1Φ

−3, (2.73)

and we define the matrix elements

µ0,0Φ
3 = L1L−1Φ

3, (2.74)

µ0,−1Φ
3 = L1A

−1
−1Φ

−3, (2.75)

µ1,0Φ
−3 = A1

1L−1Φ
3, (2.76)

µ1,−1Φ
−3 = A1

1A
−1
−1Φ

−3. (2.77)

The degeneracy criterion then reads, as usual,

µ0,0µ1,−1 − µ0,−1µ1,0 = 0. (2.78)

The first three matrix elements are readily computed

µ0,0 = 2∆Φ3 , µ0,−1 = µ1,0 =
12

7
h3, (2.79)

and the fourth one is obtained from {Ψ1, Ψ−1}Φ−3, yielding

µ1,−1 =
3

7
(h3)

2 +
9

49
+

24

7c
∆Φ3 . (2.80)

Inserting this into Eq. (2.78), and using also Eq. (2.71) for the zero mode eigenvalue,
we arrive at the solution

∆
(±)
Φ3 =

1

70

(

36 − c ±
√

(c − 6)(c − 216)
)

. (2.81)
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This can also be written, using the parametrisation (1.3), as:

∆
(+)
Φ3 =

3

7

p + 7

p
, (2.82)

∆
(−)
Φ3 =

3

7

p − 5

p + 2
. (2.83)

In conclusion, the doublet 3 module that we have constructed has one degenerate
doublet 1 submodule at level 2/7, one degenerate doublet 2 submodule at level 3/7, and
one degenerate doublet 3 submodule at level 1.

General case: Based on the similarities of the fundamental doublet r = N−1
2

modules
for N = 5 (see Ref. [3]) and N = 7 (see above), we can conjecture the structure of this
doublet in the general case. One should demand the existence of r distinct degenerate
submodules; however, only two degeneracy conditions are required to fix the zero mode
eigenvalue hr and the dimension ∆Φr . We conjecture that these two conditions are
obtained by requiring, respectively:

1. The complete degeneracy of the doublet r − 1 state at level δr
r−1 = 1 − 4/N (see

Eq. (2.11)). Note that we have here supposed that those of the remaining r −
2 degeneracy conditions that act at levels strictly between 0 and δr

r−1 are such
that these levels become empty after factoring out the corresponding degenerate
submodules (or at least that no indirect ways of descending to level δr

r−1 exist).
Under this assumption, there remains only the two direct ways of descending to
level δr

r−1:
A−1

−δr
r−1

Φr and A−2
−δr

r−1
Φ−r. (2.84)

However, the commutation relation {Ψ−1, Ψ−1}Φ−r of Eq. (2.17), with n = 1 and
m = 0, shows that these two states are in fact proportional to one another. In
order to have degeneracy at level δr

r−1, it thus suffices to require that the state

χr−1
−δr

r−1
≡ A−1

−δr
r−1

Φr (2.85)

be primary. This condition then fixes the eigenvalue hr (see below).

2. A degeneracy of the doublet r state at level 1. We here suppose that those of the
remaining r − 2 degeneracy conditions that act at levels strictly between δr

r−1 and
1 are such that these levels become empty after factoring out the corresponding
degenerate submodules. If this is so, we can produce a degenerate state of a form
analogous to Eq. (2.73)

χr
−1 = aL−1Φ

r + bA−1
−1Φ

−r. (2.86)

Demanding the primarity of this state then fixes ∆Φr (see below).

Note that apart from eliminating unwanted states between levels 0 and 1, the remaining
r− 2 degeneracy conditions may fix the values of certain lower-lying matrix elements (as
was the case for N = 7, at level 2/7).

We have verified that the scenario outlined above indeed holds true also for N = 9.
Now, let us examine its algebraic consequences in the general case.
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The primarity of the state (2.85) can be obtained by requiring that

A1
+δr

r−1
A−1

−δr
r−1

Φr = 0. (2.87)

This can be rewritten, using the commutation relations {Ψ1, Ψ−1}Φr, through
(

A−1
0 A1

0 + A−1
δr
r−1

A1
−δr

r−1

)

Φr =
(

−N − 2

N2
+

2∆1

c
∆Φr

)

Φr, (2.88)

which fixes the eigenvalue (2.15) to be:

(hr)
2 = −N − 2

N2
+

2∆1

c
∆Φr , (2.89)

thus generalising Eq. (2.71). If we impose the condition (2.89), then the state (2.85) can
be set equal to zero, thus reducing the module. With the above set of assumptions, there
are no states left in the module strictly between levels 0 and 1.

Turning now to level 1, we demand that the state (2.86) be primary:

L+1χ
r
−1 = 0, A+1

+1χ
r
−1 = 0. (2.90)

In terms of the matrix elements µij defined by

L+1L−1Φ
r = µ11Φ

r, (2.91)

L+1A
−1
−1Φ

−r = µ12Φ
r, (2.92)

A−1
−1L−1Φ

−r = µ21Φ
r, (2.93)

A−1
+1A

1
−1Φ

r = µ22Φ
r, (2.94)

the degeneracy criterion reads

µ11µ22 − µ12µ21 = 0. (2.95)

Using the commutation relations, the required matrix elements are readily computed:

µ11 = 2∆Φr , (2.96)

µ12 = µ21 = ∆1hr, (2.97)

µ22 =
N − 4

N
(hr)

2 +
N + 2

N2
+

2∆1

c
∆Φr , (2.98)

Inserting the eigenvalue (2.89) and the matrix elements (2.96)–(2.98) into Eq. (2.95) we
get the following solutions:

∆
(±)
Φr =

1

2
+

1 − c

2N(N − 2)
± 1

2N(N − 2)

√

(c − N + 1)(c − (N − 1)3), (2.99)

which generalise Eq. (2.81).

Using the parametrisation (1.3) in Eq. (2.6), these solutions take the form

∆
(+)
Φr =

1

2

(N − 1)(N + p)

Np
, (2.100)

∆
(−)
Φr =

1

2

(N − 1)(p + 2 − N)

(p + 2)N
. (2.101)

It should be remarked that the assumptions that we have made in order to deter-
mine the dimension ∆Φr for general r will ultimately be validated by the agreement of
Eqs. (2.100)–(2.101) with the Kac formula which we shall discuss in the next Section.
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2.2 Sector of the disorder operators Ra

2.2.1 Modes of the chiral operators and commutation relations

The theory of disorder operators Ra (a = 1, 2, . . . , N) has been fully developed in Ref. [5]
within the first parafermionic conformal field theory with symmetry ZN , and in Refs. [2, 3]
within the context of the second parafermionic theory with symmetries Z3 and Z5 re-
spectively. The general properties (operator product expansions, analytic continuations,
etc.) of the disorder sector operators, and the approach used for studying this particular
sector, can be adapted to the present theory as well.

The non-abelian monodromy of the disorder operator Ra(z, z̄) with respect to the
chiral fields Ψ±k(z) amounts to the decomposition of the local products Ψk(z)Ra(0) into
half-integer powers of z:

Ψk(z)Ra(0) =
∑

n

1

(z)∆k+n
2

Ak
n
2
Ra(0), k = 1, 2, . . . ,

N − 1

2
. (2.102)

The expansion of the product Ψ−k(z)Ra(0) (with k = 1, 2, . . . , N−1
2

) can be obtained by
an analytic continuation of z around 0 on both sides of Eq. (2.102). The result is:

Ψ−k(z)Ra(0) =
∑

n

(−1)n

(z)∆k+n
2
A1

n
2

U
kRa(0), k = 1, 2, . . . ,

N − 1

2
. (2.103)

In the above equation, U is a N ×N matrix which rotates the index of the disorder field:
URa(0) = Ra−1(0).

In accordance with these expansions, the mode operators Ak
n
2

can be defined by the

contour integrals

Ak
n
2
Ra(0) =

1

4πi

∮

C0

dz (z)∆k+n
2
−1Ψk(z)Ra(0), (2.104)

where the integrations are defined by letting z turn twice around the operator Ra(0) at
the origin, exactly as described in Ref. [2].

In the calculations of degeneracy we have used two types of commutation relations:
The first one is between the modes of two Ψ1 chiral fields,

∞
∑

l=0

Dl
αβ

(

A1
n−l
2

A1
m+l

2
+ A1

m−l
2

A1
n+l
2

)

Ra

= λ1,1
2 2∆2−3A2

n+m
2

Ra + (−1)n2−∆2−2
[

κ(n)δn+m,0 +
16∆1

c
Ln+m

2

]

U
−1Ra, (2.105)

and the second one is between the Ψ1 and Ψk chiral fields, with k = 2, 3, . . . , N−1
2

,

∞
∑

l=0

Dl
νµ

(

Ak
n−l
2

A1
m+l

2
− A1

m−l
2

Ak
n+l
2

)

Ra (2.106)

= (−1)n+m2µ−ν−2λk,1
k+1

[

(2∆k + n − 1) − µ − ν − 2

2
− a1(2∆k+1 + n + m)

]

Ak+1
n+m

2

Ra

+ (−1)m2ν−µ−2λ−k,1
1−k

[

(2∆k + n − 1) − ν − µ − 2

2
− a2(2∆1−k + n + m)

]

A1−k
n+m

2

U
kRa,
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where the coefficients Dl
νµ are defined by

(1 − x)ν(1 + x)µ =
∞
∑

l=0

Dl
νµx

l. (2.107)

In Eq. (2.105) we have used the following abbreviations:

α = 2∆1 − ∆2 − 1,

β = 2∆1 − 3,

κ(n) = (2∆1 + n − 1)(2∆1 + n − 2) − (2∆1 + n − 1)(∆2 + 1) +
(∆2 + 1)(∆2 + 2)

4
.

And in Eq. (2.106) we have abbreviated the following quantities:

µ = ∆k + ∆1 − ∆k+1 − 2,

ν = ∆−k + ∆1 − ∆1−k − 2,

a1 =
∆k+1 + ∆k − ∆1

2∆k+1

,

a2 =
∆1−k + ∆k − ∆1

2∆1−k

.

2.2.2 Degeneracy of the disorder modules

The structure of the module of a disorder operator Ra (a = 1, 2, . . . , N) is relatively
simple, as witnessed by the expansion (2.102): Each module has N summits, labeled
by the components Ra, and has only integer and half-integer levels. Furthermore, it
is seen from the expansion (2.102) that there are (N − 1)/2 zero modes Ak

0 (with k =
1, 2, . . . , N−1

2
), associated with the parafermion Ψk which acts between the N summits

of the module:
Ak

0Ra = hk U
2kRa. (2.108)

This defines the eigenvalues hk. We recall that URa = Ra−1. Like in the case of the
doublet operators, the eigenvalues hk characterise, together with the conformal dimen-
sion, each representation Ra. Actually, the eigenvalues h1 and h2 are linked by a relation
which does not depend on the details of the representation Ra. This relation is easily
obtained by setting n = m = 0 in Eq. (2.105):

2h2
1 = λ1,1

2 2∆2−3h2 + 2−∆2−2
[

κ(0) +
16∆1

c
∆R

]

. (2.109)

We conclude then that each representation Ra is characterised by its dimension ∆R and
(N − 3)/2 eigenvalues hk. These values are fixed by studying the degenerate representa-
tions of the disorder sector. We shall show an example below.

The first descendants for a given primary operator Ra are found at level 1/2. For a
given value of the index a there are (N − 1)/2 states:

(

χ(k)
a

)

− 1
2

= Ak
− 1

2
U

−2kRa = U
−2kAk

− 1
2
Ra, k = 1, 2, . . . ,

N − 1

2
. (2.110)
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In the case of N = 5, there are two states,
(

χ(1)
a

)

− 1
2

and
(

χ(2)
a

)

− 1
2

, in Eq. (2.110).

In Ref. [3], these were both required to be primary, and this choice was shown to be
consistent with the properties of the fundamental disorder operator in a Coulomb gas
construction based on the algebra B2. The most natural generalisation for N > 5 is to
impose that all of the states (2.110) be primary. The corresponding solutions give the di-
mensions of the fundamental disorder operators, with the (N−1)/2 required degeneracies
all situated at the first descendant level 1/2.

We therefore impose that
Ak′

+ 1
2
(χ(k)

a )− 1
2

= 0 (2.111)

for each k′ = 0, 1, . . . , N−1
2

, and for each k = 0, 1, . . . , N−1
2

. Using the commutation
relations (2.105)–(2.106), the degeneracy condition (2.111) results in a system of (N−1)/2
independent equations which allow to determine the (N − 1)/2 unknown variables, i.e.,
the (N−3)/2 independent eigenvalues hk and the conformal dimension ∆R of the disorder
operator Ra. (We omit here all the algebraic manipulations since this computation is
strictly analogous to the one presented in detail in Ref. [3].)

Among the solutions for the conformal dimensions ∆R admitted by this system of
(N −1)/2 equations, only two are physical solutions, in the sense that they are consistent
with the Kac formula which will be given in the next Section. The two physical solutions
for ∆R read:

∆
(1)
R =

1

16

(N − 1)(p + N)

p
, ∆

(2)
R =

1

16

(N − 1)(p + 2 − N)

p + 2
. (2.112)

3 Kac formula and boundary terms

3.1 Lie algebra structure

It has already been observed in the Introduction that the central charge of the second
parafermionic theory with ZN symmetry agrees with that of a coset based on the group
SO(N). It is therefore natural to suppose some connection with the Lie algebra Br, when
N = 2r + 1 is odd. In the case r = 2 this connection was made explicit in Ref. [3], by
assuming the existence of a Coulomb gas realisation of the theory, based on the algebra
Br. We shall here generalise this construction to arbitrary r ≥ 2.

Each primary operator Φ of the theory is assumed to be represented by a vertex
operator, which can in turn be associated with the weight lattice of Br as follows:

~β ≡ ~β(n1,···,nr)(n′

1,···,n′

r) =
r

∑

i=1

(

1 + ni

2
α+ +

1 + n′
i

2
α−

)

~ωi. (3.1)

Here, ~ωi are the fundamental weights of the algebra Br, and α± are the usual Coulomb
gas parameters. Their form

α+ =

√

p + 2

p
, α− = −

√

p

p + 2
(3.2)

are immediately suggested by Eq. (1.2) for the central charge.
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We shall use the notation Φ(n1,...,nr)(n′

1,...,n′

r) to represent the operator associated with
~β(n1,...,nr)(n′

1,...,n′

r). Note that the integers (n1, . . . , nr)(n
′
1, . . . , n

′
r) are essentially the Dynkin

labels of the weight ~β. As usually in the Coulomb gas construction the labels are dou-
bled, with (n1, . . . , nr) representing the α+ side of the theory, and (n′

1, . . . , n
′
r) the α−

side. The nature of a primary operator Φ(n1,...,nr)(n′

1,...,n′

r), i.e., its transformation prop-
erties under ZN , remains unchanged if the α+ and α− sides are interchanged. Actually,
such properties only depend on the differences |ni −n′

i|. In most of what follows we shall
therefore choose to trivialise the α+ side, by setting (n1, . . . , nr) = (1, . . . , 1).

The Coulomb gas formula for the conformal dimension of the primary operator
Φ(n1,...,nr)(n′

1,...,n′

r) reads

∆(n1,···,nr)(n′

1,···,n′

r) ≡ ∆
(0)
(n1,···,nr)(n′

1,···,n′

r) + B = ~β ·
(

~β − 2~α0

)

+ B, (3.3)

where the background charge ~α0 is given by

~α0 =
(

α+ + α−

2

) r
∑

i=1

~ωr. (3.4)

In Eq. (3.3) we have written the scaling dimension as a sum of two terms, ∆
(0)
(n1,...,nr)(n′

1,...,n′

r)

and B. The Coulomb term ∆
(0)
(n1,...,nr)(n′

1,...,n′

r) depends on the parameters α2
+ and α2

−, while

the boundary term B is a constant that characterises the sector of the representation space
to which the operator under consideration belongs.

Note that the identity operator is I = Φ(1,...,1)(1,...,1). Since ∆I = 0 and I is a singlet,
we must necessarily have B = 0 for any singlet operator. However, we still need to find
the correct values of B for the doublet q and for the disorder sectors. These values, and
their assignment to the different positions of the weight lattice, are arguably the main
interest of the theory that we are constructing.

We shall refer to Eq. (3.3) as the Kac formula of the theory. The table of operators

Φ(n1,...,nr)(n′

1,...,n′

r), which is associated with the lattice made by the vectors ~β(n1,···,nr)(n′

1,···,n′

r),
shall be called the Kac table of the theory.

To use Eq. (3.3) to calculate actual values of the dimensions, we need the scalar
products ~ωi · ~ωj for the Lie algebra Br, which are encoded in the quadratic form matrix:

~ωi · ~ωj = i for i ≤ j < r; ~ωi · ~ωr =
i

2
for i < r; ~ωr · ~ωr =

r

4
. (3.5)

In what follows, a major role is played by the action of Weyl reflections on the
weights. We recall that the Weyl group W is generated by r simple reflections s~ei

, with
i = 1, 2, . . . , r, acting as follows on the vertex operators (weights):

s~ei
~β(1,...,1)(n′

1,...,n′

r) = ~β(1,...,1)(n′

1,...,n′

r) + n′
iα−~ei. (3.6)

Here, ~ei are the Lie algebra’s simple roots, whose coordinates in the basis of fundamental
weights can be read off from the rows of the Cartan matrix. The total number of Weyl
reflections is |W | = 2rr!. We also recall that the Weyl group possesses a unique longest
element, which can be written as a word of length r2 in terms of the generators s~ei

. This
longest element simply changes the sign of all the labels (n′

1, . . . , n
′
r).
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In the context of the conformal field theory, the physical significance of the Weyl
group is linked to the fact that the simple roots represent the screenings operators of
the Coulomb gas realisation. As usual, we assume that the screenings commute with the
parafermionic algebra.

Given a generic vertex operator, there exists exactly one Weyl reflection that maps
it into the fundamental Weyl chamber, the physical domain of the Kac table. Like in
Felder’s resolution for minimal models [6], the simple Weyl reflections indicate singular
states (degeneracies) in the modules of physical operators. More precisely, a simple re-
flection can be associated with a mapping (realised by integrated screenings) that takes
a vertex operator outside the physical domain of the Kac table into the module of a
physical vertex operator. The difference between the dimensions of these two operators,
computed from Eq. (3.3) with the appropriate boundary terms, gives the level of degen-
eracy. It is in the sense of this mapping that the operator outside the physical domain is
associated with a non-physical (singular) state in the module of the physical operator; for
this reason it could be called a ghost operator. The nature (singlet, doublet q, disorder)
of the corresponding singular state must coincide with the labeling of the ghost opera-
tor. In a similar fashion, non-simple reflections can be used to infer the fine structure of
the degenerate modules (ghosts within ghosts, etc.). For instance, this aspect has been
studied in a certain detail, in the case of the representations of the WA2 algebra, in the
paper [7], and references therein.

3.2 Disorder sector

We shall first consider the problem of the boundary term for the disorder sector, and of
the position of the fundamental disorder operators.

The boundary term BR for this sector is readily accessible, since we have computed
explicitly the conformal dimensions of the fundamental disorder operators (2.112) by
means of degeneracy conditions. Indeed, once we have identified the position on the
weight lattice of these operators by the coefficients of α2

+ and α2
−, we may read off the

boundary terms from the α2
± independent terms in the formulae for the dimensions.

Having done some algebric manipulation, it is easy to verify—by using the scalar
products (3.5) and Eq. (3.1) in the Kac formula (3.3)—that the dimensions (2.112) of
the fundamental disorder operators correspond, respectively, to

∆(1,...,1,2)(1,...,1) and ∆(1,...,1)(1,...,1,2) (3.7)

with the boundary term

BR =
N − 1

32
. (3.8)

3.3 Doublet sectors, r = 3

Identifying the boundary terms BDq of the doublet q sector is more complicated. Indeed,
we have not been able to explicitly compute the dimensions of the fundamental doublet
operators for general r. However, in Section 2 we have obtained such explicit results
for the case of r = 3 (N = 7), at least for the doublet 1 and doublet 3 sectors. Before
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turning to the general case, let us see how the r = 3 case can be completed by exploiting
properties of the Coulomb gas representation.

Our explicit results for the dimensions of the fundamental doublet 1 operators, see
Eqs. (2.65)–(2.66), correspond respectively to:

∆(1,2,1)(1,1,1) and ∆(1,1,1)(1,2,1) (3.9)

with the boundary term

BD1 =
3

14
. (3.10)

Simarly, the dimensions of the fundamental doublet 3 operators, see Eqs. (2.100)–(2.101),
are given by:

∆(2,1,1)(1,1,1) and ∆(1,1,1)(2,1,1), (3.11)

with the boundary term

BD3 =
5

28
. (3.12)

To determine the remaining boundary term BD2 , for whose fundamental operator
we have no explicit degeneracy computation, we shall use an argument based on Weyl
reflections, as discussed in Section 3.1. To this end we consider the fundamental doublet
1 operator Φ(1,1,1)(1,2,1), whose position was determined in Eq. (3.9) above. In this case
the three principal reflections are:

s~e1
~β(1,1,1)(−1,3,1) = ~β(1,1,1)(1,2,1) = ~β(1,1,1)(−1,3,1) + α−~e1,

s~e2
~β(1,1,1)(3,−2,5) = ~β(1,1,1)(1,2,1) = ~β(1,1,1)(3,−2,5) + 2α−~e2,

s~e3
~β(1,1,1)(1,3,−1) = ~β(1,1,1)(1,2,1) = ~β(1,1,1)(1,3,−1) + α−~e3. (3.13)

(In this expression, and in the following, the reflections are understood to act on the α−

side of the indices only.) These reflections give the following differences of the Coulomb
part of the dimensions:

∆
(0)
(1,1,1)(−1,3,1) − ∆

(0)
(1,1,1)(1,2,1) =

1

2
, (3.14)

∆
(0)
(1,1,1)(3,−2,5) − ∆

(0)
(1,1,1)(1,2,1) = 1, (3.15)

∆
(0)
(1,1,1)(1,3,−1) − ∆

(0)
(1,1,1)(1,2,1) =

1

4
. (3.16)

In the above equations we have to add the correct boundary terms in order to obtain the
level of degeneracy on the right-hand side. This amounts to determining to which sector
the ghost operator belongs. The important point is that the labeling of the ghost operator
has to coincide with the nature of the corresponding state in the module of the doublet
Φ(1,1,1)(1,2,1). In Section 2 we have seen that the module of the operator Φ(1,1,1)(1,2,1)

contains three singular states: A doublet 2 state at level 1/7, a singlet state at level 2/7,
and a doublet 1 state at level 1. It is then easy to verify, using Eqs. (3.10), (3.12), and
(3.14)–(3.16), that there is only one correct way of labeling the ghost operators:

Φ(1,1,1)(−1,3,1) ∼ S,

Φ(1,1,1)(3,−2,5) ∼ D1,

Φ(1,1,1)(1,3,−1) ∼ D2.
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The boundary term BD2 is then fixed by the condition

∆
(0)
(1,1,1)(1,3,−1) + BD2 − ∆

(0)
(1,1,1)(1,2,1) − BD1 =

1

7
, (3.17)

which, using Eqs. (3.16) and (3.10), yields:

BD2 =
3

28
. (3.18)

Using the same kind of reasoning, we can also determine the nature of the operator
Φ(1,1,1)(1,1,3). The principal reflections are:

s~e1
~β(1,1,1)(−1,2,3) = ~β(1,1,1)(1,1,3) = ~β(1,1,1)(−1,2,3) + α−~e1

s~e2
~β(1,1,1)(2,−1,5) = ~β(1,1,1)(1,1,3) = ~β(1,1,1)(2,−1,5) + α−~e2

s~e3
~β(1,1,1)(1,4,−3) = ~β(1,1,1)(1,1,3) = ~β(1,1,1)(1,4,−3) + 3α−~e3. (3.19)

Examining the differences of dimensions as before, one easily checks that the only ac-
ceptable configuration is:

Φ(1,1,1)(1,1,3) ∼ D2, (3.20)

Φ(1,1,1)(−1,2,3) ∼ Φ(1,1,1)(2,−1,5) ∼ D3,

Φ(1,1,1)(1,4,−3) ∼ D1.

We infer from the above analysis that the module of the doublet 2 operator Φ(1,1,1)(1,1,3)

has two singular doublet 3 states at level 4/7 and one singular doublet 1 state at level
6/7. Moverover, the operator Φ(1,1,1)(1,1,3) must be the fundamental doublet 2 operator,
since these singular states are situated at the lowest possible levels.

In summary, we have shown how to determine the boundary term BD2 by exploiting
the reflections on the weight lattice together with some partial explicit results for the
dimension of fundamental operators.

3.4 Unitary theories. Finite Kac table

All the considerations done so far on the Kac table are valid for general values of α+

and α− = −1/α+. As usual, the Kac table becomes finite when α2
+ = (p + 2)/p takes

rational values. The unitary theories correspond to p taking integer values, according to
the coset realisation (1.1)–(1.3).

The finiteness of the Kac table can be shown by considering the reflections with
respect to the hyperplane defined by

n′
1 + 2

r−1
∑

i=2

n′
i + n′

r = p + 2 (3.21)

on the α− side, and by

n1 + 2
r−1
∑

i=2

ni + nr = p (3.22)
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on the α+ side. Geometrically, this hyperplane is perpendicular to the following combi-
nation of screenings:

~e1 + 2
r

∑

i=2

~ei. (3.23)

Note that the differences between the dimensions of the operators linked by such
reflections are in agreement with the levels of the corresponding modules. The operators
above the hyperplane (3.21) are expected to be ghost operators and decouple from the
theory. For p integer, the physical part of the Kac table is therefore delimited by:

2(r − 1) ≤ n′
1 + 2

r−1
∑

i=2

n′
i + n′

r ≤ p + 1,

2(r − 1) ≤ n1 + 2
r−1
∑

i=2

ni + nr ≤ p − 1. (3.24)

The finite Kac table defined by Eq. (3.24) contains an extra symmetry. It is easy to

verify that the Coulomb part of the conformal dimension ∆
(0)
(n1,...,nr)(n′

1,...,n′

r) in Eq. (3.3),

i.e., with the boundary term B being neglected, is invariant under the operation

n′
1 → p + 2 − n′

1 − 2
r−1
∑

i=2

n′
i − n′

r, n′
i → n′

i i = 2, 3, . . . , r

n1 → p − n1 − 2
r−1
∑

i=2

ni − nr, ni → ni i = 2, 3, . . . , r. (3.25)

Now, if the label of each operator (singlet, doublet q, or disorder) is invariant under
(3.25), the above reflection will stay a symmetry when the boundary term is included.
We shall see in Section 4 below that the correct labeling indeed has this property. Note
that this amounts to saying that the correct labeling has periodicity 2 in the − ~ω1/2
direction.

3.5 Values of the doublet boundary terms

3.5.1 Trivial theory: c = 0

Having defined the finite Kac tables, we can make an important observation. From the
formula (2.6), with the parametrisation (1.3), the central charge is equal to zero for
p = N − 2. (Note also that the coset (1.1) trivialises.) The corresponding theory is
therefore expected to be trivial, i.e., with all conformal weights equal to zero.

When p = N − 2, it follows from Eq. (3.24) that all physical operators have trivial
indices on the α+ side: (n1, . . . , nr) = (1, . . . , 1). Moreover, using the symmetry (3.25)
we see that the only allowed excitations on the α− side are the following:

Φ0 ≡ Φ(1,...,1)(1,1,...,1,1,1,...,1,1),

Φk ≡ Φ(1,...,1)(1,1,...,1,2,1,...,1,1), 0 < k < r,

Φr ≡ Φ(1,...,1)(1,1,...,1,1,1,...,1,3),

ΦR ≡ Φ(1,...,1)(1,1,...,1,1,1,...,1,2), (3.26)
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where in the second line we have n′
k = 2. As already discussed, the operators Φ0 and ΦR

are, respectively, the identity operator and a fundamental disorder operator R.

We assume that every physical operator in a c = 0 theory should have ∆ = 0. When
applied to the operators (3.26), this allows us to compute the values of all the boundary
terms, for each odd N , by using the Kac formula (3.3). One obtains:

BR =
N − 1

32

Bk =
k(N − 2k)

4N
, k = 0, 1, . . . ,

N − 1

2
. (3.27)

In the above equation BR and Bk denote, respectively, the boundary terms of the op-
erators ΦR and Φk, whose positions have been defined in Eq. (3.26). The value of BR

confirms Eq. (3.8)—the boundary term for a disorder operator—as it should, since ΦR

is a fundamental disorder operator, cf. Eq. (3.7). Also, Φ0 is trivially a singlet and
corresponds to the boundary term B0 ≡ BS = 0.

The task of finding the boundary terms BDq of the doublets Dq has therefore been re-
duced to the problem of associating each value Bk to the correct charge sector or, in other
words, to determine the nature of the operators Φk with k = 1, 2, . . . , r. We shall assume
that among the operators listed in Eq. (3.26), each sector of the theory is represented
exactly once. Since the singlet and disorder sectors have already been accounted for, it
follows that the operators Φk with k = 1, 2, . . . , r are necessarily a permutation of the
(fundamental) doublet operators. Below, we shall consider the problem of determining
which permutation, for general r.

3.5.2 Position of the fundamental operators

In Section 3.3 we have succeeded in determining the positions on the weight lattice of
the fundamental operators in each sector, in the special case of r = 3. The general
structure of these results is most easily seen if one introduces a new notation for the
doublet sectors, by doubling the ZN charges:

Q = 2q mod N. (3.28)

We shall distinguish between the two notations by placing an asterisk after the indices
which are to be read in the Q notation. Note that since N is odd, the Q labels are simply
a permutation of the q labels. The results of Section 3.3 can now be written in the form:

Φ(1,1,1)(2,1,1) ∼ D3 ≡ D1∗ ,

Φ(1,1,1)(1,2,1) ∼ D1 ≡ D2∗ ,

Φ(1,1,1)(1,1,3) ∼ D2 ≡ D3∗ . (3.29)

Comparing the positioning (3.29) with Eq. (3.27), we obtain the results (3.10), (3.12),
and (3.18).

Moreover, we have explicitly computed the dimensions of the fundamental doublet
D1∗ for each r in Section 2.1.4. By using the Kac formula (3.3), it is easy to verify that
the dimensions (2.100)–(2.101) correspond, respectively, to:

∆(2,1,...,1)(1,...,1) and ∆(1,...,1)(2,1,...,1) (3.30)
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with the boundary term

BD1∗ =
N − 2

4N
. (3.31)

Thus, Φ1 ∼ D1∗ , and the value of the bondary term B1 confirms (3.31).

It is now not difficult to guess the labeling of the operators Φk for general r:

Φ0 ≡ Φ(1,...,1)(1,1,...,1,1,1,...,1,1) ∼ S = I,

Φk ≡ Φ(1,...,1)(1,1,...,1,2,1,...,1,1) ∼ Dk∗

, 0 < k < r,

Φr ≡ Φ(1,...,1)(1,1,...,1,1,1,...,1,3) ∼ Dr∗ . (3.32)

Below we shall give a (partial) demonstration of (3.32).

Consider a general physical operator Φ(1,...,1)(n′

1,...,n′

r), for which the r simple reflections
s~ei

give:

∆
(0)

s~ei
~β
− ∆

(0)
~β

=
n′

i

2
, i = 1, 2, . . . , r − 1,

∆
(0)

s~er
~β
− ∆

(0)
~β

=
n′

r

4

with ~β ≡ ~β(1,...,1)(n′

1,...,n′

r). As discussed in Section 3.1, the ghost operator Φs~ei
~β (charge

sector q2) indicates a singular state in the module of the physical operator Φ~β (charge
sector q1). Their respective boundary terms BDq1 and BDq2 must then satisfy

BDq2 − BDq1 +
ñ

4
= δq1

q2
+ k1,2. (3.33)

Here, the gap δq1
q2

is defined by Eq. (2.11), k1,2 is a non-negative integer, and ñ is a positive
integer (which is even if i < r above). The right-hand side of Eq. (3.33) is the degeneracy
level of Φ~β with respect to the singular state Φs~ei

~β.

The gaps in a generic singlet module are given by Eq. (2.10). In the Q-notation this
can be rewritten as

δ0
Q =

Q(N − Q)

2N
mod 1. (3.34)

(Note that this is not obtained naively, by substituting Q = 2q in Eq. (3.28).) Thus,
choosing in particular the physical operator to be a singlet, q1 = 0 and B0 = 0, the
condition (3.33) fixes the general form of the boundary term BDQ :

BDQ =
Q(N − Q)

2N
− kQ

4
, (3.35)

where kQ is an integer which depends on Q. Note that the set of values kQ can be fixed,
for example, from knowledge of the levels of degeneracy of the fundamental operators.

If N is a prime number it is easy to prove, by comparison of Eqs. (3.35) and (3.27),
that kQ = Q and so

BDq∗ = Bq∗, q∗ = 0, 1, . . . , r. (3.36)

This then proves Eq. (3.32).
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If N is not prime, some ambiguity remains. Let us consider the quantity

δ0
Q′ − δ0

Q′′ =

(

Q′ − Q′′

2
− (Q′ + Q′′)(Q′ − Q′′)

2N

)

mod 1. (3.37)

Note that |Q′ ± Q′′| < N , and so if N is prime the right-hand side can only vanish if
Q′ = Q′′. On the other hand, if N = st for some integers s, t > 1, the right-hand side can
vanish for Q′ 6= Q′′ provided that |Q′ −Q′′| mod s = 0 and |Q′ + Q′′| mod t = 0 (or vice
versa). In this case we would have δ0

Q′ = δ0
Q′′ , and the argument leading to (3.36)—which

was based on the level structure of the modules—would break down; we would not be
able to distinguish between the charge sectors Q′ and Q′′. In particular, in addition to
(3.36) the solution

BDQ = BQ, Q = 0, 1, . . . , r; Q 6= Q′, Q′′,

BDQ′ = BQ′′ , (3.38)

BDQ′′ = BQ′

would a priori be acceptable.3

Summarising, we have explicitly proved for r ≤ 6 that the positioning (3.32) is the
only correct one. For r > 6 we have no strict arguments to exclude some additional
possibilities, such as (3.38). However, we find it natural to assume that the theories that
we are constructing should have a similar structure for all r. We shall therefore accept
the solution (3.36) for all r ≥ 1.

Summarising, we write here the final result for the boundary terms:

BR =
N − 1

32
,

BS = 0,

BDQ =
Q(N − 2Q)

4N
, Q = 1, 2, · · · , N − 1

2
. (3.39)

3.6 Alternative derivation of doublet boundary terms

We now briefly show that it is possible to derive the boundary terms of the doublet
sectors without making reference to the c = 0 theories. In this second argument, which
is based on the technique of Weyl reflections, we make two important assumptions:

• The positions of the fundamental operators are given by (3.32).

• The levels of degeneracy δ of a fundamental operator belong to the interval 0 <
δ ≤ 1.

3For N = s2, one would have Q′ = 0 and Q′′ = s. In this case there is no ambiguity as the boundary
term of the singlet sector is trivially B0 = 0. The positioning (3.32) of the fundamental operators is
then the only one that is acceptable.
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We start by applying the r simple Weyl reflections s~ei
to the identity operator I =

Φ(1,...,1)(1,...,1). This yields the following differences of dimensions:

∆
(0)
(1,...,1)s~ei

(1,...,1) − ∆(1,...,1)(1,...,1) =
1

2
, i = 1, 2, . . . , r − 1, (3.40)

∆
(0)
(1,...,1)s~er (1,...,1) − ∆(1,...,1)(1,...,1) =

1

4
, (3.41)

with ∆(1,...,1)(1,...,1) = 0. The only labeling consistent with Eqs. (3.40)–(3.41) is

Φ(1,...,1)s~ei
(1,...,1) ∼ D1, i = 1, 2, . . . , r − 1,

Φ(1,...,1)s~er (1,...,1) ∼ Dr, (3.42)

and in addition we deduce the boundary term BD1 = N−4
2N

. Note that this implies that
the module of the identity has a singular doublet r state at level (N − 1)/2N and r − 1
singular doublet 1 states at level (N − 2)/N . In the special case of N = 7, our explicit
degeneracy computations have indicated the mechanism by which the doublet 1 states
may proliferate, as required by this scenario. In particular, we expect that for N > 7 the
relation analogous to (2.32) no longer holds true.

With the boundary term BD1 in hand, we next consider the simple Weyl reflections
of the fundamental doublet 1 operator Φ(1,...,1)(1,2,1,...,1). In particular, the reflection s~er

gives a doublet r singular state which, according to Eq. (2.11), should be found on level
δ1
r−1 = (N − 5)/2N . This leads to the identity

∆
(0)
(1,...,1)(1,2,1,...,1,2,−1) + BDr−1 − ∆

(0)
(1,...,1)(1,2,1,...,1) − BD1 =

N − 5

2N
, (3.43)

from which we determine the boundary term BDr−1 = 3(N−6)
4N

.

Knowing now the corresponding boundary term, we can consider the reflections of
the fundamental doublet r − 1 operator, etc. Proceeding like this in a systematic way,
one can determine all boundary terms (3.39).

4 General theory

Having fixed the positions of the fundamental operators and determined the values of all
the boundary terms of the theory, the remaining problem is to fill the rest of the Kac
table. In other words, we have to assign correctly the boundary terms (3.27) to the Kac
formula (3.3) for every vertex of the weight lattice. This amounts to determining the
sector label with respect to the group ZN of each operator in the theory (the case of the
fundamental operators was settled in Section 3.5).

After having addressed this question, we dedicate the rest of the present Section to a
study of the characteristic equations of various three-point functions. These will give us
independent verifications of a number of aspects of our theory, and also yield some new
results.
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4.1 Filling the lattice

Although the Kac table of the ZN theory, with N = 2r + 1, is based on a 2r-dimensional
lattice, it suffices to fill one “basic layer”, for instance on the α− side, whose vertices have
the positions ~β(1,...,1)(n′

1,...,n′

r). The filling of the other layers is obtained by shifting the
filling of the basic layer. Namely, the nature of the operator Φ(n1,...,nr)(n′

1,...,n′

r) depends
only on the differences |ni − n′

i|.
Until now we have extensively used the fact that the degeneracies in the modules

could be read off from the Weyl reflections of the weight lattice. In this section we shall
exploit another useful rule of the Coulomb gas representation.

We consider the multiplication (fusion) of two operators in the basic layer,

Φ(1,...,1)(n′

1,...,n′

r) · Φ(1,...,1)(m′

1,...,m′

r). (4.1)

According to the Coulomb gas rules this produces, in the principal channel, an operator
Φ(1,···,1)(l′1,···,l′r) with

~β(1,...,1)(l′1,...,l′r) = ~β(1,...,1)(n′

1,...,n′

r) + ~β(1,...,1)(m′

1,...,m′

r)

l′i = n′
i + m′

i − 1, i = 1, 2, . . . , r. (4.2)

The non-principal channels follow the principal one by shifts realised by linear combina-
tions (over the integers) of the simple roots ~ei (with i = 1, . . . , r).

The above rule is extremely useful in fixing the distribution of operators on the lattice.
It should however be used with some care, since the amplitude of the principal channel
may vanish (see below).

4.1.1 Disorder operators

Postponing for the moment the potential difficulty of vanishing amplitudes, we begin by
examining for example the fusion of the fundamental disorder operator Φ(1,...,1)(1,...,1,2) and
the fundamental doublet r operator Φ(1,...,1)(2,1,...,1). The result must necessarily be another
disorder operator, since in the dihedral group the product of a reflection and a rotation
yields another reflection. Thus, Φ(1,...,1)(2,1,...,1,2) is a disorder operator. Proceeding in this
way it is easy to verify that the operator Φ(1,...,1)(n′

1,...,n′

r) with |n′
r − 1| odd is a disorder

operator R. More generally:

Φ(n1,...,nr)(n′

1,...,n′

r) ∼ R, when |nr − n′
r| is odd. (4.3)

We have thus filled half of the lattice with disorder operators.

An independent verification of this result can be obtained by the method of reflections.
First, it is not difficult to see that all Weyl reflections, applied to an arbitrary operator
Φ(1,...,1)(n′

1,...,n′

r) in the basic layer, conserve the parity of n′
r. This is at least consistent

with the above separation between disorder and singlet/doublet operators.

To perform a more detailed check, we consider the r simple Weyl reflections of the fun-
damental disorder operators Φ(1,...,1)(1,...,1,2). These map the ghost operator Φ

(1,...,1)(m
′(i)
1 ,...,m

′(i)
r )

,
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with i = 1, 2, . . . , r, into the module of the disorder operator Φ(1,...,1)(1,...,1,2). The indices
of the ghost operator read

m
′(i)
j = 1, for j < i − 1 and i + 1 < j < r;

m
′(i)
i−1 = m

(i)
i+1 = 2; m

′(i)
i = −1; m′(i)

r = 2

for i < r, while for i = r they read

m
′(r)
j = 1, for j < r − 1; m

′(r)
r−1 = 3; m(r)

r = −2. (4.4)

All the r simple reflections give the result 1/2 for the difference of dimensions

∆
(0)

(1,...,1)(m
′(i)
1 ,...,m

′(i)
r )

− ∆
(0)
(1,...,1)(1,...,1,2) =

1

2
, for i = 1, 2, . . . , r. (4.5)

This on one hand confirms the fact that the fundamental disorder operator Φ(1,...,1)(1,...,1,2)

has r singular states at level 1/2, as was supposed in Section 3. On the other hand, it
classifies all the concerned ghost operators Φ

(1,...,1)(m
′(i)
1 ,...,m

′(i)
r )

as disorder operators.

More generally, it is not difficult to see that the difference between the Coulomb term
of the dimension of any operator Φ(1,...,1)(n′

1,...,n′

r) with even n′
r and the ghost operators

obtained by acting on it with (not necessarily simple) reflections equals a half-integer.
This is in strong support of the result (4.3).

4.1.2 Singlet operators. Periodicity of the filling

It remains to assign the doublet Dq operators and the singlet operators S to the lattice
sites Φ(1,...,1)(n′

1,...,n′

r) with n′
r odd.

The singlet operator S form a subalgebra, as the fusion between two singlets S · S
produces another singlet. Furthermore, the fusion Dq · S gives another doublet Dq. The
importance of the above consideration is that once the positions of the first non-trivial
singlets (different from the identity) have been found, along each of the principal lattice
directions, these will set the periodicity of the labeling of all lattice sites. To see this,
one first considers the fusion of these non-trivial singlets among themselves, the result
being a periodic distribution of singlet operators throughout the lattice. The periodicity
in each lattice direction is given by the distance between the first non-trivial singlet in
that direction and the identity operator. The remaining (non-singlet) labels can now be
translated throughout the lattice by fusing the corresponding operators with all available
singlets.

As noticed above, it might happen that the amplitude of the principal channel van-
ishes. But in view of the role of the singlets in setting the periodicity of the filling, it
seems natural to suppose that this does not happen in fusions involving singlets.

Notice that the symmetry (3.25) of the finite Kac tables implies that the periodicity
in the n′

1 direction must be 2. The remaining part of the task is to find the periodicities
in the other lattice directions, and to specify the labeling of the sites in a r-dimensional
hypercube of the lattice that corresponds to the given periodicity.
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4.1.3 Doublet operators

To determine this periodicity, and to position the required non-fundamental doublet
operators, we have first tried using the method of fusions. Consider for instance fusing
the fundamental doublet D1∗ with itself

Φ(1,...,1)(2,1,...,1) · Φ(1,...,1)(2,1,...,1) ∼ Φ(1,...,1)(3,1,...,1). (4.6)

The result can either be a doublet D2∗ or a singlet S, since the addition of Q-charges
(±1) + (±1) is ambiguous. Further fusions can be used to establish that there is only
a finite number of possible periodicities along each lattice direction (in particular, the
periodicity cannot exceed r), but no definite answer emerges. Moreover, in the Z2r+1

theory with r = 3, which we have studied in great detail, the application of the fusion
method leads to a number of inconsistencies with the method of Weyl reflections. We
conclude that the fusion method should be abandoned, since the fusion of two particular
doublets can (and does; see below) lead to vanishing amplitudes in a few cases.

We therefore turn to the method of reflections. The idea is that the number of ele-
ments in the complete Weyl group, |W | = 2rr!, is in general very large. Thus, classifying
|W | − 1 ghost operators for each fundamental operator—whose positions are supposed
to be given by Eq. (3.32)—will fix the labels of a large number of lattice sites close to
the origin, hopefully enabling us to discern the correct periodicity.

We have pursued this idea for r = 3 and r = 4, using a computer. As a first
step, the Weyl group was generated in a recursive fashion, as follows. Recall that the
elements of the Weyl group can be represented as words made out of an r-letter alphabet,
s~e1 , s~e2 , . . . , s~er

, each word having it minimal possible length. In the case of the algebra
Br, there is a unique longest element represented by a word of length `0 = r2; moreover,
all lengths ` satisfying 1 ≤ ` ≤ `0 correspond to at least one element. Therefore, all
elements of length ` can be generated by prefixing the words representing elements of
length ` − 1 by each of the r letters in the alphabet. For each word generated, one tests
whether it represents a new element of the Weyl group by considering its action on a
fixed lattice site in the fundamental chamber, and comparing to the action of elements
represented by shorter words. The recursion starts from the simple Weyl reflections, and
terminates once an element of length `0 has been generated.

For r = 3, the resulting classification of (r+1)|W | = 192 singlet and doublet operators
made it evident that the correct filling has periodicity 2 in the n′

i direction, for i =
1, 2, . . . , r − 1, and periodicity 4 in the n′

r direction. In particular, the first non-trivial
singlets (different from the identity) along each lattice direction are situated at

Φ(1,...,1)(1,1,...,1,3,1,...,1,1) ∼ S, 0 < k < r,

Φ(1,...,1)(1,1,...,1,1,1,...,1,5) ∼ S, (4.7)

where in the first line n′
k = 3. Fusions by these singlets subsequently permitted us to

label all operators in the hypercubic unit cell

1 ≤ n′
k ≤ 2, 0 < k < r,

1 ≤ n′
r ≤ 4, (4.8)
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whose translation throughout the lattice yields the complete filling. Note that the sites
in the cell (4.8) with n′

r = 2, 4 have already been classified as disorder operators, by
Eq. (4.3).

The results (4.7)–(4.8) on the periodicity was confirmed by the case r = 4, where
(r + 1)|W | = 1920 singlet and doublet operators on the four-dimensional weight lattice
were classified.4

We now give the general result on the labeling of the unit cell (4.8). It is most easily
stated in terms of the Q-notation for the doublets, cf. Eq. (3.28). Defining:

xi = |ni − n′
i| mod 2, i = 1, 2, . . . , r − 1,

xr =
|nr − n′

r|
2

mod 2, (4.9)

the doublet charge Q associated with the position ~β(n1,...,nr)(n′

1,...,n′

r) is given by the recur-
sive formula

Q(x1, x2, . . . , xk−1, 1, 0, . . . , 0) = k − Q(x1, x2, . . . , xk−1, 0, 0, . . . , 0), (4.10)

with the initial condition Q(0, . . . , 0) = 0. For the case of r = 3 this reads explicitly:

Φ(1,1,1)(1,1,1) ∼ S, Φ(1,1,1)(1,2,1) ∼ D2∗ , Φ(1,1,1)(1,1,3) ∼ D3∗ , Φ(1,1,1)(1,2,3) ∼ D1∗ ,

Φ(1,1,1)(2,1,1) ∼ D1∗ , Φ(1,1,1)(2,2,1) ∼ D1∗ , Φ(1,1,1)(2,1,3) ∼ D2∗ , Φ(1,1,1)(2,2,3) ∼ D2∗ .

It is easy to prove from Eq. (4.10)—using an induction argument—that the number

of doublet DQ operators in the unit cell (4.8) equals
(

r
Q

)

, for Q = 0, 1, . . . , r.

Note that the filling (4.10) implies that some of the doublet-doublet fusions must have
a vanishing amplitude in the principal channel. For r = 3, an example is

Φ(1,1,1)(1,2,1) · Φ(1,1,1)(2,1,3) → Φ(1,1,1)(2,2,3). (4.11)

According to Eq. (4.10), both operators on the left-hand side are D2∗. Using the Coulomb
gas fusion rules, the resulting operator should thus be either a S or a D3∗. However,
the operator Φ(1,1,1)(2,2,3) appearing on the right-hand side has been classified as D2∗ in
Eq. (4.10). Therefore the amplitude of the principal channel must vanish.

4.2 Characteristic equations

We now present some additional verifications of the theory we have constructed. To this
end, we consider the characteristic equations for the conformal dimensions of the opera-
tors which participate in a given fusion (operator product expansion). These equations

4It is worth mentioning a slight problem that appears in the analysis. Namely, for r = 4 the reflection
method cannot distinguish between S and D2 operators. This is essentially because the Coulomb part
of the dimensions (3.3) of two operators linked by a Weyl reflection always differ by p/4, where p is
an integer. It is this difference, taken modulo 1, that serves to classify a given ghost operator. With
r + 1 distinct singlet and doublet sectors, this will necessarily lead to ambiguities for r ≥ 4. (In the case
r = 4 the ambiguity can be resolved by using the known positions of the fundamental operators.) These
ambiguities are related to those discussed near Eq. (3.38).
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can be derived from the study of the three-point correlation functions in a way analogous
to that of Refs. [2].

The three-point correlation functions considered below have the same analytical prop-
erties as the ones studied in Ref. [3] for N = 5. Therefore, for the more general case
N = 2r+1, the derivation of the corresponding characteristic equations is the same. The
details of the calculations can be found in the Appendix C of Ref. [3].

We have considered the following correlation functions:

•
〈

R(2)(z2)Φ
q∗(z3)R

(1)(z1)
〉

Here, R(1)(z1) is a disorder operator whose module is supposed to be completely
degenerate at level 1/2, i.e., R(1)(z1) = Φ(1,...,1,2)(1,...,1)(z1) or Φ(1,...,1)(1,...,1,2)(z1). The
operator R(2)(z2) is a generic disorder operator, and Φq∗(z3) with q∗ = 0,±r∗ is a
singlet or a doublet r∗ operator (we remind that r∗ is the ZN charge in the notation
(3.28)).

The necessary condition for the above function to be non-zero is given by the
following equation on the dimensions of the operators R(1), R(2) and Φq∗:

∆R(2) − ∆Φq∗ +
1

(N − 1)

(

1 − 2

N
δq∗,r∗

)

∆R(1) = (−1)δq∗,r∗
N

N − 1

h
(2)
1

h
(1)
1

∆R(1) . (4.12)

The values h
(1)
1 and h

(2)
1 are the zero mode eigenvalues of the operators R(1) and

R(2), as defined in Eq. (2.108). While h
(1)
1 has been fixed by the computations

presented in Section 2, we do not know the eigenvalue h
(2)
1 for a generic disorder

operator. If we set R(2) = Φ(1,...,1,2)(1,...,1) or R(2) = Φ(1,...,1)(1,...,1,2), the eigenvalue

h
(2)
1 in Eq. (4.12) is known and the dimension ∆Φq∗ can be easily calculated for each

of the two channels q∗ = 0 and q∗ = r∗.

Let us discuss, for example, the case R(1) = R(2) = Φ(1,...,1)(1,...,1,2). In this case we
obtain:

∆Φ0 = ∆(1,...,1)(1,...,1) = 0, ∆Φr∗ = ∆(1,...,1)(1,...,1,3). (4.13)

This result is in agreement both with the fact that Φ(1,...,1)(1,...,1,3) was deduced to
be a doublet r∗, see Eq. (3.32), and with the value of the boundary term BDr∗ =
(N−1)/8N . Note also that the Coulomb gas fusin rules are well respected. Indeed,
as discussed previously, we expect that the fusion Φ(1,...,1)(1,...,1,2) · Φ(1,...,1)(1,...,1,2)

produces in the principal channel the operator with ~β(1,...,1)(1,...,1,3) = ~β(1,...,1)(1,...,1,2)+
~β(1,...,1)(1,...,1,2). The q∗ = 0 channel, corresponding to the identity operator, follows
the principal one by a shift realised by the combination −∑r

k=1 k~ek of screening
vectors.

Actually, even when h
(2)
1 is unknown, we can still do some amount of verification

by using Eq. (4.12). Indeed, one of the two channels of this equation could be used

to define h
(2)
1 , by assuming a given value of ∆Φ0 for instance, chosen at a particular

position in the Kac table. The other channel, with Φr∗, in which enters the same
h

(2)
1 , could then serve to check for the presence of ∆Φr∗ at the appropriate position in

the Kac table, having the value calculated from the characteristic equation (4.12).
We have in this way verified the compatibility of the theory with Eq. (4.12).
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•
〈

Φr
(2)Φ

0Φ−r
(1)

〉

The module of the operator Φ−r
(1) is supposed to be degenerate at levels δr

r−1 and 1,

i.e., Φ−r
(1) = Φ(2,1,...,1)(1,...,1) or Φ−r

(1) = Φ(1,...,1)(2,1,...,1) (see Section 2). We derive the
following equation for the dimensions:

∆Φ0 − ∆Φr
(2)

− 1

N − 1
∆Φr

(1)
= − N

N − 1

h
(2)
1

h
(1)
1

∆Φr
(1)

, (4.14)

where h
(2)
1 and h

(1)
1 are respectively the eigenvalues of the operators Φr

(2) and Φ−r
(1),

as defined in Eq. (2.15).

We consider the operators Φ(1,...,1)(2n,1,...,1) and Φ(2n,1,...,1)(1,...,1), with n integer. The
above operators have ZN charge q = r, as it can be seen from Eq. (4.10). We know
from the reflection-type arguments that these operators are degenerate at level δr

r−1.
If we set Φr

(2) = Φ(1,...,1)(2n,1,...,1) or Φr
(2) = Φ(2n,1,...,1)(1,...,1), then the correspondent

eigenvalue h
(2)
1 is determined by Eq. (2.89). In this case, Eq. (4.14) has respectively

the solutions:

∆Φ0 = ∆(1,...,1)(2n−1,1,...,1) and ∆Φ0 = ∆(2n−1,1,...,1)(1,...,1). (4.15)

We conclude that the singlets Φ(2n−1,1,...,1)(1,...,1) and Φ(1,...,1)(2n−1,1,...,1) are produced
in a non principal channel of the fusion Φr

(2) · Φ−r
(1). This is in agreement with the

Coulomb gas rules and with the filling of the weight lattice that we have given
previously.

•
〈

Φr
(2)Φ

1Φr
(1)

〉

.

In the above function we suppose Φr
(1) = Φ(2,1,...,1)(1,...,1) or Φr

(1) = Φ(1,...,1)(2,1,...,1),
and Φr

(2) = Φ(1,...,1)(2n,1,...,1) or Φr
(2) = Φ(2n,1,...,1)(1,...,1). Taking into account that the

modules of these operators are degenerate at level δr
r−1, we obtain the characteristic

equation:

∆Φ1 = ∆Φr
(2)

+
N − 3

N − 1
∆Φr

(1)
. (4.16)

Once again, the above equation is consistent with the theory. For example, if we
consider the fusion Φ(1,...,1)(2,1,...,1) · Φ(1,...,1)(2n,1,...,1) we have from Eq. (4.16) that

∆Φ1 = ∆(1,...,1)(2n−1,2,1,...,1). (4.17)

The doublet 1 operator Φ(1,...,1)(2n−1,2,1,...,1) is expected to be produced in a non-
principal channel of the fusion considered above, since

~β(1,...,1)(2n−1,2,1,...,1) = ~β(1,...,1)(2,1,...,1) + ~β(1,...,1)(2n,1,...,1) − ~e1. (4.18)

The placing of the doublet 1 operator at the position ~β(1,...,1)(2n−1,2,1,...,1) is confirmed
by the above result.
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5 Discussion

In this paper, we have constructed and analysed the conformal field theories based on
the second solution of the ZN parafermionic algebra, with N = 2r + 1 (r = 1, 2, . . .).

We have achieved the principal goal of giving the Kac formula for these theories (3.3),
i.e, the formula for the conformal dimensions of operators which realise the degenerate
representations of the parafermionic algebra. To obtain this result, we had to determine
the boundary terms for each sector, Eq. (3.39), and to determine to which sector belongs
each operator in the Kac table (see Eq. (4.10)).

We want to stress here that the weight lattice of the Lie algebra Br is also known
to accommodate the primary fields of the the WBr conformal field theories. The Kac
formula of these theories, was defined, among those of other W theories, by Fateev and
Luk’yanov in Ref. [8]. It should be noticed that the Kac formulae of both the present
theory and of WBr is invariant under the symmetry (3.25).

However, the content of these two conformal theories, WBr and Z2r+1, second so-
lution, are completely different. In the case of the WBr theory, the Br weight lattice
is filled with two kinds of operators, corresponding to the Neveu-Schwarz and Ramond
sector (alias the Z2 neutral sector and the spin operator sector). In the case of the Z2r+1

theory, second solution, the same weight lattice accommodates singlet, doublet q and
disorder operators. The important point is that the distribution of singlets, doublet q
and disorder operator on the lattice is consistent with the symmetry (3.25), as well as
with the decoupling of the operators outside the physical domain (3.24).

It is natural to assume that, for each N = 2r + 1, the infinite set of unitary theories
with p = N−2+n and n = 1, 2, . . . describe multicritical fixed points in statistical systems
with Z2r+1 symmetry. It would be interesting to verify this assumption by finding lattice
realisations of the corresponding models and studying them numerically.

From a theoretical point of view, it is important to remark that it is not in general
(except for some special cases; see Section 2) practicable to find the dimensions of the
fundamental operators by means of explicit degeneracy computations. We bypassed this
problem by exploiting the properties of the assumed Coulomb gas realisation of the
theory.

This leads us to conjecture that, assuming a particular lattice on which the primary
operators could be accommodated, this kind of approach could greatly simplify the study
of the representations of a given chiral algebra with a free parameter. The first application
of the above assumption would be the study of the representations of the theory ZN , with
N even, which should be based on the DN/2 weight lattice [9].

Acknowledgments: We would like to thank D. Bernard, P. Degiovanni, V. A. Fa-
teev, and P. Mathieu for very useful discussions. We are particularly grateful to M.-
A. Lewis, F. Merz, and M. Picco for their collaboration during the initial stages of this
project.

Note added in proof.

After the completion of this work, P. Furlan attracted our attention to the paper
[10] in which the representation theory of the chiral algebra (2.1)–(2.2) was considered.
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Ref. [10] also gives partial results for an explicit free field construction of the coset
(1.1), based on earlier work of Gepner [11], and of Christe and Ravanini [12]. Our work
differs from that of Ref. [10] in classifying the primary fields representing the coset (1.1)
according to their ZN transformation properties, as singlet, (N − 1)/2 different doublets,
and disorder operators. The Kac table proposed in Eq. (4.71) of Ref. [10] contains three
sectors for each odd N , in sharp contrast with the (N + 3)/2 sectors identified in the
present work. Accordingly, we do not agree on the dimensions of primary operators
proposed in Ref. [10].
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