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Abstract

We present a method that allows us to find the asymptotic form of various char-
acteristics of disordered systems in the strong localization regime, i.e., when either
the random potential is big or the energy is close to a spectral edge. The method
is based on the hypothesis that the relevant realizations of the random potential in
the strong localization regime have the form of a collection of deep random wells
that are uniformly and chaotically distributed in space with a sufficiently small den-
sity. Assuming this and using the density expansion, we show first that the density
of wells coincides in leading order with the density of states. Thus the density of
states is in fact the small parameter of the theory in the strong localization regime.
Then we derive the Mott formula for the low frequency conductivity and the asymp-
totic formulas for certain two-point correlators when the difference of the respective
energies is small.

PACS numbers: 05.60.Gg, 72.15.Rn, 72.80.Ng

1 Introduction

It is widely accepted and proved rigorously in many cases that elementary excitations in
disordered media are localized if the disorder is strong enough or/and the energy of the
excitations is close enough to the band edges. The idea dates back to the famous paper
[4] by P. Anderson who emphasized, in particular, the aspects related to the transition
from localized to delocalized states. The idea was further developed by N. Mott and I.
Lifshitz (see e.g. their review works [25, 20]). In particular, it was I. Lifshitz who singled
out the regime of high disorder or low energy where the localization is most pronounced.
This regime is now known as the strong localization regime. According to I. Lifshitz, in
this case, the pertinent realizations of the random potential have the form of a collection
of deep potential wells which are so rare and whose form is so irregular that the quantum
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mechanical probability for tunnelling through a macroscopic number of the localization
wells vanishes.

The study of localization and relevant physical characteristics of disordered systems
can be reduced to the study of moments of the density operator ρE = δ(E − H), where
H is the (one-body) Hamiltonian of the system. By using the coordinate representation,
we can write the l-th moment (l-th correlation function) as follows:

Kl(x1, ..., xl; y1, ..., yl; E1, ..., El) = 〈ρE1
(x1, y1)...ρEl

(xl, yl)〉, (1.1)

where the 〈...〉 denotes averaging with respect to the disorder.
The simplest case of the correlation function (1.1), corresponding to l = 1, x1 = y1 = x:

ρ(E) = 〈ρE(x, x)〉 (1.2)

i.e., to the average of the local density of states ρE(x, x), is known as the density of states
(DOS) of the system.

I. Lifshitz suggested a non-perturbative method of computing the asymptotic form
of the DOS in the strong localization regime [19]. The above description of typical re-
alizations of the random potential is implemented in this method by the assumption of
independent quantization of a quantum particle in each localization well (see [20, 21, 7]),
thus the complete localization of a particle in an exponential neighborhood of each well.
A rigorous proof of the complete and exponential localization in the strong localization
regime was given by J. Fröhlich and T. Spencer [9, 22, 27].

In both these important results of the localization theory the tunnelling between the
localization wells plays no significant role. In Lifshitz’s argument, other wells are sim-
ply ignored. The crucial ingredient in the rigorous proof of the complete localization
in the strong localization regime is a rather sophisticated probabilistic extension of the
Kolmogorov-Arnold-Moser theory (known as the multi-scale analysis) which allows one to
verify that tunnelling between wells is strongly suppressed, and therefore does not change
qualitatively the picture, suggested by the independent wells quantization assumption.

The DOS determines equilibrium properties of a disordered system in the one-body
approximation, i.e., of the ideal Fermi gas in a random external field. The study of kinetic
properties of the gas and of interaction effects requires the knowledge of higher moments
(1.1) of the density operator ρE, especially the second moment K2. Important quantities
that can be expressed via K2 are the density-density correlator and the current-current
correlator [10, 21]. These correlators allow us to answer relevant questions concerning the
nature of localization and the behavior of the conductivity and other physical character-
istics.

The complete localization of states in a certain interval of energies implies that the
zero temperature d.c. conductivity vanishes if the Fermi energy lies in this interval (see [2]
for a proof and a discussion). On the other hand, since the energies of localized states are
dense, the zero-temperature a.c. conductivity is expected to be non-zero for any non-zero
frequency ν of the external field. It was N. Mott who first proposed ”resonant” tunnelling
between pairs of wells as a mechanism of the low frequency a.c. conductivity in localized
systems [25]. According to Mott, one can view those states, resulting from independent
quantization in each localization well (localization center in Mott’s terminology), as a
kind of ”bare” states. They decay exponentially in the distance from the corresponding
localization center. Two (several) bare states with widely spaced centers but with suf-
ficiently close energies can ”resonate”. This leads to the two-center states (resp. multi
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center states), whose energies are exponentially close in the separation between the cen-
ters. The condition for a pair of wells to be in resonance determines the distance between
resonating wells, thereby determining the characteristic value of the dipole moment of two
bare states of wells, and the square of the dipole moment is, in essence, the conductivity
according to the linear response theory (see formula (3.4) below). This observation leads
to the following asymptotic expression for the low frequency conductivity:

σ(ν, EF ) = Aρ2(EF )ν2
(
log

ν0

ν

)d+1

(1.3)

in the case, where
T ≪ ν ≪ EF . (1.4)

Here T is the temperature, ν the frequency of an alternating external field, EF the Fermi
energy (supposed to be in the localized spectrum). A and ν0 are determined by the
fundamental constants and by the random potential.

Formula (1.3) was discussed in many works (see e.g. [7, 8, 14, 10, 11, 21, 25, 15] and
Section 5). However, a consistent ”first principle” derivation of the formula is still not
available in a general multi-dimensional case. We mean a derivation based on the Kubo
formula (see formulas (3.2)–(3.4) below), in which the two-point correlation function is
computed for a given random potential in the asymptotic regime (1.4).

The fact that such a derivation is still missing encourages us to present in this paper
a heuristic method that allows us to obtain formula (1.3) and some other two-point
correlation functions (i.e., (1.1) for l = 2 and |E1 − E2| := ν ≪ |E1|, |E2|), and that,
we believe, clarifies Mott’s initial arguments.

The method is based on the above hypothesis on the form of pertinent realizations of
the random potential as systems of deep and rare localization wells. Viewing the density
of wells as a small parameter of the theory, we apply a version of the virial expansion to
compute the leading contribution to the moments Kl of (1.1) for l = 1, 2. In particular,
by applying this procedure to the DOS, we find that its leading order is the density of the
localization wells. This shows that the small parameter of the theory is the DOS itself,
whose smallness is known to be an important condition for localization. Furthermore,
we find that the leading order of the pair correlation functions, the a.c. conductivity in
particular, is determined by two-center states, resulting from resonant tunnelling between
a pair of localization wells, in agreement with Mott’s ideas. This leads to formula (1.3)
and, therefore, supports the idea of pair approximation in Mott’s derivation of (1.3).
Among our other results, we mention high peaks of some pair correlation functions (see
(4.1) and (4.2) below), appearing in a neighborhood of the origin and on the ”resonating”
distance, determined by the frequency of the external field. Analogous peaks were found
before in the one-dimensional case for strong localization [14] as well as in the weak
localization regime [11]. However, in these cases, the peaks are of the order ρ2(EF ), while
in the general d-dimensional case, the peaks are of the order ρ2(EF ) (log ν0/ν)d−1, i.e.,
much bigger in the regime (1.4) (see also [15] for a similar result).

The paper is organized as follows. In Section 2 we outline the method. In Section 3
the Mott formula (1.3) is derived. In Section 4 we derive asymptotic formulas for binary
correlators and in Section 5 we comment on our results and on their relations to known
results.
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2 Method

2.1 Effective potential

It was already mentioned in the introduction that extensive studies of the strong local-
ization regime show that the phenomenon is determined by realizations of the random
potential, containing deep and rare potential wells. For a potential unbounded below (like
the Poisson potential (2.6) below) the large parameter of the theory is the absolute value
of the energy and/or the amplitude of the potential. These two cases of the strong local-
ization regime are manifestations of the simplest mechanism of localization: capturing a
quantum particle in strong and rare fluctuations of a random potential1.

In other words, for an overwhelming majority of eigenfunctions ψj, corresponding to
the strongly localized part of the spectrum, there exists a point ξj, the center of the
localization well, such that ψj decays as exp{−|x − ξj|/rj}. Here rj is the localization
radius of ψj. The localization centers have to be uniformly and chaotically distributed in
space and the distances between them have to be much bigger than the typical localization
radii and than the radii of the localization wells. Hence, one has to expect an effective
“decoupling” between the localization wells.

One obtains a simple form of this picture of the strong localization regime by replacing
the random Schrödinger operator by the direct sum of operators, each of them defined
in a certain cell, containing a single localization well. This procedure of independent
quantization in isolated cells is supported by and even instrumental in studies of the den-
sity of states, the interband light absorption coefficient, and other spectral and physical
characteristics of disordered systems (see e.g. [5, 7, 17, 21]), as well as of the probability
distribution of spacings between adjacent energy levels (see [24, 23]) in the strong localiza-
tion regime. However, the procedure is not appropriate in studies of transport properties
of disordered systems. This is why we replace the procedure of independent quantization
in isolated cells by the less restrictive assumption, according to which relevant properties
of the strong localization regime can be described, assuming that any shortly correlated
and smoothly distributed random potential can be replaced by an (effective) potential of
the form:

Veff (x) =
∑

j

vj(x − ξj). (2.1)

Here {ξj} are the Poisson random points of the density µ, modelling the centers of the
localization wells, and the random functions {vj} are independent of each others and
independent of the {ξj}. The {vj} model the shape of the localization wells. We assume
that all vj’s have a finite range and the typical radius a of vj’s is related to the typical
distance µ−1/d between wells as

a ≪ µ−1/d. (2.2)

The density µ of the localization centers is not known and has to be found self-consistently.
The density as well as the shapes of the wells may depend on the energy interval in
question.

In other words, we believe that the strong localization regime possesses a certain
robustness (insensitivity) with respect to a concrete form of random potential, provided

1We mention another localization mechanism : enhanced backscattering. The mechanism is respon-
sible for localization at high energies in the one-dimensional case, and for weak localization effects in
arbitrary dimensions.
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that it is translation invariant in the mean, shortly correlated, and smoothly distributed
(the last two properties facilitate the localization because they make it more unlikely that
different localization wells are of the same shape, thereby suppressing tunnelling between
different localization wells). One may say that our ansatz (2.1) replaces impenetrable
walls between cells of the independent quantization procedure by a kind of “soft” walls,
that strongly suppress particle mobility but do not exclude it completely.

To avoid technicalities, we will choose a simple form of the localization wells, setting

vj(x) = gjv
(√

gjx
)
, (2.3)

where v(x) is a finite range potential well and {gj} are independent identically distributed
random variables, independent of {ξj} and assuming arbitrary big positive values accord-
ing to a smooth probability density p(g).

Summarizing, we can write the following formula for the effective potential

Veff (x) =
∑

j

gjv
(√

gj(x − ξj)
)
. (2.4)

It should be noted that similar random functions are widely used in localization theory
as ”bare” random potentials in the Schrödinger equation (see e.g. [16, 21]). We mean the
potentials of the form

V (x) =
∑

j

θju(x − xj), (2.5)

where u is a non-positive function of a finite range (the single-impurity potential). In
the case, where {θj} are independent identically distributed random variables and {xj}
form a regular lattice, the potential models a substitutional alloy, and in the case, where
θj = θ = const for all j and {xj} are completely chaotic (Poisson) random points of the
density c, the potential

V (x) =
∑

j

θ u(x − xj), (2.6)

models an amorphous medium. Assuming that c is large, θ is small but cθ2 = D is fixed
and shifting the energy by the mean value

cθ

∫
u(y)dy

of the potential (2.6), we obtain a Gaussian random potential with zero mean and with
the correlation function

D

∫
u(x − y)u(y)dy.

In a more general case, where the {xj} are completely chaotic and the {θj} are identically
distributed random variables, independent of each others and of the {xj}, (2.5) is a
generalized Poisson potential.

We would like to stress here that while our effective potential (2.4) is similar to a
generalized Poisson one (because of random gj’s), these two should not be identified. In
particular, the density c of the impurity centers {xj} in (2.5) is not the density µ of the
localization centers {ξj} in (2.4) (µ is usually is much smaller than c), and the functions
θju in (2.5), modelling the single impurity potential, have little in common with the
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functions vj in (2.4), modelling the form of the localization wells. The latter are formed
by sufficiently large and dense clusters of impurities in which the inter-impurity distances
are much smaller than the typical distance c−1/d between impurities centers {xj}. For
example, if the “bare” random potential is given by (2.6), then it can be shown than the
number of xj’s in a typical localization well is of the order log E/u(0) >> 1 [21].

2.2 Density expansion

Recall that an important property of the effective potential is the small density µ of the
localization centers (cf (2.2)). We describe now a technique that will allow us to use this
property.

Let {Fl(x1, ..., xl)}l≥0 be a system of functions of l d-dimensional variables x1, ..., xl

(F0 is a constant). We denote the set (x1, ..., xl) as X. Suppose that the system {Fl}l≥0

satisfies the following conditions (we do not indicate explicitly the index l).

(i) Translation invariance: for any d-dimensional vector a

F (X) = F (X + a), where X + a = (x1 + a, ..., xl + a).

(ii) Additive clustering:

F (X ∪ (Y + a)) − [F (X) + F (Y )] ջ 0, as a ջ ∞. (2.7)

and the decay of the l.h.s. of (2.7) is fast enough (it will be exponential below).

For any system of functions, possessing these properties, we can write the combinato-
rial identity

F (X) =
∑

Y ⊂X

∑

Z⊂Y

(−1)N(Y \Z)F (Z), (2.8)

where N(X) is the number of points of X.
We will use this identity in the case, where X,Y, Z are the sets of random Poisson

points {ξj}, entering in the effective potential (2.1). Recall that an infinite system {ξj}
of Poisson points of density µ in the d-dimensional space can be asymptotically described
as a system of random points ξ1, ..., ξN , uniformly distributed in a cube Λ, provided that
the ”thermodynamic” limit N ջ ∞, |Λ| ջ ∞ and N/|Λ| ջ µ is carried out (we will
denote this limiting transition by Λ ջ ∞). By using this fact and identity (2.8), we can
write that

lim
Λջ∞

|Λ|−1〈FN(ξ1, ..., ξN) − F0〉 = µ(F1 − F0) (2.9)

+
µ2

2

∫
[F2(x) − 2F1 + F0]dx + ...

where the symbol 〈...〉 in the l.h.s. denotes averaging with respect to the Poisson points
{ξj}.

In view of (2.4), we will need a more general formula in which the role of ξj’s is played
by pairs (ξj, gj), where {gj} is a system of independent random variables of common
density p(g) which are also independent of the {ξj}. The corresponding formula can be
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obtained from (2.9), written for fixed gj’s and subsequently integrated with respect to
gj’s with the probability density p(g). This yields

lim
Λջ∞

|Λ|−1〈FN((ξ1, g1),..., (ξN , gN)) − F0〉 =

∫
(F1(g1) − F0)µ(g1)dg1 (2.10)

+
1

2

∫
[F2(x; g1, g2) − F1(g1) − F1(g2) + F0]µ(g1)µ(g2)dxdg1dg2 + ...,

where now the symbol 〈...〉 in the l.h.s. of this formula denotes averaging with respect to
{ξj} and {gj} and

µ(g) = µp(g). (2.11)

2.3 Density expansion of the DOS

Now we apply the expansion described above to the density of states of the Schrödinger
equation. We use the self-averaging property of the DOS, according to which [21]

ρ(E) = lim
Λջ∞

〈|Λ|−1
∑

n≥1

δ(E − En)〉, (2.12)

where {En}n≥1 are the energy levels of the Hamiltonian HΛ defined by the Schrödinger
equation with the potential (2.4) in the cube Λ.

Comparing the l.h.s. of (2.10) and the r.h.s. of (2.12), we conclude that in this case
the role of Fl in (2.10) play

∑

n≥1

δ(E − E(l)
n ((x1, g1), ..., (xl, gl))),

where {E(l)
n ((x1, g1), ..., (xl, gl))}n≥1 is the negative spectrum of the l-wells Hamiltonian

H(l) = −∆ +
l∑

j=1

gjv
(√

gj(x − xj)
)
. (2.13)

Thus, applying (2.10) to the DOS and taking into account that we are interested in
negative energies of large absolute value and that H(0) = −∆ has no negative spectrum,
we find that the term ρ(0)(E) with l = 0 (the zero-well contribution) is absent in the
expansion. Hence, the leading contribution in µ to the DOS is due to the one-well term
of the expansion:

ρ(1)(E) =
∑

n≥1

∫
δ(E − E(1)

n )µ(g)dg. (2.14)

For the well of the form gv
(√

gx
)

we have:

E(1)
n = gεn, (2.15)

where {εn}n≥1 are the negative eigenvalues of the dimensionless operator −∆+v(x). Thus

ρ(1)(E) =
∑

n≥1

µ

(
E

εn

)
1

|εn|
.
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According to the spirit of our approach the density p(g) should decay sufficiently fast as
g ջ ∞. Thus the leading contribution to ρ(1)(E) is due to the first term of the sum, i.e.,
we can use the approximation

ρ(1)(E) ≃ µ

(
E

ε1

)
1

|ε1|
. (2.16)

Normalizing the well v by the condition

ε1 = −1, (2.17)

we can write
ρ(1)(E) ≃ µ(−E). (2.18)

The last formula is a version of the well known “classical” asymptotic formula for the
DOS valid for smooth random potentials. By choosing as a randomizing parameter of
the wells vj in (2.1) their ground state energies, we can show that an analogue of (2.16)
allows us to obtain also ”quantum” versions of asymptotic formulas for the DOS valid for
singular v’s (see [21] for the respective terminology and results).

It can also be shown that the two-well contribution to the DOS is of the order O(µ2).
We postpone the corresponding argument to Section 5.1. Thus the two-well contribution
is negligible with respect to the r.h.s. of (2.18). We conclude that the unknown (and
small) function µ(g), determining our effective potential and having the sense of the
probability density to find a well of amplitude lying between g and g + dg with center in
an infinitesimal neighborhood of a given x, coincides in our approximation with the DOS
of the Schrödinger operator. This important conclusion makes our scheme self-consistent.
It corresponds to the basic ingredient of the Lifshitz approach, according to which the
DOS is the probability density of the localization wells, having the ground state energy
E [20]. This interpretation of the DOS is widely used in the theory of disordered systems
[7, 21]. In our approach it is a simple consequence of the ansatz (2.4) and of the expansion
formulas of the previous section.

Let ∆ be an interval of values of random variables gj, lying in the strong localized
spectrum with width much smaller than typical values of the g’s under consideration.
Then µ̄ =

∫
∆

µ(g)dg will be the density per unit volume of wells, whose amplitudes are

in ∆, and µ̄−1/d will be the typical distance between these wells. Our approach is based
on the assumption that typical distances between wells are much larger than the typical
radii of the localization wells (cf (1.4)). In the case of the effective potential (2.4), this
assumption can be written as

g−1/2 ≪ µ̄−1/d. (2.19)

3 A.C. Conductivity

3.1 Generalities

Recall that from the point of view of statistical physics, we are dealing with an ideal gas
of electrons in the external random field V (x) (one-body approximation). In this case, the
linear response theory leads to the following formula for the tensor of the zero-temperature
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a.c. conductivity of a macroscopic system of spinless electrons in an external spatially
homogeneous electric field of the frequency ν at zero temperature:

σαβ(ν, EF ) = lim
Λջ∞

πe2|Λ|−1
∑

m6=n

δ(EF + ν − Em)δ(EF − En)V (α)
mn V (β)

nm ,

where V
(α)
mn are the matrix elements of the velocity operator i▽α between the states ψm and

ψn of the system, confined to the box Λ. In the case of a random potential, homogeneous
in mean and weakly correlated, the conductivity is self-averaging [21]. Thus we have in
the thermodynamic limit, assuming for simplicity that the system is rotational invariant
in mean:

σαβ(ν, EF ) =
πe2

d
δαβσ(ν, EF ), (3.1)

σ(ν, EF ) = lim
Λջ∞

〈
|Λ|−1

∑

m6=n

δ(EF + ν − Em)δ(EF − En)|Vmn|2
〉

, (3.2)

where

|Vmn|2 =
d∑

α=1

|V (α)
mn |2. (3.3)

Since V = i[H,X], where X is the coordinate operator, we have |V (α)
mn | = |(Em−En)X

(α)
mn|,

and (3.2) can be written as

σ(ν, EF ) = ν2 lim
Λջ∞

〈|Λ|−1
∑

m6=n

δ(EF + ν − Em)δ(EF − En)|Xmn|2〉. (3.4)

where

|Xmn|2 =
d∑

α=1

|X(α)
mn|2. (3.5)

Note that we keep the frequency ν non-zero while making the thermodynamic limit
Λ ջ ∞ in the above formulas. This prescription is well known in kinetic theory and
is reminiscent of keeping non-zero magnetic field while making the thermodynamic limit
for a ferromagnetic system in order to obtain non-zero macroscopic spontaneous magne-
tization. Another way to obtain non-zero d.c. conductivity is to set ν = 0 in (3.2) but to
replace the δ-functions by a sharp function of width η (usually by the Lorenzian). This
corresponds to an imaginary shift in energies instead of a real-valued shift ν (see e.g.
[2], where the an imaginary shift is used). In this paper, we will use the formula (3.4),
assuming always that the frequency is non-zero, but small compared to the Fermi energy,
i.e., we will assume that inequality (1.4) holds.

3.2 Computation

Now we are going to apply the density expansion formula (2.10) to the a.c. conductivity.
Comparing (3.4) and (2.10), we choose the functions Fl in this case as

ν2
∑

m6=n

δ(EF + ν − E(l)
m )δ(EF − E(l)

n )|X(l)
mn|2, (3.6)

9



where {E(l)
n }n≥1 are negative levels of the l-wells Hamiltonian (2.13), and

X(l)
mn =

∫
xψ(l)

m (x)ψ(l)
n dx, (3.7)

.Here the {ψ(l)
n }n≥1 are the bound states of (2.13). By the same reason as in the case of

the DOS, the zero-well contribution σ(0) to the conductivity expansion is absent. Let us
show that the one-well contribution σ(1) is also absent. Combining (3.6) for l = 1 and
(2.15), we obtain

σ(1)(ν, EF ) = ν2
∑

m6=n

∫
δ(EF + ν − gεm)δ(EF − gεn)|X(1)

mn|2µ(g)dg.

where {E(1)
n }n≥1 are the bound state energies (2.15) of the one-well Hamiltonian H(1)(g) =

−∆ + gv(
√

gx), and X
(1)
mn is the coordinate matrix element between the corresponding

states {ψ(1)
l }. Non-zero contributions to this expression are due to the pairs (m,n) such

that
gεn = EF , gεm = EF + ν ≃ EF , g(εn − εm) = ν. (3.8)

Denoting by ε the typical value of the levels εn’s of the potential well v and by δε the
typical value of the spacings |εn+1−εn|, we see that the above conditions are incompatible
if gδε ≫ ν, i.e., if EF δε/ε ≫ ν. Since εn’s are dimensionless, the last condition is just
another form of our basic condition (1.4).

The two level contribution σ(2)(ν, EF ) to the a.c. conductivity is (cf (2.10)):

σ(2)(ν, EF ) =
ν2

2

∑

m6=n

∫
δ(EF + ν − E(2)

m )δ(EF − E(2)
n ) (3.9)

· |X(2)
mn|2µ(g1)µ(g2)dg1dg2dy,

where {E(2)
n }n≥1 are the bound state energies of the two-well Hamiltonian

H(2)((x1, g1), (x2, g2)) = −∆ + g1v1 + g2v2, (3.10)

in which
vk(x) = v (

√
gk(x − xk)) , k = 1, 2,

y = x1 − x2, and X
(2)
mn are the corresponding coordinate matrix elements.

In view of our basic condition (2.19), we have typically |x1 −x2| ≫ max g
−1/2
1,2 . Hence,

according to general principles of quantum mechanics, each level of (3.10) should be (ex-
ponentially) close to a certain level of one of infinite distant wells, and each eigenfunction
is (exponentially) close either to an eigenfunction of one of the wells (non-resonant case)
or to a linear combination of the eigenfunctions of the both wells with coefficients of the
same order of magnitude (resonant case).

To make this description more quantitative, consider the one-well Hamiltonians

H
(1)
k = −∆ + gkvk, k = 1, 2,

corresponding to (3.10). Normalize the potential well v(x) by the same condition (2.17).

Then the lowest eigenvalues of H
(1)
k , k = 1, 2 are −gk, and the corresponding eigenfunc-

tions are
ϕk(x) = g

d/4
k ϕ (

√
gk(x − xk)) , k = 1, 2, (3.11)
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where ϕ(x) is the ground state of the dimensionless operator −∆ + v(x). The function
ϕ(x) decays exponentially in x with rate 1. Hence

ϕk(x) ∼ exp (−√
gk|x − xk|) , |x − xk| ≫ g

−1/2
k . (3.12)

Since we will be interested mostly in the resonant case, we assume that g1,2 ≃ |EF |, i.e.,
the radii of the ϕk, k = 1, 2 in (3.11) are of the same order of magnitude

g
−1/2
1,2 ≃ rl = |EF |−1/2, (3.13)

hence rl ≪ |x1 − x2|.
In this situation we can find the lowest eigenvalues of H(2) in the framework of the

widely used approximation, in which H(2) is replaced by its projection on the span of the
functions ϕ1 and ϕ2

2. The diagonal entries of this 2 · 2 matrix are

(ϕk, H
(2)ϕk) = −gk + gj 6=k

∫
vj(x)ϕ2

k(x)dx

= −gk + O (exp (−2|x1 − x2|/rl)) , |x1 − x2| >> rl,

and its off-diagonal entry is

(ϕ1, H
(2)ϕ2) = −g1(ϕ1, ϕ2) + (ϕ1, v2ϕ2).

Since v is of finite range, the first term here decays in |x1 −x2| not faster than the second

term. Hence, being interested in distances |x1 − x2| that are much bigger than g
−1/2
1,2 , we

can neglect the second term, i.e., we can use as the off-diagonal entry of the matrix the
quantity −I(x1 − x2), where

I(x1 − x2) = g1(ϕ1, ϕ2) ⋍ g2(ϕ1, ϕ2) (3.14)

is known as the overlap integral, and in view of (3.11) and (3.13) we have

I(x) ≃ I0e
−|x|/rl , |x| ≫ rl, (3.15)

with
I0 ≃ |EF |. (3.16)

We obtain that the two lowest eigenvalue of the two-well Hamiltonian H(2) can be found
as the eigenvalues of the matrix

(
−g1 −I(x1 − x2)

−I(x1 − x2) −g2.

)
. (3.17)

Assuming that g1 > g2 > 0, we obtain that the eigenvalues of this matrix are

E
(2)
k = −g − (−1)k−1

√
δ2 + I2, k = 1, 2, (3.18)

2In the appendix, we compute exactly the negative spectrum of H(2) for v(x) = −δ(x) in the 1-
dimensional case. The results for the conductivity, obtained from this spectrum, coincide with those
found by using this approximation.
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where

g =
g1 + g2

2
, δ =

g1 − g2

2
, (3.19)

and the corresponding eigenfunctions of the projection of H(2) are

ψ1(x) = ϕ1(x) cos θ + ϕ2(x) sin θ
ψ2(x) = −ϕ1(x) sin θ + ϕ2(x) cos θ,

(3.20)

where

tan θ =
I

δ +
√

δ2 + I2
. (3.21)

We are going to use these formulas in the r.h.s. of (3.9), keeping there only terms with
m,n = 1, 2, i.e., in fact, the term, corresponding to m = 1, n = 2. It is easy to see
that the equalities EF = E

(2)
1 , EF + ν = E

(2)
2 imply, in view of (3.18)–(3.19), that

ν = 2
√

I2(y) + δ2, y = x2 − x1. Hence, by (3.15)–(3.16) and by the condition ν ≪ |EF |,
the values of y, contributing to (3.9), are bounded below by

r(ν) = rl log
2I0

ν
, (3.22)

and the values of |δ| do not exceed ν/2. Under these conditions the coordinate matrix

element X
(2)
12 in (3.9):

X
(2)
12 = (x1 − x2)

I

2
√

δ2 + I2
+ (g

−1/2
1 − g

−1/2
2 )

I

2
√

δ2 + I2

∫
xϕ2(x)dx (3.23)

+
δ√

δ2 + I2

∫
xϕ1(x)ϕ2(x)dx (3.24)

between states (3.20) can be replaced by

X
(2)
12 ≃ (x1 − x2)

I

2
√

δ2 + I2
. (3.25)

Indeed, the second term in (3.23) can be omitted because its ratio to the first term is of
the order ν(|EF | log 2|EF |/ν)−1 ≪ 1. Besides, the term is zero if ϕ is even. The relative
order of the third term is the same as the second one.

In view of the above we obtain that the two-well contribution (3.9) to the a.c. con-
ductivity is

σ(2)(ν, EF ) = ν

∫ |y|2I2(y)

δ2 + I2(y)
δ(EF + ν − E

(2)
2 )δ(EF − E

(2)
1 )µ(g1)µ(g2)dg1dg2dy. (3.26)

We integrate first the product of two δ-functions with respect to g1 and g2, taking into
account that |g1 − g2| . ν ≪ |EF | ∼ g1,2. This allows us to replace µ(g1) and µ(g2) by
µ(−EF ), to set

δ =
1

2

√
ν2 − 4I2(y), (3.27)

and to obtain in view of (2.18)

σ(2)(ν, EF ) = νρ2(EF )

∫

2|I(y)|≥ν

|y|2I2(y)√
ν2 − 4I2(y)

dy. (3.28)
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Note that the restriction 2|I(y)| ≥ ν of the domain of integration in (3.28) is because of
the presence of the two δ-functions in (3.26), i.e., in fact, because of energy conservation.

In view of the inequalities 0 < ν << EF and formulas (3.15)–(3.16), we can replace
the condition 2|I(y)| ≥ ν by the condition |y| ≥ r(ν), where r(ν) is defined in (3.22).

The integrand in (3.28) is divergent at the lower limit |y| = r(ν) and decays exponen-
tially fast at infinity with the rate 2/rl in view of (3.15). Thus the main contribution to
the integral is due to a rl-neighborhood of the lower integration limit. This leads to the
asymptotic expression

σ(2)(ν, EF ) =
ν2ρ2(EF )Sd

4
rd+2
l

(
log

2I0

ν

)d+1

. (3.29)

where Sd is the area of the d-dimensional sphere. Taking into account relations (3.16),
and (3.13), we obtain finally that

σ(2)(ν, EF ) =
ν2ρ2(EF )Sd

4
|EF |−(d+2)/2

(
log

2|EF |
ν

)d+1

. (3.30)

In particular, we have for d = 1:

σ(ν, EF ) =
ν2ρ2(EF )

2
|EF |−3/2

(
log

2|EF |
ν

)2

. (3.31)

These are our versions of the Mott formula (1.3). They will be discussed in more details
in Section 5.

4 Correlation Functions

4.1 Generalities

In this section we study the following two-point correlation functions:

C1(x − y; ν, E) = 〈ρE(x, y)ρE+ν(y, x)〉, (4.1)

and
C2(x − y; ν, E) = 〈ρE(x, x)ρE+ν(y, y)〉, (4.2)

In writing the above expressions, we took into account the translation invariance in coor-
dinates of the correlation functions, following from the translation invariance in mean, a
fundamental property of disordered systems.

The function C1 of (4.1) is closely related to the a.c. conductivity. Indeed, recall the
spectral theorem, according to which

ρE(x, y) =

∫
δ(E − E ′)ψE′(x)ψE′(y)dE ′, (4.3)

where the symbol
∫

...dE denotes both the integration over the continuous spectrum and
the summation over the point spectrum.

Formulas (4.3), (3.4), and (4.1) imply that

σ(ν, E) = −ν2

2

∫
|x|2C1(x,E, ν)dx. (4.4)
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The function C2 of (4.2) is the local DOS–DOS correlator and is a characteristic of local-
ization, providing information on correlations of eigenstates whose energy difference is ν
and that are localized in spatial domains of distance x − y.

Comparing (1.1) for l = 2 and (4.1) and (4.2), we obtain the equalities

C1(x; ν, E) = K2(0, x; x, 0; E,E + ν),
C2(x; ν, E) = K2(0, 0; x, x; E,E + ν).

(4.5)

We list below certain properties of C1 and C2.

(i)
|C1(x; ν, E)| ≤ C2(x; ν, E). (4.6)

The inequality follows from the inequality |ρE(x, y)|2 ≤ ρE(x, x)ρE(y, y) that is a simple
consequence of the Schwarz inequality 〈ab〉2 ≤ 〈a2〉 〈b2〉 and of the spectral theorem (4.3).

(ii) ∫
C1(x; ν, E)dx = δ(ν)ρ(E). (4.7)

This relation follows from (4.1) and (1.2) and can be interpreted as a weak form of the
decay of the correlator C1 at infinity.

(iii)

lim
Λջ∞

|Λ|−1

∫

Λ

C2(x; ν, E)dx = ρ(E)ρ(E + ν). (4.8)

To prove this formula, we use the ergodic theorem for ρE(x, x), implying the validity of
the relation

lim
Λջ∞

|Λ|−1

∫

Λ

ρE(x, x)dx = 〈ρE(0, 0)〉 ≡ ρ(E)

on almost all realizations of the random potential. Applicability of the ergodic theorem
follows from the translation invariance in mean and the decay of the spatial correlation
in disordered systems (see e.g. [21]).

Formula (4.8) expresses the decay of correlations between two density operators in
(4.2) as |x1 − x2| ջ ∞. Indeed, its r.h.s. is the product of the averages of these two
operators (see (1.2)), and its l.h.s. is a weak form of the relation limxջ∞ C2(x,E,E+ν) =
ρ(E)ρ(E + ν).

(iv) Assume that for a certain E

Cα(x; ν, E) = δ(ν)pα(x; E), α = 1, 2. (4.9)

Then

(a)
p1(x; E) = p2(x; E) = p(x; E) ≥ 0;

(b)

p(x; E) =

〈
∑

loc

δ(E − Ej)ψ
2
j(0)ψ2

j(x)

〉
, (4.10)

where the symbol
∑

loc denotes the summation over the localized states only;
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(c) if one defines the density of localized states as

ρloc(E) =

∫
p(x; E)dx =

〈
∑

loc

δ(E − Ej)ψ
2
j(0)

〉
,

then
ρloc(E) ≤ ρ(E), (4.11)

and the inequality ρloc(E) > 0 is equivalent to the existence of localized states in
a neighborhood of E, and the equality ρloc(E) = ρ(E) is equivalent to complete
localization in a neighborhood of E.

The above properties follow from the spectral theorem (4.3). The functions pα(x; E) of
(4.9) are the ”diagonal parts” of the r.h.s. of equalities (4.5), viewed as functions of two
variables E1 = E and E2 = E + ν.

The property (iv) will not be used below. We presented this property to demonstrate
usefulness of the correlators C1 and C2 in the theory of disordered system. In particular, in
the classic paper by P. Anderson [4] the positivity of

∫
p(0; E)dE was used as an indicator

for localization. The quantum mechanical meaning of
∫

p(0; E)dE is the probability for
a particle to be in an infinitesimal neighborhood of the origin at time t = ∞, provided
that at t = 0 it was at the origin (the return probability density)[21].

4.2 Computations.

To apply the density expansion formula (2.10) to the correlation functions (4.1) and (4.2),
we write them in the form of extensive quantities per unit volume:

Cα(x) = |Λ|−1Φα(x), α = 1, 2, (4.12)

where

Φ1(x) =

∫

Λ

C1((x + a) − a)da =

∫

Λ

〈ρE(a, x + a)ρE+ν(x + a, a)〉da, (4.13)

and

Φ2(x) =

∫

Λ

C2((x + a) − a)da =

∫

Λ

〈ρE(a, a)ρE+ν(x + a, x + a)〉da, (4.14)

Now it is clear that the role of the functions Fl in (2.10) for Cαwill play Φα, written for
the l-well Hamiltonian (2.13).

By using these formulas, the zero-well and the one-well contributions to Cα, α = 1, 2
are absent by the same argument as for the conductivity. The two-well contribution C

(2)
1

to C1 is (cf (3.9)):

C
(2)
1 (x; ν, E) =

1

2

∑

m,n

∫
δ(E + ν − Em)δ(E − En)

· ψm(a)ψm(a + x)ψn(a)ψn(a + x)µ(g1)µ(g2)dadydg1dg2, (4.15)

where y is the separation between two wells, implicit in ψm,n and in Em,n.
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Since ν > 0, the diagonal part
∑

m=n of the double sum is zero. Moreover, as in the
case of the conductivity, we restrict ourselves to the two lowest levels of the spectrum of
H(2) of (3.10), found in the previous section in the framework of the projection method.
This leaves the term m = 1, n = 2 in the double sum of (4.15). By using (3.18), we can
integrate with respect to g1 and g2 the product of two δ-functions, fixing g1 and g2 by the

relations E + g +
√

δ2 + I2 = 0, E + g + ν −
√

δ2 + I2 = 0 . In view of the condition
0 < ν ≪ E we obtain, replacing µ(−g1) and µ(−g1) by ρ(E) in view of (2.18) (cf (3.28)):

C
(2)
1 (x; ν, E) = ρ2(E)ν

∫
daψ1(a)ψ2(a) (4.16)

·
∫

2|I(y)|≥ν

ψ1(a + x)ψ2(a + x)
ν√

ν2 − 4I2(y)
dy.

According to the previous section, if ν ≪ E, the restriction 2|I(y)| ≥ ν is equivalent to
|y| ≥ r(ν), where the resonant radius r(ν) ≫ rl is defined in (3.22). This and the form
(3.20) of the functions ψ1,2 imply the that if |g1 − g2| . ν ≪ g ∼ |E|, then

ψ1(a)ψ2(a) = cos θ sin θ
[
ϕ2(a) − ϕ2(a + y)

]
+ O

(
e−2r(ν)/rl

)
,

where y = x1−x2. The formula and the analogous formula with a, replaced by a+x, lead
to the following asymptotic expression for the two-well contribution C

(2)
1 to the correlator

C1:

C
(2)
1 (x; ν, E) =

2ρ2(E)

ν

∫
ϕ2(a)da (4.17)

·
∫

|y|≥r(ν)

I2(y)√
ν2 − 4I2(y)

[
ϕ2(a + x) − ϕ2(a + x − y)

]
dy.

Similar arguments show that the two-well contribution

C
(2)
2 (x; ν, E) =

1

2

∑

m6=n

∫
δ(E + ν − Em)δ(E − En) (4.18)

· ψ2
m(a)ψ2

m(a + x)µ(g1)µ(g2)dadg1dg2dy,

to the correlator C2 is with the same accuracy:

C
(2)
2 (x; ν, E) = C

(2)
1 (x; ν, E) (4.19)

+ ρ2(E)

∫
ϕ2(a)da

∫

|y|≥r(ν)

ν√
ν2 − 4I2(y)

ϕ2(a + x − y)dy.

We formulate now several properties of C
(2)
1 and C

(2)
2 , following from (4.17)–(4.19).

According to (4.17) ∫
C

(2)
1 (x; ν, E)dx = 0

This relation is in agreement with the exact sum rule (4.7), because formula (4.17) was
obtained under the assumption that ν > 0.

Likewise, we have the limiting relation

C
(2)
2 ջ ρ2(E), x ջ ∞, (4.20)

which is in agreement with the exact sum rule (4.8).

It is also easy to see that C
(2)
1 (x; ν, E):
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(i) has a positive peak of order

ρ2(E)

(
log

2I0

ν

)d−1

(4.21)

at the origin;

(ii) decays exponentially fast with the rate 2/rl for |x| ≫ rl, and is exponentially small
in the spatial domain rl ≪ |x| ≪ r(ν) = rl log 2I0/ν ≫ rl;

(iii) has a negative peak of the same order of magnitude (4.21) at a rl-neighborhood of
|x| = r(ν);

(iv) decays exponentially for |x| ≫ r(ν) with the rate 2/rl, thereby complementing (4.8).

This behavior of C
(2)
1 allows us to obtain the Mott formula (3.29) from the relations

(4.4) and (4.17).

The correlator C
(2)
2 has the same behavior as C

(2)
1 in x till |x| . r(ν), in particular it

is exponentially small in x if rl ≪ |x| ≪ r(ν). Then C
(2)
1 becomes asymptotically equal

ρ2(E) in the domain |x − r(ν)| . rl and it is equal to ρ2(E) for all x, |x| ≫ r(ν) (see
(4.20)). In view of spectral theorem one can expect ρE(x, x) to be proportional to ψ2

E(x)
in the strong localization regime (cf (5.18)). Then the factorization property (4.20) can
be interpreted as the statistical independence of the localized states of energies close to
each others with separation much bigger than r(ν). On the other hand, the exponential
smallness of C1,2 for rl ≫ |x| ≫ r(ν) can be interpreted as a kind of strong correlation
between states close in energy, that are not sufficiently well separated in space. These
correlations can be viewed as a manifestation of a certain ”repulsion” of nearby levels
in the sense that the probability that nearby levels are close tends to zero as the level
spacing tends to zero (see [12, 3]) for discussions of this property). Figures 1 and 2 show
examples of graphs of C1,2,
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Figure 1: One dimensional correlation function C1(x) and C2(x) with ν = 10−4, rl = 1 and

ρ(E) = 1.
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Figure 2: Two dimensional correlation function C1(x) and C2(x) with ν = 10−4, rl = 1 and

ρ(E) = 1.

Results similar to those outlined above were obtained as asymptotically exact ones in
[14] in the one dimensional case of the strong localization regime and in [10, 11] in the
one dimensional case of the weak localization regime (see the following section for more
details). We see, however, that in dimension greater than 1 the characteristic value (4.21)
of the peak of the correlation function (3.2) diverges as the difference of the energies
tends to zero. Thus, unlike the conductivity that has the log-factor in all dimensions, the
correlation functions C1,2 are logarithmically big in the energy difference for |x| ∼ r(ν)
only in dimension bigger than 1. Similar results were obtained in [15] in the frameworks
of the instanton approach (see Subsection 5.4).

The ”two-hump” states (3.20) appear in our approach just as a computational tool,
allowing us to find leading contributions to the low frequency conductivity and to the
correlators C1,2, by using the density expansion of Section 2.1, just as the ”one-hump”
states (3.11) are necessary to find the low energy asymptotic of the density of states in
our approach (see also Section 2.3), in the optimal fluctuation method [20, 21, 7], and its
version, known as the instanton approach (see Section 5.4, [15] and references therein).
On the other hand, the development of localization theory of the last decades suggests
that the ”one-hump” states carry certain information on the structure of genuine localized
states in disordered systems. This suggests the belief, that the ”two-hump” states also
reflect certain properties of genuine localized states. If this is true, we can interpret the
above results on the spatial behavior of the correlators C1,2 in the following way. The
existence of the length scale r(ν) of (3.22), that determines drastic changes of the spatial
behavior of the correlators C1,2, is due to the ”interaction” between close energy levels,
and the interaction mechanism is the resonant tunnelling between the ”bare” one-hump
states, i.e., between different centers of genuine states. The parameter I0 of (3.15) - (3.16)
is the characteristic interaction energy, determining the level splitting (spacing), and r(ν)
is the tunnelling distance, determined by the two energy scales (E = (El + E2)/2, v =
|E2−E1|, E >> ν). This inter-level interaction is a mechanism of a certain level repulsion,
that prevents the spatial domains where the states are essentially non zero to be close
and, as a result, leads to the exponentially small values of the two-point correlators for
rl << |x| << r(ν).
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5 Discussion

5.1 Corrections

We comment now on the corrections (next terms of the density expansions) to our formulas
of Sections 2–4. We are not able to prove the convergence of these expansions. We simply
argue that they should be asymptotic, i.e., that their terms should be small in successive
powers of ρ(E). We will begin from the density of states itself.

It is easy to see that the next term in the expansion of the DOS has the form

ρ(2)(E) =

∫ {[
δ(E − E

(2)
1 ) − δ(E − ε

(2)
1 )

]

+
[
δ(E − E

(2)
2 ) − δ(E − ε

(2)
2 )

]}
µ(g1)µ(g2)dydg1dg2.

where E
(2)
1,2 are given by (3.18), and ε

(2)
1 = −max(g1, g2), ε

(2)
2 = −min(g1, g2). Recall that

we assume that µ(g) is smooth enough and decays sufficiently fast for large g. Thus ρ(2)

will be of the order O(µ2) if the integral in the relative distance y between the wells will be

convergent. This fact follows from the inequality |Ek−ε
(2)
k | ≤ (

√
δ2 + I2(y)−|δ|) ≤ |I(y)|,

the exponential decay of I(y) (see (3.15)), and the smoothness of µ(g), allowing us to
transfer derivatives of delta-functions to the µ’s.

In the general case of the correction of the order l the appropriate integrals in relative
distances between wells will be convergent because of the subtractions of the functions
Fk of lower orders k < l from that of the order l in the lth term of the density expansion
(2.10), the sufficiently fast splitting (additive clustering) of negative eigenvalues E(l) of
the l-wells problem into the sums of negative eigenvalues E(k) of the k-wells problems
k < l and again because of the smoothness of µ(g).

The situation is less simple in the case of the conductivity as we have seen already
for l = 2. This is because of the presence of families of tunnelling configurations for any
number of wells (for example, for l = 3 there are two families: the equilateral triangles
and the three equidistant points on a straight line). These configurations are responsible
for the absence of decay (and even for the polynomial growth) in distances between

wells of matrix elements x
(l)
ij on the corresponding resonant sub-manifolds and for the

appearance of extra powers of log ν0/ν (where ν0 can be different from that of formula
(3.30)). However, since the dimension of these resonant manifolds grows slower than l,
these powers of log ν0/ν will be always multiplied by powers of ν, given by the dimensions
of the manifolds transversal to the resonant ones. This is why the higher terms in the
expansion of the low frequency conductivity should be small compared to the terms in
Mott’s formula (1.3).

In other words, it seems reasonable to believe that these higher resonant configura-
tions will produce new peaks and new length scales in the higher terms of the density
expansion of the correlators, but that the amplitudes of the peaks will be small relative
to the amplitude (4.21) of the peak due to the resonant pairs. One can also speculate
that for bigger densities of states (i.e., for energies closer to the mobility edge) higher
resonant configurations will play a more significant role, leading eventually to the loss of
the exponential decay of the correlators and to the delocalization transition according to
the scenario, outlined in [20, 30]

5.2. Asymptotically exact one-dimensional results
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The asymptotic behavior of the low frequency conductivity in the strong localization
regime of the one-dimensional Gaussian white noise potential, defined by the relations

〈V (x)〉 = 0, 〈V (x)V (y)〉 = 2Dδ(x − y), (5.1)

was studied in [14]. The potential is often used in the theory of one-dimensional disordered
systems (see [21] for results and references). In particular, the density of states ρ(E) and
the Lyapunov exponent γ(E) of the Schrödinger equation with this potential can be found
in quadratures. The strong localization regime corresponds to negative energies of large
absolute value

D2/3 ≪ |E|. (5.2)

In this case we have the following asymptotic formulas [21]

ρ(E) =
2|E|
πD

e−4|E|4/3/3D, γ(E) = |E|1/2. (5.3)

Moreover, the rate of the exponential decay of the eigenfunctions ψE is γ(E), because we
have with probability 1 [21, 27]:

lim
|x|ջ∞

|x|−1 log
(
ψ2

E(x) + ψ′2
E(x)

)1/2
= −γ(E) (5.4)

Hence, the exact asymptotic form of (5.3) for the localization radius

rl(E) = 1/γ(E). (5.5)

coincides with our approximate formula (3.13).
In the paper [14] the low frequency conductivity was found using the Grassmann

functional integral representation of the Green’s function, which leads to an integral rep-
resentation for the correlator C1 of (4.1) (recall that the conductivity is related to the
correlator via formula (4.4)). The condition (5.2) allowed the authors to apply the saddle
point method to this integral representation. We will summarize the results of [14] in a
form close to that of Sections 3 and 4.

The ”two-hump” states, similar to (3.20) appear in [14] as the saddle points of the
effective action for C1. The states have in general a rather complicated (two-instanton)
form, but in the low frequency limit 0 < ν ≪ |E| they can be written in the form (3.20),
in which the role of the ”bare” states play

ϕ1,2(x) =
1√

2rl cosh (x � y/2) /rl

, (5.6)

where y ≥ y0(ν) and
y0(ν) = rl log 8|E|/ν (5.7)

(cf (3.11), (3.12), and (3.22)). As for the angle θ of (3.20), it is defined by the relation
e−y/rl = e−y0/rl sin 2θ, that can be written as

tan θ =
e−y/rl

e−y0/rl +
√

e−2y0/rl − e−2y/rl

. (5.8)
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Introduce Ĩ(y) = Ĩ0e
−y/rl , where Ĩ0 = 4|E|. Then formula (5.7) can be written as Ĩ(y0) =

ν/2. These formulas have to be compared with (3.15), and (3.16). Furthermore, setting

δ̃ =

√
ν2/4 − Ĩ2(y) =

√
Ĩ2(y0) − Ĩ2(y), (5.9)

(cf (3.27)), we can write (5.8) in a form, analogous to that of (3.21).
According to [14], the correlator C1 has the following asymptotically exact form for

0 < ν ≪ |E|:

C1(x; , E) = 2ρ2(E)

∫
da

∫

y≥y0

ψ1(a)ψ1(a + x)ψ2(a)ψ2(a + x)
e−y/rl

√
e−2y0/rl − e−2y/rl

dy,

which can be written as (4.16) because, in view of the above notations, we can write the

expression e−y/rl
(
e−2y0/rl − e−2y/rl

)−1/2
in the last formula as ν

(
ν2 − 4Ĩ2(y)

)−1/2

.

Likewise, the asymptotically exact expression for the low frequency conductivity, ob-
tained in [14], coincides with our formula (3.28), and the correlator C2 has the form (4.19),
after the replacement EF ջ 4EF under the log sign. The correlator C2 was not considered
in [14], however it can be found by using the techniques, developed in the paper.

We note a certain difference of these asymptotically exact results and our results.
Namely, the role of the resonant distance r(ν) of (3.22) in the results of [14] plays (5.7)
that differs from (3.22) by the factor 4 under the logarithm. A possible simple reason
for this difference can be the fact that our estimate (3.16) for the amplitude I0 of the
overlap integral indicates only its order of magnitude, but not its precise value, or, more
generally, that the projection method is not precise enough.

5.3. Weak localization regime in one dimension.

The case of the Gaussian white noise (5.1) in one dimension has also been studied in the
weak localization regime of large positive energies

D2/3 ≪ E (5.10)

(see the works [6, 1, 21, 11, 10]). The density of states in this case is the free one
ρ0(E) = (2πE)−1/2, and the localization radius is

rl =
4E

D
. (5.11)

The rate of the exponential decay of wave functions is 1/rl with probability 1, as it was
in the strong localization regime (see (5.4)).

There are several techniques that can be used in this case [6, 1, 21, 11], and yield
the low frequency conductivity and the correlators C1 and C2 in quadratures. It turns
out that these quantities have qualitatively the same spatial behavior as in the strong
localization regime, provided that 2EF (i.e., 2I0 according to (3.16)) in (3.31) is replaced

by (D/2E
1/2
F ). Note that (D/2E

1/2
F )−1 coincides with the relaxation time τ , well known

from the kinetic theory [10]. According to [8], the quantities I0 and τ−1 have the same
meaning: they give the order of magnitude of the difference of the energies (spacing) of two
localized states, whose centers are separated by a distance of the order of the localization
radius. Similarly, the role of the resonant distance in the two-point correlators C1,2 plays
(cf (3.22) and (5.7)):

r̂(ν) = rl log 8/ντ , (5.12)
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and the rate of the exponential decay of the two-point correlators C1,2 near the origin
is 1/2rl. This rate is 4 times less than the rate 2/rl of these correlators in the strong
localization regime, found in Section 3 from the naive prediction, based on the spatial
behavior of the envelope of the eigenfunctions with probability 1 (see (5.4)), and in [14]
from an asymptotically exact analysis of the corresponding correlators. This difference
can be related to the fact that eigenfunctions in the one dimensional case in the weak
localization regime are much more spread out than in the strong localization regime.
Hence, their behavior on almost all realizations can differ from the behavior of their
moments, entering exact formulas (3.2), (4.1), and (4.2).

We stress that the basic properties of the strong localization regime and, in particular,
those, motivated assumptions and techniques of this paper, are different in several impor-
tant points from the basic properties of the weak localization regime in dimension 1, where
the mechanism of localization is not trapping in deep and rare localization wells but the
enhanced backscattering due to the destructive interference between incident and reflected
waves from many defects. One of manifestations of this complex statistical structure of
wave functions in the weak localization regime is the value of the rate of exponential decay
of the correlators C1,2, discussed above. Moreover, according to [11], the characteristic

length scale of the correlators C1,2 in the neighborhood of r(ν) is
√

r(ν)rl, i.e., is much
bigger than the scale rl in the neighborhood of the origin, while, according to our formulas
and respective formulas of [14], in the strong localization regime this scale is rl both near
r(ν) and the origin.

5.4. Instanton approach.

This is a version of the variational method, proposed first by I. Lifshitz [20] to find the
asymptotic form of the density of states and other characteristics of disordered systems
in the strong localization regime (see e.g. [7]). The instanton approach was used to
analyze the correlators C1,2 and the low frequency conductivity for the white noise ran-
dom potential in d dimensions in paper [15], in which the reader can find references on
earlier applications of the approach. It is based on the assumption that in the strong
localization regime the two-point correlators correspond to the two-well potential that
minimizes the total probability distribution of the random potential under the constraints
that H(V )ψk = Ekψk, k = 1, 2 and that the well centers of the ”optimal” potential are a
distance y = x1−x2 apart. This has to be compared with the DOS computation, where it
is assumed that the optimal potential is a well for which H(V )ψ = Eψ (see [21, 7]). The
derivation of final formulas in [15] is rather involved because of existence of two energy
scales and of collective modes, in particular those that correspond to the center of mass
(x1 + x2)/2 of the optimal potential (it is an analogue of our parameter a in (4.12) -
(4.14)). As a result, it is shown in [15] that in the strong localization regime (called the
hydrodynamic regime in [15]) the correlator C1 and the low frequency conductivity have
qualitatively the same form as those found in Sections 3–4.

We note also that the 1-dimensional results for the white noise potential of [14] can be
viewed as a justification of the instanton approach in the one-dimensional case, because
it was shown in this paper that the two-well potential of a special from is indeed a saddle
point of the respective functional integral.

5.5. Maryland model.

The most widely known signature of localization is the exponential decay of the localized
states at infinity. However, the initial derivation of the Mott formula (1.3) as well as
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the above derivation are based not only on the exponential localization, reflected in the
exponential decay of ”bare” states of the independent quantization in each localization
well, but also on the weak correlation between the spectra of independent quantization,
reflected in statistical independence of localization wells in our effective potential (2.1)
and in appearance of the ”two-hump” states in our calculations of Sections 3, and 4.
The relevance of the last property becomes clearer if one recalls the results, obtained for
an explicitly soluble model of an incommensurate system, known as the Maryland model
[13, 26, 28]. This is a multi-dimensional tight binding model with an arbitrary short-range
and translation invariant hopping and with the potential of the form

V (x) = g tan π(α ⋅ x + ω), x ∈ Zd, (5.13)

where g > 0 is the coupling constant, α is a d-dimensional vector with incommensurate
components, and ω ∈ [0, 1) is a phase, that plays the role of a randomizing parameter. It
was found in the mentioned papers that if for some C > 0 and β > d the vector α satisfies
the Diophantine condition

|α ⋅ x + m| ≥ C/|x|β (5.14)

for any integer m and x 6= 0, then all the states of the model are exponentially localized
for any coupling constant, any energy, and arbitrary dimensionality d of the lattice Zd.
Since the potential has arbitrary high peaks, the model can be viewed as an explicitly
soluble model of the strong localization regime. The spectrum of the model consists of
the solutions of the equation

N(Et(ω)) = α ⋅ t + ω (mod 1), (5.15)

where t is a lattice point, N(E) =
∫ E

−∞ ρ(E ′)dE ′,

ρ(E) =
1

π

∫

Td

g

(w(k) − E)2 + g2
dk,

is the density of states, in which w(k) is the Fourier transform of the hopping coefficient,
and Td is the d-dimensional torus.

It is easy to show that for each point t of the d-dimensional lattice the equation has
a unique solution, that if Et1(ω) = Et2(ω), then t1 = t2, and that the set {Et(ω)}t∈Zd of
eigenvalues is dense for any ω ∈ [0, 1).

The corresponding eigenfunctions ψt, t ∈ Zd have the form

ψt(x) = χ(x − t, Et(ω)), (5.16)

where χ(x,E) decays exponentially in x:

|χ(x,E)| ≤ Ce−|x|/rl (5.17)

with some positive rl(E). Formulas (5.15)–(5.17) seem fairly natural in the case of the
strongly incommensurate potential (5.13), where due to the absence of any symmetry the
only good quantum number to label levels and states is the ”center” of localization well.

One can also say that Mott’s notion of the localization centers is explicit here, because,
according to (5.15) and (5.16), for any lattice point t there exists a unique eigenvalue
Et, whose eigenfunction is exponentially localized in a neighborhood of t. Thus the set
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of localization centers coincides with the whole lattice and the density of localization
centers, whose states have energies in a neighborhood of a given E is the density of states
ρ(E). This fact can be interpreted as the uniform distribution in space of the localization
centers, corresponding to energy E, and is in qualitative agreement with our assumptions
of Section 2, formula (2.18) in particular.

On the other hand, the low frequency conductivity and the correlators C1 and C2 for
the potential (5.13) have a rather different structure than in the case of random potential
discussed in Sections 3 and 4. This can be seen from the form of the kernel ρE(x, y),
following from (5.15) - (5.16):

ρE(x, y) =
∑

t∈Zd

δ(E − Et(ω))χ(x − t, Et(ω))χ(y − t, Et(ω)). (5.18)

Consider first the correlator C2. Plugging (5.18) into (4.2), and recalling that the averaging
operation 〈...〉 here is the integration with respect to the parameter ω ∈ [0, 1) of (5.13), we
find first of all that the correlator C2 is not a regular function. Rather, there exists a dense
set of special frequencies for which C2 has δ-peaks. If, however, we are interested in the
gross features of C2, then we can apply a certain smoothing procedure, say ν−1

∫ ν

0
...dν ′.

Then we obtain that there exists the length scale

r1(ν) =

(
ν0(E)

ν

)1/β

, ν0(E) = C/ρ(E), (5.19)

(here β and C are defined in (5.14)), such that C2(x; ν, E) is of the order e−r1(ν)/rl if
|x| ≪ r1(ν), and C2(x; ν, E) is ρ2(E) if |x| >> r1(ν), and the transition from the first
value to the second one is in the layer |x − r1(ν)| ⋍ rl, where rl is defined in (5.17).
We see that the qualitative form of the correlator C2 for |x| >> rl is similar to that in
the random case, however there is no peak at the origin and the length scale (5.19) is
polynomial in ν (cf (3.22)). In addition, the length scale (5.19) has a different origin than
(3.22): it is not due to the tunnelling for ”soft” resonant pairs, but due to the Diophantine
condition (5.14), which determines now the distance to the nearest localization well of an
almost same energy. At low frequencies r1(ν) is much bigger than the resonance tunnelling
distance r(ν) of (3.22). This leads to the qualitative change of the form of the correlator
C1. Indeed, by using the same argument, we find that C1 is of the order e−2r1(ν)/rl ≪ 1
for all x. This and formula (4.4) imply that the low frequency conductivity is of a similar
order [26]

σ(ν, EF ) ⋍ exp{−(ν1(E)/ν)1/β}, ν1 =
2βν0

rβ
l

. (5.20)

The significant difference between (5.20) and (1.3) can be related to the absence of long
range tunnelling in the Maryland model. The spectrum of the model is too ”rigid”, the
energy levels are too regularly distributed and small level spacing are too rare for the long-
range tunnelling to happen. This illustrate the role of resonance tunnelling in obtaining
the Mott formula as well as the range of applicability of the approach of this paper, based
on ansatz (2.1) and on the density expansion. Besides, we see that the low frequency
conductivity provides a physical distinction between the strong localization regimes of a
random shortly correlated and smoothly distributed potential, and the incommensurate
potential (5.13) (recall that the density of states and the Lyapunov exponent coincide
for the Maryland model and for the random model in which the potential is a collection
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of independent identically distributed Cauchy random variables, and in which we expect
our approach to be applicable). Besides, recalling the structure of the localized states
for smooth incommensurate potentials of large amplitude in one dimension [29], e.g. the
potential g cos 2π(αx+ω), g >> 1, one may expect that these potentials will be closer to
random potentials in the spatial behavior of two-point correlators and the low frequency
asymptotics of the conductivity.

Appendix

One-dimensional case with delta potentials

To support the usage of the projection method by which the bound states of the two-well
Hamiltonian in Section 3.2 were found, we will consider here the one-dimensional case
with two delta-wells. The corresponding Hamiltonian is:

H(2) = − d2

dx2
− 2

√
g1δ(x − x1) − 2

√
g2δ(x − x2), (A.1)

where g1,2 > 0. In this case each of two one-well Hamiltonians

− d2

dx2
− 2

√
g1,2δ(x − x1,2)

has the unique bound state

ϕ1,2(x) = g
1/4
1,2 ϕ(

√
g1,2x), ϕ(x) = e−|x|, (A.2)

corresponding to the energy
E

(1)
1,2 = −g1,2. (A.3)

Since the Hamiltonian H(2) is invariant under translation, we can replace x1 by 0, and x2

by y. It is easy to see that H(2) has two bound states:

ψ1,2(x) =
[√

g1ψ(0) exp
(
−

√
|E||x|

)
+
√

g2ψ(y) exp
(
−

√
|E||x − y|

)] ∣∣∣
E=E1,2

, (A.4)

where E
(2)
1,2 are the corresponding energies. They solve the equation:

(
√
|E| − √

g1)(
√
|E| − √

g2) =
√

g1g2 exp
(
−2

√
|E||y|

)
(A.5)

Assuming the same accuracy as in Section 3.2 (|g1 − g2| ≪ g1,2, |y| >> g1,2), we find

that the solutions E
(2)
1,2 of (A.5) have the form (3.18) in which I(y) = 2ge−

√
g|y| (cf (3.15) -

(3.16)), and the eigenfunctions (A.2) have the form (3.20) - (3.21) in which ϕ1,2 are given
by (A.2).

Another way to act in this case is to plug the exact states and levels, given by (A.4) -
(A.5), into the expressions (3.9), (4.15) and (4.18) for the two well contributions for the
conductivity and the correlators C1, and C2. This leads to rather complicated formulas
which, however, have the same asymptotic behavior as our formulas (3.28), (4.17), and
(4.19) in the asymptotic regime 0 < ν ≪ |E|.
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