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émanant des établissements d’enseignement et de
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Field-Induced Disorder Point in Non-Collinear Ising Spin Chains

A. Vindigni∗

Universita′ di Firenze Dip. Chimica Inorganica, 3,

via della Lastruccia, 50019 Sesto Fiorentino, Italy

N. Regnault and Th. Jolicoeur†

Laboratoire Pierre Aigrain, ENS, Département de Physique, 24, rue Lhomond, 75005 Paris, France

We perform a theoretical study of a non-collinear Ising ferrimagnetic spin chain inspired by the
compound Co(hfac)2NITPhOMe. The basic building block of its structure contains one Cobalt
ion and one organic radical each with a spin 1/2. The exchange interaction is strongly anisotropic
and the corresponding axes of anisotropy have a period three helical structure. We introduce and
solve a model Hamiltonian for this spin chain. We show that the present compound is very close
to a so-called disorder point at which there is a massive ground state degeneracy. We predict
the equilibrium magnetization process and discuss the impact of the degeneracy on the dynamical
properties by using arguments based on the Glauber dynamics.

PACS numbers: 75.50.-y, 75.50.Xx, 75.10.Pq, 75.10.Jm

I. INTRODUCTION

Recent advances in coordination chemistry have led to the synthesis of low-dimensional magnets with unconventional
magnetic properties [1, 2]. Some of them are spin chains that exhibit complex magnetization behavior under an applied
external field. The Ising ferrimagnetic spin chain Co(hfac)2NITPhOMe (CoPhOMe in the following) [3, 4, 5, 6] is the
first quasi-1D compound in which slow dynamics of the magnetization has been directly observed. For this system
it has been shown that the very long time scale required for establishment of equilibrium preclude the experimental
determination of the static magnetization curve at low temperature.

This very special magnet has two kinds of spins S=1/2 : half of them are Cobalt ions Co2+ and the other half are
organic radicals NITPhOMe. They strictly alternate along the chain and have highly anisotropic exchange interactions
best described by an Ising-like Hamiltonian. The chain itself describes a spiral in real space so that the local anisotropy
axis have a complex pattern : see Fig.(1). The primitive cell contains three Cobalt ions alternating with three radicals.
Each Cobalt is related to the other Cobalts by a 120◦ rotation around the c-axis and has a local anisotropy axis which
makes an angle θ of approximately 50◦ with c. The effective S=1/2 spin of the Cobalt and the S=1/2 spin of the
radical have different g-values and thus the chain behave as a unidimensional ferrimagnet due to non-compensation
of the magnetic moments. Only part of the magnetization curve is known because the exchange energy scale is very
high in terms of accessible magnetic fields. Experiments show a metamagnetic jump at low fields, much less than the
value expected for full saturation [5, 6].

In this paper we investigate the equilibrium, static behavior of a model Hamiltonian for CoPhOMe that we believe
encompasses all the main physical characteristics of this magnet. We show that this model Hamiltonian can be tuned
through a so-called disorder point [7, 8] as a function of the direction θ of the local axes and magnitude of an applied
external uniform magnetic field. In the case of CoPhOMe, the angle θ is not known precisely but our estimates show
that it is very close to the critical value θc ≈ 55◦ expected for the disorder point (cos θc = 1/

√
3, the magic angle of

NMR).
In a 1D Ising system with nearest and next-to-nearest neighbor exchange it is known that under certain con-

ditions [8], the spin correlation function can change from a monotonic exponential decay to a damped oscillating
behavior, passing through zero when the temperature has a special value called the disorder point. We find that a
similar phenomenon is driven by the geometrical arrangement of anisotropic magnetic centers even in the sole presence
of nearest-neighbor interactions. The Hamiltonian for CoPhOMe is complicated by the fact that the eigenvectors of
the g-tensors do not coincide with the axis of the chain so that it is not obviously diagonal. We show that it is possible
to choose the quantization axis of the spins so that all the eigenvalues can be computed exactly. All thermodynamic
properties as well as spin correlations may then be obtained by a transfer-matrix computation. We are then able to
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Figure 1: The helical structure of the 1D magnet CoPhOMe. Each anisotropic center has a local axis of anisotropy ẑi. These
axes are all tilted by a common angle θ with respect to the chain axis c. The angle between the projections of ẑi and ẑi+1 on
the plane perpendicular to c is equal to 2π

3
.

show that, in a well defined range of orientation, the correlation function can switch from a monotonic to an oscillating
behavior by application of a magnetic field. The zero correlation function condition occurs at a given temperature-
dependent field hd(T ) (disorder field). The monotonic behavior appears when the ground state is ferrimagnetic while
the oscillating behavior is related to an antiferromagnetic arrangement of the spins.

The disorder point with extensive ground state entropy is reminiscent of recently observed disorder effects due to
non collinearity in ordered systems (ex. the spin ice residual entropy in DyTi2O7 [9, 10, 11]).

In section II we give an analytical solution to the eigenvalue problem for a ring of N spins; we will show that it
is possible to have a non trivial plateau in the zero temperature magnetization curve at an arbitrary small field hc.
In section III we study the thermodynamics of the infinite chain obtaining the geometrical disorder condition in zero
field. In section IV we discuss the consequence of our findings on the dynamical properties. Finally section V contains
our conclusions.

II. ANALYTICAL SOLUTION OF THE EIGENVALUE PROBLEM

In the spin chain compound CoPhOMe [4, 6] the ith elementary unit cell for spins consists of a pair of spins
one-half, with Hamiltonian :

Hintracell
i = J tzi

i s
zi

i − µB giso B · ti − µB gani (B · ẑi) s
zi

i . (1)

In this equation, the ti are spin-1/2 operators describing the isotropic centers NITPhOMe and the si describe the
Cobalt S=1/2 anisotropic ions. For the isotropic organic radicals we have giso = 2. The Ising-like coupling [12] takes
place along the local axis of anisotropy ẑi. The exchange coupling between the radical and the Cobalt is strongly
antiferromagnetic [5]. The Cobalt ions are coupled to the external field only by the spin component along the axis of
anisotropy : the ẑi unit vector defines this direction. The restriction to a tzi s

z
i Ising coupling, the form of the g tensors

and the fact that the anisotropic centers do not interact directly allow an analytical treatment of the problem, even
when the local directions of anisotropy ẑi are not collinear. Our calculation is performed for the particular geometry
in which the magnetic centers are arranged in a helical structure with a threefold periodicity (see figures 1,2). In the
helical structure of CoPhOMe, the elementary unit cell of the crystal consists of three cells of the type described by
Equation (1), with three vectors ẑ1, ẑ2, ẑ3. The angle of these vectors with the chain axis c is θ and the angle between
their projections in the plane perpendicular to c is 2π/3 (their vector sum is along c).

Since the value of the angle θ is not known precisely from experiments, we will solve the problem for arbitrary
values of θ and obtain constraints in the case of CoPhOMe. From the study of a monomeric complex of formula
Co(hfac)2(NITPhOMe)2 where the Cobalt ion coordination is practically the same as in CoPhOMe, it is known that
θ is close to 50◦.

The intracell Hamiltonian Eq.(1) in zero field is trivially diagonal on the basis |miso〉 ⊗ |mani〉 if we take the
quantization axis to be the local axis of the anisotropic center. It is important to note that this axis is a function of
the site and is not fixed over the whole system. The ti spin will interact also with the other nearest neighbor si+1

with the same Ising Hamiltonian :

Hintercell
i,i+1 = Jt

zi+1

i s
zi+1

i+1 . (2)
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Figure 2: The helical structure of CoPhOMe as seen from the chain axis of symmetry. The anisotropic Cobalt ions are depicted
as ellipsoids and the radical as spheres.

For the sake of clarity we have labelled in (2) the two z axes with the index of their respective cell. If we want to
express all the operators in the same frame, we can simply choose the crystal frame. Thus zcrys is now the chain axis
and a perpendicular direction xcrys can be chosen along the projection of one of the ẑi vectors, say ẑ1. The simplest
way to pass from the local frame to the crystal frame is to rotate the tensors :

J =





0 0 0
0 0 0
0 0 J



 , g =





0 0 0
0 0 0
0 0 gani



 , (3)

as ordinary 3x3 matrices. If R(ϕ, θ, ψ) is the rotation matrix parameterized by Euler angles that transforms the
cartesian components of a general vector from the crystal frame to the frame of the ith anisotropic center, the relative
J i (gi) tensor is transformed according to the relation J → R(ϕ, θ, ψ = 0) J RT (ϕ, θ, ψ = 0) (a diagonal matrix in
which the first two terms are equal is insensitive to the ψ rotation). More explicitly, the transformation corresponds
to a rotation of ϕ about the axis of the helix and a rotation of θ about the new y axis. In our particular geometry,
three successive local z axes are associated to the values ϕ = 0, 2

3π, 4
3π (see figures 1,2), in such a way that the

effective magnetic cell of the chain contains six spins. The Hamiltonian expressed in the crystal frame is then :

H =

N/2
∑

i=1

ti−1 · J i · si + ti · J i · si − µB

N/2
∑

i=1

gisoB · ti + B · gi · si (4)

where the rotated tensors J i and gi are periodic with period three with respect to the site index i. We take periodic

boundary conditions : site N
2 + 1 is identified to site 1. The Landé factor of the isotropic centers is insensitive to the

rotation.

A. Local basis rotation

To diagonalize the generalized Ising-like Hamiltonian, we first use the local axis ẑi as quantization axis for the Cobalt
spin si. Hence we can replace the spin operator s

z
i by its eigenvalue σi/2, σi = ±1 and we set h̄ = 1 everywhere.

This is not enough to convert the Hamiltonian to a diagonal form because the other spins ti appear through their
projections on two special directions : ẑi as well as ẑi+1 in Eq.(2). However, once we have used this basis we have to
solve a set of decoupled two-dimensional problems since the Hamiltonian is now given by :

H({σi}) =
∑

i

J

2
[σi t

zi

i + σi+1 t
zi+1

i ] − µB giso B · ti −
1

2
µB gani σi (B · ẑi) (5)

It is an explicit function of the now classical spin configuration {σi}.
We see now that there is an effective magnetic field acting upon the spins of the radicals but no direct interactions

between them :

H({σi}) =
∑

i

ti · heff
i − 1

2
µB gani σi (B · ẑi), (6)
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where the effective field is a function of the applied magnetic field as well as of the nearest Cobalt spins configuration :

h
eff
i (σi, σi+1,B) =

J

2
(σi ẑi + σi+1 ẑi+1) − µB giso B. (7)

This problem can then be solved immediately : the eigenenergies of each radical spin are τih
eff
i /2 where τi = ±1 and

heff
i is the modulus of the effective field in Eq.(7). All eigenenergies of the spin problem are thus given by :

E({σi}, {τi}) =
1

2

∑

i

{τi heff
i (σi, σi+1,B) − µB gani σi (B · ẑi)}. (8)

One has now to deal with a classical spin problem. It is straightforward to obtain the equilibrium properties of this
model for an arbitrary orientation of the magnetic field. We will concentrate on the case where the applied field is
along the chain axis since it reveals all the physical features of this problem. From Eq.(8) we see that the ground
state spin configuration is obtained when all variables τi are equal to -1 for any applied field. The effective field takes
only three distinct values :

h
eff
i (σi = +1, σi+1 = +1,B) ≡ λ++ = J

√

1

2
(1 + cos γ) + g2

iso(
h

J
)2 + 2giso

h

J
cos θ, (9)

h
eff
i (σi = −1, σi+1 = −1,B) ≡ λ−− = J

√

1

2
(1 + cos γ) + g2

iso(
h

J
)2 − 2giso

h

J
cos θ, (10)

h
eff
i (σi = ±1, σi+1 = ∓1,B) ≡ λ+− = J

√

1

2
(1 − cos γ) + g2

iso(
h

J
)2. (11)

In these equations, we have defined h = |µB |B, θ is the angle between the z-axis and the vectors ẑi and γ is the angle
between two consecutive ẑi vectors. In the umbrella structure of CoPhOMe, one has cos γ = 3

2 cos2 θ− 1
2 . To get the

ground state we can equivalently consider the simplified energy :

Ẽ({σi}) =
1

2

∑

i

{−heff
i (σi, σi+1,B) − µB gani σi (B · ẑi)}. (12)

With only three values for the effective field it can be written as :

Ẽ({σi}) = −Jeff

∑

i

σiσi+1 −Beff

∑

i

σi + Cst, (13)

where :

Jeff =
1

4
{λ++ + λ−− − 2λ+−} and Beff =

1

2
µB gani B cos θ +

1

4
{λ++ − λ−−}. (14)

From these equation it is now clear that the Cobalt spins will adopt a ferromagnetic (F) or antiferromagnetic (AF)
configuration in the ground state according to the value of the parameter Jeff . If the ground state is AF in zero
field, increasing the applied field will ultimately turn the system to a F state. Comparing energies, we find that this
happens for the following condition :

λ+− − λ−− = |µB | gani B cos θ. (15)

(We use conventions for which µB < 0 and the F state at large field has all σi = −1).

In zero field, the ground state is ferromagnetic for θ < θc where θc the value of θ for which cos γ = 0 : cos θc = 1/
√

3
hence θc ≈ 55◦. It is AF for larger values of θ. Geometrically at the critical angle θc, the units vectors ẑi are all
perpendicular and cos γ = 0 : this is the configuration called the ”magic angle” in NMR. If we have a zero-field AF
ground state and apply a field then at some point it will be replaced by the F state : this will happen with a jump of
the magnetization since the levels do simply cross. The location of the critical field as a function of the applied field
and the angle θ is displayed in Fig.(3)

For θ = θc we have a 2
N
2 degenerate ground state for all configurations of the Cobalt spins.



5

h c
/J

 0

 0.2

 0.4

 0.6

 0.8

 1

 90 85 80 75 70 65 60 55 50

θ

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 54  55  56  57  58  59  60

Figure 3: The critical field between F and AF ground states as a function of the angle θ for giso = 2 and gani = 9.5, 9, 8.5, 8, 7.5, 7
from bottom to top.
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Figure 4: Ground state magnetization curve for θ = 50◦, 55◦, 60◦, 65◦. We use gani = 9 and giso = 2 as appropriate for
CoPhOMe.

B. The T = 0 Magnetization Curve

We now discuss the magnetization curve at zero temperature of the previous model. From the ingredients of the
previous section, it is straightforward to derive simple expressions for the magnetization. In the ground state we have
the sum of the contribution of the Cobalt spins that are always completely polarized along their local anisotropy axis
and the contribution from the radical spins that always follow exactly the local field :

〈M〉 =
∑

i

1

2
µB gani σi ẑi −

1

2
µB giso

h
eff
i

‖heff
i ‖ . (16)

This expression is valid for an arbitrary spin configuration. In the F state the magnetization is nonzero only along
the z axis and equal to :

2

N
〈Mz〉 = −1

2
µB gani cos θ +

1

2
µB giso

J cos θ + µB gisoB

λ−−
, (17)
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N is the total number of spins Cobalt + radical. In the AF state, the magnetization from Eq.(16) is zero in zero
applied field and again only along z in nonzero field. We find then :

2

N
〈Mz〉 =

1

2
µ2

B g
2
iso

B

λ+−
. (18)

Sample curves are displayed in Fig.(4). For F ground states the magnetization process is smooth and converges to
a saturation value (gani cos θ + giso)|µB |/2 which is reached however only at B → ∞. In the AF case, for θ large
enough there is a jump of the magnetization when the spins reorients themselves into the ferromagnetic state.

From the shape of the known magnetization curve of CoPhOMe, we find that we need an angle θ which is close to
the critical value. From the saturation value we get an estimate of the g-factor of the Cobalt ions once we assume
that the g of the radical is extremely close to 2. Considering present experimental data [6], the preferred values are
gani ≃ 9 and θ ≃ 54◦.

III. FINITE TEMPERATURE PROPERTIES

The formula (8) we have found for the eigenvalues of the closed ring can be used to obtain the finite temperature
properties, in the thermodynamic limit, with the transfer matrix method. The analytical treatment will be given only
for the field applied along the chain axis; in this case two successive anisotropic spins experience the same field and
the magnetic unit cell consists of one isotropic-anisotropic pair.

A. The σ-σ Transfer Matrix

If we explicitly sum over the τ coordinates we can define the σ-σ transfer matrix :

Tσ,σ′ = exp
[

−1

4
β gani h cos θ (σ + σ′)

]

∑

τ=±1

exp
[β

2
τ heff(σ, σ′, B)

]

, (19)

and obtain the well known expression for the partition function of the problem :

Z = T r
[

T
N
2

σ,σ′

]

= Λ
N
2

+ + Λ
N
2

− (20)

where Λ+ and Λ− are the eigenvalues of the matrix Tσ,σ′ . In the thermodynamic limit the largest eigenvalue dominates

and Z = Λ
N
2

+ . The spin correlation function for N → ∞ is given by :

〈σkσl〉 = |〈φ+|σ|φ+〉|2 + |〈φ+|σ|φ−〉|2
(Λ−

Λ+

)|k−l|

, (21)

where the |φ±〉 are the two eigenvectors of the transfer matrix (19).

B. The Zero-Field Spin Correlation Function

The first term in (21) is simply the square expectation value of each anisotropic spin and it is different from zero
only in non zero field. In zero field the solution to the eigenvalues problem gives :

Λ± = 2[cosh(ν↑↑) ± cosh(ν↑↓)] and |φ±〉 =
1√
2

(

1

±1

)

, (22)

where :

ν↑↑ =
1

2
βλ++, ν↑↓ =

1

2
βλ+−, ν↓↓ =

1

2
βλ−−, (23)

and in zero field ν↑↑ = ν↓↓. The σ-σ correlation function is :

〈σkσl〉 =

[

cosh(ν↑↑) − cosh(ν↑↓)

cosh(ν↑↑) + cosh(ν↑↓)

]|k−l|

, (24)
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Figure 5: Dependence upon the angle θ of the Cobalt correlation length ξ in zero field for temperatures given by J/T =
2, 1.5, 1, 0.5 from top to bottom.

that decays exponentially with increasing spin separation for every non zero temperature.
For ν↑↑ > ν↑↓ (θ < θc) the decay of (24) is monotonic whereas for ν↑↑ < ν↑↓ (θ > θc) it is oscillatory with sign

(−1)|k−l|. For θ = θc the expression (24) vanishes at any temperature; this is related to the fact that the energies (8)
do not depend on the σ coordinates. The thermal fluctuations lead to the same behavior in the Ising ferromagnet
with an antiferromagnetic next-to-nearest neighbor interaction, but not strong enough to destroy the ferromagnetic
structure of the ground state [7, 8]. Here it is the θ angle which is the tuning parameter instead of the temperature
that makes the system pass through a disorder point at θ = θc. From the Eq.(24) we can also obtain an expression
for the zero-field correlation length :

ξ−1 = −1

2
ln

∣

∣

∣

∣

cosh(ν↑↑) − cosh(ν↑↓)

cosh(ν↑↑) + cosh(ν↑↓)

∣

∣

∣

∣

. (25)

The factor one half comes from the fact that the correlation function Eq.(24) corresponds to an actual separation of
2|k − l| magnetic centers.

The Eq.(25) gives back the Ising model correlation length when θ = 0. From figure (5) we observe that at any
temperature while increasing θ the correlation length decreases until it reaches θc. When θ > θc it increases again,
but in this case the effective coupling between the si spins is antiferromagnetic. For θ = θc it vanishes, as well as the
correlation function, at all temperatures.

C. Field dependence of the critical point

It is straightforward to wonder if it is possible to have a vanishing correlation length for θ 6= θc using the external
field as a tunable parameter. This happens when the smallest eigenvalue of the transfer matrix is zero (see equation
(21)). The eigenvalues in presence of the field are :

Λ± = X cosh(ν↑↑) +X−1 cosh(ν↓↓) ±
√

[

X cosh(ν↑↑) −X−1 cosh(ν↓↓)
]2

+ 4 cosh2(ν↑↓), (26)

where :

X = exp(−β
2
ganih cos θ) (27)

The Λ− = 0 condition is fulfilled when :

cosh(ν↑↑) cosh(ν↓↓) = cosh2(ν↑↓). (28)

This equation can be solved numerically for any θ in order to obtain what we call the disorder field h = hd for which :

〈σkσl〉 − 〈σk〉2 = exp

[

−2|k − l|
ξ

]

= 0. (29)
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Figure 7: Correlation length as a function of h/J = |µB |B/J for J

T
= 0.5 and θ = 52◦, 53◦, 54◦, θc.

A numerical analysis shows that the Eq.(28) has a solution only for 0 < θ ≤ θc. In the Ising limit (θ = 0) the equation
(28) reduces to :

cosh2(2βJ) − tanh2(βgisoh/2) sinh2(2βJ) = 1, (30)

that has no solution for any h <∞. On the other hand we know that for θ = θc the disorder field is hd = 0. Moreover
the Eq.(28) is symmetric in the exchange h ↔ −h. Since there is no physical reason to think the hd dependence on
θ to be discontinuous this means that the disorder field already takes all the allowed values in the range 0 < θ ≤ θc,
leaving no solution to the Eq.(28) for θ > θc. This is in agreement with the numerical results.

In figure (6) the disorder field dependence on the temperature is shown for different values of θ. This dependence
is less strong for θ approaching θc. For θ = θc, we find a line lying on the zero-field axis.

In figure (7) we note that the critical point appears as cusp in the correlation length vs field plot. If we consider
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first the case of θ < θc, when the field is switched on, the correlation length decreases because the fluctuations of the
spins are progressively damped by the effect of the field; in this region the nearest Cobalt spins are ferromagnetically
correlated (〈σkσk+1〉 − 〈σk〉2 > 0). Then ξ abruptly drops to zero for h = hd, at the critical point. For greater fields
the fluctuations are antiferromagnetically correlated (〈σkσk+1〉 − 〈σk〉2 < 0), even if the field orders the Cobalt ions
in a relative ferromagnetic arrangement. It is because of this increasing order that the correlation length, a part from
the narrow region of the cusp, smoothly goes to zero for h→ ∞.

In the case of θ = θc the cusp lies at the origin and so the σ-σ fluctuations in presence of the field are always
antiferromagnetically correlated. From this point of view, in this particular geometry, the behavior is similar to the
one we have for θ > θc. It is worth noticing that for θ > θc the sign of the fluctuations is always coherent with the
structure of the zero-field ground state, while for θ = θc the zero-field expectation value of each si spin vanishes.

IV. STOCHASTIC DYNAMICS

In the last section we have seen that many different behaviors of the correlation length appear by varying the
geometrical (θ) and the external parameters (T and h) of the system. The most peculiar feature of the real compound
CoPhOMe is the slow relaxation of the magnetization on a macroscopic scale [4]. This behavior has been explained
up to now only through a modified Glauber model [6] that was based only on a simplified Hamiltonian that did not
contain all the complexity of Eq.(4). From a theoretical point of view the correlation length and the slowest time
scale are usually related by mean of a dynamical critical exponent. Thus we can easily imagine this system to show
a very rich scenario in the long time scale dynamics too. In this section we investigate the implications of detailed
balance on the transition functions W (σk) and W (τk) involved in a Glauber-like approach [13]. The Eq.(8) in zero
field can be written as :

βE(σ, τ) =

N/2
∑

i=1

τi

[

ν↑↑ + ν↑↓
2

+ σiσi+1
ν↑↑ − ν↑↓

2

]

. (31)

The ratio of the two equilibrium probabilities corresponding to the configurations (σ1, τ1, . . . σk, τk, σk+1, . . . σN
2
, τN

2
)

and (σ1, τ1, . . . σk,−τk, σk+1, . . . σN
2
, τN

2
) is :

Peq(−τk)

Peq(τk)
=

exp
(

τk
ν↑↑+ν↑↓

2

)

exp
(

−τk ν↑↑+ν↑↓

2

)

1 + τkσkσk+1 tanh
(

ν↑↑−ν↑↓

2

)

1 − τkσkσk+1 tanh
(

ν↑↑−ν↑↓

2

) . (32)

which must be equal, for the detailed balance condition to be satisfied, to the ratio W (τk)
W (−τk) . The (32) tells us that even

if the energy gap between the magnetic and the non magnetic state can be arbitrarily small for θ ∼ θc (ν↑↑ ∼ ν↑↓),
the energy barrier appearing in the transition probability W (τk) will always be ∆E ≃ 1

2 (ν↑↑ + ν↑↓), that does not
vanish for any θ.

For the sake of completeness, we write the equivalent of the (32) for the Cobalt spins :

Peq(−σk)

Peq(σk)
=

1 + 1
2σk(τkσk+1 + τk−1σk−1) tanh(ν↑↑ − ν↑↓)

1 − 1
2σk(τkσk+1 + τk−1σk−1) tanh(ν↑↑ − ν↑↓)

. (33)

In this case we see that the ratio
Peq(−σk)
Peq(σk) → 1 for θ → θc.

Even if we do not have so far a rigorous treatment for the dynamics of this system, it seems reasonable to relate
the quantity ∆E to the activation energy of the relaxation process. For our purpose it is enough to observe that
the presence of a jump in the T = 0 magnetization curve, occurring at relatively small fields, and the presence of a
tunable disorder point is consistent with the observation of the slow decay of the macroscopic magnetization.

V. CONCLUSION

We have introduced a magnetic Hamiltonian suited to the description of the Ising-like spin chain CoPhOMe. This
model contains two kinds of spins with very different g-factors. We have shown that by a careful choice of quantization
axis all eigenvalues can be determined analytically if the applied field is along the axis of the chain. As a consequence
we have obtained the magnetization curve. This curve displays a metamagnetic jump at some critical value of the
external applied field. The position of the jump is closely related to the presence of a disorder point of the magnetic
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model. This disorder point can be reached theoretically by tuning the angle of the Cobalt anisotropy axis with the
chain axis. All experimental data indicate that the real chain CoPhOMe is very close to this critical value. Right
at this disorder point there is extensive ground state degeneracy. By using ideas taken from the Glauber dynamics
we show that this is likely to be related to the very long relaxation times observed when performing magnetization
measurements on this chain. There is still the problem of developing a realistic model of the dynamical properties of
this spin chain.
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