-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Hal-Diderot

HAL

archives-ouvertes

Hanbury-Brown Twiss correlations to probe the
population statistics of GHz photons emitted by
conductors
Julien Gabelli, Laure-Hélene Reydellet, Gwendal Feve, Jean-Marc Berroir,
Bernard Placais, Patrice Roche, Christian Glattli

» To cite this version:

Julien Gabelli, Laure-Hélene Reydellet, Gwendal Feve, Jean-Marc Berroir, Bernard Placais, et
al.. Hanbury-Brown Twiss correlations to probe the population statistics of GHz photons emit-
ted by conductors. Physical Review Letters, American Physical Society, 2004, 93, pp.056801.
<hal-00001341>

HAL 1Id: hal-00001341
https://hal.archives-ouvertes.fr /hal-00001341
Submitted on 23 Mar 2004

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/47129593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00001341




ccsd-00001341 (version 1) : 23 Mar 2004

Hanbury-Brown Twiss correlations to probe the population
statistics

of GHz photons emitted by conductors

J. Gabelli,! L.-H. Reydellet,> G. Feve,! J.-M.
Berroir,! B. Placais,! P. Roche,? and D.C. Glattli%"* ]

I Laboratoire Pierre Aigrain, Département de Physique de I’Ecole Normale Supérieure,
24 rue Lhomond, 75231 Paris Cedex 05, France
2Service de Physique de I’Etat Condensé,
CFEA Saclay, F-91191 Gif-sur-Yvette, France
(Dated: 23rd March 2004)

Abstract

We present the first study of the statistics of GHz photons in quantum circuits, using Hanbury-
Brown and Twiss correlations. The superpoissonian and poissonian photon statistics of thermal
and coherent sources respectively made of a resistor and a radiofrequency generator are measured
down to the quantum regime at milliKelvin temperatures. As photon correlations are linked to
the second and fourth moments of current fluctuations, this experiment, which is based on current
cryogenic electronics, may become a standard for probing electron/photon statistics in quantum

conductors.

PACS numbers: 73.23.-b,73.50.7d,42.50.-p,42.50.Ar



The seminal experiment of Hanbury-Brown and Twiss (HBT)[ll], consisted in two detec-
tors correlating the power fluctuations of a single electromagnetic source at the outputs of a
beam splitter (Fig[lla). Positive correlations observed for thermal photons within the coher-
ence time have been interpreted as originating from photon bunching due to Bose-Einstein
statistics [[]. Since correlations are very sensitive to statistics, HBT experiments have been
widely used to investigate optical sources: laser light has poissonian fluctuations revealed by
vanishing HBT correlations; negative correlations have also been reported for non-classical
sources [f].

HBT correlations have also been observed with degenerate electrons in quantum con-
ductors, where the analogue of the photon flux is the electrical current. Due to Fermi-
statistics, electrons emitted by contacts can be noiseless. As a result, sub-poissonian noise
and electron antibunching are observed |, B, f, [, in quantitative agreement with pre-
dictions [B, P, [0, [1]. Comparing photon and electron statistics would remain a formal
exercise unless one notices the dual representation of the current as fermionic excitations in
a quantum conductor and bosonic electromagnetic modes in the external measuring circuit.
This rises the intriguing question on how to relate the sub-poissonian statistics of electrons
fluctuations in the conductor to the statistics of the emitted photons [[3, [3, [4]. A first
theoretical answer has been given in Ref.[[J] where the photon statistics is shown to re-
markably deviate from the superpoissonian black-body radiation. As shown below there is
also a direct relation between photon statistics and the fourth moment of the electron Full
Counting Statistics [L4].

But, how to measure reliably the photon statistics in quantum circuits? Quantum effects
in conductors, best displayed at sub-Kelvin temperatures, require few photon number de-
tection at GHz frequencies and make experimental detection of TEM photon fluctuations
challenging. An elegant approach is provided by Quantum Dots and Superconducting meso-
scopic photon detectors [Id, [7]. However, a more versatile approach is to use cryogenic low
noise amplifiers (LNA) followed by detectors.

In this letter, we present the first HBT photon correlation measurements in the GHz range
and in the few photon population number regime. The use of linear phase-insensitive am-
plification prior to photon detection provides a new situation having no optical counterpart.
It is shown to preserve the nature of the HBT correlations characterizing the photon source

under test. The sensitivity to various statistics is tested. First, an impedance matched resis-



tor is used which provides an ideal black-body thermal source. Although expected, we show
for the first time that the Johnson-Nyquist noise is associated with superpoissonian noise
and positive HBT correlations characteristic of Bose-Einstein thermal distribution. Second,
a low noise radiofrequency generator is used as a monochromatic coherent photon source. It
is found to generate coherent photons with poissonian statistics and vanishing HBT corre-
lations (like a Laser). Regarding auto-correlations, which are sensitive to detection details,
a quantum description of the amplifier noise is made which quantitatively agrees with our
measurements.

Following Nyquist [[[§], the current noise power of a conductor of conductance G can be
related to the power of TEM waves emitted in the external circuit. If Z is the characteristic

circuit impedance, the average power in a small frequency range v, v + dv is:

— A —
P = mS}(V)dV = Nhvdy

Here N is the photon population, and S;(v) = (AI)?/dv the spectral density of current
fluctuation AI(t) filtered in the frequency range v, v + dv [I9]. The fluctuations of the
current noise power entail fluctuations in the photon power at frequencies much lower than

v. For classical currents, its variance, proportional to the low frequency bandwidth B, is:
(arpy = —2 {1y - @17
1+ G2)4

and that of the photon population is directly related to the fourth moment of the current

fluctuation:
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According to Glauber (], thermal fluctuations of a classical current lead to superpoissonian

fluctuations (AN)2 = N(1+ N) or:
((AP)*) =2BN(1+ N)(hv)*dv (1)

with N given by the Bose-Einstein distribution. In the case of quantum conductors, the
current is no longer a classical observable and the unsymmetrized current noise operator
Si(v,t)= fj;o dr I(t)1(t 4 7)exp(i2wvT) is needed [[G, EI]. A full quantum treatment can
be found in Ref.[[5] which shows that, for conductors with large numbers of electronic modes,

the statistics of photons shows only small deviations from Bose-Einstein distribution even



when shot noise dominates over thermal noise. However, a single electronic mode conductor
with transmission close to 1/2 is found to emit non-classical photons for frequency in the
range I /e. Non-classical photons are characterized by negative deviations W — N from
the Poisson statistics, which is precisely the quantity that HBT correlations measure. This
remarkable result and the connection with the fourth moment of the full electron current
statistics provide a strong motivation to investigate HBT photon correlations in quantum
circuits.

The radio-frequency equivalent of the optical HBT experiment is shown in Figfl-b. Source
(a) is the rf-photon source under test. The emitted TEM photons propagate through a short
50 Ohm characteristic impedance coaxial line and are fed to a cryogenic 3dB strip-line power
splitter. The splitter scattering matrix, measured with a network analyzer, is identical to
that of an optical separatrix (phases included). A built-in 50 Ohms resistor, source (b),
plays the role of the vacuum channel of the optical case. Photon vacuum is achieved when
its temperature Ty satisfies Ty < Ty where Ty = hv/kp. Outputs (1) and (2) of the power
splitter are not immediately detected but a 1-2 GHz linear phase-insensitive amplification
chain is inserted before square-law detection (see Fig[ltc). Each chain consists in a mi-
crowave circulator followed by an ultra-low noise cryogenic amplifier and room temperature
amplifiers. The circulators, at low temperature, ensure that amplifiers do not send back pho-
tons towards (a) and (b). The detectors give an output voltage proportional to the photon
intensity after amplification Pﬁ%t. Their finite 1 us integration time allows to monitor the
low frequency photon intensity fluctuations. A fast numerical spectrum analyser calculates
the autocorrelations ((AP4")?) and the HBT cross-correlations (AP APg**) in the band
40-200 kHz (B =160 kHz).

In a first series of experiments, A and B, the sensitivity to Bose-Einstein statistics is
tested. In a third experiment C, Poisson’s statistics is tested using coherent photons. In
A, source (a) is a 50 conductor whose temperature 7" is varied from 20 mK to several K,
while source (b) realizes good photon vacuum (7 = 17 — 20mK< Ty). A pair of 1.64-
1.81 GHz filters select a narrow band frequency around v =1.72 GHz, with T = 86 mK

and hdv < kgT. A quantum amplifier description (see below) predicts the mean powers



P, = PP /G, referred to the input, and their fluctuations:
= No N, kpTy,
PZ' = \— - ’
( 2 +_2 +_ hv
Ny, Ny, kgTyn,

Yhwdy  i=1, 2 (2)
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X<G’Z- ) + 5 + o Y(hv)*dv =~ (F;) - (3)
(AP,APRy) = 23(% - %)Q(hy)Qdy (4)

Here N, and N, are the photon populations of sources (a) and (b) given by Bose-Einstein
distribution, with N, ~ 0 as Ty << Tg. Autocorrelations differ from Eq.([]) in two ways:
first, the factor 1 in the second parenthesis, revealing the independent particle behavior of
thermal photons is replaced by 1/G; (G; = 80 dB) when refered to the amplifier input; sec-
ondly, an extra photon population is added due to amplifier noise expressed in temperature
units T, (Iy ~ 15K in the experiment A and T =~ 6K in experiments B and C). The
HBT cross-correlation are unaffected by amplification.

Experimental results are shown in Fig.pl The solid line is the Bose-Einstein theoretical fit
of the mean photon power with Eq.(fl) taking Ty and G as free parameters. The experimen-
tal data reproduce well the quantum crossover at Ty /2 ~ 43 mK. This is the coldest quantum
cross-over ever reported for microwave photons. The parameter GG is consistent with inde-
pendent set-up calibration. The experimental scatter, 67" ~ 1 mK in temperature units,
corresponds to the resolution 07" ~ 27Ty / VdvAt expected for few seconds acquisition time
At. This unprecedented sensitivity ammounts to flux rate variations of 1 photon per us. The
HBT cross-correlations (AP, AP,) are expected to vary like (E)Q ~ (T/Ty)” for T > T
as Np = 0. This is exactly what we observed in Fig.J. This provides the first evidence for
Bose-Einstein correlations of photon emitted by a resistor in the few photon number limit
at sub-Kelvin temperature. The correlation resolution is & ((AP)?) ~ ((AP5)?) /v/ BAL.
This corresponds to detect population fluctuations of \/m ~ kgTy/ (hl/@) ~
1.5 for our experimental At =1000 s.

Experiment B provides evidence for vanishing HBT correlations (AP, AP,) ~ (E - Fb)Q
when N, = N,. The experiment is performed at higher temperature (7' = 4-24 K, Ty = 4
K). Source (b) is no longer in the ground state: N,(v) =~ kpTy/hv ~ 40. Here, the central
frequency is v = 1.5 GHz, the bandwidth dv ~ 0.8 GHz and the amplifier noise temperatures
Ty; = 6K and 8 K. As shown in Fig[§, P linearly depend on temperature in agreement

bt



with Eq.(f). The T" = 0-extrapolates define the LNA noise temperatures. In our analysis
the linear slopes give G; =1.53 10%, (Av; = 0.75 GHz), G, = 1.17 10® (Av, = 0.88 GHz)
in fair agreement (within 20 %) with independent calibration. The square root of the auto-
correlation shows linear variation with temperature exemplifying the super-poissonian noise
of thermal photons given by Eq.fJ. There are no free parameter left for the HBT correlations
as gains are known. They are found positive and quantitatively agree with Eq.([)) (solid line
in Fig.fl). They vanish for equal temperature sources.

Experiment C tests the sensitivity to a different statistics. A microwave source of fre-
quency vy = 1.5 GHz and bandwidth & 100 Hz generates monochromatic photons. Its output
is attenuated at cryogenic temperature T,;,. The average power P, in (a), is chosen compa-
rable to that delivered by the thermal source in experiment B. As for a Laser, the source is
expected to generate coherent photon states [R(]. The photon statistics being Poissonian,
the low frequency power fluctuations of source (a) in bandwidth B are ((AP,)?) = 2Bhv,P,.
An important question is whether attenuation and amplification before detection change the
statistics and if yes how? According to references 23, B3], the commutation rules for bosonic
input and output operators imply the addition of an extra bosonic operator describing the
amplifier /attenuator noise. Applying this quantum constraint, we find (in units referred to

the amplifier chain input):

<(AP172)2> = QBhl/oFLQE <AP1AP2> = 0
Tor +Thio

FLQ - 1 + 2]€B
hVO

where we have used T, = Ty. Again, amplification has no effect on HBT cross-correlations
and the absence of cross correlation characterizing Poisson’s statistics remains. In the auto-
correlations, a Fano factor F' appears due to amplification noise. The results of experiment
C are shown on Fig[]. Cross- and auto-correlations are plotted versus detected power re-
ferred to the input. Residual cross correlations, due to to small set-up imperfections, remain
negligible at the scale of the autocorrelations. Auto-correlations are perfectly linear with
power as expected. We measure a large Fano factor Fj o = 310, 400 in accordance with the
order of magnitude of (T + Tvi2)/hvo.

In conclusion, the highly sensitive HBT photon correlations performed in the GHz range
at subKelvin temperature using phase insensitive LNA and square-law detection easily dis-

criminate between different statistics. In particular the cross-correlations are unaffected by



amplification details. The method, simple, versatile and based on currently available elec-
tronics, can be easily reproduced in other laboratories. It appears to be very suitable to
study the photon population statistics of TEM modes emitted by quantum conductors or
equivalently the fourth moment of current fluctuations.

We thank B. Lazareff and J.Y. Chenu, from IRAM, for providing us with cryogenic
amplifiers. The laboratoire Pierre Aigrain is "unité mixte de recherche” (UMR 8551) of the
Ecole Normale Supérieure, the CNRS and the Universities Paris 6 and Paris 7.
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Figure 1: Schematics of the HBT experiment (a), of the GHz beam splitter (b), of the amplification
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and detection chains (c). A detailed description is given in the text.
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Figure 2: Thermal source at ¥ = 1.7 GHz. Main frame: quantum crossover at Tp/2 ~ 40 mK in
the mean photon power P; as function of temperature T, or effective occupation number kT /hv
for a beam splitter temperature Ty &~ 17 mK. The solid line is a Bose-Einstein fit with an amplifier
noise temperature Ty ~ 15 K. Inset: positive HBT correlations show the bunching of thermal
photons and the absence of residual correlations at T' = 0 K. Experimental scatter lies within the

expected statistical uncertainty (error bar).
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Figure 3: : Superpoissonian correlations of a thermal source in the classical regime: mean photon
power P; and noise /(AP,AP;) (bandwidth B = 160 kHz) as function source temperature T' with
a beam splitter at Ty ~ 4 K. The temperature scale of \/W and P; is used as a calibration
of the measuring line. Cross-correlations \/m are deduced without extra parameter and

found to vanish as (T — Tp) in agreement with Eq.(H).
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Figure 4: Poissonian correlations of a coherent monochromatic source. Autocorrelations are linear
in the input RF power with a large Fano factor F' due to amplification and attenuation. Cross

correlations vanish in accordance with theoretical predictions.
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