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Abstract

An analytical and optimal procedure to combine statistically independent sets of limits on a

quantity is presented. This procedure does not impose any constraint on the methods followed by

each analysis to derive its own limit. It incorporates the a priori statistical power of each of the

analyses to be combined, in order to optimize the overall sensitivity. It can in particular be used to

combine the mass limits obtained by several analyses searching for the Higgs boson in di�erent decay

channels, with di�erent selection e�ciencies, mass resolution and expected background. It can also

be used to combine the mass limits obtained by several experiments (e.g. ALEPH, DELPHI, L3

and OPAL, at LEP 2) independently of the method followed by each of these experiments to derive

their own limit. Such a method is also presented, along with an unbiased prescription to optimize

the expected mass limit in the no-signal-hypothesis.
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1 Introduction

The purpose of this note is to propose a simple and analytical prescription to merge statistically

independent analyses on a given phenomenon in order to set an overall limit on a parameter used

in its theoretical description. The method provides a mechanism to weight the contributions of the

analyses according to their intrinsic capabilities, but does not imply any modi�cations of the existing

analyses. The combination of several searches for the Higgs boson in di�erent decay channels (or by

di�erent experiments), with di�erent selection e�ciencies, expected backgrounds and mass resolutions

to derive a Higgs boson mass limit is chosen as an illustration of the method.

The note is organized as follows. First, for the sake of clarity, a de�nition of what a con�dence

level should be is brie
y reminded in Section 2. (All con�dence levels presented in this paper are

computed in the well-de�ned probabilistic approach of statistics, the so-called frequency approach.)

Second, for the sake of de�niteness, and although the combination of limits presented in the following

sections is independent of it, a method based on Ref. [1] to assess an optimal con�dence level to a given

analysis where a prediction is available for the shape and the level of the signal and the background

is described in Section 3.

In Section 4, a Democratic Prescription (DP) to combine several analyses is discussed. Its advan-

tages are simplicity| the prescription is the easiest to explain | and democracy | all the experiments

are treated on the same footing | thereby avoiding diplomatic di�culties. The drawback, however,

is that such a Democratic Prescription is in principle not fair, in the sense that the candidates of the

best possible analysis (largest e�ciency, best mass resolution, and smallest background) are considered

with the same signi�cance as those of the worst analysis (smallest e�ciency, poorest mass resolution,

and largest background).

For this reason, in Section 5, an Elitist Prescription (EP) is built as a natural extension of the

Democratic one, its raison d'être being to make an optimal use of the available information for the

di�erent analyses. In both Sections 4 and 5, the prescriptions are �rst discussed when the expected

distributions of the con�dence levels associated to the analyses do not present any singularities, i.e.,

when they are continuously distributed between 0 and 1. The prescriptions are then generalized to the

case where the expected con�dence level is bounded from below by a non-zero minimum value. Such

a singularity unavoidably arises when the probability of observing no events is not negligibly small.

Finally, the con�dence levels computed here in the frequency approach are compared in Section 6

to estimates obtained in the bayesian approach of statistics.

2 Generalities on con�dence levels

An analysis aimed at searching for a new phenomenon that depends on a single parameter has to deal

with three kinds of con�dence levels, brie
y reviewed in turn below. For instance, such an analysis

can be directed towards the Higgs boson search, the parameter being then the Higgs boson mass

mh, or towards the tau-neutrino mass measurement, the parameter being the tau-neutrino mass m��

itself, or it can be designed to observe B0
s oscillations, the parameter being xs. Only the �rst example

is considered in the following, thus dealing with experiments with signal (the new phenomenon of

interest) and background (processes faking the signal), but the method described in this paper can be

applied to a variety of situations.
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2.1 The measured Con�dence Level

The measured con�dence level is associated to a given hypothesis for the mh value, and quanti�es the

probability that the agreement between this hypothesis and the considered experiment be as poor as

or poorer than observed. This current mh hypothesis value is hereafter denoted m̂h to avoid confusion

with the true mh value, which is of course not known (assuming, to begin with, that the Higgs boson

exists!). The following procedure is used to de�ne and compute this con�dence level:

� A test variable, hereafter called estimator, E is �rst de�ned in view of ranking the experiment

outcomes (i.e., the results of a given analysis when applied to a number of experiments) from

the least to the most signal-like. The de�nition of E is not unique but should be elaborated in

order to reach the best sensitivity to the process under study. Formally speaking, however, this

de�nition is totally free. It can even be taken for granted that each analysis team will choose its

own de�nition. For instance, E can be based on a simple event counting method, or it can be

made dependent on m̂h; it can be based on a likelihood function, or de�ned by any other means.

The estimator dealt with in the following is such that (i) the larger E , the more signal-like the

experiment; and (ii) adding an event to a given sample can only lead to an increase of the

estimator value. The latter condition guarantees that the likelihood of the signal hypothesis can

never be reduced by the background contribution. Such an estimator, an example of which is

given in Section 3, should therefore increase much more rapidly with the addition of a signal

event than with that of a background event.

� The value of the estimator Edata is computed for the actual data set as a function of m̂h.

� The outcome of all possible experiments with signal only is then simulated to obtain the expected

distribution of the estimator value E , would m̂h be the true value of mh. This distribution,

normalized to unity, is denoted �(E). It depends on m̂h too.

� Finally, the probability that | would m̂h be the true value of mh | as bad or worse an estimator

value than Edata (E � Edata in the aforementioned choice) be obtained, is derived from this

simulation. This probability de�nes the con�dence level for this hypothesis c � CLEdata; (m̂h).

It is obtained by evaluating the integral

c =

Z Edata

Emin

�(E)dE : (1)

i.e., the fraction of all possible experiment outcomes (would m̂h be the true value of mh) with

an estimator value smaller than or equal to Edata. (A low value of c is equivalent to a low

con�dence in the hypothesis.) The use of signal only experiments to obtain �(E) always yields
conservative con�dence levels. Indeed, the inclusion of background events would only shift the

�(E) distribution to higher values (see (ii) above). The inclusion of the background knowledge

for the con�dence level determination is further discussed in Section 6.

In order to avoid the tedious and delicate Monte Carlo simulation of Gedanken experiments, the

precise and analytical knowledge of the shape of the E distribution would be needed. Unfortunately,

since the rather low con�dence level values (below 5%) are of some interest, the shape of �(E) must
be mastered especially in its low probability tail, which is a practical impossibility without Monte

Carlo simulation. To avoid this necessary step, it might be tempting to use directly the value of the

estimator as a con�dence level. This is actually done quite often in the literature [2, 3, 4], and is

justi�ed therein by the fact that this procedure leads to \conservative" con�dence levels. Although

sometimes \conservative" (but not always, as exempli�ed in Section 6), these estimators are not
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con�dence levels (i.e., they do not have the value of a probability) and cannot be mathematically

treated as such.

It is important for the following discussion to realize that E can even become completely insensitive

to the hypothesis that is tested. An analysis could be considered which would de�ne E as the output

of a random process, with no connection whatsoever with the Higgs boson mass. Of course, such an

analysis is better to be ignored in any analysis combination, and this should appear as a result of

what follows. It should however be stressed that, for su�ciently large m̂h values (when the number

of events expected from signal tends to zero), all analyses are doomed to behave that way.

2.2 The conventional Con�dence Level

In order to give the complete available information on a given analysis, the measured con�dence level

should be published in the form of a curve representing the CL(m̂h) function. However, the usual

convention is rather to quote the smallest value of m̂h that yields a con�dence level above 5%.

This value of mh, hereafter denoted mmin
h is referred to in sentences as abrupt as \mh is greater

than mmin
h at 95% C. L.". The meaning, quite di�erent, being actually \If mh is smaller than mmin

h ,

and whatever its exact value is, the estimator value is expected to be as bad as or worse than the

experimental value Edata with probabilities smaller than 5% ." The value of mmin
h is a convenient

summary, but it carries only a tiny part of the information contained by the CL(m̂h) function.

In the following, it is assumed that all analyses proceed according to the above line to derive mmin
h .

More speci�cally, it is assumed that all analyses are able to produce the complete CL(m̂h) function.

2.3 The expected Con�dence Level in the no-signal-hypothesis

In order to weight the contribution of the di�erent analyses, it is made use of a third type of con�dence

level, hci1(m̂h), the con�dence level expected when the true mh value is actually much larger than m̂h

(even in�nite). In this case, the value of Edata is expected to be distributed as for experiments with

background only, and not according to �(E), but it still depends on the m̂h hypothesis. The average

c value for background only experiments therefore also depends on m̂h but, to simplify the notation,

the speci�c m̂h hypothesis is not kept explicit in hci1.

Such a function of m̂h is essential to assess the intrinsic potential of an analysis. It refers to the

so-called \no-signal-hypothesis", corresponding to the case in which there is nothing to be seen. An

analysis o�ers a good discrimination if, assuming mh is indeed very large, it yields a large mmin
h value,

or equivalently, an expected con�dence level smaller than 5%, on average, in the largest possible mh

domain. Therefore, for a given m̂h value, the various analyses can be ranked according to their hci1,

the smaller the better.

As an interesting by-product, minimizing hci1 (with respect to selection cuts, for instance) is well

suited to optimize in an unbiased way (i.e., based on Monte Carlo information only) the performance

of a given analysis (see also Ref. [5]).

3 An optimal con�dence level for one analysis

3.1 The estimator

In this section, an estimator E is proposed to distinguish as much as possible between experiments

with \background" only (mh very large) and experiments with \signal" (mh kinematically accessible),
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while preventing the computation time from blowing up. The number of events observed is an obvious

choice for this estimator if no other information is available to disentangle between the background

and the signal process of interest. However, since this process is a resonant production of a massive

particle, it is expected that one variable x (such as the reconstructed invariant mass of the Higgs boson)

is distributed quite di�erently for signal and background. This can be generalized in a straightforward

manner to multivariate analyses: neural network, linear discriminant analysis, rarity, parameterized

approach, . . .

Let s and b be the numbers of signal and background events expected to be selected by a given

analysis, and ŝ(x) and b̂(x) be the corresponding expected, normalized distributions of this variable,

as provided by the same analysis. Fig. 1 shows a typical example of such distributions as obtained for

a Higgs boson search at LEP 2. (In this particular example, x is related to the reconstructed value of

the Higgs boson mass as obtained from a Monte Carlo simulation with su�ciently high statistics.) It

should be noted that both s and ŝ depend on m̂h, making all the �gures presented in this section, but

Fig. 1b, depend on the mass hypothesis. Let now n be the total number of events observed when the

analysis is applied to the actual experiment. For these n events, the discriminating variable x takes

the values x1, . . . , xn.

Figure 1: Normalized distributions of the characteristic variable x for the signal (a) and the background

(b), as simulated with high statistics Monte Carlo samples.

An estimator E can be built from the intuitive de�nition of Ref. [1]:

E =
nX
i=0

"
exp(�s)s

i

i!

#
Pn
i ; (2)

where the �rst term in the sum is the Poisson probability that i events come from signal, and Pn
i is the

(yet to be de�ned) probability for i signal events to be as or less signal-like than observed, accounting

for the density distributions ŝ and b̂. This is new with respect to Ref. [1] where the background shape

is (intentionally) not taken into account in this probability. Other estimators built without including

the background shape, have also been proposed elsewhere [6].

If this information carried by the discriminating variable were removed, the estimator would be

the probability to have n events or less in a signal only experiment with s events expected, i.e., the
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con�dence level of the actual experiment if event counting only were used. In this case, �(E) would be

a in�nite sum of � functions, as it would be if E had been chosen to be the number of events observed

itself. The choice of the Poisson probability instead renders more natural the inclusion of Pn
i in E as

a simple product of probabilities.

To get an explicit expression for Pn
i , the examples of 0, 1 and 2 events observed are detailed below,

and are then generalized to the case of any value of n. For no events observed, Eq. 2 reads

E = exp(�s)P0
0 :

The actual choice of P0
0 is irrelevant because a change of this value would not a�ect the con�dence level

determination, but all Pn
0 ought to be identical, since they are de�ned as the probability for 0 signal

event to be less signal-like than observed. The choice is made that Pn
0 = 1. All experiments with at

least one event have a larger estimator [e�s (1 + sPn
1 + : : :)]. The fraction of signal only experiments

with no events observed is exp(�s), and the corresponding con�dence level is therefore also exp(�s),
meaning that it is 5% if s = 3.

For one event observed, Eq. 2 reads

E = exp(�s)
�
1 + sP1

1

�
;

where P1
1 should be de�ned as the probability for a signal event to be as or less signal-like than the

observed event. To quantify the \signal-ness" of an event, a new quantity � is de�ned by

� =
ŝ(x)� b̂(x)

ŝ(x) + b̂(x)
; (3)

which is expected to be +1 for signal-like events [ŝ(x) � b̂(x)] and �1 for background-like events

[ŝ(x) � b̂(x)]. The distributions of this quantity � for the signal [ŝ(�)] and for the background [b̂(�)]

are shown in Fig. 2 if the distributions of x are those shown in Fig. 1.

The probability for a signal event to be less signal-like than an event characterized by � is therefore:

R(�) =
Z �

�1
Ŝ(�0) d�0; where Ŝ(�) =

Z xmax

xmin

ŝ(x)�

 
� � ŝ(x)� b̂(x)

ŝ(x) + b̂(x)

!
dx; (4)

thus uniformly distributed between 0 and 1 for signal events by construction, and peaked at 0 for

background events (see Fig. 3). It is therefore now natural to choose

P1
1 = R(�): (5)

For two events observed, Eq. 2 reads

E = exp(�s)
 
1 + sP2

1 +
s2

2!
P2
2

!
;

where P2
2 is the probability for two signal events to be less signal-like than those observed. It is natural

to build P2
2 from P1

1 and to de�ne it as the probability to obtain a value for the product R1R2 smaller

than the measured one. Therefore [8]

P2
2 = R1R2 [1� ln (R1R2)] : (6)

To determine P2
1 , one of the two events has to be chosen to be the signal candidate event. It is natural

to choose the event with the larger value of R (say R1), in which case

P2
1 = R1 � Max [R1;R2] : (7)
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Figure 2: Normalized distributions of the variable � (see text) for the signal (a) and the background

(b), as simulated with high statistics Monte Carlo samples.

Figure 3: Normalized distributions of the variable R (see text) for the signal (a) and the background

(b), as simulated with high statistics Monte Carlo samples.

6



The generalization for n events observed is now immediate, by choosing Pn
i to be the probability

that the product of the i largest values of R, denoted �i, be smaller than the measured value of this

product. Ordering the Rk from the largest (k = 1) to the smallest (k = n), it follows

Pn
i = 	i(�i) where �i =

iY
k=1

Rk; (8)

the function 	k(z) being de�ned as [1]:

	k(z) = z
k�1X
j=0

(� ln z)j

j!
: (9)

Finally, Eq. 8 has to be incorporated into Eq. 2 to have the complete expression of the estimator. The

resulting distributions are shown in Fig. 4, for both signal and background, assuming s = 2:3 and

b = 0:8. Due to the procedure followed to de�ne the estimator, the shape of the distribution obtained

for experiments with signal, �(E), is independent of ŝ and b̂. It only depends on the number s of

signal events expected, and turns out to be the sum of a � function at c0 � exp(�s) (the outcome

of experiments with no events observed) and a continuous function of E from c0 and 1. It becomes

di�erent (an in�nite sum of � functions) only in the extreme case in which ŝ � b̂ (or if �nite intervals

in x exist where both distributions are exactly proportional), i.e., when there is no discriminating

variable x between signal and background: this case is not dealt with in this paper.

Figure 4: Normalized distributions of the estimator E (see text) for the signal (a) and the background

(b), as simulated with high statistics Monte Carlo samples.

The corresponding con�dence level distributions, as de�ned by Eq. 1, are displayed in Fig. 5. For

signal only experiments, the con�dence level has by construction the properties of a probability, and

is thus expected to be uniformly distributed between 0 and 1. It cannot be, however, smaller than c0

(the fraction of experiments with no events). The domain of variation of c, thus de�ned to be [c0; 1]

decreases when the number of signal events gets small (which is typically the case when m̂h is close

to mmin
h ). The c distribution for experiments with signal, �s(c), has therefore the universal form

�s(c) = c0�(c � c0) +H(c� c0); with c0 � exp(�s); (10)
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where H(c � c0) � 1 when c 2 [c0; 1] and H is zero elsewhere. This expression can be simpli�ed to

�s(c) = H(c) only when s is \su�ciently" large. This would be also the case with estimators dealing

only with the shapes of the distributions and not with the number of events expected when computing

the con�dence levels.

Figure 5: Normalized distributions of the con�dence level c (see text) for the signal (a) and the

background (b), as simulated with high statistics Monte Carlo samples.

The con�dence level distribution for the background is, by construction, peaked towards its smallest

possible value, c0, and depends of ŝ, b̂, s and b. The fraction of experiments with no signal yielding

this con�dence level is ĉ � exp(�b). (This is the fraction of experiments with no events observed

while b events are expected.) Although the exact distribution depends on the problem at hand and is

usually not known analytically, it can be parameterized in a simple way, e.g. as

�1(c) = ĉ�(c � c0) + �H(c� c0)c�; with ĉ � exp(�b): (11)

where � and � can be determined as explained in Section 5. This expression can be simpli�ed to

�1(c) = (1 + �)c� when s and b are su�ciently large.

3.2 Optimizing the analysis and deriving the limit

As mentioned in Section 2.3, an analysis is considered to be optimum when it yields on average the

largest mmin
h in the no-signal-hypothesis, or equivalently, the smallest hci1 value (which is nothing but

the mean value of the distribution of Fig. 5b) when m̂h is in the vicinity of mmin
h . It should be noted

that this is also completely equivalent to minimizing N95, the number of signal events needed to reach

(on average) a con�dence level of 5% in the no-signal-hypothesis, as it was pioneered by ALEPH [7]

following the prescription of Ref. [5].

After an analysis, yet to be optimized, has been designed, hci1 can be computed as a function of

m̂h as detailed in the previous section. The value of m̂h for which hci1 = 5% (i.e., the larger mass

value which is, on average and in the no-signal-hypothesis, \excluded at the 95% con�dence level"),

can be chosen to optimize the analysis. The optimization | which could in principle be performed
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for all mass hypotheses | is achieved by minimizing, with respect to the selection cuts, the value

of hci1(m̂h) at that value. The consequence of this procedure is that the analysis is optimal for the

mass hypothesis chosen, but could be not optimal for other mass hypotheses. This is of no practical

importance since the analysis has to be most e�ective in the vicinity of mmin
h .

Displayed in Fig. 6 is the expected con�dence level hci1 after this optimization (as a dashed-

line) for the analysis yielding the expected distributions shown in the previous section. It can be

seen that, on average, a value of 59 GeV/c2 is reached for mmin
h . If, in the actual experiment, one

event is observed, most likely originating from m̂h = 45 GeV=c2 when interpreted as signal, the

measured con�dence level c is represented by the full line in Fig. 6. The actual mass limit mmin
h is

about 60 GeV/c2, i.e., slightly better than what is expected, on average, in the no-signal-hypothesis.

However, the con�dence level may be worse than expected, in particular in the region where the

candidate event shows up: this must be so if a signal is produced in the experiment. Thanks to the

use of the mass information, it is on the other hand almost always below, except in the mass region

where the candidate event has been observed, the con�dence level c1 � exp(�s) [1 + s] that would

have been obtained if an event counting method had been chosen.

5%

Figure 6: Various con�dence levels as a function of the mass hypothesis: expected con�dence level in

the no-signal-hypothesis hci1 (dashed line); measured con�dence level c obtained with a candidate

event compatible with m̂h = 45 GeV=c2 (full line); smallest possible con�dence level c0 in case no

events are observed (dotted line); con�dence level c1 obtained with a simple event counting method

(upper dotted line). Also shown are the 95% C.L. mass limits: hmmin
h i, expected on average in the

no-signal-hypothesis; and mmin
h , deduced from the actual experiment.
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3.3 Optimizing several analyses

When several analyses, e.g., the selection of di�erent �nal states arising from various Higgs boson

decay channels, are to be combined, the individual optimization of each of them following the method

described in the previous section does not guarantee that the combination be in turn optimized: this

in general depends on how the combination is performed.

The optimal combination method can be de�ned, as above, as the combination leading to the

smallest expected combined con�dence level. Therefore, the expected con�dence levels hcii1 have to

be computed for each analysis i, and the expected combined con�dence level minimized with respect

to the selection criteria of all analyses, at once.

To achieve this, a method of con�dence level combination has �rst to be devised and the combined

con�dence level and its expected value have to be analytically determined, before proceeding with the

minimization. Two di�erent methods of combination, the Democratic and the Elitist Prescriptions,

are proposed in the following two sections.

4 Combining several analyses with the Democratic Prescription

An in�nity of methods can be designed to merge a set of analyses. In this section, the simplest

situation where no information is available on the intrinsic qualities of the analyses (i.e., only the

measured con�dence levels ci(m̂h) are known) is considered.

If, to begin with, two analyses are to be combined, a prescription has to be de�ned to merge the

two con�dence levels into a compound one, with the aim of providing a global analysis more e�ective

than each of the two sub-analyses.

4.1 The general form

For a given m̂h hypothesis, let c1 and c2 be the two con�dence levels obtained by two analyses, and

f(x; y) an arbitrary function. An estimator E12 has to be de�ned as a function of c1 and c2 by

E12 � f(c1; c2); (12)

and the associated con�dence level CL12(m̂h) is computed by

CL12(m̂h) =

Z
D
dx dy �s1(x)�

s
2(y); (13)

where the integration domain D is de�ned by f(x; y) < E12, and where the �s functions are the

expected distributions of the con�dence levels for the two analyses, as explicited in Eq. 10.

4.2 The reasonable form

Without any other knowledge than the individual con�dence levels computed by the two analyses,

they have a priori to be treated on the same footing. Hence, f must be symmetric:

f(x; y) = f(y; x): (14)

Since the compound con�dence level must be at least as stringent as each of its two components, it

must tend to zero if any of the two analyses by itself provides a con�dence level which does so. In
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particular, a form such as f(x; y) = x + y, as proposed for instance in Ref. [6], is to be excluded for

this sole reason. (Some numerical examples are given in Table 1 as to the performance of this form.)

More generally, it follows that the f function should be of the form

f(x; y) = xy (g(x; y) + g(y; x)); (15)

where the g function is not too singular when x(or y) ! 0. The form of the g function cannot be

further speci�ed, at least on the ground of scienti�c considerations.

The next step is therefore to invoke reasonable arguments, the �rst one being simplicity: the

merging of the two con�dence levels should not be a painful, but a straightforward, exercise. In

particular, the value of the f function is not interesting in itself, while the value of the associated

con�dence level CL12(m̂h) is. For this reason, f must be an easy{to{compute function of the two

individual con�dence levels, with an easy subsequent integration: the simplest form of the g function

must be chosen, leading to the reasonable form of f

f(x; y) � xy: (16)

Since (i) the form x+ y performs rather poorly (see Table 1); (ii) any symmetric function of x and y

can be reparameterized as a function of xy and x+ y; and (iii) any estimator based on a monotonic

function of xy leads to identical con�dence levels as xy itself; the choice of Eq. 16 is in all likelihood

the optimal one for a Democratic combination.

4.3 The compound con�dence level

In the case of large number of events expected, c1 and c2 are both uniformly distributed between 0

and 1, i.e., the �s1;2 functions are just equal to unity between 0 and 1. This yields the simple DP rule

CL12(c1; c2) = f(1� ln f) with f = c1c2 : (17)

as can be directly found by the straightforward integration of Eq. 13 (see also Ref. [8]). Furthermore,

DP can be generalized directly to the case of a set of n analyses:

CL12:::(f) = 	n(f) with f =
nY

j=1

cj ; (18)

where the function 	n is de�ned in Eq. 9.

This expression is no longer valid in the case of small numbers of events (which is of interest here)

because the probability densities for c1 and c2 are no longer uniform between 0 and 1. With the

same de�nition as above for the f estimator and the actual �si (ci) functions obtained in that case (see

Section 3)

�si (ci) = c0i �(ci � c0i ) +H(ci � c0i ); (19)

the corresponding con�dence level turns out to be (See Appendix A for the details of the algebra):

CL12:::(f) =
nY
i=1

c0i +
X
C

(�1)kffkg
Min(k;n�1)X

j=0

(�1)jCj
k

(
	n�j

 
Inf

"
f

ffkg
; 1

#!
�	n�j

�
f
f/kg

�)
; (20)
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where fkg is a subset of k analyses among n (f/kg being the complementary subset), the external sum

extends over all possible con�gurations C of such splittings, C
j
k are the binomial coe�cients and

f
fkg

=
Y
l2fkg

c0l and f
f/kg =

Y
l2f/kg

c0l :

It can be noticed that, if no events are observed in any of the n analyses, f=ffkg equals ff6 kg thus

making the second term of Eq. 20 vanish. In this particular case, the combined con�dence level is

CL12:::(f) =
nY
i=1

c0i � exp(�s); (21)

where s =
Pn

1 si is the total number of events expected from signal in the n analyses. This allows a

combined con�dence level of 5% to be obtained when 3 signal events are expected in total, as desired.

Also, it is straightforward to check that Eq. 18 can be recovered from Eq. 20 by setting all c0i to zero,

in which case only the con�guration C where fkg is empty has a non-zero contribution.

5 Combining several analyses with the Elitist Prescription

The DP approach can be re�ned by taking into account the intrinsic capabilities of each of the experi-

ments, i.e., by merging the di�erent con�dence levels into a compound one with a more discriminating

f function. In particular, as a check of its e�ectiveness, an Elitist Prescription is required to reject an

insensitive analysis whose con�dence level is unrelated to the Physics under study.

In any case, a parameter measuring the intrinsic capability of each individual analysis has to be

de�ned, so that the analyses to be combined can be ranked from the most to the least sensitive. As it

is shown below and as it intuitively appears in Section 3, such a parameter is directly related to hci1.

To elaborate EP, the leading idea is to modify the DP de�nition of f(x; y) by breaking the symmetry

between the two variables, in order to optimize the statistical power of the global analysis. As in the

previous section, the case of two analyses is �rst examined. The more powerful analysis is denoted 1

and the other one 2. The most natural choice for the modi�ed f function (because it is the simplest

extension of DP) is

fa1;a2(x; y) � xa1 ya2 ; (22)

where the two new parameters satisfy 0 � a2 � a1 � 1, and can be interpreted as the weights of each of

the two analyses. In particular, EP is expected to force a2 to become very small if the second analysis

presents a very poor discriminating power: in the limit a2 = 0, the value of the f function does not

depend on the result of the poorly discriminating analysis 2. Under these conditions, the con�dence

level is no longer a�ected by it. As it becomes clear below, EP guarantees that the compound analysis

cannot downgrade, on average, the statistical power of the �rst analysis. This renders EP, in any case,

more robust than DP for combining analyses.

5.1 The case of large numbers of events

As in DP, the con�guration with large numbers of events (also called the continuous case) is the easiest

to technically deal with in EP. The comparison of the performance of EP and DP is done here in the

case of two analyses, and EP is eventually generalized to the multi-analysis case.
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5.1.1 The compound Con�dence Level

Integrating Eq. 13 with the modi�ed expression of f given in Eq. (22), and with �s functions equal to

unity (which is not valid an approximation in the case of small numbers of events), the EP compound

con�dence level is

CL12(c1; c2) =
1

a1 � a2

�
a1f

1

a1 � a2f
1

a2

�
where f = ca11 ca22 : (23)

The DP result is recovered by taking the limit a2 ! a1.

5.1.2 The expected compound Con�dence Level

The next step consists in determining the weights a1 and a2, or equivalently the \squash" factor

S12 � a1=a2. The \best" choice for S12 is the one that would minimize, on average, the compound

con�dence level of Eq. 23 for a given mass hypothesis m̂h when the true value is assumed to be very

large (i.e., in the no-signal-hypothesis). This corresponds to minimizing the mean value of the the

combined con�dence level distribution in background only experiments:

hCL12i1 =

Z
dxdy �11 (x)�12 (y)CL12(x; y); (24)

where the function �1i (ci) describes the probability distribution of the value ci of the con�dence level

obtained while making the m̂h hypothesis, when the actualmh value is very large. The exact expression

of the functions �1i (ci) is in general not known, but in practice, such complicated information is not

needed because details of the function are smeared out by the integral of Eq. 24. Since, in the no-

signal-hypothesis, the con�dence level is expected to peak at its smallest possible value, let the �1i (c)

function have the form

�1i (c) = �i c
�i ; (25)

where

� �i < 0 to ensure the peaking at 0 of �1i ;

� �i = 1 + �i (�i > 0) to ensure the normalization to unity of �1i ;

� �i is related to the con�dence level hcii1 set on average by:

hcii1 �
Z 1

0

ci �
1
i (ci) dci =

�i + 1

�i + 2
; (26)

which can be inverted to

�i = �1� 2hcii1
1� hcii1

; (27)

which yields a negative value provided that hci1 > 0:50. In the case of an experiment with a large

number of events expected, this inequality is equivalent to saying that the analysis is better behaved

than a pure random number generator. This is no longer true in the case of small numbers of events

as discussed later on. Under this working hypothesis, the expected compound con�dence level in the

no-signal-hypothesis can be computed from Eq. 24 and reads:

hCL12i1 = hc1i1hc2i1
S12 + 1 + S2

12 (1� hc1i1)� hc2i1
[hc2i1(S12 � 1) + 1] [hc1i1(1� S12) + S12]

: (28)
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The derivative of hCLS12i1 with respect to S12 can be computed analytically, and it can be shown

that the compound con�dence level is minimum, thus optimizing the combination of the two analyses,

when

ai = ��i =
1� 2hcii1
1� hcii1

: (29)

Equation 29 indicates that an analysis has to be rejected (meaning ai = 0) if hcii1 = 0:50, and that

the weight a�ected to an analysis increases when its average con�dence level hcii1 decreases.

5.1.3 Comparison with the Democratic Prescription

Setting S12 = 1 in Eq. 28 allows the Democratic Prescription to be recovered, and this leads to the

following compound con�dence level

hCL12i1 = hc1i1hc2i1 [3� hc1i1 � hc2i1] ; (30)

from which it can be concluded that the second analysis is capable of downgrading the �rst one (on

average) only if it is bad enough to yield

hc2i1 � 1

2

�
3� hc1i1 �

q
(3� hc1i1)2 � 4

�
' 0:38; (31)

where hc1i1 � 1 has been assumed in the numerical application. This potential downgrading of the

analysis never happens (on average) with EP. However, the above hc2i1 value is to be compared with

the one expected from a random analysis (hc2i1 = 0:50). The two values being rather close, it follows

that only in extreme cases is the DP treatment capable of yielding spuriously bad results.

The Elitist and Democratic Prescription are further compared in Table 1 for three values of hc1i1,

and �ve values of hc2i1. Also indicated in the fourth column of this table is the squash factor that

must be used for EP to be optimal. The last column gives the expected combined C.L., had the form

x+y been chosen instead of xy for the C.L. combination. (For the sake of completeness, the analytical

expression of hCLx+yi1 is given in Appendix D.)

From this table, it appears that the improvement brought by the re�nements of EP is negligible,

in most cases. Indeed, for meaningful hc2i1 values, hCL12i is a slowly varying function of S12. As a

result, even if S12 = 1 is far from the optimal value, the gain obtained by making use of this optimal

value is not large, except for the case of a quasi-random analysis (hc2i1 ! 0:50).

It is �nally worth stressing that, although the Elitist Prescription never downgrades, on average,

the performance of the most powerful analysis, the merging of two experimental results c1 and c2 can

well end up with a con�dence level c larger than c1. This is because the measured value of c2 can be

larger than the expected value hc2i1 (see for instance Fig. 6)... and it must be so since, after all, the

second analysis may have detected real signal events.

5.1.4 The multi-analysis case

The de�nition of EP should be extended to the general case of n analyses. The solution of the

simplest case n = 2 is reached by minimizing hCL12i with respect to S12. This can be extended in a

straightforward way to the case of the function corresponding to the case of the merging of n analyses.

Starting from the extended de�nition

fa1;a2;::: �
nY
i=1

caii ; (32)
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Compound results for hc1i1 = 0:001

hc2i1 hCLDP i1 hCLEP i1 S12 hCLx+yi1
0.470 0.00118 0.00099 9.2 0.167

0.400 0.00104 0.00093 3.0 0.126

0.300 0.00081 0.00077 1.7 0.089

0.200 0.00056 0.00055 1.3 0.056

0.100 0.00029 0.00029 1.1 0.027

Compound results for hc1i1 = 0:01

0.470 0.0118 0.0099 8.8 0.173

0.400 0.0104 0.0093 3.0 0.131

0.300 0.0081 0.0077 1.7 0.093

0.200 0.0056 0.0055 1.3 0.060

0.100 0.0029 0.0029 1.1 0.030

Compound results for hc1i1 = 0:10

0.470 0.114 0.099 7.9 0.231

0.400 0.100 0.093 2.7 0.183

0.300 0.078 0.076 1.5 0.139

0.200 0.054 0.054 1.2 0.098

0.100 0.028 0.028 1.0 0.061

Table 1: Comparison of DP and EP for some representative cases. The last column indicates the

result of an estimator equal to the sum of the two con�dence levels

more involved algebra (See Appendix B, with all c0i � 0) allows the con�dence level to be computed

CL12:::(f) =
nX

j=1

f
1

aj

Y
i6=j

"
aj

aj � ai

#
; (33)

and Eq. 28 to be generalized to

hCL12:::i1 =
nY

k=1

hcki1 � 1

2

X
i;j 6=i

(
Sij + 1 + S2

ij (1� hcii1)� hcji1
[hcji1(Sij � 1) + 1] [hcii1(1� Sij) + Sij ]

)
; (34)

where the Sij squash factors are still de�ned by

Sij �
ai

aj
; (35)

and where the weights that minimize hCL12:::i1 have the same expression as in the case n = 2, namely

ai = ��i =
1� 2hcii1
1� hcii1

: (36)
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5.2 The case of small numbers of events

The de�nition of EP has now to be extended to the real-life case of n analyses, each of them being

expected to select a small number of events.

5.2.1 The combined Con�dence Level

Starting from the same estimator expression as in the previous section

f =
nY
i=1

caii (37)

and the actual �si (ci) functions (see Section 3)

�si (ci) = c0i �(ci � c0i ) +H(ci � c0i ); (38)

instead of functions uniformly distributed between 0 and 1, the corresponding con�dence level turns

out to be (See Appendix B for the details of the algebra):

CL12:::(f) =
nY

j=1

c0j +
X
C

0
@ Y
l2fkg

c0l

1
A nX

s=1

�s
C

Y
l2fkg;l 6=s

al

al � as

Y
m2f/kg;m6=s

as

as � am
; (39)

where fkg is a subset of the n analyses, f/kg is the complementary subset, and where the sum extends

over all possible con�gurations C of such splittings. For each of these con�gurations, the functions �s
C

are de�ned by

�s
C = �s

2
4Inf

"
f

ffkg
; 1

# 1

as

� f
1

as

f/kg

3
5 ; (40)

with

� �s is �1 when s 2 fkg and +1 when s 2 f/kg;

� ffkg =
Y
l2fkg

�
c0l

�al
and f

f/kg =
Y

m2f/kg

�
c0m

�am
.

5.2.2 Remarks

As was the case for the Democratic Prescription, all functions �sC vanish when no events are observed

in any of the n analyses, because f=ffkg equals ff6 kg in that case. The combined con�dence level is

therefore

CL12:::(f) =
nY
i=1

c0i � exp(�s); (41)

where s is the total number of events expected from signal in the n analyses, independently of the

weights assigned to each of the analyses.

Contrarily to the continuous case described in Section 5.1 the combined con�dence level always

depends on (and bene�ts from) the result of all analyses, even when one of the weights is vanishingly

small. The weights are therefore to be understood as a�ecting the candidate events selected by the

analyses rather than the analyses themselves.
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It was numerically checked that Eq. 39 gives the same result as the Democratic Prescription

(Eq. 20) in the limit ai ! 1. It is also straightforward to check that Eq. 33 can be recovered from

Eq. 39 by setting all c0i to zero, and that the case n = 1 rightly gives CL1 = c1.

Finally, the situation can be considered where a single analysis is applied to a data sample arbitrar-

ily split in two components corresponding to di�erent integrated luminosities. For internal consistency,

the con�dence level resulting from this combination must be identical to that obtained when consid-

ering the analysis as a whole. It was numerically checked, in the case of one candidate event selected,

that the combined con�dence level does not depend on the relative size of the two subsamples, al-

though the optimal weights a1 and a2, determined as described in the following subsection, do (the

smaller the subsample, the larger the weight).

5.2.3 The expected combined Con�dence Level

The weights ai have then to be determined by minimizing, with respect to these weights, the expected

combined con�dence level in the no-signal-hypothesis. This expected con�dence level is analytically

computable (see Appendix C for the details of the calculation) from the integration of

hCLi1 =

Z
dc1 : : : dcn�

1
1 (c1) : : : �

1
n (cn)CL12:::(f); (42)

where the details of the probability distributions �1(c) are not expected to have any major in
uence

on the �nal result, and are therefore given the universal form (see Section 3 and Fig. 5b):

�1i (ci) = ĉi�(ci � c0i ) + �iH(ci � c0i )c
�i
i ; (43)

where

� �i =
(1� ĉi) (1 + �i)

1� (c0i )
1+�i

to ensure the normalization of �1i (ci);

� in the following, �i is de�ned by �i = �i(c
0
i )
1+�i ;

� �i is related to the expected con�dence level hcii1 by

hcii1 �
Z
c�1i (c) dc = c0i ĉi + (1� ĉi)

1 + �i

2 + �i

1� (c0i )
2+�i

1� (c0i )
1+�i

; (44)

which has to be inverted numerically to �nd the actual value of �i.

The result of the integration is

hCL12:::i1 =
nY
i=1

ĉic
0
i +

X
CK

X
Ck

X
s

�s
_Y
K

_Y
/K

_Y
k

_Y
/k

; (45)

where fKg and fkg are two independent subsets of K and k analyses among n, f/Kg and f/kg are the
complementary subsets, and where the sums extend over all possible con�gurations CK and Ck of such
splittings, and over all analyses s in fKg, f/Kg, fkg and f/kg. For each of these con�gurations, the

various symbols have the following meaning:

_Y
K

=
_Y

L2fKg

(c0L)
aL
as

hs

�
ĉL �

�Las

as(1 + �L) + aLhs

�
(46)
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_Y
/K

=
_Y

M2f/Kg

�Mas

as(1 + �M ) + aMhs
(47)

_Y
k

=
_Y

l2fkg

(c0l )
1�

al
as
hs

�
alhs

alhs � as

�
(48)

_Y
/k

=
_Y

m2f/kg

as

as � amhs
; (49)

where the dots mean that the products do not contain the s-th term, if s is in fKg or f/Kg for the

�rst two products and if s is in fkg or f/kg for the last two. In Eq. 45 to 49, �s and hs are de�ned as

follows:

�s = ��

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�1 if s 2 fkg;

+1 if s 2 f/kg;

� �s

1 + �s
if s 2 fKg;

+
�s

1 + �s
if s 2 f/Kg;

(50)

with � =

8>>><
>>>:

+1 if fk � fK and hs > 0;

0 if fk � fK and hs < 0;

0 if fk > fK and hs > 0;

�1 if fk > fK and hs < 0;

(51)

and

hs =

8><
>:

+ 1 if s 2 fkg; f/kg;

�(1 + �s) if s 2 fKg; f/Kg.
(52)

Unlike the case of large numbers of events, the expression of Eq. 45 cannot be minimized analyti-

cally: the value of weights are thus obtained by means of a numerical minimization.

5.3 An example

As an illustration, the results of the two following analyses with di�erent and extreme behaviour were

combined.

� The �rst analysis is expected to select 3.0 events from signal and 1.0 event from background,

95% of which being irreducible (i.e., with a distribution for the variable x identical to that of

the signal). The corresponding con�dence level distribution for experiments with background

only is displayed in Fig. 7a.

� The second analysis is also expected to select 3.0 events from signal, but a larger background of

3.0 events with now very di�erent distributions for the variable x (reducible background). The

corresponding con�dence level distribution for experiments with background only is displayed

in Fig. 7b.
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The expected con�dence levels for analysis 1 and analysis 2, i.e., the mean values of the distributions

shown in Fig. 7 obtained by means of toy Monte Carlo experiments, are hc1i1 = 17:6% and hc2i1 =

23:3%, respectively. These values, quantifying the intrinsic capabilities of the analyses, are to be used

in the determination of the optimal squash factor a2=a1, obtained by the minimization of the expected

combined con�dence level hc12i1 (see Eq. 45).
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Figure 7: Distributions of the con�dence level for (a) the analysis 1; and (b) the analysis 2. (See text.)

It can be seen from Fig. 7 that the irreducible nature of the background of analysis 1 on the one

hand, and the high level of the background of analysis 2, on the other, make the two con�dence level

distributions appear quite di�erent from the analytical form of Eq. 43: the �rst distribution is formed

by steps corresponding to experiments with 1, 2, 3, . . . events observed, and the second develops waves

at various con�dence level values. This leads to wonder about the adequacy of the analytical expression

of the expected combined con�dence level, and the subsequent weight determination. However, as

mentioned in Section 5.2.3, the optimization procedure should not depend on details of the shape of

the �1 distributions.

To check this last point, the expected combined con�dence level was computed �rst from Eq. 45

as a function of the squash factor a2=a1, as shown by a full line in Fig. 8. A large number of analysis

outcomes was then generated according to the exact con�dence level distributions of Fig. 7. The

resulting con�dence levels c1 and c2 were combined with Eq. 39 (which does not make use of the

expected con�dence level) into c12, subsequently averaged to get the true value of hc12i1 as a function

of the squash factor a2=a1. This true value is displayed with triangles in Fig. 8.

The survey of Fig. 8 leads to the following conclusions: (i) the optimal value of the squash factor

is, as naively expected, totally insensitive of the details of the con�dence level distributions of the

various analyses; (ii) the value of the expected combined con�dence level is itself not particularly

sensitive to these details, but this is irrelevant since no use is made of this value anyway; and (iii) as

in the continuous case, the Elitist Prescription improves only slightly over the Democratic Prescription

(a2=a1 = 1). However, the improvement would be more signi�cant if the intrinsic capabilities of the two

analyses were drastically di�erent, which is not the case in the example chosen here (hc1i1 ' hc2i1).
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Figure 8: Distribution of the expected con�dence level from the combination of analyses 1 and 2 (see

text) as a function of the squash factor a2=a1. The full line is analytically obtained, while the triangles

result from a toy MC simulation. The dashed lines indicate the expected con�dence levels of the two

individual analyses.

6 \Background Subtraction"

Performing a \Background Subtraction" means that the con�dence level (i.e., the probability to be

in worse agreement with the expectation than observed) is determined from the knowledge of the

absolute number b of events expected, in addition to that of s, ŝ and b̂. The observation has then to

be compared to the expectation from signal and background instead of signal only. Such a Background

Subtraction is expected to be of particular interest in analyses with a large background expected.

In the frequency approach, this can be done by comparing the observed estimator (modi�ed or

not with respect to Section 3 to incorporate the information on b) to the outcome of all possible

experiments with signal and background. As outlined in Section 2, this procedure always yields smaller

con�dence levels than those obtained with signal only experiments, and all formulae presented in this

paper for the combination of several analyses remain valid by rede�ning c0 = exp [� (s+ b)]. This

may lead, however, to deontologically unacceptable results: for instance, an experiment observing no

events would return a con�dence level of exp [� (s+ b)] (this is the probability to observe 0 event when

s+ b are expected), always smaller than the smallest acceptable value exp (�s). Such an experiment

would thus unduly bene�t from the fact that less events are observed than expected from a known

background to set a better limit on the signal hypothesis.

This problem cannot be avoided while keeping the mathematical exactness of the frequency ap-

proach to deduce con�dence levels. Con�dence levels may, however, be estimated (or rather \guess-

timated") in the bayesian scenario [9, 10]. In general the probability, for a given mass hypothesis m̂h,

to observe an experiment outcome O is a function of the signal expected for this mass hypothesis
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s(m̂h) and of the background expected: P [s(m̂h); b;O]. In the bayesian scenario, P is understood to

be a distribution of the quantity to be tested | here m̂h| and is normalized to unity to resemble a

probability density according to:

f(m̂h) =
P [s(m̂h); b;O]R1

0 P [s(mh); b;O] dmh

; (53)

where the \a priori probability density formh", often denoted �(mh), was assumed here to be uniform.

The \probability" that mh be smaller than a given value m̂h for an experiment outcome O, i.e., the
\con�dence level" associated to mmin

h is then estimated by:

\Probability"(mh � m̂h) =

Z m̂h

0

f(mh) dmh: (54)

However, the denominator of Eq. 53 is an unde�ned integral because P is a constant for su�ciently

large m̂h values, when the number of events expected from signal tends to zero. (This constant is the

probability to have observed the outcome O if no detectable signal is predicted.) As a consequence, all

\con�dence levels" estimated this way are zero, and all mass hypotheses are excluded at much more

than 95% C.L.!

What is usually done [2, 3, 4] to overcome this paradox is to substitute the hypothesis on number

of signal event expected s0 for the mass hypothesis m̂h, if a one-to-one relation between these two

quantities exists (as is the case in the standard model, for instance). With this modi�cation, the

estimate of Eq. 54 can be re-expressed in terms of the \probability" H that s be larger than s0:

H(s0) � \Probability"(s � s0) =

R1
s0
P (s; b;O) dsR1

0 P (s; b;O) ds; (55)

which now leads to �nite integrals, and to a non-zero estimate of the con�dence levels. Any other

estimate could however be obtained, by substituting for s0 any function of it (s20,
p
s0, mh(s0), . . . ).

For the sake of de�niteness, but not on the ground of scienti�c considerations, the simplest choice of

Eq. 55 is kept in the following discussion (as is usually done in the literature).

When only the number n of events observed is available, a natural choice for P (s; b;O) is the
Poisson probability:

P (s; b;O) = exp [�(s+ b)]
(s+ b)n

n!
; (56)

in which case Eq. 55 returns the well-known \PDG formula" [2]

H(s0) = exp(�s0)

nX
k=0

(s0 + b)k

k!

nX
k=0

bk

k!

: (57)

If, in addition, a variable x discriminating between signal and background is available, Eq. 56 can be

extended in a straightforward way [4] to

P (O) = 1

n!
exp [�(s+ b)]

nY
i=1

[s(1 + �i) + b(1� �i)] ; (58)

with the notations of Section 3, where 1+�i and 1��i are proportional to ŝ(xi) and b̂(xi), respectively.

This is equivalent to Eq. 56 when all �i's are zero, i.e., when no discrimination exists between signal
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and background. The con�dence level estimate obtained from Eq. 55 and 58 is:

H(s0) = exp(�s0)

X
C

bn�k
+Y
fkg

�Y
f/kg

k!
kX
l=0

sl0
l!

X
C

bn�k
+Y
fkg

�Y
f/kg

k!

; (59)

where fkg is a subset of the n events, f/kg is the complementary subset, and where the sums extends

over all possible con�gurations C of such splittings. For each of these con�gurations, the products are

de�ned by
+Y
fkg

=
Y

j2fkg

(1 + �j) and
�Y
f/kg

=
Y

j2f/kg

(1� �j): (60)

This con�dence level estimate, meant to take the background level into account, can then be

compared to the con�dence levels computed in the frequency approach, as described in the preceding

sections. Four di�erent, typical, background and signal con�gurations are considered. In the �rst

three examples, the background is assumed to be reducible by some selection criteria, while keeping

a reasonable signal e�ciency. The comparison is made near the expected sensitivity of the analysis,

i.e., for a Higgs mass hypothesis m̂h where typically three signal events are expected. To be speci�c,

the background is supposed to be divided by a hundred when the signal e�ciency is divided by 2

(b = 0:1; 1; 10 for s = 2; 3; 4). These three examples di�er only by the discriminating power of the

variable x:

(a) the distributions of Fig. 1 are chosen for ŝ and b̂;

(b) the distribution of Fig. 1b is chosen for b̂, but only the core of the distribution of Fig. 1a is kept

for ŝ, rendering the variable x much more discriminant than in (a);

(c) identical x distributions are chosen for ŝ and b̂ (no discriminating power);

In the fourth example, in addition to this reducible background, an irreducible background (with the

same properties as the signal) is also assumed to be present. The level of the latter is assumed to be

25% of the signal expected, whatever the selection criteria. For the sake of de�niteness, b is assumed

to be 0.51, 0.85, 2.00, 11.25 for a signal s of 2, 3, 4 and 5 events expected, respectively.

The expected con�dence level hci1 computed in the frequency approach, and the mean value of

H(s0) (the expected con�dence level estimated in the bayesian approach), are displayed as a function

of s in Fig. 9a{d. As mentioned in Section 3.2, an analysis is optimum when the smallest expected

con�dence level is reached by varying the selection cut values. It can be seen from Fig. 9 that, in the

four representative cases described above, the frequency approach performs better than the bayesian

approach in this respect: the smallest expected con�dence level is always obtained in the frequency

approach. Several other remarks can be done.

� In the bayesian approach, the improvement from the no discriminating power con�guration

(c) to the intermediate one (a) is marginal (12:4% ! 11:9%). This is to be compared to the

signi�cant gain achieved in the frequency approach (12:1%! 9:3%). This is due to the fact that

the minima are located in the small background regime (typically 0.5 events). In this regime,

all candidate events have a tendency to be considered as coming from signal by the bayesian

approach, irrespective of the value of x, thus going back to the event counting case.
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Figure 9: Expected con�dence levels in the bayesian (dotted line, with triangles) and the frequency

(dashed line, with squares) approaches as a function of the cut value (see text) in several con�gura-

tions of signal and backgrounds: (a) Reducible background with a variable x with a discriminating

power similar to that of Section 3; (b) Same as (a) but with a much more discriminating variable

x; (c) Same as (a) but with a variable x with no discriminating power; and (d) Same as (a), with

irreducible background in addition. Also indicated in (b): the expected con�dence levels obtained

from experiments with signal and background in the frequency approach (dash-dotted line), compared

to the smallest acceptable value exp(�s) (dashed line).
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� This last statement is no longer true in con�guration (b) where the minimum is found for a

larger background level (about 2 events), and where both approaches bene�t of the very good

discriminating power of the variable x. (In this case, there is even no background to be subtracted

anyway.) A performant discrimination is therefore more gratifying than Background Subtraction

in terms of expected con�dence levels.

� As can be naively expected, the bayesian minima are found in a larger background regime

than the frequency minima. Increasing further the background render the con�dence levels

of the bayesian approach eventually smaller that those of the frequency approach in the same

background regime. However, this does not happen when the analyses are optimal.

� In the extreme case where the background expected is much larger than the signal, an experiment

with a number of events observed much smaller than expected leads to H(s0) = exp(�s0). This
behaviour is pathological because it implies that the conclusion \no signal events have been seen"

can be drawn in a very large background environment, provided too few events are observed.

The validity of a con�dence level making use of such a Background Subtraction is therefore

suspicious in a regime where the background becomes large with respect to the signal. This

remark made here for the bayesian approach applies as well to the frequency approach, as it was

alluded to above.

Beside the above remarks, and without entering an old debate, it must be emphasized that the

bayesian way of de�ning con�dence levels, although appealing by its mathematical simplicity, su�ers

from an intrinsic ill-de�ned meaning. In particular, whether or not a bayesian de�nition yields a

conservative estimate is not guaranteed (see above) and can only be assessed by the proper frequency

analysis.

7 Conclusion

In this article, a prescription is developed to combine limits obtained by a set of analyses on a common

process. The prescription does not imply constraints on the method followed by the various analyses

to derive their own limits. It accounts for the intrinsic capabilities of each of them in an optimal way

by ensuring that, on average, the compound con�dence level is minimal, in absence of signal. The

procedure advocated makes use of analytical expressions which allow a fast algorithm to be written,

thus making it a practical tool, even in the important case of low statistics.
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Appendix A: Combined con�dence level in DP

The following form of the con�dence level distribution for each individual analysis is considered (see

Section 3):

�s(c) = c0�(c � c0) +H(c� c0); (61)

where c0 is the lowest possible con�dence level (reached when no events are observed) and H(c� c0)

is a step function which is non-zero only when c 2 [c0; 1], where its value is 1. With this de�nition, �s

is properly normalized to unity.

The goal is to compute the probability density of the Democratic Prescription estimator

f =
nY
i=1

ci; (62)

built to combine in a democratic way n di�erent analyses with measured con�dence levels ci. To do

so, the characteristic function � is introduced,

�(t) = hf iti = hexp(itr)i =
+1Z
�1

exp(itr)�(r) dr; (63)

where

r = ln f =
nX
i=1

ln ci; (64)

which will subsequently be inverse-Fourier transformed according to

�(r) = 1

2�

+1Z
�1

exp(�itr)�(t) dt; (65)

in order to obtain the analytical expression of the density probability distribution of the estimator

�(r). The characteristic function � can be rewritten as follows:

�(t) = hf iti =
nY

j=1

hcitj i (66)

with:

hcitj i =

Z 1

0

�j(cj)c
it
j dcj (67)

=

Z 1

0

[c0j�(c� c0j ) +H(c� c0j )]c
it
j dcj (68)

= (c0j )
it+1 +

Z 1

c0
j

citj dcj (69)

= (c0j )
it+1

�
1� 1

it+ 1

�
+

1

it+ 1
: (70)

Hence, according to Eq. 65,

�(r) =
1

2�

+1Z
�1

dt exp(�itr)
nY
j=1

�
(c0j )

it+1

�
1� 1

it+ 1

�
+

1

it+ 1

�
(71)

=
X
C

1

2�

+1Z
�1

dt exp(�itr)
Y
l2fkg

(c0l )
it+1

�
1� 1

it+ 1

� Y
m2f/kg

1

it+ 1
; (72)
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where fkg is a subset of k among the n analyses, f/kg is the complementary subset, and where the sum

extends over all possible con�gurations C of such splittings. Each term of the sum over con�gurations

takes the form

�C(r) =
1

2�

+1Z
�1

dt exp(�itr)
Y
l2fkg

(c0l )
it+1

�
1� 1

it+ 1

� Y
m2f/kg

1

it+ 1
(73)

=
1

2�
ffkg

+1Z
�1

dt exp
h
�it(r�rfkg)

i �
1� 1

it+ 1

�k � 1

it+ 1

�n�k
; (74)

where

� rfkg =
X
l2fkg

ln c0l , and similarly ffkg =
Y
l2fkg

c0l ;

� r
f/kg =

X
m2f/kg

ln c0m, and similarly f
f/kg =

Y
m2f/kg

c0m.

The next step is to compute �C(r) using Cauchy theorem. All the singularities of the integrand

are located in the complex plane at t = i and are thus all on the positive side of the imaginary axis.

Therefore �C(r) is non-zero only if r 2 [r0;rfkg] where

r0 =
nX

j=1

ln c0j = rfkg +rf/kg (and similarly f0 =
nY
i=1

c0i ); (75)

is the smallest possible value of r. However, a term without singularity appears in the particular

con�guration where the subset f/kg is empty. This terms reads:

1

2�
f0

+1Z
�1

dt exp [�it(r�r0] = f0�(r�r0): (76)

Putting aside this particular component, the terms with singularities in t = i can be developed as

follows:

�C(r) =
1

2�
ffkg

+1Z
�1

dt exp
h
�it(r�rfkg)

iMin(k;n�1)X
j=0

C
j
k

�
i

t� i

�k�j � �i
t� i

�n�k
; (77)

where the C
j
k are the binomial coe�cients. The residue of each pole, of order n� j, is obtained from

the n� j� 1th derivative of the exponential. Assigning the Heaviside-like function Hfkg(r) the value
1 in the interval [r0;rfkg] and 0 outside, it follows:

�C(r) = (�1)n+k+1Hfkg(r)ffkg
Min(k;n�1)X

j=0

C
j
k

h
r�rfkg

in�j�1
(n� j � 1)!

exp(r�rfkg): (78)

Altogether

�(r) =
nY
i=1

c0i �(r�r0) +
X
C

(�1)n+k+1ffkg � (79)

Hfkg(r)
Min(k;n�1)X

j=0

C
j
k

h
r�rfkg

in�j�1
(n� j � 1)!

exp(r�rfkg): (80)
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For a given measured value of the estimator

fmes =
nY
i=1

ci and rmes = ln fmes; (81)

the corresponding con�dence level is obtained by the integration of �(r) between the minimum and

the measured values of r. Each term in the sum over the con�gurations C and over j can be integrated

by parts in n� j � 1 steps. This yields:Z rmes

r0

�(r) dr =
nY

j=1

c0j +
X
C

(�1)kffkg � (82)

Min(k;n�1)X
j=0

(�1)jCj
k

(
	n�j

 
Inf

"
fmes

ffkg
; 1

#!
�	n�j

�
f
f/kg

�)
; (83)

where

	s (x) = x
s�1X
m=0

(� lnx)m

m!
: (84)

Appendix B: Combined con�dence level in EP

The algebra of EP is quite similar to that of DP (see Appendix A) by substituting caii for ci in the

various de�nitions and equations. The characteristic function is de�ned as in Eq. 63, with

f =
nY
i=1

caii and r = ln f =
nX
i=1

ai ln ci; (85)

and has to be subsequently inverse-Fourier transformed according to Eq. 65, in order to have an

analytical expression of the density probability distribution of the estimator �. This characteristic

function � can be rewritten as in Eq. 66 to 70:

�(t) =
nY

j=1

hciaj tj i with hciaj tj i = (c0j )
iaj t+1

"
1� 1

iajt+ 1

#
+

1

iajt+ 1
: (86)

Hence, according to Eq. 65,

�(r) =
X
C

1

2�

+1Z
�1

dt exp(�itr)
Y
l2fkg

(c0j )
iaj t+1

"
1� 1

iajt+ 1

# Y
m2f/kg

1

iamt+ 1
; (87)

where the notations fkg, f/kg and C have the same meaning as in Appendix A. Each term of the sum

over con�gurations takes the form

�C(r) =
1

2�

+1Z
�1

dt exp(�itr)
Y
l2fkg

(c0l )
ialt+1

�
1� 1

ialt+ 1

� Y
m2f/kg

1

iamt+ 1
(88)

=
1

2�

+1Z
�1

dt exp
h
�it(r�rfkg)

i Y
l2fkg

c0l

�
1� 1

ialt+ 1

� Y
m2f/kg

1

iamt+ 1
; (89)

where r
fkg

and r
f/kg are now de�ned by
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� rfkg =
X
l2fkg

al ln c
0
l , and similarly ffkg =

Y
l2fkg

�
c0l

�al
;

� r
f/kg =

X
m2f/kg

al ln c
0
m, and similarly f

f/kg =
Y

m2f/kg

�
c0m

�am
.

The next step is to compute �C(r) using again Cauchy theorem. The singularities of the integrand

are now located in the complex plane at ts = i=as (s 2 [1; n]) and are thus still all on the positive side

of the imaginary axis. Therefore �C(r) is non-zero only if r 2 [r0;rfkg] where

r0 =
nX

j=1

aj ln c
0
j = rfkg +rf/kg (90)

is again the smallest possible value of r. A straightforward residue calculation yields:

�C(r) = Hfkg(r)
nX

s=1

1

as
exp

�r
as

�
�s

Y
l2fkg;l 6=s

(c0l )
1�

al
as

2
641� 1

1� al

as

3
75 Y
m2f/kg;m6=s

1

1� am

as

(91)

=
Y
l2fkg

c0lHfkg(r)
nX

s=1

1

as
exp

�r�rfkg

as

�
�s

Y
l2fkg;l 6=s

al

al � as

Y
m2f/kg;m6=s

as

as � am
; (92)

where �s is �1 when s 2 fkg and +1 when s 2 f/kg. As in DP, an additional term appears in the

particular con�guration where the subset f/kg is empty. In this case, Eq. 89 contains a term without

singularity that must be taken care of separately:

nY
j=1

c0j
1

2�

+1Z
�1

dt exp [�it(r�r0] =
nY

j=1

c0j�(r�r0): (93)

Altogether

�(r) =
nY

j=1

c0j�(r�r0) +
X
C

Y
l2fkg

c0lHfkg(r)� (94)

nX
s=1

1

as
exp

�r�rfkg

as

�
�s

Y
l2fkg;l 6=s

al

al � as

Y
m2f/kg;m6=s

as

as � am
: (95)

For a given measured value of the estimator

fmes =
nY
i=1

caii and rmes = ln fmes; (96)

the corresponding con�dence level is obtained by the integration of �(r) between the minimum and

the measured values of r:
Z rmes

r0

�(r) dr =
nY

j=1

c0j +
X
C

0
@ Y
l2fkg

c0l

1
A nX

s=1

�s
C

Y
l2fkg;l 6=s

al

al � as

Y
m2f/kg;m6=s

as

as � am
; (97)

where

�s
C = �s

2
4Inf

"
fmes

ffkg
; 1

# 1

as

� f
1

as

f/kg

3
5 : (98)
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Appendix C: Expected combined con�dence level in EP

Starting with the notations of Appendix A and B, the combined con�dence level C of a set of n

analyses with individual con�dence levels ci, i = 1; : : : ; n, can be written as follows (see Eq. 65):

C
�
r
�

=

Z r

r0

dr�(r) (99)

=

Z r

r0

dr

8<
: 1

2�

+1Z
�1

exp(�itr)�(t) dt

9=
; ; (100)

where � is the characteristic function de�ned in Eq. 63, and where �(r) was demonstrated to be the

sum of a regular function of r which is non-zero between r0 and 0 and a Dirac peak
Q
c0i �(r�r0).

In this Appendix, the goal is to compute the average value of the combined con�dence level in the

no-signal-hypothesis, i.e., the expected combined con�dence level hCi1 in the absence of signal. The

singular case where r = r0, in which the combined con�dence level is
Q
c0i can be treated separately.

The probability to be in this con�guration is nothing but the probability to observe no events namelyQ
ĉi, where ĉi = exp(�bi) and bi is the number of events expected from background in the analysis i.

The contribution hCi11 of the Dirac part of �(r) to the expected con�dence level is therefore

hCi11 =
nY
i=1

c0i ĉi: (101)

The integration of the regular function of r gives a vanishing contribution when r ! r0. This

regular part can be explicitly rewritten by integrating Eq. 100 with respect to r:

C
�
r
�

=
1

2�

+1Z
�1

dt

(Z r

r0

dr exp(�itr)
)
�(t) (102)

=
i

2�

+1Z
�1

dt

t

h
exp

�
�itr

�
� exp (�itr0)

i
�(t): (103)

The integrand has no singularity in t = 0, because the two terms of the di�erence compensate when

t! 0. The two singularities that appear when the two terms are treated independently are therefore

ignored in the following. The expected con�dence level can be obtained by integrating C
�
r
�
with

the proper density distributions �1i (ci):

hCi1 = hCi11 + hCi21 + hCi31; (104)

with

hCi21 =

Z
�1i (c1) : : : �

1
i (cn)

8<
: i

2�

+1Z
�1

dt

t
exp

�
�itr

�
�(t)

9=
; dc1 : : : dcn (105)

hCi31 =

Z
�1i (c1) : : : �

1
i (cn)

8<
: i

2�

+1Z
�1

dt

t
exp (�itr0) �(t)

9=
; dc1 : : : dcn (106)

=
i

2�

+1Z
�1

dt

t
exp (�itr0)�(t); (107)
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and where hCi31 is de�ned by Eq. 101. The no-signal-hypothesis density distributions have the uni-

versal form (see Fig. 5):

�1(c) = ĉ�(c � c0) + �H(c� c0)c�; (108)

with � and � being �xed by the two conditionsZ
�1(c) dc = 1 =) � =

(1� ĉ) (1 + �)

1� c
1+�
0

; (109)

Z
c�1(c) dc = hci1 =) hci1 = c0ĉ+ (1� ĉ)

1 + �

2 + �

1� c
2+�
0

1� c
1+�
0

: (110)

The expression of hCi21 can be rewritten as follows:

hCi21 =
i

2�

Z +1

�1

dt

t
�1(�t)�(t); (111)

where �1(�t) is de�ned as �(t) by

�1(�t) =

Z
�1i (c1) : : : �

1
i (cn)c1

�ia1t : : : cn
�iant dc1 : : : dcn (112)

=
nY
j=1

hc�iaj tj i1: (113)

With the expression of �1(c) given in Eq. 108, each of the terms of the product reads:

hc�iati1 = ĉ

Z
�(c � c0)c�iat dc+ �

Z 1

c0
c��iat dc (114)

= ĉc�iat0 +
�

1 + �� iat

�
1� c

1+�
0 c�iat0

�
(115)

= c�iat0

�
ĉ� �

1 + �� iat

�
+

�

1 + �� iat
; (116)

with � = �c
1+�
0 . Therefore:

�1(�t) =
X
CK

Y
L2fKg

(c0L)
�iaLt

�
ĉL �

�L

1 + �L � iaLt

� Y
M2f/Kg

�M

1 + �M � iaM t
; (117)

where fKg is a subset of the n analyses, f/Kg is the complementary subset, and where the sum extends

over all possible con�gurations CK of such splittings. For the sake of clarity in the notations, L 2 fKg
and M 2 f/Kg are replaced hereafter by K and /K. The use of Eq. 86 for the expression of �(t) thus

yields:

�1(�t)�(t) =
X
CK

X
Ck

Y
K

Y
/K

Y
k

Y
/k

; (118)

with:

Y
K

=
Y
K

(c0L)
�iaLt

�
ĉL �

�L

1 + �L � iaLt

�
(119)

Y
/K

=
Y
/K

�M

1 + �M � iaM t
(120)
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Y
k

=
Y
k

(c0l )
ialt

"
c0l �

c0l
1� ialt

#
(121)

Y
/k

=
Y
/k

1

1 + iamt
: (122)

leading to:

hCi21 =
i

2�

X
CK

X
Ck

Z +1

�1

dt

t

Y
K

Y
k

Y
/K

Y
/k

: (123)

Each of the K-terms has a pole in ts = �i(1 + �s)=as, and each of the k-terms in ts = +i=as.

These poles can be treated with the Cauchy theorem. (The pole in t = 0 is ignored for the reason

mentioned above.) Since
Q
K

Q
k contains a term exp [�it(rK �rk)], the integration has to be done

in the upper part of the complex plane when rK �rk < 0, in the lower part of the complex plane

when rK � rk > 0, and in either part in the case rK = rk. (Here, the choice is to treat this

particular case with the rK �rk < 0 con�guration.) Since �(t) has all its poles in the upper part of

the complex plane, and �1(�t) has poles in both parts according to the sign of 1 + �s, a long, but

straightforward residue calculation yields:

hCi21 =
X
CK

X
Ck

X
s

�s
_Y
K

_Y
/K

_Y
k

_Y
/k

; (124)

with

_Y
K

=
_Y

L2fKg

(c0L)
aL
as

hs

�
ĉL �

�Las

as(1 + �L) + aLhs

�
(125)

_Y
/K

=
_Y

M2f/Kg

�Mas

as(1 + �M ) + aMhs
(126)

_Y
k

=
_Y

l2fkg

(c0l )
1�

al
as
hs

�
alhs

alhs � as

�
(127)

_Y
/k

=
_Y

m2f/kg

as

as � amhs
; (128)

where the sum over s extend over all poles s 2 fKg, f/Kg, fkg and f/kg and where the dots mean that

the products do not contain the s-th term, if s is in fKg or f/Kg for the �rst two products and if s is

in fkg or f/kg for the last two. In this equation, �s and hs are de�ned as follows:

�s = ��

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�1 if s 2 fkg;

+1 if s 2 f/kg;

� �s

1 + �s
if s 2 fKg;

+
�s

1 + �s
if s 2 f/Kg;

(129)
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with � =

8>>><
>>>:

+1 if rk � rK and hs > 0;

0 if rk � rK and hs < 0;

0 if rk > rK and hs > 0;

�1 if rk > rK and hs < 0;

(130)

and

hs =

8><
>:

+ 1 if s 2 fkg; f/kg;

�(1 + �s) if s 2 fKg; f/Kg.
(131)

The integration of hCi31 as given in Eq. 107 is much simpler, since only the poles of �(t) play a

rôle. The residue calculation therefore closely follows that of Appendix B. It yields:

hCi31 =
X
Ck

X
s

�sc
0
s

Y
l2fkg;l 6=s

c0l
al

al � as

Y
m2f/kg;m6=s

(c0m)
am
as

as

as � am
; (132)

which turns out to be exactly 0 because each term with s 2 fkg in a given con�guration Ck (therefore
with �s = �1) has its exact counterpart in the con�guration C0k that di�ers from Ck by the sole fact

that s 2 f/kg instead (therefore with �s = +1).

Appendix D: Expected combined con�dence level for f = x+ y

To combine the con�dence levels c1 and c2 of two analyses, the estimator f 0 = c1 + c2 may be used

instead of f = c1c2 as is done throughout this article. In the case of two analyses, the analytical

determination of the expected combined con�dence level presents no technical di�culties. This choice

yields:

hC12i1 = 2+2(�1+1)(�2+1)
�(�1 + 1)�(�2 + 1)

�(�1 + �2 + 5)
� �1 + �2 + 5

(�1 + 2)(�2 + 2)
� 1

2

�
�1 + 1

�1 + 3
+

�2 + 1

�2 + 3

�
; (133)

where the �i coe�cients are related to the individual expected con�dence levels by

�i = �1� 2hcii1
1� hcii1

: (134)
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