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Abstract

This paper is devoted to the estimation of an unknown function f in the framework of
a Gaussian white noise model. The noise process is represented by ¢t — \/LE f(f g(x)dB,,
where the variance function ¢ is assumed to be known. Adopting the maxiset point of view,
we study the performance of two different hard thresholding estimators in LL” norm. In
a first part, we expand f on a compactly supported wavelet basis {1\(.); A € A}. From
this decomposition, we use some results about the heteroscedastic white noise model
to construct a well adapted hard thresholding estimator and to exhibit the associated
maxiset. In a second part, we introduce the classes of Muckenhoupt weights and we
use this analytical tools to investigate the geometrical properties of warped wavelet basis
{n(T(.)); A € A} in L? norm. Expanding f on such a basis and considering the associated
hard thresholding estimator, we investigate the maxiset properties under some assump-
tions on g. We finally apply this result to find an upper bound over weighted Besov spaces.

Keywords: Non parametric estimation, mazimal spaces, thresholding rules, Besov spaces,
weak Besov spaces, weighted Besov spaces, Gaussian white noise model, Muckenhoupt
weights, warped basis.

AMS: 42B25, 47B99, 62G05, 62G07, 62G20.

1 Introduction

For several years, the problem of signal recovery in Gaussian white noise is a paradigm for
non parametric curve estimation. The general framework of this model is the following:
For n > 1, one observes the stochastic process Y," =Y, defined by:

1

—g(t)dB;, tel0,1 1
To(t)dB, te(0.1 )
where f is an unknown function which belongs to L?([0, 1]), B, is a Brownian motion with
By = 0 and g is a known function which belongs to L2([0,1]). The goal is to recover f
from the noisy observations (1).

dY, = f(t)dt +



Among non parametric situations, the Gaussian white noise model has been studied in
several papers starting from Ibragimov and Has’'minskii (1977, 1981). This is a model very
useful to understand some statistical questions. For instance, the precise mathematical
relationship between white noise and curve estimation was established by Brown and Low
(1996) who proved the asymptotic equivalence of model (1) and non parametric regression.
Under smoothness restrictions on f, the homogeneous white noise model i.e ¢g(t) = g in
(1) is asymptotically equivalent to the following experiment: For i = 1, ...,n, one observes
Y”, where

Yo = f(L) 4 e, e iid ~ N0, %)

An analogous result for asymptotic equivalence of density estimation and homogeneous
white noise was obtained by Nussbaum (1996). For the study of minimax properties, we
refer the reader to the book of Tsybakov (2004).

More generally, introducing some inhomogeneity in the variance function (when g(t) #
g) may enrich significantly the curve estimation modelling. Under some assumptions of
regularity on f and conditions of boundedness from above and below on g, Brown and Low
(1996) proved that the model (1) is asymptotically equivalent to the following experiment:
For i = 1,...,n, one observes (X", Y”), where

Vit = (X)) + (X (2)

The random variables €/ are i.i.d N (0, 1), the X" are independent of the € and are i.i.d

with density p. The equivalence between (1) and (2) is obtained under the calibration
_ o)

9(t) = L

The aim of this paper is to study the performance of hard thresholding procedures
associated to the estimated function f in a L” norm given a realization (1) with some
inhomogeneity on g, more general that conditions of boundedness from above and below.

To measure the performance of a statistical procedure, we will adopt the maxiset ap-
proach which has been introduced by Cohen, De Vore, Kerkyacharian and Picard (2000).
It consists in investigating the maximal space (or maxiset) where a procedure has a given
rate of convergence. This point of view is less pessimist than the minimax one since
it provides a functional set which is authentically connected to the procedure and the
model. Precisely, this authors proved that the maxiset associated with hard thresholding
procedures is the intersection of two well known spaces (see Theorem 3.1 below).

Focused on the model (1), this paper is organized in two parts which describe the
maxisets obtained for two different hard thresholding estimators in IL” norm. In a first
part, we expand the unknown function of interest f on a compactly supported wavelet
basis £ = {1\(.); A € A}. To construct a hard thresholding estimator well adapted to (1)
and to identify the associated maxiset, we exploit two important geometrical properties
of the basis £ and we use some results of Picard and Kerkyacharian (2000) about the
heteroscedastic white noise model:

1
y)\:ﬂ,\‘F%O')\E)\, €) lldNN(O,l), )\EA,



where (5))aea is a sequence to be estimated (see Theorem 4.1 below).

In a second part, we investigate an another strategy. We expand f on a compactly sup-
ported warped wavelet basis {\(T'(.)); A € A} where the warping factor 7" is a known
function only depending on g. This allows to perform a very stable and computable
thresholding algorithm. To study the performance of the associated hard thresholding es-
timator, we introduce the classes of Muckenhoupt weights A, which have been introduced
by Muckenhoupt in (1972). They characterize the boundedness of some integral operators
on weighted IL” spaces like the Hardy-Littlewood maximal operator or the Hilbert trans-
form. Using the fact that there exists a link between geometrical properties of warped
wavelet basis and Muckenhoupt weights theory as it shown by Garcia and Martell in
(1999), we describe the performance of our procedure in terms of maxiset properties (see
Theorem 6.1 below).

The above method has the advantage of giving interesting statistical results about some
weighted spaces. For instance, observing the realisations (2) with ¢ = 1, expanding the
function f on the warped wavelet basis {¢\(Fx,(.)); A € A} where Fx, (z) = P(X; < x)
and taking the associated hard thresholding estimator, Picard and Kerkyacharian (2003)
obtained an upper bound over weighted Besov spaces (see Definition 7.1 below) corre-
sponding to the rate which proved to be minimax in a uniform design up to a logarithmic
factors under some Muckenhoupt conditions on ¢g. In the last section of this paper, we
find a similar result from our observations (1) (see Proposition 7.1 below).

2 Maxiset point of view and hard thresholding proce-
dures

Here we start by introducing the maxiset point of view and after briefly explaining the
reason of this choice, we define the hard thresholding procedures. Throughout this paper,
for non negative locally integrable function w on 2 C R, we define:

L2 () = {f measurable on Q | || f||%, , = / | (&) [Pw(t)dt < 400}
Q

LP(©2) = LY(Q) denotes the Lebesgue space.

2.1 DMaxiset point of view

From an unknown function f of L?(§2) (where 2 is a bounded interval of R) randomly
observed via n-statistical observations O", the maxiset approach consists in investigating
the maximal space (called maxiset) where an estimation procedure f constructed from
O™ attains a given rate of convergence c(n) for the L? risk.

In other words, we want exhibit the space A,, C LP(f2) such that for p > 1 and
1>a>0:

E(|If = fII2) < Ce(n)™ <> f € Aoy (3)

This way of measuring the performances of statistical procedures has been particularly
successful in the nonparametric framework. It has often the advantage of giving less

3



arbitrary and pessimistic comparaisons of procedures than the minimax approach. It is
clear that we compare the performance of two procedures by comparing their respective
maxisets. .

The equivalence (3) is possible if and only if f is small as possible for the L risk
without a priori knowledge of the regularity of f. Among others, this is one of the reasons
why we work with hard thresholding procedures in our maxiset studied.

2.2 Hard thresholding procedures
First of all we consider £ = {e;;(.); 7 > —1, k € Z} a basis of L?(Q2) and we suppose
that all function f of IL?(Q2) have an expansion on £ under the form:

flz) = Zﬂ,\e,\(:v), Vo e Q

AEA

where A = (7,k), A={j > —1, k € Z} and (5 denote the associated coefficients.
The construction of hard thresholding procedures is accomplished in three steps:

1. A linear step corresponding to the estimation of the 3)’s by some estimators B,\.

2. A mnon-linear step consisting to consider the hard thresholding operator 7 (3)) =
wyBy where w, is characterized by the equivalence:

wy =1<= XeA, and |5y| > ke(n)

e « denotes a fixed positive constant,

e ¢(n) a decreasing positive sequence such that lim, .., ¢(n) = 0 and there exists
a positive constant K verifying c¢(n) < Kc(n + 1),

e A, is a sequence of set such that Ay C Ay C ... C A, and U2 A, = NU{—-1} x
Z.

3. A reconstruction step for deriving the global estimator:

fl@) =" T(Byeslx) = > Bawser(r), Vo€ (4)

AEA, AEA,

Remark 2.1. The construction of hard thresholding procedures only depends on the data,
doesn’t require any a priori knowledge on the function f in its construction.

In the third section, we focus on the maxiset theory applied to hard thresholding proce-
dures for arbitrary bases.

Notations: Throughout this paper, C' denotes positive constants only depending on
p and that may change from one line to the other.



3 Maxiset associated with the hard thresholding pro-
cedures

Now we introduce determinant geometrical notions of unconditional bases and p-Temlyakov’s
property which are very useful in maxiset theory.

3.1 Geometrical bases properties

Following Mallat’s heuristic, Donoho (1996) pointed out the importance of unconditional
bases in statistics. Let us recall the definition:

Definition 3.1 (Unconditional bases of L?(Q2)). We say that € = {ex(.); A € A} is
an unconditional basis of LP(Q2) if and only if there exists an absolute constant C' such
that if |ux| < |va| for all X € A, then:

1Y S wenllr <CI Y mel? (5)
AEA AEA

The elementary consequence in Statistics is that shrinkage methods are not expected
to produce an explosion of the norm. In the maxiset theory, we also need the notion of
p-Temlyakov’s property:

Definition 3.2 (p-Temlyakov’s property). We say that a basis € = {e,(.); A € A} of
LP(Q) satisfies the p-Temlyakov’s property if and only if there exists two positive constants
c and C such that for any finite set of integer F' € A we have:

e el < /(Z lex(@)|?)2dz < C) leall (6)
ACF Q \er ACF

Verified by a basis, this two properties allow to very simply transfer the arguments
from L%(Q) to LP(Q) as it shown by Picard and Kerkyacharian (2000).

3.2 The key theorem

Now we recall the key theorem of this studied which determines the maxiset of hard
thresholding procedures for a completely general basis. We refer to Cohen, De Vore,
Kerkyacharian and Picard (2000) for its complete proof.

Theorem 3.1. Here we suppose that the basis £ satisfies the geometrical properties (5)
and (6). Let us consider the unknown function f =, Bxex € LP(Q) which is randomly
observed from O™ and the associated hard thresholding estimator (4) under the calibration:

o cln) = /22,

n

o A, = {(5,k);5 < ji(n), k| < C27} where ji(n) is the integer verifying 21" <
c(n)™" < 20MHL s g positive real number such that:

sup[w(Ay)e(n)] < C (7)
n>1
and w is the weight defined by w(S) =\ s lleals VS € A.

3



For any A € A,,, if we suppose also that EN satisfies the two following statistical properties:

e Concentration property:

P (16 - I = 252 < el netw’ ®)
e Moment property:
E (|6 = ") < Ce(n)”, 9)

then we can identify the maxiset links to the hard thresholding estimator (4); for any
l<p<oo, 0<a<landk alarge enough constant we have the following equivalence:

E(|If = fII}) < Ce(n)*® <= f € Byoo(€) Nl1-ajppoo) (€)
We have denoted B)  (£) and l(p,)(E) the function spaces defined by:

e For 0 < v < oo, we say that a function f of LP(Q2) belongs to the Besov space
B) (&) if and only if:

supe(n) |f = Y Aheally < o0 (10)

AEA,

e For 0 <r < p, we say that a function f of LP(Q) belongs to the weak Besov space
lirp,oo)(E) if and only if:

supu'w({A € A; |6y] > u}) < 0. (11)

u>0

Besov spaces (10) and weak Besov spaces (11) shall be useful throughout this paper
with two kinds of wavelet basis. The first one shall be the compactly supported wavelet
basis and the second one shall be the compactly supported warped wavelet basis. Theorem
3.1 is in the center of this studied and it will be applied to obtain the main results of this
paper: Theorem 4.1 and Theorem 6.1.

Throughout the next of this studied, we consider the set 2 = [0, 1].

3.3 Compactly supported wavelet bases
Wavelet analysis requires a description of two basic functions, the scaling function ¢ and
the wavelet ¢. A wavelet system is the finite collection of translated and scaled version
of ¢ and v defined by:

oa() = pin() = 220(2. — k), j ENk € Z

() = in() = 282, — k), j ENk € Z

6



Here, we suppose ¢ and ¢ are compactly supported on [0, L] with L > 0, that’s why there
exists a positive constant C' such that |k| < C27 Vj € N. For the theory of Multiresolu-
tion Analysis, see Meyer (1990), Daubechies (1992), Cohen, Daubechies and Vial (1993)
or Donoho (1995).

Notation: We denote & = {1,(.); A € A} the compactly supported wavelet basis adapted
on [0, 1]. Note that ¢ is orthonormal by construction.

Remark 3.1. It is a classical result that & is an unconditional basis of LP([0,1]) (5)
(see Meyer (1990)) and satisfies the p-Temlyakov’s property (6) (see Kerkyacharian and
Picard (2002b).

Using such a basis, all function f of LP([0, 1]) have the following expansion:

T) = Zﬁﬂ/u(x): V€ [0, 1]

AEA

where
B, = / FO)da)dt (12)

and ¥_14(.) = poxr(.) for all A € A = {\ = (j,k),—1 < j < oo, k] < C27}. The lit-
erature who talks about wavelet procedures is very impressive. See for instance Donoho
and Jonhstone (1996), Donoho, Johnstone, Kerkyacharian and Picard (1994), Jonhstone
(2000), Kerkyacharian and Picard (2000), Hardle, Kerkyacharian, Picard and Tsybakov
(1998) or Johnstone (1998).

By definition of &, it is easy to see that (7) is satisfied for r = 2. Therefore, if the
statistical properties (8) and (9) are satisfied, we can apply Theorem 3.1 with £ = &.
Several papers investigate the performances of hard thresholding procedures (4) by using
this result from some statistical models like density estimation, heteroscedastic Gaussian
white noise.... See for instance Kerkyacharian and Picard (2000, 2002a, 2002b), Rivoirard
(2002) or Autin (2003).

In the section 4, we expand the unknown function f on such a basis and we investigate
the performance of the associated hard thresholding estimator.

4 First idea: Heteroscedastic framework

The classical idea consists of exhibiting the wavelet coefficients 3y defined in (12) from our
statistical model (1). Using the compactly supported wavelet basis £ and the estimator:

B/\/O Ya(t)dY; (13)

/égz/olf(t)% dt+—/ (t)dB,.

we obtain:



Since:

o= [ sttrisvan, ~ w0 2)

where p) = \/ fol g%(t)¥3(t)dt, it can also be written as follows:

A 1
Br = B+ %PMSA

where € i.i.d ~ N(0,1). Therefore, we are in a heteroscedastic framework and it is ob-
vious that observe the collection of the 3 is equivalent to observe the whole trajectory.
Using this remark, we construct in subsection 4.1 a hard local thresholding estimator well
adapted to our statistical model (1).

Notation: From a sequence v = (v;);en and the basis £, we denote &, = {v;¥n(.); A € A}
the compactly supported weighted wavelet basis adapted on [0, 1].

4.1 Hard local thresholding estimator

In order to do the link between the basis &, and the p-Temlyakov’s property, let us
consider the reverse Holder inequality:

Definition 4.1 (Reverse Hélder inequality). We say that a sequence (t;)jen verifies
the reverse Hélder inequality if and only if for all A C N we have:
(Do) < O(Y (2ht,)?) e (14)

JEA JEA

Let us also define the coefficients d; and c; by

d; = 9% sup

where 1 is the smaller real number v belongs to ] — 3, 3] such that there exists a positive
constant C' verifying: '
d; < 02"

From d; and c;, we set:

(15)

d; if we can prove that d; verifies (14),
m; =
’ c¢; if we can not prove that d; verifies (14).

Clearly, all function f of IL?([0, 1]) have the following atomic decomposition:

Fa) = 3 Ba(a) = S Ympa(a)), Ve € 0.1 (16)

AEA xen Y



Therefore, the hard thresholding estimator associated with the unknown function f of (1)
can be written as:

OESY T(%)mﬂ/&(x) = > Bada(z), Vre(0,1] (17)
AEA, J AEA,
where

e ¢(n) and A, are defined like in Theorem 3.1 with r =

reason of this choice in subsection 4.2.2),

1 . .
v (we will explain the

e (3 is defined in (13),
e w} is characterized by the equivalence: wj* =1 <= \ € A,, and |3y > x|m;|c(n).

We are now in position to state the main theorem of this section:

Theorem 4.1. Using the hard thresholding estimator (17) for k a large enough constant,
we have the following equivalence:

. In(n el L)
E(|[f™— fIE) <C (#) — £ € BE(€0) N (1 ayppeo) (Em) (18)

where 0 < o < 1, B) (§m) and i po0)(Em) are respectively (10) and (11) with the basis
&m where m = (my)jen is defined in (15). In other words, B)  (§m) = B, (&) and

Lirp,oo) (§m) s the set of functions f belonging to LP([0, 1]) such that:

supu'w({X € A; |Ba] > ulm;|}) < o0 (19)

u>0

where w(S) = D ycs [my[Pllallb.

Proof. In the next subsection, we focus on the proof of this theorem. The aim is to apply
Theorem 3.1 so we need to prove the geometrical properties (5), (6) of the basis &, the
weight condition (7) and the statistical properties (8), (9).

4.2 Proof of Theorem 4.1
4.2.1 Geometrical properties (5) and (6) of the basis ¢,

From Remark 3.1 and Definition 3.1, it is easy to see that the basis &, is unconditional
on LP([0,1]). Now let us consider the following results:

Lemma 4.1. Suppose that t = (t;)jen is a positive sequence who verifies the reverse
Hoélder inequality (14) then the p-Temlyakov’s property (6) holds for the basis &.

For a complete proof see Johnstone, Kerkyacharian, Picard and Raimondo (2004).
Remark 4.1. In (2000), Kerkyacharian and Picard remark that geometrical dyadic se-
quence (2%)jen with v > —1 wverifies (14) therefore, if o; is proportional to 2*7 with

v > —%, we can apply Lemma 4.1 to conclude that the p-Temlyakov’s property (6) holds
for the basis &, .



An immediate consequence is that &, verifies p-Temlyakov’s property (6) by direct
construction of the m;’s.

Nowadays, we only have a result about general weighted wavelet basis {o)\95(.); A €
A} and p-Temlyakov’s property if and only if the 0,’s depend only on the resolution level
J, that’s why we have introduced the m;’s in Theorem 4.1.

4.2.2 'Weight condition (7)
First of all, by definition of the c¢;’s we have the inequality:
0<m; <C29

and the orthonormality of £ we get:

1 ) 1 .
sl = [ loste)lde < 2202l [ ne)lde = 220wt
0 0

So using the definition of j;(n) with r = —— + , it is obvious that for all n > 1:
2
c(n)’w(A n)? > mlP s < ellEs e 2P(3+) < ¢
AEA, i<ji(n)

and the weight condition (7) holds.

4.2.3 Statistical properties (8) and (9)

Using the decomposition (16), we see that in the context of weighted basis &, we focus on
the statistical properties of % Using the heteroscedastic framework and the inequality
pa < ||¥]|sod;, we obtain:

B Oni_ e 1 1
— - —| = —=—=|al| < [[¢¥e—zlel (20)
m; m; \/_ vn
To conclude, we will use the following lemma:
Lemma 4.2. If V,, ~ N(0, ) then for k > 2/2p, n > 3 and c(n) = # there exists

a positive constant C depending only on p such that we have:

o P(|V,] > M) < Oc(n)?
o E(|V,*) < Ce(n)?

Proof. It is well known that if N ~ N (0,0?%) then we have the concentration inequality
2
P(IN| > x) < 2exp(—5z) s0, for £ > 24/2p and n > 3, we have:

2 2 ,
P <]Vn\ > Hcén)) < 2exp(—%) =2~ % <P < Cc(n)2p

10



Moreover, it is well known that if N ~ A(0,0?%) then E(|N|*) = Ko? where K =

p  r+oo _1 _
\% o 2P 2e *dx. Thus we get:

E(|V,|*) = Kn? < Cc(n)*

This ends the proof of the lemma. O

A direct application of Lemma 4.2 with V,, = \/Lﬁe,\ in the inequality (20) give us the

properties (8) and (9).
Therefore, all conditions are satisfied to apply Theorem 3.1 with £ = &, and the hard
thresholding estimator (17) so the proof of Theorem 6.1 is completed. O

Remark 4.2. The property (19) is equivalent to

supu” 1w ({A € A; |8y < ufvs|}) < o0

u>0
where W™ (S) = Y \cs|OPlUAlE, VS € A. See Cohen, De Vore, Kerkyacharian, and
Picard (2000).

Using this remark, it is easy to see that for all sequences v = (v;) en and z = (2;)en
such that 0 < v; < 2; we have the embedding /(,;.00)(£:) € I poo)(&s), that’s why if we
want the biggest maxiset in (19), we must choose the smallest coefficients m;. This is
exactly what we have done in the construction (15).

4.3 Example

To illustrate this method, let us consider the function ¢ :]0,1] — [1,+oco[ defined by
g(z) = IL% with 1 > o > 0. Clearly, g belongs to L.%([0, 1]) and we have:

1—0o

L 1—0o
dj =23 /”idazz L2 g,
0

o+1
L2

Since 2% verifies (14) by Remark 4.1, if we using Theorem 4.1 with m; = mQj% then

we obtain the equivalence (18) under the calibration vy = .

In the second part of this paper, we always consider the statistical model (1) and the
maxiset point of view but we investigate a different strategy; we expand f on a compactly
supported wavelet basis warped by a certain known function 7" and we study the perfor-
mance of the associated hard thresholding estimator under some Muckenhoupt conditions
on g.

5 Muckenhoupt weights and warped bases

5.1 Muckenhoupt weights
First of all, we start by recalling the definition of Muckenhoupt weights:

11



Definition 5.1 (Muckenhoupt weights). For 1 < p < co and © a bounded interval of
R, a nonnegative measurable function w belongs to the Muckenhoupt A,(©) class if and
only if [{w(z) = 0} N{w(x) = +oo}| = 0 for all x € O (where |.| denotes the Lebesgue
measure) and there exists a positive constant C,, such that for all subinterval I of ©:

(ﬁ/jw(@w) (ﬁ/jW@:)p_ <0y < oo (21)

All functions belonging to these classes are called Muckenhoupt Weights. The infi-
mum of the constant C,, is called the A,-constant of w. For example, w(z) = |z|” or
w(z) = |z|7|1In|z|| belongs to A,([—1,1]) for —1 < ¢ < p — 1. Remark that the in-
clusion A,(©) C A,(©) holds for p < g. The concept of Muckenhoupt weights (21)
has been introduced by Muckenhoupt in (1972) and widely used afterwards in the con-
text of Calderén-Zygmund theory. The classes of Muckenhoupt weights characterize the
boundedness of some integral operators on L2 spaces like the Hardy-Littlewood maximal
operator or the Hilbert transform. For complete theory, see the book of Stein (1993).

Notation: From a known function 7": [0, 1] + [0, 1] and a compactly supported wavelet
basis ¢, we denote 7 = {1\ (T'(.)); X € A} the compactly supported warped wavelet basis
adapted to [0, 1].

5.2 Warped bases

Here we investigate the geometrical properties of the basis £7 which truly depend on the
warping factor 7.

Definition 5.2 (H,’s property). Let 1 < p < oo and B, D two intervals of R. We say
that a measurable function T' : B — D verifies the property H, if and only if there exists a
measurable function S : D — B and a measurable positive function w € A,(D) such that:

o S(T(x)) =z a.e and T(S(z)) =z a.e.
e For all measurable positive function z, [, 2(T(x))dr = [, z(x)w(x)dz

The following theorem shows the link between Muckenhoupt weights theory and geo-
metrical properties of compactly supported warped wavelet basis.

Theorem 5.1 (Wavelet warped basis and geometrical properties). If T' verifies
the H,’s property then the family T is an unconditional basis (5) (see Garcia-Cuerva and
Martell (1999)) and satisfies the p-Temlyakouv’s property (6) (see Picard Kerkyacharian
(2002a)).

This result will be apply to obtain the determinant Theorem 6.1.

12



6 Applications to the Gaussian white noise model

6.1 Statistical context and notations

If we suppose that é belongs to L%([0, 1]) then model (1) can be rewritten as:

dY, = f(t)dt + g1(t)dW,

1
vV C’ln
where we denote ¢;(t) = /C1g(t) with C; = fo e dx For compatibility reasons between
the definition domains, we will work in the sequel with this new expression until the end

of this studied.
Let Gy : [0,1] — [0, 1] be the function defined by:

Gi(z) = /O ' Tl(t)dt. (22)

In the following subsection, we study the atomic decomposition of f in the new basis
€ (which is no longer orthonormal) and we defined the associated hard thresholding
estimator.

6.2 Warped basis and hard thresholding estimator

Since f belongs to L*([0, 1]), we have f(G'(.)) which belongs to LE, ([0,1]) where w;(.) =
g (G7()) with G™Y(y) = inf{z € [0,1], G(z) >y} Yy € [0,1] so:

[ 16w = X plu@de = [ 1) - X @
AEA AEA

Therefore, all function f of L”([0,1]) have the following atomic decomposition:

= 3" Ba(Gi(x)), Vae0,1]

AEA

where 3, denotes the coefficients:

m—/f 2))a(z dw—/f Y (G (2))g(x) da (23)

we deduce that the thresholding estimator (4) associated with the unknown function f of
noisy observations (1) is under the form:

Z ﬁ wﬂh l‘)), Vo € [07 1] (24)

AEA,
where:

e ¢(n) and A, are defined like in Theorem 4 with r = 2 (we will explain the reason of
this choice in subsection 6.3.2),

13



) ﬂAf\ is the following estimator:
1
5= [ 0a(Gult) i (25)
0 91( )

e w} is characterized by the equivalence: w} =1 <= \ € A, and |3;| > & #

We are now in position to state the main theorem of this part:

Theorem 6.1. If g and é belong to L%([0,1]) and g(G1'(.)) belongs to A,([0,1]) where
G 1is defined in (22) then the maziset links to the hard thresholding estimator (24) with

K > 2,/ 1s characterized by the equivalence:

- In(n)\ = 2
Bl - 11 <€ (M) T o fe B nlaamnle®) (29
where 0 < o < 1.
The spaces B (£9") and l((1—a)ppo)(E°) are respectively (10) and (11) with the basis
€9, (Here let us recall that we work with the coefficients 3y defined in (23)).

Proof. In the next subsection, we focus on the proof of this theorem. The aim is to apply
Theorem 3.1 so we need to show the geometrical properties (5), (6) of the basis 1, the
weight condition (7) and the statistical properties (8), (9).

6.3 Proof of theorem 6.1
6.3.1 Geometrical properties (5) and (6) of the basis ¢

For all measurable positive function m : [0, 1] — © with © € R we have:

/mG1 dx—/m 2)g3 (G (2))dx

Therefore, if we choose T = Gy, S = G;* and we suppose that w(.) = ¢?(G7*(.)) belongs
to the Muckenhoupt class A,([0, 1]) then G satisfies the H,’s property (see Definition
5.2) and Theorem 5.1 says that the geometrical properties (5) and (6) hold for the basis

€61,

6.3.2 Weight condition (7)

Under the notations and the conditions of Theorem 6.1, we can apply a result obtained
by Kerkyacharian and Picard (2003) about wavelet compactly supported warped wavelet
basis to deduce the following inequality:

+1

=Y [lea(G SCZTQ/kj PGV (2))de VS € A

AES AES
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. k+1 Jj1(n
Since 30 ' fgj P (G x))dr = 01 @#(GiY(x))dr = 1 and 2%c(n) is bounded by
definition of j;(n) for r = 2, there exists a positive constant C' such that

sup[w(A,)e(n)?] < C.

n>1

So the weight condition (7) holds.

6.3.3 Statistical properties (8) and (9)
First of all, we remark that:

. 1 1

B = [ G0z

1

_ / f<t>wx<al<t>>g;(t>dt+ ﬁ / r(Gr(0) B,

from (23), it comes:

y_g L [ b
== 7, GO

and clearly:

1 ! 1 )
\/ﬁ/o %(Gl(mgl_(t)dBt ~N(0,07,)
where, by the change of variables t = G~!(z):
ot = E(#/lwe <t>>LdB)2—i/1w2<G (1))~
" VCin Jo e g1(t) ) Cm 0o ' gi(t)

- L/luﬂ(m)dm_i
N C’ln 0 A _C’ln'

Using Lemma 4.2, we immediately deduce that (3} verifies the properties (8) and (9).

All conditions are satisfied to apply Theorem 3.1 with the hard thresholding estimator
(24) so the proof of Theorem 6.1 is completed. O

7 Statistical applications and example
Along this section, we study the rate of convergence of the hard thresholding estimator

(24) over weighted Besov spaces which truly link to the model (1) and we illustrate our
result by an example.
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7.1 Weighted Besov spaces

We start to define the weighted Besov spaces which are simply the natural expansion of
well known Besov spaces in a warped basis €. The main particularity of this spaces is
there are directly linked to the warping factor G.

Definition 7.1 (Weighted Besov spaces). We define for any measurable function f:
Agu(f)(x) = F(GTHG(2) + h)) = f().

Recursively A%h(f)(x) = Agn(Acn(f))(x) and identically, for N € N*, Agh(f)(a:)
again and again, and we consider:

_ AN ’
PN (t, f,G,p) = bhug(/l |du)

Notice that p~ is defined with the standard uniform weight, the spacial inhomogeneity now
lies in the definition of Ag . Let us consider the following spaces calling weighted Besov

spaces:
VG, s,9,7) = {f € L2([0, 1])| (/0 (M) —dt);<oo}

tS

7.2 Upper bound result

In order to investigate an upper bound result over some weighted Besov spaces, we now
state a result proved by Picard and Kerkyacharian (2003):

Proposition 7.1. Forp > 1, ifd > p, s > 5, r > 1+25, a = 1J2r328 and G satisfies the

H,’s property then we have the following embeddmg
V(G,5,9,7) C Bso(€9) N ((1-aypp.o0) (€)

If we choose G = G defined in (22) then the functional space Bp%,oO (ENNL (1-a)pp.o0) (EF)
is exactly the maxiset found in (26) so an immediate consequence of Proposition 7.1 is
the following one:

Proposition 7.2. Under the same hypothesis than Theorem 6.1, forp > 1,9 > p, s > %,

r> 1-2+$23 we have the following upper bound:

p _
1+2s” o=

- In(n)\ 7=
FeV(Gus o) =BT - gl < ¢ (M)
Remark 7.1. For g(t) = g and for the same hypothesis on s, p and q than the Proposition
7.2, we have the minimazx rate:

inf sup E(|[f*— fIp) ~n T
f v(g.1,8,9,r)

So if we choose the hard thresholding estimator (17) with G1(x) = g.x, we rediscover the
minimax upper bound up to a logarithmic factor.

See for instance the book of Hérdle, Kerkyacharian, Picard and Tsybakov (1998).
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7.3 Example using warped basis

To illustrate our result, we consider our Gaussian noise model (1) with g(z) = zi% for

z €]0,1] and 1 > o > 0. It is obvious that g and é belongs to L%([0, 1]). Moreover:

G( ) /y 1 d 1 o+1
= —ar = —
Y O R

so G4(y) =y and
Gyl (y) =y
This implies that Yy €]0, 1] we have:
wi(y) = g1 (Gr'(y)) = Cry=1 = Cuy”

where § = =7.

Now, we remark that 5 €] — 1,0[ for 1 > o > 0 so w; € A,([0, 1]).
Applying Theorem 6.1 with f* the hard thresholding estimator defined in (24) with
Gi(z) =2 1>0>0,z€0,1],

1
By =(o+ 1)/ VAT dYy,
0
and k > 24/(0 + 1)2p we obtain the equivalence:

s In(n)\ = g
B = 1y <0 ()T o F € B a6

Moreover, under the same hypothesis that Proposition 7.1, we have the following upper
bound:

FeV(Grson) B - sl < (M)
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