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A universality property for last-passage percolation paths

close to the axis

Thierry Bodineau∗ and James B. Martin†

Abstract

We consider a last-passage directed percolation model in Z
2
+, with i.i.d. weights whose

common distribution has a finite (2 + p)th moment. We study the fluctuations of the

passage time from the origin to the point
(

n, n
⌊a⌋
)

. We show that, for suitable a (de-

pending on p), this quantity, appropriately scaled, converges in distribution as n → ∞ to

the Tracy-Widom distribution, irrespective of the underlying weight distribution. The

argument uses a coupling to a Brownian directed percolation problem and the strong

approximation of Komlós, Major and Tusnády.

1 Introduction

The concept of universality class plays a key role in statistical mechanics, making it possible

to classify a huge variety of models and phenomena by means of well chosen scaling exponents.

For instance, many growth models are expected to share similar properties which fall into the

framework of the KPZ universality class – see for example the survey by Krug and Spohn

[11].

In this note, we focus on the particular example of directed last-passage percolation. Let

ω
(r)
i , i ≥ 0, r ≥ 1 be i.i.d. random variables. We consider directed paths in the lattice Z

2
+,

each step of which increases one of the coordinates by 1. For n ≥ 0, k ≥ 1, the (last-)passage

time to the point (n, k) is defined by

T (n, k) = max
π∈Π(n,k)







∑

(i,r)∈π

ω
(r)
i







, (1.1)

where Π(n, k) is the set of directed paths from (0, 1) to (n, k). More precisely,

Π(n, k) =

{

(z1, z2, . . . , zn+k) ∈
(

Z
2
+

)n+k
: z1 = (0, 1), zn+k = (n, k),

zj+1 − zj ∈ {(0, 1), (1, 0)} for 1 ≤ j ≤ n + k − 1

}

.
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When the underlying weight distribution is exponential or geometric, scaling exponents

for this model are rigorously known. The deviation from a straight line of the optimal path

to the point (n, n) is of the order n2/3 (corresponding to the exponent ξ = 2/3) [3, 9],

while the fluctuations of the passage time T (n, n) are of the order n1/3 (corresponding to the

exponent χ = 1/3). In fact, one can give much more precise information: for the exponential

distribution with mean 1, say, it is shown in [8] that

n−1/3
[

T (n, n) − 4n
]

→ FTW, (1.2)

where FTW is the “Tracy-Widom” distribution, which also appears as the asymptotic distri-

bution of the largest eigenvalue of a GUE random matrix. It is expected (but not yet proved)

that the same scaling exponents, and indeed the same asymptotic distribution in (1.2), should

hold for a wide class of underlying weight distributions.

In this note we give a universality result for the quantities T (n, ⌊na⌋) for a < 1. Thus, we

are concerned with passage times to points which are asymptotically rather close to the hor-

izontal axis, for a general class of underlying weight distribution. Our result is the following:

Theorem 1 Suppose that E |ω(r)
i |p < ∞ for some p > 2, with µ = E ω

(r)
i , σ2 = Var(ω

(r)
i ).

Then for all a ∈
]

0, 6
7

(

1
2 − 1

p

)

[

,

T (n, ⌊na⌋) − nµ − 2σ n
1+a
2

σn
1
2
− a

6

→ FTW (1.3)

in distribution. In particular, if the weight distribution has finite moments of all orders, then

(1.3) holds for all a ∈]0, 3/7[.

Heuristically the theorem can be understood as follows. As the optimal path goes from

the origin to (n, n⌊a⌋), one can imagine that between each step upwards, the path typically

takes on the order of n1−a steps to the right. Thus it should behave as the optimal path from

the origin to (na, na) in a last percolation model with Gaussian weights of variance n1−a. On

the renormalized scale the expected fluctuations are of order (na)1/3. In this way, we recover

the fluctuation exponent

χ̂ =
1 − a

2
+

a

3
=

1

2
− a

6
.

This heuristic is made precise by coupling the discrete model with a Brownian directed

percolation model for which the fluctuations have been explicitly computed. This is done

using the strong approximation of a random walk by a Brownian motion due to Komlós,

Major and Tusnády. (We note that this strong approximation has already been applied to

similar last-passage percolation models by Glynn and Whitt [6]).

A different sort of universality result for paths near the axis in directed percolation models

is given in [13]. By subadditivity, one has the convergence n−1T (n, ⌊xn⌋) → γ(x) a.s. and

in L1, for some function γ. Under the hypothesis of Theorem 1, it’s shown that γ(x) =

µ + 2σ
√

x + o(
√

x) as x ↓ 0.

The proof of Theorem 1 is given in the next section. In Section 3, we make some comments

on related models and possible extensions.
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2 Fluctuations of the passage-time

We first introduce the Brownian directed percolation model. Let B
(r)
t , t ≥ 0, r ≥ 1 be a

sequence of independent standard Brownian motions. For t > 0, k ≥ 1, define

U(t, k) =
{

(u0, u1, . . . , uk) ∈ R
k+1 : 0 = u0 ≤ u1 ≤ · · · ≤ uk = t

}

,

and then let

L(t, k) = sup
u∈U(t,k)

k
∑

r=1

[

B(r)
ur

− B(r)
ur−1

]

. (2.1)

One can rewrite the definition of T (n, k) at (1.1) in an analogous way:

T (n, k) = sup
u∈U(n,k)

k
∑

r=1

[

S
(r)
⌊ur⌋+1 − S

(r)
⌊ur−1⌋

]

, (2.2)

where S
(r)
m =

∑m−1
i=0 ω

(r)
i .

The random variable L(1, k) has the same distribution as the largest eigenvalue of a k× k

GUE random matrix [4], [7], [15]. Hence in particular (e.g. [16])

k1/6
[

L(1, k) − 2
√

k
]

→ FTW

in distribution, where FTW is the Tracy-Widom distribution.

By Brownian scaling, L(t, k) has the same distribution as
√

tL(1, k). Using this we get,

for any 0 < a ≤ 1,

L (n, ⌊na⌋) − 2n
1+a
2

n
1
2
− a

6

→ FTW (2.3)

in distribution.

Theorem 1 says that the same distributional limit as in (2.3) (in particular, with the same

order of fluctuations) occurs for the law of T (n, ⌊na⌋), for a general underlying distribution

of the weights ω
(r)
i , if a is sufficiently small. We will use the following strong approxima-

tion result, which combines Theorem 2 of Major [12] and Theorem 4 of Komlós, Major and

Tusnády [10]:

Proposition 2 Suppose ωi, i = 1, 2, . . . are i.i.d. with E |ωi|p < ∞ for some p > 2, and with

E ωi = 0, Var(ωi) = 1. Let Sm =
∑m−1

i=0 ωi, m ≥ 1.

Then there is a constant C such that for all n > 0, there is a coupling of the distribution

of (ω1, . . . , ωn) and a standard Brownian motion Bt, 0 ≤ t ≤ n + 1 such that, for all x ∈
[n1/p, n1/2],

P

(

max
m=1,2,...,n+1

|Bm − Sm| > x

)

≤ Cnx−p. (2.4)

Proof of Theorem 1:

We may assume that µ = 0 and σ2 = 1, so that we need to prove that

T (n, ⌊na⌋) − 2n
1+a
2

n
1
2
− a

6

→ FTW (2.5)

in distribution (for general µ and σ2, one can obtain (1.3) from (2.5) after replacing ω by

(ω − µ)/σ).
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If (ω
(r)
i )i,r and

(

B
(r)
t

)

t,r
are all defined on the same probability space, then from (2.1) and

(2.2) we get

|T (n, ⌊na⌋) − L(n, ⌊na⌋)|

=

∣

∣

∣

∣

∣

∣

sup
u∈U(n,⌊na⌋)

⌊na⌋
∑

r=1

(

S
(r)
⌊ur⌋+1 − S

(r)
⌊ur−1⌋

)

− sup
u

′∈U(n,⌊na⌋)

⌊na⌋
∑

r=1

(

B
(r)
u′

r
− B

(r)
u′

r−1

)

∣

∣

∣

∣

∣

∣

≤ sup
u∈U(n,⌊na⌋)

{

⌊na⌋
∑

r=1

∣

∣

∣S
(r)
⌊ur⌋+1 − B

(r)
⌊ur⌋+1

∣

∣

∣+
∣

∣

∣S
(r)
⌊ur−1⌋

− B
(r)
⌊ur−1⌋

∣

∣

∣

+
∣

∣

∣B
(r)
⌊ur⌋+1 − B(r)

ur

∣

∣

∣+
∣

∣

∣B
(r)
⌊ur−1⌋

− B(r)
ur−1

∣

∣

∣

}

≤ 2

⌊na⌋
∑

r=1











max
i=1,2,...,n+1

∣

∣

∣S
(r)
i − B

(r)
i

∣

∣

∣+ sup
0≤s,t≤n+1
|s−t|<2

∣

∣

∣B(r)
s − B

(r)
t

∣

∣

∣











= 2

⌊na⌋
∑

r=1

{

V (r)
n + W (r)

n

}

,

(2.6)

where we have defined

V (r)
n = max

i=1,2,...,n+1

∣

∣

∣S
(r)
i − B

(r)
i

∣

∣

∣ and W (r)
n = sup

0≤s,t≤n+1
|s−t|<2

∣

∣

∣B(r)
s − B

(r)
t

∣

∣

∣ .

For each r = 1, . . . , ⌊na⌋ we will couple
(

ω
(r)
0 , ω

(r)
1 , . . . , ω

(r)
n

)

and B
(r)
t , 0 ≤ t ≤ n+1 as in

Proposition 2, maintaining the independence for different r, so that the V
(r)
n , 1 ≤ r ≤ ⌊na⌋

are i.i.d. with

P

(

V (r)
n > x

)

≤ Cnx−p (2.7)

for all x ∈
[

n1/p, n1/2
]

.

Let A1 be the event
{

max1≤r≤⌊na⌋ V
(r)
n > n1/2

}

. Then from (2.7),

P(A1) ≤ naCn(n1/2)−p = Cna+1−p/2 → 0 as n → ∞, (2.8)

since by assumption a < 6
7

(

1
2 − 1

p

)

< p
(

1
2 − 1

p

)

= p
2 − 1.

Also let A2 be the event
{

max1≤r≤⌊na⌋ W
(r)
n > n1/p

}

. Using the reflection principle and

standard estimates on the normal distribution,

P(A2) ≤ na
P






sup

0≤s,t≤n+1
|s−t|<2

∣

∣

∣B(1)
s − B

(1)
t

∣

∣

∣ > n1/p







≤ na
n−2
∑

i=0

P

(

sup
i≤t≤i+3

Bt − inf
i≤t≤i+3

Bt > n1/p

)

≤ na+1
P

(

sup
0≤t≤3

|Bt| > n1/p/2

)

4



= 4na+1
P

(

B3 > n1/p/2
)

≤ c1n
a+1 exp

(

−c2n
2/p
)

→ 0 as n → ∞. (2.9)

From (2.6), (2.7) and the definitions of the events A1 and A2, we have

E

[

|T (n, ⌊na⌋) − L(n, ⌊na⌋)| ; AC
1 ∪ AC

2

]

≤ 2na
E

(

V (1)
n + W (1)

n ; AC
1 ∪ AC

2

)

≤ 2na
[

n1/p + E

(

V (1)
n − n1/p; n1/p ≤ V (1)

n ≤ n1/2
)

+ n1/p
]

≤ 2na

(

2n1/p +

∫ n1/2

n1/p

P

(

V (1)
n > x

)

dx

)

≤ 2na

(

n1/p +

∫ n1/2

n1/p

Cnx−pdx

)

= 2na
(

n1/p + C2n[−x−p+1]n
1/2

n1/p

)

≤ C3n
an1/p,

(2.10)

where C2 and C3 are constants independent of n.

Together with (2.8) and (2.9), this gives that, for any ǫ > 0,

P

(

|T (n, ⌊na⌋) − L(n, ⌊na⌋)| > na+1/p+ǫ
)

→ 0 as n → ∞. (2.11)

The assumption a < 6
7

(

1
2 − 1

p

)

implies that, for ǫ sufficiently small, a+ 1
p + ǫ < 1

2 − a
6 . Thus

|T (n, ⌊na⌋) − L(n, ⌊na⌋)|
n

1
2
− a

6

→ 0 in distribution, as n → ∞. (2.12)

Using (2.3) we obtain (2.5) as desired. �

3 Further remarks

3.1 Larger values of a

It seems unlikely that the value 3/7 in Theorem 1 represents a real threshold. For a > 3/7,

consider the typical difference between the weight of the maximal Brownian path and the

weight of the discrete approximation; this will be large compared to the order of fluctuations

of the maximum. However, the standard deviation of this difference may be smaller; one

might expect it to be of order na/2 rather than order na, since it is composed of na terms of

constant order which one expects to become independent as n becomes large. An argument

along these lines would effectively allow us to replace na by na/2 in (2.10) leading to a bound

a < 3/4 rather than a < 3/7. However, above a = 3/4 it seems that the behaviour is genuinely

different and more sophisticated arguments would be required: the fluctuations of the error in

the discrete approximation to the Brownian path are likely to be larger than the fluctuations

5



of the maximal weight itself, and so one might no longer expect the maximal discrete path

to follow closely the maximal Brownian path (even when the weights are “strongly coupled”

to the Brownian motions as above).

3.2 Transverse fluctuations

The exponent χ̂ = 1
2 − a

6 which we obtain should be related to the transversal fluctuations of

the optimal path away from the straight line {y = na−1x}. Let us introduce the exponent

ξ̂ = lim
n→∞

1

2 log n
log E

(

(

vn
2
− na

2

)2
)

.

where, say, vi is the smallest value r such that the point (i, r) is contained in the optimal

path.

Corresponding to the universal value of χ̂ obtained, one would expect that ξ̂ should be

also a universal exponent equal to 2a/3. To see this, we follow the heuristics explained in

the introduction. On a renormalized level, the optimal path should behave as the optimal

path from the origin to (na, na) in a last percolation model with Gaussian weights. This

would imply that the transverse fluctuations should scale like (na)2/3, where ξ = 2/3 is the

(predicted) standard fluctuation exponent for directed last-passage percolation.

The strategy used in [9] for the derivation of the transverse fluctuations requires not only

the knowledge of the last passage time fluctuations, but also a precise control of the moderate

deviations. Our approach does not allow us to derive such sharp estimates (in particular

we are missing some uniformity with respect to the direction of the path). For this reason,

we do not yet have a proof of the universality of the transversal fluctuation exponent in our

framework.

3.3 Related models

The last-passage percolation processes have a natural interpretation in terms of systems of

queues in tandem (see for example [1, 6]). Considering paths near the axis corresponds to

considering regimes of very high or very low load in the queueing systems. In the case of

exponential weight distribution, these queueing systems correspond closely to totally asym-

metric exclusion processes or totally asymmetric zero-range processes. There are also close

links with systems of non-colliding particles. See for example [14] for a survey.

Of course, there are also strong connections between these models and random matrix

theory. We mention one particular direction related to the topic of this paper. Let An,k be

an n× k random matrix with i.i.d. entries, and let Yn,k = An,k(An,k)∗. In the special case of

the Laguerre ensemble, where the common distribution of the entries is complex Gaussian, one

has an explicit correspondence between the largest eigenvalue of Y and the passage time to

(n, k) in a directed percolation model with exponential weights (see for example Proposition

1.4 of [8], and [5] and Section 6.1 of [2] for extensions). For a general distribution, there may

not exist an explicit mapping between the matrix model and the directed percolation model,

but we believe that a similar averaging mechanism to that observed in our context will also

6



play a role in the random matrix setting. Thus on the basis of the analysis of the last passage

time fluctuations for paths close to the axis, we conjecture that when k and n tend to infinity

with suitable rates, the fluctuations of the largest eigenvalue of Yn,k should depend only on

the mean and the variance of the coefficients of An,k.
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