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IMPROVED VAPNIK CERVONENKIS BOUNDS

OLIVIER CATONI

Abstract. We give a new proof of VC bounds where we avoid the use of
symmetrization and use a shadow sample of arbitrary size. We also improve
on the variance term. This results in better constants, as shown on numerical
examples. Moreover our bounds still hold for non identically distributed inde-
pendent random variables.

2000 Mathematics Subject Classification: 62H30, 68T05, 62B10.
Keywords: Statistical learning theory, PAC-Bayesian theorems, VC dimen-
sion.

1. Description of the problem

Let (X, B) be some measurable space and Y some finite set. Let (Θ, T) be a
measurable parameter space and

{

fθ : X → Y, θ ∈ Θ} be a family of decision
functions. Assume that

(θ, x) 7→ fθ(x) : (Θ × X, T ⊗ B) → Y

is measurable. Let

Pi ∈ M1
+

(

X × Y, B ⊗ {0, 1}Y
)

, i = 1, . . . , N,

be some probability distributions on X × Y — where {0, 1}Y is the discrete sigma
algebra of all the subsets of Y. Let (Xi, Yi)

N
i=1 be the canonical process on (X×Y)N

— i.e. the coordinate process (Xi, Yi)(ω) = ωi, ω ∈
(

X × Y)N . Let

r(θ) =
1

N

N
∑

i=1

1[fθ(Xi) 6= Yi

]

.

We are interested in bounding with
⊗N

i=1 Pi probability at least 1 − ǫ and for any
θ ∈ Θ the quantity R(θ) − r(θ). This question has an interest both in statistical
learning theory and in empirical process theory.

In the case when |Y| = 2, introducing the notation

N(X2N
1 ) =

∣

∣

{[

fθ(Xi)
]2N

i=1
; θ ∈ Θ

}∣

∣,

where |A| is the number of elements of the set A, Vapnik proved in [10, page 138]
that

Theorem 1.1. For any probability distribution P ∈ M1
+

(

X × Y
)

, with P⊗N prob-

ability at least 1 − ǫ, for any θ ∈ Θ,

R(θ) ≤ r(θ) +
2d′

N

(

1 +

√

1 +
Nr(θ)

d′

)

,

1



2 OLIVIER CATONI

where

d′ = log
{

P⊗2N
[

N(X2N
1 )

]

}

+ log
(

4ǫ−1
)

.

It is also well known since the works of Vapnik and Cervonenkis that, in the case
when Y = {0, 1},

log
[

N(X2N
1 )

]

≤ h log

(

eN

h

)

,

where

h = max
{

|A|; N
[

(Xi)i∈A

]

= 2|A|}.

Therefore when the VC dimension of {fθ; θ ∈ Θ} is not greater than h, that is when
by definition

max
{

|A|; A ⊂ X,
∣

∣

{(

fθ(x)
)

x∈A
; θ ∈ Θ

}∣

∣ = 2|A|
}

≤ h,

we have the following

Corollary 1.2. When the VC dimension of
{

fθ; θ ∈ Θ} is not greater than h, with

P⊗N probability at least 1 − ǫ, for any θ ∈ Θ,

R(θ) ≤ r(θ) +
2d′

N

(

1 +

√

1 +
Nr(θ)

d′

)

,

where

d′ = h log

(

2eN

h

)

+ log
(

4ǫ−1
)

.

The aim of this paper is to improve theorem 1.1 and its corollary, using PAC-
Bayesian inequalities with data dependent priors.

We have already proved in [5] that with P⊗N probability at least 1 − ǫ,

(1.1) R(θ) ≤ r(θ) +
ζd

N

(

1 +

√

1 +
4Nr(θ)

ζd

)

,

where

d = P⊗N
X2N

N+1

{

log
[

N(X2N
1 )

]

}

+ log

(

log(2ζN)

ǫ log(ζ)

)

,

which brings an improvement when r(θ) ≤ d
N and d is large.

Here we are going to generalize this theorem to arbitrary shadow sample sizes
and non identically distributed independent random variables. We will also improve
on the variance term in (1.1) and get rid of the (unwanted !) parameter ζ.

Moreover, we will derive VC bounds in the transductive setting in which the
shadow sample error rate is bounded in terms of the empirical error rate (in this
setting the shadow sample would more appropriately be described as a test set).

We will start with the transductive setting, since it has an interest of its own
and will in the same time serve as a technical step towards more classical results.
Improved Vapnik Cervonenkis bounds Olivier Catoni – October 11, 2004
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2. The transductive setting

We will consider a shadow sample of size kN where k is some integer.

Let (Xi, Yi)
(k+1)N
i=1 be the canonical process on

(

X × Y
)(k+1)N

.

We assume that we observe the first sample (Xi, Yi)
N
i=1, that we may also observe

the rest of the design X
(k+1)N
N+1 , (this is a short notation for (Xi)

(k+1)N
i=N+1 ), but that

we do not observe Y
(k+1)N
N+1 .

Let r1(θ) and r2(θ) be the empirical error rates of the decision function fθ on the
training and test sets:

r1(θ) =
1

N

N
∑

i=1

1[Yi 6= fθ(Xi)
]

,

r2(θ) =
1

kN

(k+1)N
∑

i=N+1

1[Yi 6= fθ(Xi)
]

.

Let P ∈ M1
+

[

(

X×Y
)(k+1)N ]

be some partially exchangeable probability distribution

on
(

X×Y
)(k+1)N

. What we mean by partially exchangeable will be precisely defined

in the following. An important case is when P =
(

⊗N
i=1 Pi

)⊗(k+1)

, meaning that

we have (k +1) independent samples, each being distributed according to the same
product of non identical probability distributions. Let as in the introduction

N(X
(k+1)N
1 ) =

∣

∣

∣

{

[

fθ(Xi)
](k+1)N

i=1
: θ ∈ Θ

}∣

∣

∣

be the number of distinct decision rules induced by the model on the design

(Xi)
(k+1)N
i=1 . We will prove

Theorem 2.1. With P probability at least 1 − ǫ, for any θ ∈ Θ,

r2(θ) ≤ r1(θ) +
d

N
+

√

2d(1 + 1
k )r1(θ)

N
+

d2

N2
,

where d = log
[

N(X
(k+1)N
1 )

]

+ log(ǫ−1).

Let us remind that when |Y| = 2 and the VC dimension of {fθ; θ ∈ Θ} is not
greater than h,

d ≤ h log

(

e(k + 1)N

h

)

+ log(ǫ−1).

Let us take some numerical example : when N = 1000, h = 10, ǫ = 0.01 and
r1(θ) = 0.2, we get r2(θ) ≤ 0.4872 using k = 4 (whereas for k = 1 we get only
r2(θ) ≤ 0.5098, showing that increasing the shadow sample size is useful to get a
bound less than 0.5)

Let us start the proof of theorem 2.1 with some notations and a few lemmas. Let

χi = 1[Yi 6= fθ(Xi)
]

∈ {0, 1}. For any random variable h : Ω =
(

X×Y
)(k+1)N → R

( we work on the canonical space), let the transformed random variable τi(h) be
defined as

τi(h) =
1

k + 1

k
∑

j=0

h ◦ τ j
i ,

Olivier Catoni – October 11, 2004 Improved Vapnik Cervonenkis bounds



4 OLIVIER CATONI

where τ j
i : Ω → Ω is defined by

[

τ j
i (ω)

]

ℓ
=

{

ωi+mn, ℓ = i + [(m + j) mod (k + 1)]N, m = 0, . . . , k;

ωℓ, ℓ 6∈ {i + mN : m = 0, . . . , k}.

In other words, τ j
i performs a circular permutation of the subset of indices

{i + mN : m = 0, . . . , k}. Notice also that τi may be viewed as a regular con-
ditional probability measure.

Definition 2.1. The joint distribution P is said to be partially exchangeable when
for any i = 1, . . . , N , any j = 0, . . . , k, P ◦ (τ j

i )−1 = P.

Equivalently, this means that for any bounded random variable h,P(h) = P(h ◦ τ1
i ), i = 1, . . . , N,

(since τ j
i is the jth iterate of τ1

i ). As a result, any partially exchangeable distribu-
tion P is such that for any bounded random variableP(h) = P{[©N

i=1τi

]

(h)
}

,

where we have used the notation ©N
i=1τi = τ1 ◦ τ2 ◦ · · · ◦ τN .

In the same way

Definition 2.2. A random variable h :
(

X × Y
)(k+1)N → R is said to be partially

exchangeable when for any i = 1, . . . , N , h ◦ τ1
i = h.

Lemma 2.2. For any θ ∈ Θ, any ω ∈
(

X × Y
)(k+1)N

, any positive partially ex-

changeable random variable λ, any partially exchangeable random variable η,
(

©N
i=1τi

){

exp
[

λ
[

r2(θ) − r1(θ)
]

− η
]}

(ω) ≤ exp
[

λ2

2N

[

1
k r1(θ) + r2(θ)

]

− η
]

(ω).

Proof.

(

©N
i=1τi

){

exp
[

λ
[

r2(θ) − r1(θ)
]

− η
]}

= exp(−η)

N
∏

i=1

τi

{

exp

(

λ

kN

k
∑

j=1

χi+jN − λ

N
χi

)}

= exp(−η)

N
∏

i=1

exp

(

λ

kN

k
∑

j=0

χi+jN

) N
∏

i=1

τi

{

exp

(

− (k + 1)λ

kN
χi

)}

.

Let pi = 1
k+1

∑k
j=0 χi+jN . Let χ be the identity (seen as the canonical process) on

{0, 1} and Bp be the Bernoulli distribution on {0, 1} with parameter p, namely let
Bp(1) = 1 − Bp(0) = p. It is easily seen that

log

{

τi

[

exp

(

− (k + 1)λ

kN
χi

)]}

= log

{

Bpi

[

exp

(

− (k + 1)λ

kN
χ

)]}

.

Moreover this last quantity can be bounded in the following way.

log
{

Bp

[

exp(−αχ)
]

}

= −αBp(χ) +

∫ α

0

(1 − β)VarBf(β)
(χ)dβ.

Improved Vapnik Cervonenkis bounds Olivier Catoni – October 11, 2004
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This is the Taylor expansion of order two of α 7→ log
{

Bp

[

exp(−αχ)
]

}

, where

f(β) =
Bp

[

χ exp(−βχ)
]

Bp

[

exp(−βχ)
] =

p exp(−β)

(1 − p) + p exp(−β)
≤ p.

ThusVarBf(β)
(χ) = f(β)

[

1 − f(β)
]

≤ (p ∧ 1
2 )
[

1 − (p ∧ 1
2 )
]

≤ (1 − 1
k+1 )p = k

k+1p,

for any p ∈
(

1
k+1N) ∩ [0, 1]. Hence

log
{

Bp

[

exp(−αχ)
]

}

≤ −αp +
kα2

2(k + 1)
p,

and

τi

[

exp

(

− (k + 1)λ

kN
χi

)]

≤ exp

(

− (k + 1)λ

kN
pi +

(k + 1)λ2

2kN2
pi

)

.

Therefore

(

©N
i=1τi

)

{

exp
[

λ
[

r2(θ) − r1(θ)
]

− η
]

}

≤ exp(−η) exp

(

(k + 1)λ2

2kN2

N
∑

i=1

pi

)

= exp

(

λ2

2kN2

(k+1)N
∑

i=1

χi − η

)

= exp

{

λ2

2N

[

1
kr1(θ) + r2(θ)

]

− η

}

.

�

Lemma 2.3. For any θ ∈ Θ, for any positive partially exchangeable random vari-

able λ, for any partially exchangeable random variable η,P{exp
[

λ
[

r2(θ) − r1(θ)
]

− η
]}

≤ P{exp
[

λ2

2N

[

1
kr1(θ) + r2(θ)

]

− η
]}

.

Remark 2.1. Let us notice that we do not need integrability conditions, and that
the previous inequality between expectations of positive random variables holds inR+ ∪ {+∞}, meaning that both members may be equal to +∞.

Remark 2.2. We can take η = log(ǫ−1) + λ2

2N

[

1
kr1(θ) + r2(θ)

]

to getP{exp
[

λ
[

r2(θ) − r1(θ)
]

− λ2

2N

[

1
k r1(θ) + r2(θ)

]

+ log(ǫ)
]}

≤ ǫ.

Proof. According to the previous lemma,P{exp
[

λ
[

r2(θ) − r1(θ)
]

− η
]}

= P{(©N
i=1τi

){

exp
[

λ
[

r2(θ) − r1(θ)
]

− η
]}

}

≤ P{exp

[

λ2

2N

[

1
kr1(θ) + r2(θ)

]

− η

]}

.

�

Let us now consider some partially exchangeable prior distribution π ∈ M1
+(Θ):

Olivier Catoni – October 11, 2004 Improved Vapnik Cervonenkis bounds



6 OLIVIER CATONI

Definition 2.3. A regular conditional probability distribution

π :
(

X × Y
)(k+1)N → M1

+(Θ, T) is said to be partially exchangeable when for any

i = 1, . . . , N , any ω ∈
(

X × Y
)(k+1)N

, π
[

τ1
i (ω)

]

= π(ω), this being an equality

between probability measures in M1
+(Θ, T).

In the following, λ and η will be random variables depending on the parameter

θ. We will say that a real random variable h :
(

X × Y
)(k+1)N × Θ → R is partially

exchangeable when h(ω, θ) = h
[

τ1
i (ω), θ

]

, i = 1, . . . , N , θ ∈ Θ, ω ∈
(

X × Y
)(k+1)N

.

Lemma 2.4. For any partially exchangeable prior distribution π, any positive par-

tially exchangeable random variable λ :
(

X × Y
)(k+1)N × Θ → R, and any partially

exchangeable random threshold function η :
(

X × Y
)(k+1)N × Θ → R,P{π

{

exp
[

λ(θ)
[

r2(θ) − r1(θ)
]

− η(θ)
]}

}

≤ P{π

{

exp

[

λ(θ)2

2N

[

1
k r1(θ) + r2(θ)

]

− η(θ)

]}

}

.

Proof. It is a consequence of lemma 2.2 and of the following identities:P{π
{

exp
[

λ(θ)
[

r2(θ) − r1(θ)
]

− η(θ)
]}

}

= P{(©N
i=1τi

)

(

π
{

exp
[

λ(θ)
[

r2(θ) − r1(θ)
]

− η(θ)
]}

)}

= P{π
{

(

©N
i=1τi

)

exp
[

λ(θ)
[

r2(θ) − r1(θ)
]

− η(θ)
]}

}

.

Indeed for any positive random variable h :
(

X × Y
)(k+1)N × Θ → R,

π(h) ◦ τ j
i = (π ◦ τ j

i )(h ◦ τ j
i ) = π(h ◦ τ j

i ).

Thus

τi

[

π(h)
]

=
1

k + 1

k
∑

j=0

π
(

h ◦ τ j
i

)

= π

(

1

k + 1

k
∑

j=0

h ◦ τ j
i

)

= π
(

τih
)

.

�

As a consequence, we get the following learning theorem:

Theorem 2.5. For any partially exchangeable prior distribution π, any positive

partially exchangeable random variable λ, with P probability at least 1 − ǫ, for any

ρ ∈ M1
+(Θ),

ρ
[

λ(θ)r2(θ)
]

− ρ
[

λ(θ)r1(θ)
]

≤ ρ

{

λ(θ)2

2N

[

1
k

[

r1(θ) + r2(θ)
]

}

+ K(ρ, π) + log(ǫ−1).

Proof. Take η(θ) = λ(θ)2

2N

[

1
k r1(θ) + r2(θ)

]

+ log(ǫ−1) and notice that it is indeed a
partially exchangeable threshold function.
Improved Vapnik Cervonenkis bounds Olivier Catoni – October 11, 2004
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ThusP{ sup
ρ∈M1

+(Θ)

ρ
[

λ(θ)r2(θ)
]

− ρ
[

λ(θ)r1(θ)
]

− ρ

[

λ(θ)2

2N

{

1
kρ
[

r1(θ)
]

+ ρ
[

r2(θ)
]

}

]

− K(ρ, π) + log(ǫ) ≤ 0

}

= P{log
{

π
[

exp
{

λ(θ)
[

r2(θ) − r1(θ)
]

− λ(θ)2

2N

[

1
k r1(θ) + r2(θ)

]

+ log(ǫ)
}

]}

≤ 0

}

≤ P{π

[

exp
{

λ(θ)
[

r2(θ) − r1(θ)
]

− λ(θ)2

2N

[

1
kr1(θ) + r2(θ)

]

+ log(ǫ)
}

]}

≤ ǫ.

We have used the identity log
{

π
[

exp(h)
]

}

= supρ∈M1
+(Θ) ρ(h) − K(ρ, π). See for

instance [4, pages 159-160] or [5, lemma 4.2] for a proof. �

Let us consider the map Ψ : Θ → Y(k+1)N which restricts each classification rule

to the design: Ψ(θ) =
[

fθ(Xi)
](k+1)N

i=1
. Let Θ/Ψ be the set of components of Θ for

the equivalence relation {(θ1, θ2) ∈ Θ2; Ψ(θ1) = Ψ(θ2)}. Let c : {0, 1}Θ → Θ be
such that c(θ′) ∈ θ′ for each θ′ ⊂ Θ (the function c chooses some element from any
subset of Θ). Let Θ′ = c

(

Θ/Ψ
)

. Let us note that Ψ and therefore Θ/Ψ and Θ′ are
exchangeable random objects. Let

π =
1

|Θ′|
∑

θ∈Θ′

δθ

be the uniform distribution on the finite subset Θ′ of Θ.
Applying theorem 2.5 to π, and ρ = δθ, we get that for any positive partially

exchangeable random variable λ, with P probability at least 1− ǫ, for any θ′ ∈ Θ′,

λ(θ′)r2(θ
′) − λ(θ′)r1(θ

′) ≤ λ(θ′)2

2N

[

1
k r1(θ

′) + r2(θ
′)
]

+ log
∣

∣Θ′∣
∣+ log(ǫ−1).

Let us choose

λ(θ) =





2N log
(

|Θ′|
ǫ

)

1
k r1(θ) + r2(θ)





1/2

,

with the convention that when 1
k r1(θ) + r2(θ) = 0, then λr2(θ) = λr1(θ) = 0. This

is legitimate, since |Θ′| and 1
kr1(θ

′)+r2(θ
′) are exchangeable random variables, and

since when 1
kr1(θ) + r2(θ) = 0, then r1(θ) = r2(θ) = 0.

Thus, with P probability at least 1 − ǫ, for any θ′ ∈ Θ′,

r2(θ
′) − r1(θ

′) ≤
(

2 log
( |Θ′|

ǫ

)[

1
k r1(θ

′) + r2(θ
′)
]

N

)1/2

.

Now we can remark that for each θ ∈ Θ, θ′ = c
[

Ψ(θ)
]

is such that fθ′(Xi) = fθ(Xi),
for i = 1, . . . , (k + 1)N . Therefore r1(θ) = r1(θ

′) and r2(θ) = r2(θ
′).

Olivier Catoni – October 11, 2004 Improved Vapnik Cervonenkis bounds



8 OLIVIER CATONI

Thus with P probability at least 1 − ǫ, for any θ ∈ Θ,

(2.1) r2(θ) − r1(θ) ≤
(

2 log
( |Θ′|

ǫ

)[

1
k r1(θ) + r2(θ)

]

N

)1/2

.

Putting for short d = log
( |Θ′|

ǫ

)

and solving inequality (2.1) with respect to r2(θ)
proves theorem 2.1.

Note that we have in fact proved a more general version of theorem 2.1, where
d can be taken to be d = − log

[

π̄(θ)ǫ
]

, where

π̄(θ) = sup{π(θ′) : θ′ ∈ Θ, Ψ(θ′) = Ψ(θ)},
for any choice of partially exchangeable prior probability distribution π.

3. Improvement of the variance term

We will first improve the variance term in lemma 2.2 when k = 1, and P is fully
exchangeable. We will deal afterwards with the general case.

Theorem 3.1. For any exchangeable probability distribution P, with P probability

1 − ǫ, for any θ ∈ Θ,

r2(θ) ≤ r1(θ) +
d

N

[

1 − 2r1(θ)
]

+

√

4d

N

[

1 − r1(θ)
]

r1(θ) +
d2

N2

[

1 − 2r1(θ)
]2

,

where d = inf
{

− log
[

π(θ′)ǫ
]

: θ′ ∈ Θ, Ψ(θ′) = Ψ(θ)
}

.

Let us pursue our numerical example : assuming that |Y| = 2, N = 1000, h = 10,
ǫ = 0.01 and r1(θ) = 0.2, we get that r2(θ) ≤ 0.453.

Proof. Proving theorem 3.1 will require some lemmas.
Let

τ(h)(ω) =
1

(2N)!

∑

σ∈S2N

h(ω ◦ σ), ω ∈ Ω,

where S2N is the set of permutations of {1, . . . , 2N} and where (ω ◦ σ)i = ωσ(i).
For any ω ∈ Ω, any σ ∈ SN , let ω2,σ be defined as

(ω2,σ)i =

{

ωi, 1 ≤ i ≤ N,

ωσ(i−N), N < i ≤ 2N.

Let

τ ′(h)(ω) =
1

N !

∑

σ∈SN

h(ω2,σ).

Let us remark that τ = τ ◦ τ ′, and that τ ′[rk(θ)
]

= rk(θ), k = 1, 2.

Moreover, we know from the previous section that τ
[

exp(U)
]

(ω) ≤ ǫ, where

U = λ
[

r2(θ) − r1(θ)
]

− λ2

2N2

N
∑

i=1

(

χi+N − χi

)2
+ log(ǫ).

Thus τ
{

exp
[

τ ′(U)
]

}

≤ τ ◦ τ ′[exp(U)
]

= τ
[

exp(U)
]

≤ ǫ, from the convexity of

the exponential function and the fact that τ ′ is a (regular) conditional probability
measure.
Improved Vapnik Cervonenkis bounds Olivier Catoni – October 11, 2004



IMPROVED VAPNIK CERVONENKIS BOUNDS 9

But τ ′(U) = λ
[

r2(θ) − r1(θ)
]

− λ2

2N
τ ′(V ) + log(ǫ−1),

where V = 1
N

∑N
i=1(χi+N − χi)

2. Noticing that

τ ′(V ) =
1

N

N
∑

i=1

(χi + χi+N ) − 2

(

1

N

N
∑

i=1

χi

)(

1

N

N
∑

i=1

χi+N

)

= r1(θ) + r2(θ) − 2r1(θ)r2(θ),

we get

Lemma 3.2. For any exchangeable random variable η,

τ

{

exp

[

λ
[

r2(θ) − r1(θ)
]

− λ2

2N

[

r1(θ) + r2(θ) − 2r1(θ)r2(θ)
]

− η

]}

(ω)

≤ exp(−η)(ω), ω ∈ Ω.

As a consequence,

Lemma 3.3. For any exchangeable probability distribution P, any exchangeable

prior distribution π, with P probability at least 1 − ǫ, for any θ ∈ Θ,

r2(θ) ≤ r1(θ) +
λ

2N

[

r1(θ) + r2(θ) − 2r1(θ)r2(θ)
]

+
d

λ
,

where d = inf
{

− log
[

π(θ′)ǫ
]

: θ′ ∈ Θ, Ψ(θ′) = Ψ(θ)
}

.

Remark 3.1. As a special case, we can take d = log
[

N(X2N
1 )

]

− log(ǫ). This
corresponds to the case when π is chosen to be the uniform distribution on Θ′,
using the remark that each fθ, θ ∈ Θ coincides with some fθ′ , θ′ ∈ Θ′ on the design
{Xi : i = 1, . . . , 2N}.

We would like to prove a little more, showing that it is legitimate to take in the
previous equation

λ =

(

2Nd

r1(θ) + r2(θ) − 2r1(θ)r2(θ)

)1/2

=

√

2Nd

τ ′(V )
.

This is not so clear, since this quantity is not (even partially) exchangeable. Anyhow
we can write the following:

√

2Nd

τ ′(V )

∣

∣r2(θ) − r1(θ)
∣

∣ ≤ τ ′(V −1/2)
√

2Nd
∣

∣r2(θ) − r1(θ)
∣

∣

= τ ′
(
√

2Nd

V

∣

∣r2(θ) − r1(θ)
∣

∣

)

,

because r 7→ r−1/2 is convex. Moreover, using successively the fact that τ ′(V ) is a
symmetric function of r1(θ) and r2(θ), the fact that cosh is an even function, the
previous inequality, the convexity of cosh, the invariance τ = τ ◦ τ ′, the invariance
of V under ω 7→ ©N

i=1τ
1
i (ω), and the fact that V is almost surely constant under

each τi, we get the following chain of inequalities:
Olivier Catoni – October 11, 2004 Improved Vapnik Cervonenkis bounds
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τ

{

exp

[

√

2Nd
τ ′(V )

[

r2(θ) − r1(θ)
]

− d + log(ǫ)

]}

= τ

{

cosh

[

√

2Nd
τ ′(V )

[

r2(θ) − r1(θ)
]

]}

exp
[

−d + log(ǫ)
]

= τ

{

cosh

[

√

2Nd
τ ′(V )

∣

∣r2(θ) − r1(θ)
∣

∣

]}

exp
[

−d + log(ǫ)
]

≤ τ

{

cosh

[

τ ′
[
√

2Nd
V

∣

∣r2(θ) − r1(θ)
∣

∣

]

]}

exp
[

−d + log(ǫ)
]

≤ τ

{

τ ′
[

cosh
[
√

2Nd
V

∣

∣r2(θ) − r1(θ)
∣

∣

]

]}

exp
[

−d + log(ǫ)
]

= τ

{

cosh
[
√

2Nd
V

[

r2(θ) − r1(θ)
]

]

}

exp
[

−d + log(ǫ)
]

= τ

{

exp

[

√

2Nd
V

[

r2(θ) − r1(θ)
]

− d + log(ǫ)

]}

= τ ◦©N
i=1τi

{

exp

[

√

2Nd
V

[

r2(θ) − r1(θ)
]

− d + log(ǫ)

]}

≤ ǫ.

Thus with P probability at least 1 − ǫ, for any θ ∈ Θ,

r2(θ) ≤ r1(θ) +

√

2dτ ′(V )

N
= r1(θ) +

√

2d
[

r1(θ) + r2(θ) − 2r1(θ)r2(θ)
]

N
.

Solving this inequality in r2(θ) ends the proof of theorem 3.1. �

In the general case when P is only partially exchangeable and k is arbitrary, we
will obtain the following

Theorem 3.4. Let d = inf
{

− log
[

π(θ)ǫ
]

: θ′ ∈ Θ, Ψ(θ′) = Ψ(θ)
}

and

B(θ) =

(

1 +
2d

N

)−1{

r1(θ) +
d

N

{

1 + k−1
[

1 − 2r1(θ)
]

}

+ (1 + k−1)

√

2d

N
r1(θ)

[

1 − r1(θ)
]

+
d2

N2

}

.

For any partially exchangeable probability distribution P, with P probability at least

1 − ǫ, for any θ ∈ Θ such that r1(θ) < 1/2 and B(θ) ≤ 1/2, r2(θ) ≤ B(θ).

As a special case, the theorem holds with d = log
[

N
(

X
(k+1)N
1

)]

+ log(ǫ−1).
When using a set of binary classification rules {fθ : θ ∈ Θ} whose VC dimension

is not greater than h, we can use the bound d ≤ h log

(

e(k + 1)N

h

)

− log(ǫ). The

result is satisfactory when k is large, because in this case (1 + k−1) is close to one.
This will be useful in the inductive case.

Let us carry on our numerical example in the binary classification case: taking
N = 1000, h = 10, ǫ = 0.01 and r1(θ) = 0.2, we get a bound B(θ) ≤ 0.4203 for
values of k ranging from 15 to 18, showing that increasing the size of the shadow
sample has an increased impact when the improved variance term is used.
Improved Vapnik Cervonenkis bounds Olivier Catoni – October 11, 2004
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Proof. Let Φ(p) = (p ∧ 1
2 )
[

1 − (p ∧ 1
2 )
]

. This is obviously a concave function. We
have proved that

(

©N
i=1τi

){

exp
[

λ
[

r2(θ) − r1(θ)
]

− η
]

}

≤ exp

[

(1 + k−1)2λ2

2N2

N
∑

i=1

Φ(pi) − η

]

.

As

1

N

N
∑

i=1

Φ(pi) ≤ Φ

(

1

N

N
∑

i=1

pi

)

= Φ

(

r1(θ) + kr2(θ)

k + 1

)

,

this shows that

(

©N
i=1τi

){

exp
[

λ
[

r2(θ) − r1(θ)
]

− η
]

}

≤ exp

[

(1 + k−1)2λ2

2N
Φ

(

r1(θ) + kr2(θ)

k + 1

)

− η

]

.

Taking η =
(1 + k−1)2λ2

2N
Φ

(

r1(θ) + kr2(θ)

k + 1

)

− log(ǫ), and

λ =





2Nd

(1 + k−1)2Φ
(

r1(θ)+kr2(θ)
k+1

)





1/2

,

where d = inf
{

− log
[

π(θ)ǫ
]

: θ′ ∈ Θ, Ψ(θ′) = Ψ(θ)
}

, we get that with P probability

at least 1 − ǫ, for any θ ∈ Θ,

r2(θ) − r1(θ) ≤





2(1 + k−1)2Φ
(

r1(θ)+kr2(θ)
k+1

)

d

N





1/2

.

Solving this inequality in r2(θ) ends the proof of theorem 3.4. �

4. The inductive setting

We will integrate with respect to P(·|ZN
1 ) theorem 2.1 and its variants. Let us

start with theorem 3.4. Let us consider the non identically distributed independent

case, assuming thus that P =
[

⊗N
i=1 Pi

]⊗(k+1)

.

Let R(θ) =
1

N

N
∑

i=1

Pi

[

Yi 6= fθ(Xi)
]

and r(θ) =
r1(θ) + kr2(θ)

k + 1
.

Let P′(h) = P(h|ZN
1 ).

Olivier Catoni – October 11, 2004 Improved Vapnik Cervonenkis bounds
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Lemma 4.1. For any partially exchangeable prior distribution π, any partially

exchangeable positive function ζ : Θ → R∗
+,P{sup

θ∈Θ

∫ +∞

λ=0

ζ exp

[

λ
[

R(θ) − r1(θ) − ζ
]

− (1 + k−1)2λ2

2N
Φ

(

r1(θ) + kR(θ)

k + 1

)

+ P′
[

log
[

π̄(θ)ǫ
]

]

]

dλ

}

≤ ǫ,

where π̄(θ) = sup
{

π(θ′) : θ′ ∈ Θ, Ψ(θ′) = Ψ(θ)
}

.

Proof. Let

U ′ = λ
[

R(θ) − r1(θ) − ζ
]

− (1 + k−1)2λ2

2N
Φ

(

r1(θ) + kR(θ)

k + 1

)

+ P′
[

log
[

π̄(θ)ǫ
]

]

.

Let

U = λ
[

r2(θ) − r1(θ) − ζ
]

− (1 + k−1)2λ2

2N
Φ
[

r(θ)
]

+ log
[

π̄(θ)ǫ
]

.

The function Φ being concave,

ζ exp(U ′) ≤ ζ exp
[P′(U)

]

≤ P′[ζ exp(U)
]

.

Thus

sup
θ

∫ +∞

λ=0

ζ exp(U ′)dλ ≤ sup
θ∈Θ

∫ +∞

λ=0

P′[ζ exp(U)
]

dλ

≤ sup
θ∈Θ

P′
(∫ +∞

λ=0

ζ exp(U)dλ

)

≤ P′
(∫ +∞

λ=0

sup
θ∈Θ

[

ζ exp(U)
]

dλ

)

Moreover

sup
θ∈Θ

[

ζ exp(U)
]

≤ π
[

ζ exp(S)
]

,

where

S = U − log
[

π(θ)
]

= λ
[

r2(θ) − r1(θ) − ζ
]

− (1 + k−1)2λ2

2N
Φ
[

r(θ)
]

+ log(ǫ).

ThusP(sup
θ∈Θ

∫ +∞

λ=0

ζ exp(U ′)dλ

)

≤ P [P′
(∫ +∞

λ=0

π
[

ζ exp(S)
]

dλ

)]

= P(∫ +∞

λ=0

π
[

ζ exp(S)
]

dλ

)

= P [(©N
i=1τi

)

(∫ +∞

λ=0

π
[

ζ exp(S)
]

dλ

)]

= P{π

[∫ +∞

λ=0

ζ
(

©N
i=1τi

)

[

exp(S)
]

dλ

]}

.

But we have established on the occasion of the proof of theorem 3.4 that
(

©N
i=1τi

)

[

exp(S)
]

≤ ǫ exp(−ζλ).
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This proves that P(sup
θ∈Θ

∫ +∞

λ=0

ζ exp(U ′)dλ

)

≤ ǫ,

as stated in the lemma. �

Theorem 4.2. Let

B(θ) =

(

1 +
2d′

N

)−1{

r1(θ) +
d′

N
+

√

2d′r1(θ)
[

1 − r1(θ)
]

N
+

d′2

N2

}

,

where

d′ = d(1 + k−1)2
(

1 − log(α)

2d
+

α√
πd

)2

,

and

d = −P{log
[

ǫπ̄(θ)
]

|ZN
1

}

.

Let us notice that it covers the case when

d = P{log
[

N(X
(k+1)N
1 )

]

|ZN
1

}

+ log(ǫ−1).

In this case, when |Y| = 2 and the set of classification rules has a VC dimension

not greater than h,

d ≤ h log

(

e(k + 1)N

h

)

+ log(ǫ−1).

With P probability at least 1 − ǫ, for any θ ∈ Θ, R(θ) ≤ B(θ) when r1(θ) < 1/2
and B(θ) ≤ 1/2.

In the case when the model has a VC dimension not greater than h, we can
bound as mentioned in the theorem the random variable d with the constant

d⋆ = h log

(

e(k + 1)N

h

)

+ log(ǫ−1).

We can then optimize the choice of α by taking α = 1
2

√

π
d⋆ . This leads to

d′ ≤ d⋆(1 + k−1)2

[

1 +
1

2d⋆
log

(

2e

√

d⋆

π

)]2

.

We can also approximately optimize

(1 + k−1)2 log

(

eN(k + 1)

h

)

by taking k = 2 log
(

eN
h

)

.
Let us resume our numerical example to illustrate theorem 4.2. Assume that

N = 1000, h = 10 and ǫ = 10−2. For r1(θ) = 0.2, we get B(θ) ≤ 0.4257 for k = 19.
More generally, we get

B(θ) ≤ 0.828

{

r1(θ) + 0.105 +
√

0.209
[

1 − r1(θ)
]

r1(θ) + 0.011

}

.

For comparison, Vapnik’s corollary 1.2 in the same situation gives a bound
greater than 0.610, and therefore not significant (since a random classification has
a better expected error rate of 0.5).
Olivier Catoni – October 11, 2004 Improved Vapnik Cervonenkis bounds
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Proof. Let

V = (1 + k−1)2Φ

(

r1(θ) + kR(θ)

k + 1

)

,

d = −P′
{

log
[

π̄(θ)ǫ
]

}

,

∆ = R(θ) − r1(θ) − ζ.

Let us remark that

U ′ = − V

2N

(

λ − N∆

V

)2

+
N∆2

2V
− d.

Thus
∫ +∞

λ=0

ζ exp(U ′)dλ ≥ 1(∆ ≥ 0)W,

where

W =

√

πN

2V
ζ exp

(

N∆2

2V
− d

)

.

Thus, according to the previous lemma,P{sup
θ∈Θ

[1(∆ ≥ 0)W
]

}

≤ ǫ.

This proves that with P probability at least 1 − ǫ,

sup
θ∈Θ

[1(∆ ≥ 0)W
]

≤ 1.

Translated into a logical statement this says that with P probability at least 1− ǫ,
either ∆ < 0, or log(W ) ≤ 0.

Let V ′ = (1 + k−1)Φ
[

R(θ)
]

. Consider setting ζ = α
√

2V ′

πN , where α is some

positive real number.
We have proved that with P probability at least 1 − ǫ,

N∆2

2V
≤ d − log(α) +

1

2
log

(

V

V ′

)

,

when ∆ ≥ 0. But Φ is increasing and when ∆ ≥ 0, R(θ) ≥ r1(θ), thus in this case
V ′ ≥ V , and we can weaken and simplify our statement to

N∆2

2V ′ ≤ d − log(α).

Equivalently, with P probability at least 1 − ǫ, for any θ ∈ Θ,

R(θ) − r1(θ) ≤
√

2V ′d

N

(
√

1 − log(α)

d
+

α√
πd

)

Using the fact that
√

1 + x ≤ 1 + x
2 , we get that

[

R(θ) − r1(θ)
]2 ≤ 2d′Φ

[

R(θ)
]

N
,

where d′ = d(1 + k−1)2
(

1 − log(α)

2d
+

α√
πd

)2

. Since Φ(R) = R(1 − R) when

R ≤ 1/2, this can be solved in R(θ) in this case to end the proof of theorem
4.2. �
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With a little more work we could have kept

N∆2

2V
≤ d − log(α),

leading to

R(θ) − r1(θ) ≤

√

2V
[

d − log(α)
]

N
+ α

√

2V ′

πN
,

and
[

R(θ) − r1(θ)
]2 ≤ 2V

[

d − log(α)
]

N
+ 4α

V ′

N

√

d − log α

π
+ α2 2V ′

πN
.

This leads to the following

Theorem 4.3. Let us put

c = 2α

√

d − log(α)

π
+

α2

π
,

d1 = d − log(α) + (1 + k−1)2c,

d2 = (1 + k−1)
{

[

d − log(α)
][

1 − 2r1(θ)
1+k

]

+ (1 + k−1)c
}

,

d3 = (1 + k−1)2
{

d − log(α) + c + 2 c
Nk2

[

d − log(α)
]

}

,

d4 = (1 + k−1)
[

d − log(α) + (1 + k−1)c
]

.

Theorem 4.2 still holds when the bound B(θ) is strengthened to

B(θ) =

(

1 +
2d1

N

)−1






r1(θ) +
d2

N
+

√

2d3r1(θ)
[

1 − r1(θ)
]

N
+

d4
2

N2







.

On the previous numerical example (N = 1000, h = 10, ǫ = 10−2, k = 19,
α = 1

2

√

π
d⋆ , r1(θ) = 0.2), we get a bound B(θ) ≤ 0.4248, instead of B(θ) ≤ 0.4257,

showing that the improvement brought to theorem 4.2 is not so strong, and therefore
that theorem 4.2 is a satisfactory approximation of theorem 4.3.

Starting from lemma 2.2, we can make the same kind of computations taking

V = (1 + k−1) r1(θ)+kR(θ)
k+1 , to obtain that with P probability at least 1 − ǫ,

R(θ) − r1(θ) ≤
√

2V ′d

N

(

1 − log(α)

2d
+

α√
πd

)

,

where V ′ = (1 + k−1)R(θ). This proves the following

Theorem 4.4. For any positive constant α, with P probability at least 1 − ǫ, for

any θ ∈ Θ,

R(θ) ≤ r1(θ) +
d′

N
+

√

2d′r1(θ)

N
+

d′2

N2
,

where d′ = (1 + k−1)
(

1 − log(α)
2d + α√

πd

)2

d.

Our previous numerical application gives in this case a non significant bound
R(θ) ≤ 0.516, (for the best value of k = 9), showing that the improvement of the
variance term has a decisive impact when r1(θ) is not small.
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In the fully exchangeable case, when k = 1, a slightly better result can be
obtained, using lemma 3.2, and thus putting

V = r1(θ) + R(θ) − 2r1(θ)R(θ),

V ′ = 2R(θ)
[

1 − R(θ)
]

.

It leads to the following theorem

Theorem 4.5. Let d′ = d − log(α) and

c = 2α

√

d − log(α)

π
+

α2

π
.

Theorem 4.2 still holds when the bound is tightened to

B(θ) =

(

1 +
4c

N

)−1
{

r1(θ) +
[

1 − 2r1(θ)
] d′

N
+

2c

N

+

√

4(d′ + c)r1(θ)
[

1 − r1(θ)
]

N
+

d′2

N2

[

1 − 2r1(θ)
]2

+
4c(d′ + c)

N2

}

.

Remark 4.1. Our previous numerical example gives in this case a bound B(θ) ≤
0.460, (for α = 1

2

√

π
d ). This shows that the improvement brought by a better

variance term is significant, but that the optimization of the size of the shadow
sample is also interesting.

Remark 4.2. Note that we can take α = 1. In this case, d′ = d and c = 2
√

d
π + 1

π .

Note that we can also take α = d−1/2, leading to d′ = d + 1
2 log(d) and

c =
2√
π

√

1 +
log(d)

2d
+

1

πd
≤ 2√

π

(

1 +
log(d)

4d

)

+
1

πd
≤ 3

2
.

Remark 4.3. Note also that the bound can be weakened and simplified to

B(θ) ≤ r1(θ) +
[

1 − 2r1(θ)
]d′′

N
+

√

4d′′r1(θ)
[

1 − r1(θ)
]

N
+

d′′2

N2

[

1 − 2r1(θ)
]2

,

where d′′ = d′ + 2c. Taking α = d−1/2 gives d′′ ≤ d + 1
2 log(d) + 3.

Another technical possibility to get inductive bounds is to choose some near
optimal value for λ, instead of averaging over some exponential prior distribution
on λ.

This leads to the following theorem

Theorem 4.6. Let

d̄ = P{log
[

π̄(θ)−1ǫ−1
]

}

,

d = P{log
[

π̄(θ)−1ǫ−1
]

|ZN
1

}

,

d′ =
1

4
(1 + k−1)2(d̄ + d)(1 +

d

d̄
).

Theorem 4.2 still holds when the bound is tightened to

B(θ) =

(

1 +
2d′

N

)−1
{

r1(θ) +
d′

N
+

√

2d′r1(θ)
[

1 − r1(θ)
]

N
+

d′2

N2

}

.
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Moreover, putting d⋆ = ess supP log
[

π̄(θ)−1ǫ−1
]

, d′ can be replaced with d⋆(1+k−1)2

in the previous bound. In the case of a VC class of dimension h, d⋆ can be bounded

by h log( eN
h ).

Following our numerical example (N = 1000, h = 10, r1(θ) = 0.2), we get an
optimal value of B(θ) ≤ 0.4213 for k ranging from 17 to 19. This shows that in
this case going from the transductive setting to the inductive one was done with
an insignificant loss of 0.001. Although making use of a rather cumbersome flavor
of entropy term in the general case, theorem 4.6 provides the tightest bound in the
case of a VC class.

Proof. Starting fromP{sup
θ∈Θ

exp

[

λ(θ)
[

R(θ) − r1(θ)
]

− λ(θ)2

2N
(1 + k−1)2Φ

(

r1(θ) + kR(θ)

1 + k

)

+ P′
{

log
[

π̄(θ)ǫ
]

}

]}

≤ ǫ,

we can choose

λ =





−2NP{log
[

π̄(θ)ǫ
]

}

(1 + k−1)2Φ
[

R(θ)
]





1/2

.

We get with P probability at least 1 − ǫ,

λ
[

R(θ) − r1(θ)
]

≤ d̄
Φ
(

r1(θ)+kR(θ)
1+k

)

Φ
[

R(θ)
] + d.

We can then remark that whenever R(θ) ≥ r1(θ), then
Φ
(

r1(θ)+kR(θ)
1+k

)

Φ
[

R(θ)
] ≤ 1, to get

R(θ) − r1(θ) ≤ (1 + k−1)
d̄ + d√

d̄

√

Φ
[

R(θ)
]

2N
.

Solving this inequality in R(θ) ends the proof of theorem 4.6. �

In the same way, in the fully exchangeable case, starting fromP{sup
θ∈Θ

exp

[

λ(θ)
[

R(θ) − r1(θ)
]

− λ(θ)2

2N

[

R(θ) + r1(θ) − 2r1(θ)R(θ)
]

+ d

]}

≤ ǫ,

we can take

λ(θ) =

√

Nd̄

R(θ)
[

1 − R(θ)
] ,

to get
Olivier Catoni – October 11, 2004 Improved Vapnik Cervonenkis bounds
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Theorem 4.7. Let d′ =
1

2
d̄

(

1 +
d

d̄

)2

, and assume that P is fully exchangeable.

Theorem 4.2 still holds when the bound is tightened to

B(θ) =

(

1 +
2d′

N

)−1
{

r1(θ) +
d′

N
+

√

2d′r1(θ)
[

1 − r1(θ)
]

N
+

d′2

N2

}

.

Moreover, putting d⋆ = ess supP log
[

π̄(θ)−1ǫ−1
]

, d′ can be replaced with 2d⋆ in the

previous bound. In the case of a VC class of dimension h, d⋆ can be bounded by

h log
(

eN
h

)

.

Our numerical example (N = 1000, h = 10, ǫ = 0.0.1 and r1(θ) = 0.2), gives a
bound B(θ) ≤ 0.445.

5. Using relative bounds

Relative bounds were introduced in the PhD thesis of our student Jean-Yves
Audibert [2]. Here we will use them to sharpen Vapnik’s bounds when r1(θ) and N
are large (a flavor of how large they should be is given in the numerical application
at the end of this section). Audibert showed that chaining relative bounds can be
used to remove log(N) terms in Vapnik bounds. Here, we will generalize relative
bounds to increased shadow samples and will use only one step of the chaining
method (lest we would spoil the constants too much, the price to pay being a
trailing log

[

log(N)
]

term which anyhow behaves like a constant in practice).
Let us assume that P is partially exchangeable. Let θ, θ′ ∈ Θ, and let

χi = 1[Yi 6= fθ(Xi)
]

− 1[Yi 6= fθ′(Xi)
]

,

r′1(θ, θ
′) = r1(θ) − r1(θ

′) =
1

N

N
∑

i=1

χi,

r′2(θ, θ
′) = r2(θ) − r2(θ

′) =
1

kN

(k+1)N
∑

i=N+1

χi.

For any real number x, let g(x) = x−2
[

exp(x) − 1 − x
]

. As it is well known,
x 7→ g(x) : R→ R is an increasing function. This is the key argument in the proof
of Bernstein’s deviation inequality.

Let

ℓ(θ, θ′) =
1

(k + 1)N

(k+1)N
∑

i=1

1[fθ(Xi) 6= fθ′(Xi)
]

.

Lemma 5.1. For any partially exchangeable random variable λ : Ω → R,

(

©N
i=1τi

)

exp

{

λ
[

r′2(θ, θ
′) − r′1(θ, θ

′)
]

− g
[

(1 + k−1)2λ
N

]

(1 + k−1)2
λ2

N
ℓ(θ, θ′) + log(ǫ)

}

≤ ǫ.
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Proof. For any partially exchangeable random variable η,

log

{

(

©N
i=1τi

)

exp

[

λ
[

r′2(θ, θ
′) − r′1(θ, θ

′)
]

− η

]}

= −η +

N
∑

i=1

log

{

τi exp

[

λ

N

(

1

k

k
∑

j=1

χi+jN − χi

)]}

= −η +

N
∑

i=1

log

{

exp

(

λ

kN

N
∑

j=0

χi+jN

)

τi exp

(

−(1 + k−1)
λ

N
χi

)}

= −η +
λ

kN

(k+1)N
∑

i=1

χi +

N
∑

i=1

log

{

τi

[

exp
(

−(1 + k−1)
λ

N
χi

)

]}

.

Now we can apply Bernstein’s inequality to

log

{

τi exp

[

−(1 + k−1)
λ

N
χi

]}

,

to show that

log

{

τi exp

[

−(1 + k−1)
λ

N
χi

]}

≤ λ

kN

k
∑

j=0

χi+jN

+ (1 + k−1)2
λ2

N2
τi

[

(χi − pi)
2
]

g

[

2λ

N
(1 + k−1)

]

,

where we have put pi = τi(χi) =
1

k + 1

k
∑

j=0

χi+jN . Anyhow, let us reproduce

the proof of this statement here, for the sake of completeness. Let us put α =
(1 + k−1) λ

N .

log
{

τi

[

exp(−αχi)
]

}

= −αpi

+ log

{

1 + τi

[

exp
[

−α(χi − pi)
]

− 1 − α(χi − pi)

}

≤ −αpi + τi

[

α2(χi − pi)
2g
[

−α(χi − pi)
]

]

≤ −αpi + g(2α)τi

[

α2(χi − pi)
2
]

.

We can now use the bound τi

[

(χi − pi)
2
]

≤ τ(χ2
i ) and remark that

χ2
i ≤ 1[fθ(Xi) 6= fθ′(Xi)

]

, to get

log

{

(

©N
i=1τi

)

exp

[

λ
[

r′2(θ, θ
′) − r′1(θ, θ

′)
]

− η

]}

≤ g(2α)α2
N
∑

i=1

τi

{1[fθ(Xi) 6= fθ′(Xi)
]

}

− η

=
λ2

N
(1 + k−1)2g

(

2λ(1 + k−1)

N

)

ℓ(θ, θ′) − η.
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20 OLIVIER CATONI

We end the proof by choosing

η = g

(

2(1 + k−1)λ

N

)

(1 + k−1)2
λ2

N
ℓ(θ, θ′) − log(ǫ).

�

We deduce easily from the previous lemma the following

Proposition 5.2. For any partially exchangeable prior distributions π,

π′ : Ω → M1
+(Θ), for any partially exchangeable probability measure P ∈ M1

+(Ω),
with P probability at least 1 − ǫ, for any θ, θ′ ∈ Θ,

r′2(θ, θ
′) − r′1(θ, θ

′) ≤ g

(

2(1 + k−1)λ

N

)

(1 + k−1)2
λ

N
ℓ(θ, θ′) − 1

λ
log
[

π̄(θ)π̄′(θ′)ǫ
]

,

where π̄(θ) = sup{π(θ′′) : θ′′ ∈ Θ, Ψ(θ′′) = Ψ(θ)}, and an analogous definition is

used for π̄′.

Let us now assume that we use a set of binary classification rules {fθ : θ ∈ Θ}
with VC dimension not greater than h.

Let us consider in the following the values

ξj =
⌊(k + 1)N exp(−j)⌋

(k + 1)N
≃ exp(−j),

where ⌊x⌋ is the lower integer part of the real number x. Let us define

dj = h log

[

2e2(k + 1)N

hξj

]

+ log
[

e log(N)(h + 1)ǫ−1
]

.

Proposition 5.3. With P probability at least 1 − ǫ, for any θ ∈ Θ, any

j ∈ {1, . . . , ⌊log(N)⌋}, there is θ′j ∈ Θ′
j such that

r2(θ) − r1(θ) ≤ r2(θ
′
j) − r1(θ

′
j) +

[

g

(√

8dj

ξjN

)

+
1

2

]
√

2(1 + k−1)2ξjdj

N
.

Proof. Let us recall a lemma due to David Haussler [6] : when the VC dimension
of {fθ : θ ∈ Θ} is not greater than h, then, for any ξ = m

(k+1)N , we can find some

ξ-covering net Θ′
ξ ⊂ Θ for the distance ℓ (which is a random exchangeable object),

such that

|Θ′
ξ| ≤ e(h + 1)

(

2e

ξ

)h

.

Let us put on
⊔

j,1≤j≤log(N)

Θ′
ξj

the prior probability distribution defined by

π′(θ′j) =
(

⌊log(N)⌋|Θ′
ξj
|
)−1 ≥

[

log(N)e(h + 1)

(

2e

ξj

)h
]−1

, θ′j ∈ Θ′
j .

We see that with P probability at least 1−ǫ, for any θ ∈ Θ, any j, 1 ≤ j ≤ log(N)
there is θ′j ∈ Θ′

ξj
such that ℓ(θ, θ′j) ≤ ξj , and therefore such that
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r2(θ, θ
′
j) − r1(θ, θ

′
j) ≤ g

[

(1 + k−1)
2λ

N

]

(1 + k−1)2
λ

N
ξj

+
1

λ
log
[

π̄(θ)−1π̄′(θ′j)
−1ǫ−1

]

,

where we can take π̄(θ) ≥
(

e(k+1)N
h

)−h

and where π′(θ′j) has been defined earlier.

We can then choose

λ(θ, θ′j) =





2N log
{

[

π̄(θ)π̄′(θ′j)ǫ
]−1
}

(1 + k−1)2ξj



 ,

to prove proposition 5.3. �

On the other hand, from theorem 3.4 applied to
⊔

Θ′
ξj

and π′, we see that withP probability at least 1 − ǫ, for any j, 1 ≤ j ≤ log(N) and any θ′j ∈ Θ′
j , putting

d′j = h log

(

2e

ξj

)

+ log
[

e log(N)(h + 1)
]

− log(ǫ),

we have

r2(θ
′
j) − r1(θ

′
j) ≤

√

2

N
(1 + k−1)2d′jΦ

(

r1(θ′j) + kr2(θ′j)

1 + k

)

.

We can then remark that when ℓ(θ, θ′j) ≤ ξj ,

1

k + 1

[

r1(θ
′
j)+kr2(θ

′
j)
]

≤ 1

k + 1

[

r1(θ)+kr2(θ)
]

+ℓ(θ, θ′j) ≤
1

k + 1

[

r1(θ)+kr2(θ)
]

+ξj.

We have proved the following

Theorem 5.4. With P probability at least 1 − 2ǫ,

r2(θ) − r1(θ) ≤ inf
j∈N∗,1≤j≤log(N)

[

g

(√

8dj

ξjN

)

+
1

2

]
√

2(1 + k−1)2ξjdj

N

+

√

2

N
(1 + k−1)2d′jΦ

(

r1(θ) + kr2(θ)

1 + k
+ ξj

)

.

Remark 5.1. To use this theorem, we have to solve equations of the type

r2 − r1 ≤ a + b

[

Φ

(

r1 + kr2

1 + k
+ ξ

)]1/2

.

Whenever r1 and the bound are less than 1/2, this is equivalent to

r2 ≤ B +
√

B2 − AC

A
,

where

A = 1 +

(

kb

1 + k

)2

,

B = r1 + a +
kb2

2(1 + k)2
[

(1 + k)(1 − 2ξ) − 2r1

]

,

C = (r1 + a)2 − b2

(1 + k)2
[

(1 + k)ξ + r1

][

(1 + k)(1 − ξ) − r1

]

.
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Let us make some numerical application. We should take N pretty large, be-
cause the expected benefit of this last theorem is to improve on the log(N) term
(the optimization in ξj allows to kill the log(N) term in dj and be left only with
log
[

log(N)
]

terms). So let us take N = 106, h = 10, r1(θ) = 0.2 and ǫ = 0.005. For
these values, theorem 3.4 gives a bound greater than 0.2075 and less than 0.2076
when k ranges from 24 to 46. Here we obtain a bound less than 0.2070 for k ranging
from 24 to 46, the optimal values for (k, j) being (257, 7), giving a bound less than
0.20672. The bound is less than 0.2068 for k ranging from 42 to 19470, showing
that we can really use big shadow samples with theorem 5.4 !
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