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The present paper is devoted to the computation of two-phase flows using the two-fluid
approach. The overall model is hyperbolic and has no conservative form. No instanta-
neous local equilibrium between phases is assumed, which results in a two-velocity two-
pressure model. Original closure laws for interfacial velocity and interfacial pressure are
proposed. These closures allow to deal with discontinuous solutions such as shock waves
and contact discontinuities without ambiguity for the definition of Rankine-Hugoniot
jump relations. Each field of the convective system is investigated, providing that the
maximum principle for the volume fraction and the positivity of densities and internal en-
ergies are ensured when focusing on the Riemann problem. Two Finite Volume methods
are presented, based on the Rusanov scheme and on an approximate Godunov scheme.
Relaxation terms are taken into account using a fractional step method. Eventually,
numerical tests illustrate the ability of both methods to compute two-phase flows.

Keywords: two-phase flow, hyperbolic system, non-conservative terms, resonance, Finite
Volume

AMS Subject Classification: 76T10, 35F25, 35L67, 76M12

1. Introduction

Computation of two-phase flows has been generally based on the homogeneous ap-

proach in order to compute either gas-solid flows or gas-liquid flows14,19,52. When

focusing on the two-fluid approach, the problem becomes intricate, due to the fact

that two-fluid models with an equilibrium pressure assumption have some well-

known drawbacks. One of them is that these systems contain non-conservative
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2 A two-fluid two-pressure model

terms (which is an serious difficulty7,36,11,44). Furthermore, such models do not

necessarily remain hyperbolic in all situations, which means that the initial value

problem may be “ill-posed” for a large class of initial conditions. Last but not

least, it clearly appears that the maximum principle for the volume fraction does

not necessarily hold in general even for smooth solutions, except perhaps in some

situations corresponding to the modeling of gas particle flows including granular

pressure effects8,22,28,49).

Some recent ideas have been proposed to cope with this kind of system. Roughly

speaking, one way to deal with these is based on the use of developments with respect

to a small parameter (for instance the relative velocity52,53, the volume fraction43 or

the density ratio). Other ways to deal with these are based on use of an extension of

the notion of upwinding21 or of the use of fractional step techniques9,8,31. Though

numerical results are rather encouraging, one may still wonder whether the lack of

hyperbolicity has not been enforced by some failure in closure assumptions. Some

time ago, V.H. Ransom and D.L. Hicks40 suggested to use a two-pressure model

based on a eight-equation model. More recently, M.R. Baer and J.W. Nunziato

suggested in Ref. 2 to adopt a similar approach. Their model has been studied

and extended by A.K. Kapila et al.35 and S. Gavrilyuk and R. Saurel20. Other

two-pressure models have been proposed by J. Glimm and co-workers23,24 and by

K.A. Gonthier and J.M. Powers29. Here, the system is composed by seven partial

differential equations: one transport equation for the volume fraction, two for the

mass of each fluid, two for the momentum of each fluid and two for the energy

of each fluid. Several definitions of the interfacial velocity and of the interfacial

pressure have been proposed in references mentioned above. The present paper

adopts an original approach, based on the analysis of the one-dimensional Riemann

problem and on the definition of discontinuous solutions in order to deal with non-

conservative products and to ensure the maximum principle for the volume fraction,

as presented in Ref. 10. We restrict ourselves to the one-dimensional framework.

The present paper is organized as follows. The first section presents the model

devoted to the computation of two-phase flows, using the two-fluid approach. No

assumption towards pressure equilibrium is required here and the overall model is

unconditionally hyperbolic and non-conservative. Properties of smooth solutions

are investigated. Several closures for the interfacial velocity and the interfacial

pressure are then proposed. Assuming that the interface between two mixtures

of fluids remains infinitely thin when restricting to convective effects, three differ-

ent forms of interfacial velocity are exhibited. In other words, these closures for

the interfacial velocity permit to obtain a linearly degenerate field associated with

the wave which initially separates two mixtures. The definition of the interfacial

pressure is strongly related to the closure of the non-conservative terms. A first

definition enables to complement the system with a natural entropy inequality and

a field by field study of the solution of the one-dimensional Riemann problem is

provided. Another way of closure for the interfacial pressure is proposed, but is not

investigated here. We discuss afterwards about the approximation of solutions of
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the system. The approximation of convective terms and source terms is cast into

two different steps using a splitting method. The convective part is computed us-

ing Finite Volume schemes adapted to the non-conservative frame. Two methods,

based on the Rusanov scheme42 and on the VFRoe-ncv scheme4, are tested here.

The latter scheme is a Finite Volume linearised method, like the Roe scheme41, but

using a non-conservative variable for the linearisation (VFRoe-ncv: Volumes Finis

Roe - non-conservative variable). Concerning the relaxation terms (drag force and

pressure relaxation), we propose an approximation in agreement with the properties

satisfied by smooth solutions. Eventually, several numerical tests are performed to

compare the robustness and the accuracy of both methods when computing shock

tube test cases as well as the water faucet problem.

2. The two-fluid two-pressure model

We present here the global two-fluid system. We focus our analysis on the convective

part of the system. The different properties of this system are investigated for

smooth solutions before studying the associated Riemann problem.

2.1. Governing equations

The governing set of equations contains convective terms, source terms and diffusive

terms. It takes the form for t > 0, x ∈ R:

(Id+D(W ))
∂W

∂t
+
∂F (W )

∂x
+ C(W )

∂W

∂x
= S(W ) +

∂

∂x

(
E(W )

∂W

∂x

)
, (2.1)

where W = W (t, x) is the unknown function from R+ ×R to Ω (with Ω a subset of

R
7), F , and S are functions from Ω to R

7, while C, D and E are functions from Ω

to R
7×7 and Id is the identity matrix of R

7×7. Of course, the extension of (2.1) to

a multidimensional framework is classical. The so called conservative variable W is

W = T
(
α1, α1ρ1, α1ρ1U1, α1E1, α2ρ2, α2ρ2U2, α2E2

)
,

where αk is the volume fraction of phase k, ρk, Uk and Ek are respectively the

density, the velocity and the total energy of phase k, k = 1, 2. We also define the

mass fraction mk = αkρk and the pressure Pk of phase k. Let Ω = {W ∈ R
7;α1 ∈

(0, 1),mk > 0, Ek/ρk − (Uk)2/2 > 0, k = 1, 2} be the set of admissible states. The

convective part (i.e. the left handside) of system (2.1) is defined by

D(W )
∂W

∂t
=




0
0
0

Pi∂tα1

0
0

Pi∂tα2




, F (W ) =




0
α1ρ1U1

α1(ρ1U
2
1 + P1)

α1U1(E1 + P1)
α2ρ2U2

α2(ρ2U
2
2 + P2)

α2U2(E2 + P2)




, C(W )
∂W

∂x
=




Vi∂xα1

0
−Pi∂xα1

0
0

+Pi∂xα1

0



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where Vi(W ) and Pi(W ) are the interfacial velocity and the interfacial pressure.

Source terms S may be written45:

S(W ) = T
(
KP (P1 − P2),

ṁ,−KU (U1 − U2) + ṁVi,−KUVi(U1 − U2) + ṁEi,

−ṁ,+KU (U1 − U2) − ṁVi,+KUVi(U1 − U2) − ṁEi

)

where we note KU (W ) and KP (W ) the positive functions of velocity and pres-

sure relaxation, ṁ(W ) the mass transfer and Ei(W ) the interfacial energy. Note

that terms KU (W )(U1 − U2) correspond to drag force effects. Viscous terms are

accounted for through a contribution concerning E(W ):

E(W )
∂W

∂x
=




0,
0,

∂x(µ1Γ (U1))
∂x(µ1Γ (U1)U1) + ∂x(κ1∂xT1)

0,
∂x(µ2Γ (U2))

∂x(µ2Γ (U2)U2) + ∂x(κ2∂xT2)




, with Γ (Uk) =
4

3
∂xUk, (2.2)

where T is the temperature T = P/ρ, and µk and κk refer to the laminar viscosity

and the conductivity coefficient of phase k, k = 1, 2. The coefficient 4/3 in the

definition of the viscous stress tensor Γ is provided from the 3D framework.

The system (2.1) is associated with an initial datum W0 ∈ Ω:

W (t = 0, x) = W0(x), x ∈ R, (2.3)

and must be complemented by some closure laws. The volume fractions must comply

with

α1 + α2 = 1.

Moreover, the total energies Ek follow from

Ek = ρkek + ρk(Uk)2/2, k = 1, 2,

where the internal energies ek satisfy the equations of state (also called the thermo-

dynamics laws)

ek = εk(Pk , ρk), k = 1, 2.

Remark 1. The system (2.1) is obtained after an averaging process (see Ref. 34)

and variables considered here are mean values. Initially, phases are separated one

from another, and a thermodynamics law is available in each phase. Usually, laws

which link thermodynamical variables after the averaging process may differ from

initial laws. However, basic laws, such as the perfect gas equation of state or the

Tammann equation of state, which satisfy

ρkεk(Pk , ρk) = gkPk + bkρk + ck (2.4)
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(where gk > 0, bk and ck are real constants) remain unchanged after the averaging

process unlike more complex thermodynamical laws such as Van der Waals equation

of state (see appendix A of Ref. 15 for more details).

One still needs to detail both the interfacial pressure Pi and the interfacial

velocity Vi. We assume that Vi satisfies

Vi(W ) = β(W )U1 + (1 − β(W ))U2 (2.5)

The scalar dimensionless function β is non-negative and bounded by 1. Definition

(2.5) enables us to account for kinematic equilibrium since U2 = U1 implies Vi =

U1 = U2. Concerning Pi, one may expect that the relation

U1 = U2 and P1 = P2 =⇒ Pi = P1 = P2 (2.6)

holds. Of course, equation (2.5) and relation (2.6) are too general to deduce at this

stage explicit forms of Vi and Pi. Nonetheless, several properties for the convective

part of the system (2.1) are available.

2.2. Some properties of the convective system

Though system (2.1) is not completely closed (Vi and Pi have not been explicited),

some properties are exposed below to determine whether this system is relevant to

describe two-phase flows. Hyperbolicity, the maximum principle and the positivity

requirement are investigated. The isentropic framework is briefly dealt with too.

We emphasize that all the following results are independent from the closure of

interfacial pressure Pi and interfacial velocity Vi.

The homogeneous problem associated with (2.1) may be written under the fol-

lowing form for t > 0 and x ∈ R:

∂t(α1) + Vi(W ) ∂xα1 = 0, (2.7a)

∂t(α1ρ1) + ∂x (α1ρ1U1) = 0, (2.7b)

∂t(α2ρ2) + ∂x (α2ρ2U2) = 0, (2.7c)

∂t(α1ρ1U1) + ∂x

(
α1ρ1U

2
1 + α1P1

)
− Pi(W ) ∂xα1 = 0, (2.7d)

∂t(α2ρ2U2) + ∂x

(
α2ρ2U

2
2 + α2P2

)
+ Pi(W ) ∂xα1 = 0, (2.7e)

∂t(α1E1) + ∂x (α1U1(E1 + P1)) − Vi(W )Pi(W ) ∂xα1 = 0, (2.7f)

∂t(α2E2) + ∂x (α2U2(E2 + P2)) + Vi(W )Pi(W ) ∂xα1 = 0. (2.7g)

We define the celerity ck and the coefficient γ̂k of phase k by

ρk(ck)2 =

(
Pk

ρk
− ρk

∂εk

∂ρk

)(
∂εk

∂Pk

)−1

, and ρk(ck)2 = γ̂kPk ,

and the partial specific entropy sk of phase k, k = 1, 2, by sk = ςk(Pk, ρk), where

ςk complies with

γ̂kPk
∂ςk
∂Pk

+ ρk
∂ςk
∂ρk

= 0.

The following proposition holds:
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Proposition 1. The homogeneous problem (2.7) is non-strictly hyperbolic on Ω, in

the sense that it admits real eigenvalues and the right eigenvectors span the whole

space R
7, except when some eigenvalues coincide. These eigenvalues are simply:

λ1 = Vi,
λ2 = U1 − c1, λ3 = U1, λ4 = U1 + c1,
λ5 = U2 − c2, λ6 = U2, λ7 = U2 + c2.

Moreover, the fields associated with the waves λ2, λ4, λ5 and λ7 are genuinely non-

linear and the fields associated with the waves λ3 and λ6 are linearly degenerate.

Refer to Ref. 26 for the definition of genuinely non-linear or linearly degenerate

fields.

Proof. Let us define the vector

Y = T (α1, s1, U1, P1, s2, U2, P2).

The study of the hyperbolicity of system (2.7) does not depend on the use of W

or Y . The system (2.7) may be written with respect to Y , which gives for regular

solutions in Ω
∂Y

∂t
+B(Y )

∂Y

∂x
= 0,

where

B(Y ) =




Vi 0 0 0 0 0 0
β2(Y ) U1 0 0 0 0 0
β3(Y ) 0 U1 τ1 0 0 0
β4(Y ) 0 γ̂1P1 U1 0 0 0
β5(Y ) 0 0 0 U2 0 0
β6(Y ) 0 0 0 0 U2 τ2
β7(Y ) 0 0 0 0 γ̂2P2 U2




. (2.8)

The coefficients βp, p = 2, ..., 7 can be written as

β3k−1(Y ) = (−1)k (Uk − Vi)(Pk − Pi)

αkρk

(
∂εk

∂Pk

)−1
∂ςk
∂Pk

,

β3k(Y ) = (−1)k+1Pk − Pi

αkρk
,

β3k+1(Y ) = (−1)k+1Uk − Vi

αkρk

(
Pi − ρ2

k

∂εk

∂ρk

)(
∂εk

∂Pk

)−1

,

and we note τk = 1/ρk, k = 1, 2.

The hyperbolicity of system (2.7) is then proved by a classical analysis of the matrix

B. We focus now on the right eigenvectors of B. The matrix R of right eigenvectors
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of B is

R(Y ) =




r
(1)
1 (Y ) 0 0 0 0 0 0

r
(2)
1 (Y ) 1 0 0 0 0 0

r
(3)
1 (Y ) 0 τ1 τ1 0 0 0

r
(4)
1 (Y ) 0 −c1 c1 0 0 0

r
(5)
1 (Y ) 0 0 0 1 0 0

r
(6)
1 (Y ) 0 0 0 0 τ2 τ2

r
(7)
1 (Y ) 0 0 0 0 −c2 c2




(2.9)

where r
(p)
1 is the pth component of the first right eigenvector of matrix B, that is

r1(Y ) = T

(
1,

−β2

U1 − Vi
,
τ1β4 − (U1 − Vi)β3

(U1 − Vi)2 − c21
,
c21β3 − τ1(U1 − Vi)β4

τ1((U1 − Vi)2 − c21)
,

−β5

U2 − Vi
,
τ2β7 − (U2 − Vi)β6

(U2 − Vi)2 − c22
,
c22β6 − τ2(U2 − Vi)β7

τ2((U2 − Vi)2 − c22)

)
.

Then, we can provide the following conditions ensuring that the right eigenvectors

of B span R
7

λ1 6= λp, p = 2, 4, 5, 7. (2.10)

If the conditions (2.10) are satisfied, then the right eigenvectors of B(Y ) are linearly

independent one to the other (see Ref. 50 for the nature of the fields associated with

the waves λp, p = 2, ..., 7).

Let us emphasize that the result on the hyperbolicity of system (2.7) is very

important when dealing with two-fluid models. Indeed, no condition is required here

on the initial datum (2.3) to obtain real eigenvalues, contrary to the classical two-

fluid one-pressure framework. This property is merely due to the partial differential

equation for the volume fraction α1, which allows to replace non-conservative terms

Pi∂tαk by −PiVi∂xαk for k = 1, 2. Note that the hyperbolicity is non-strict, which

means that some eigenvalues may coincide. In this case, a resonant behaviour may

occur25,33,48,51.

Concerning the structure of matrix B and matrix R, one may see that phases

1 and 2 are only coupled by the first column, corresponding to ∂xα1 in B and

related to the wave λ1 = Vi. This largely reduces the complexity of the study of

the convective system (2.7) since phases evolve independently on each side of the

1-wave. Nevertheless, the nature of the field associated with λ1 remains unknown,

since Vi is not still defined.

We now focus on the maximum principle for the volume fraction α1 and on the

positivity constraint for partial masses mk, k = 1, 2. The study which follows is

restricted to smooth solutions of system (2.7). The Riemann problem is presented

afterwards and the maximum principle and the positivity requirements through ele-

mentary waves are investigated in order to extend these properties to discontinuous

solutions.
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First, let us consider the maximum principle on the volume fraction α1. The

partial differential equation associated with α1 is written with a general relaxation

term in pressure:

∂α1

∂t
+ Vi(W )

∂α1

∂x
=
α1α2

θ(W )

P1 − P2

P1 + P2
, t ∈ [0, T ], x ∈ [0, L], (2.11)

where θ is a positive real function of W , which may become small. It simply

represents a time scale which governs the return to pressure equilibrium. Note that

the right-hand side of (2.11) provides an exponentially decreasing relaxation. The

maximum principle is stated by the following proposition:

Proposition 2. Let L and T be two positive real constants. Assume that Vi, ∂xVi

and (α1 − α2)/θ belong to L∞([0, T ]× [0, L]). Then, equation (2.11) on the volume

fraction α1 associated with admissible inlet boundary conditions, that is α1(t, x = 0)

and α1(t, x = L) in (0, 1) for all t in [0, T ], leads to

0 ≤ α1(t, x) ≤ 1, ∀(t, x) ∈ [0, T ]× [0, L], (2.12)

when restrict ourselves to regular solutions and assume that Pk > 0, k = 1, 2.

Of course, the maximum principle on α2 is also satisfied, which follows from

(2.12) and the closure relation α1 + α2 = 1. Moreover, the same result obviously

holds if the relaxation term is null as in equation (2.7a).

A property of positivity for mk = αkρk, k = 1, 2, may be proved for smooth

solutions as well. The related partial differential equations is

∂mk

∂t
+ Uk

∂mk

∂x
+mk

∂Uk

∂x
= 0, k = 1, 2. (2.13)

Furthermore, we may state the following proposition:

Proposition 3. Let L and T be positive real constants. Assume that Uk and ∂xUk

belong to L∞([0, T ] × [0, L]), k = 1, 2. Then, for k = 1, 2, equation (2.13) on

the partial mass mk associated with admissible inlet boundary conditions, that is

mk(t, x = 0) and mk(t, x = L) positive for all t in [0, T ], leads to

mk(t, x) ≥ 0, ∀(t, x) ∈ [0, T ]× [0, L], (2.14)

when restrict ourselves to regular solutions.

We recall now the partial differential equation associated with pressure Pk , k =

1, 2:
∂Pk

∂t
+ Uk

∂Pk

∂x
+ γ̂kPk

∂Uk

∂x
+ (Uk − Vi)γ̂ikPk

∂ Log(αk)

∂x
= 0, (2.15)

where

γ̂ik = γ̂k + (Pi − Pk)
(
ρkPk

∂εk

∂Pk

)−1

.

Proposition 4. Let L and T be positive real constants. Assume that Uk and ∂xUk

belong to L∞([0, T ] × [0, L]), k = 1, 2. Assume moreover that γ̂ik and ∂x Log(αk)
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belong to L∞([0, T ] × [0, L]), k = 1, 2. Then, for k = 1, 2, equation (2.15) on the

pressures Pk associated with admissible inlet boundary conditions, that is Pk(t, x =

0) and Pk(t, x = L) positive for all t in [0, T ], leads to

Pk(t, x) ≥ 0, ∀(t, x) ∈ [0, T ]× [0, L], (2.16)

when restrict ourselves to regular solutions.

The proof of these three lemmas is “classical” and recalled in Appendix B of

Ref. 15.

Eventually, we restrict ourselves to a smooth solution W of (2.7) which satisfies

the assumptions described in propositions 2, 3 and 4, complemented by a smooth

initial datum W0. It follows the invariant domain property:

W0 ∈ Ω =⇒ W ∈ Ω.

Such an important property is not satisfied by classical two-fluid models using in-

stantaneous local pressure equilibrium. This is an important step before investigat-

ing the Riemann problem and the numerical approximation of system (2.7).

We provide herein a result concerning the isentropic framework. The following

proposition holds:

Proposition 5. We restrict ourselves once more to smooth solutions of the sys-

tem (2.7). Assume that the function Pk may be written in the form Pk(t, x) =

ϕk(ρk(t, x)), where ϕk is a monotone non-decreasing function. Then, Pk is a solu-

tion of (2.15) if and only if

ρkϕ
′
k(ρk) = γ̂kPk (2.17)

and Pk = Pi, (2.18)

assuming that, for k = 1, 2, the product (Uk − Vi)∂xαk does not vanish.

Proof. Using the equations of pressure Pk and density ρk, some easy calculations

lead to relations (2.17) and (2.18). Relation (2.17) is the counterpart of the relation

when dealing with classical Euler system and (2.18) is derived from terms in ∂xαk,

appearing in the equations of pressure and density.

Remark 2. a — Assume first that β(1 − β) 6= 0 in (2.5). Then, if there exists a

function P1 = ϕ1(ρ1) which is an integral solution of (2.15) with k = 1, then no

solution of (2.15) with k = 2 of the form P2 = ϕ2(ρ2) may be found (except under

pressure equilibrium P1 = P2 = Pi). This means that an isentropic form of system

(2.7) for both phases does not exist far from the thermodynamical equilibrium, when

using classical isentropic curves.

b — Assume now that β = 1 (respectively β = 0), that is Vi = U1 (resp.

Vi = U2), then one may find Pk = ϕk(ρk), k = 1, 2, solutions of (2.15) if and only if

Pi = P2 (resp. Pi = P1). Note that these closures for Vi and Pi have been proposed

in Ref. 2.
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2.3. Field by field study and closure relations for the interfacial pressure

and for the interfacial velocity

We turn now to closure laws for Pi and Vi. Additional properties of the convective

system, in particular when focusing on the Riemann problem, and the parametrisa-

tion through the wave Vi strongly depend on the definition of Pi and Vi. A Riemann

problem corresponds to a Cauchy problem for system (2.7) with

W (t = 0, x) =

{
WL, if x < 0,

WR, if x > 0,
(2.19)

where WL and WR belong to Ω. We restrict our study to self-similar solutions

composed by constant states separated by elementary waves. Moreover, we assume

that the initial condition (2.19) does not provide a non-diagonalizable convective

matrix (see conditions (2.10)). At this stage, though Pi and Vi remain unknown,

some information is available on p-waves, p = 2, ..., 7. Actually, since α1 is constant

on each side of the 1-wave, the system (2.7) locally reduces to two conservative Euler

systems. Hence, related Riemann invariants and Rankine-Hugoniot jump relations

are locally well defined for all p-waves, p = 2, ..., 7, and their parametrisation is

classical (see for instance Ref. 50 for a complete description). First, noting Ip(W )

the vector of p-Riemann invariants, we have:

I2(W ) = T (τ2, u2, p2, α1, s1, u1 + f1(s1, ρ1)) ,

I3(W ) = T (τ2, u2, p2, α1, p1, u1) ,

I4(W ) = T (τ2, u2, p2, α1, s1, u1 − f1(s1, ρ1)) ,

I5(W ) = T (τ1, u1, p1, α1, s2, u2 + f2(s2, ρ2)) ,

I6(W ) = T (τ1, u1, p1, α1, p2, u2) ,

I7(W ) = T (τ1, u1, p1, α1, s2, u2 − f2(s2, ρ2)) ,

where f1 and f2 are defined by ∂fk/∂ρk = ck/ρk, k = 1, 2. Since the system is

locally conservative, p-Riemann invariants and jump relations for linearly degenerate

p-fields, i.e. for p = 3, 6, coincide. Concerning the genuinely non-linear fields, the

Rankine-Hugoniot jump relations across a discontinuity of speed σ are:

[αk] = 0 ,

[mk(uk − σ)] = 0 ,

[mkuk(uk − σ) + αkpk] = 0 ,

[αkEk(uk − σ) + αkpkuk] = 0 ,

[τk′ ] = 0 , [uk′ ] = 0 , [pk′ ] = 0 ,

where for p = 2, 4, we have k = 1 and k′ = 2, and for p = 5, 7, we have k = 2

and k′ = 1. Moreover, brackets [.] denote the difference between the state at the

right of the discontinuity and the state at the left of the discontinuity. Noting Wl
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(respectively Wr) the constant state just on the left side (resp. the right side) of

the 1-wave, the previous Riemann invariants and Rankine-Hugoniot jump relations

allow to link WL to Wl and WR to Wr. A first result is the following:

Proposition 6. The Riemann problem (2.7), (2.19) has a unique entropy consistent

solution involving constant states separated by shocks, rarefaction waves and contact

discontinuities, provided the initial datum (2.3) is in agreement with

|(Uk)R − (Uk)L| <
2

γk − 1
((ck)L + (ck)R), (2.20)

k = 1, 2, under the condition (α1)L = (α1)R.

Proof. Since (α1)L = (α1)R, phases evolve independently. Therefore, this proof

reduces to the classical theorem of existence and uniqueness for the solution of the

Riemann problem associated with the Euler frame26,50.

We turn now to the connection between Wl and Wr through the 1-wave. Since

the interfacial velocity Vi and the interfacial pressure Pi are still undefined, this con-

nection cannot be performed. Let us recall that we restrict our study to interfacial

velocities of the form (2.5) and interfacial pressures satisfying (2.6).

2.3.1. Interfacial velocity

As stated in Proposition 1, the type of the field corresponding to the wave Vi is

unknown. Two distinct cases immediately appear. In the first one, the function β

in (2.5) is such that the 1-field is genuinely non-linear. However, such a choice should

give for a class of initial conditions a rarefaction wave for the 1-field. Therefore, a

mixture zone would appear inside this rarefaction wave. To avoid this phenomenon,

we assume that the 1-field is linearly degenerate, which means that the function β

must be such that for all W in Ω we have

∇Vi(W ).r1(W ) = 0,

where r1(W ) stands for the right eigenvector associated with the first eigenvalue,

namely Vi. Such an assumption ensures that the wave associated with this field

remains infinitely thin, whatever initial condition (2.19) is. We have actually the

following result:

Proposition 7. Assume that the interface velocity coefficient β takes the form

β(W ) = β (α1, ρ1, ρ2, P1, P2) . (2.21)

Therefore, the field associated with the eigenvalue Vi is linearly degenerate if and

only if

β(W ) =
α1ρ1

α1ρ1 + α2ρ2
(2.22)

or β(W ) = 1 or β(W ) = 0,

for all W in Ω in the definition (2.5).
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Proof. It is quite straightforward to check that any choice of β among the three

above provides the required property. The reverse is less obvious. One must first

note that, due to the dimensional argument, the form (2.21) may be reduced to

β(W ) = β

(
α1,

ρ1

ρ2
,
P1

P2

)
. (2.23)

Tedious calculations are then necessary, which are not exposed here. The form

(2.21) satisfies classical requirements such as galilean invariance and objectivity.

Nevertheless, one may note that the relative velocity |U1 − U2| has not been ac-

counted for in (2.21). Indeed, it seems unfeasable to obtain the most general frame

of explicit definitions of β when adding this argument to (2.21).

At this stage, the non-conservative product Vi∂xα1 is well defined, from a local

point of view. Indeed, by definition, Vi is a 1-Riemann invariant. Moreover, α1

remains unchanged through p-waves (p = 2, 3, ..., 7). Therefore, when one of two

factors of the non-conservative product admits a discontinuity, the other one is

constant. Therefore, using closure (2.22), one may try to connect state Wl with

state Wr. In order to have a parametrisation for the 1-wave, one must find six

1-Riemann invariants (I1
p )p=1,...,6 such that their gradient (∇I1

p )p=1,...,6 are linearly

independent. Since Pi is not defined, only five 1-Riemann invariants can be provided

explicitly:

I1
1 (W ) = Vi, (2.24)

I1
2 (W ) =

m1m2

m1 +m2
(U1 − U2), (2.25)

I1
3 (W ) = α1P1 + α2P2 + I1

2 (W )(U1 − U2), (2.26)

I1
5 (W ) = ε1 +

P1

ρ1
+

1

2(m1)2
(I1

2 (W ))2, (2.27)

I1
6 (W ) = ε2 +

P2

ρ2
+

1

2(m2)2
(I1

2 (W ))2. (2.28)

Now we propose two definitions of the interfacial pressure Pi and derive the last

1-Riemann invariant I1
4 .

2.3.2. Interfacial pressure

The closure for the interfacial pressure Pi must allow to define the non-conservative

product Pi∂xα1 and to determine the last 1-Riemann invariant I1
4 . Here, two ways

are investigated. The first one is based on an additional conservation law. This

partial differential equation concerns the total entropy and a form of Pi is exhibited

in order to ensure the divergence form of this equation. The 1-Riemann invari-

ant I1
4 is directly derived, which implicitly closes the product Pi∂xα1. The related

parametrisation is discussed in appendix B. The second closure presented here is

directly based on the definition of the product Pi∂xα1. Following the behaviour
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of the product Vi∂xα1, if Pi corresponds to a function which only depends on the

1-Riemann invariants (I1
p )p=1,...,6, the product Pi∂xα1 is locally well defined. Fur-

thermore, the definition of the 1-Riemann invariant I1
4 immediately follows. Indeed,

replacing locally (in a neighborhood of the 1-wave) Pi∂xα1 by ∂x(Piα1) in the equa-

tions of partial momentum (2.7d) and (2.7e) provides two conservative equations

and thus, an additional 1-Riemann invariant (the second conservation law corre-

sponds to the 1-Riemann invariant I1
3 ).

We must emphasize that, though the convective system is non-conservative,

1-Riemann invariants and Rankine-Hugoniot jump relations coincide for the lin-

early degenerate field associated with Vi, in the sense that they provide the same

parametrisation, as stated in appendix A. Therefore, no ambiguity holds in the

definition of jump relations and non-conservative products, contrary to the frame

studied in Ref 44 for instance, where the knowledge of the matrix of diffusion is

required.

A conservative equation for the total entropy We restrict ourselves here to

interfacial pressures Pi of the form

Pi(W ) = µ(W )P1 + (1 − µ(W ))P2, (2.29)

where the dimensionless function µ is non-negative and bounded by 1. Obviously,

definition (2.29) ensures that relation (2.6) is satisfied. Let ak be the function

ak =
1

ςk

(
∂ςk
∂Pk

)(
∂εk

∂Pk

)−1

, k = 1, 2. (2.30)

One may now provide the following result concerning the entropy inequality:

Proposition 8. Let us define ηk = Log(sk) + ψk(αk) for k = 1, 2, with ψ1(α1) =

ψ2(1 − α1). If the interfacial pressure Pi is defined by equation (2.29) with (2.30)

in

µ =
a1(1 − β)

a1(1 − β) + a2β
, (2.31)

then, defining the entropy-entropy flux pair (η, Fη) by

η = −
(
α1ρ1η1 + α2ρ2η2

)
,

Fη = −
(
α1ρ1η1U1 + α2ρ2η2U2

)
,

the following entropy inequality holds for smooth solutions of system (2.7) comple-

mented by viscous terms (2.2):

∂η

∂t
+
∂Fη

∂x
≤ 0. (2.32)

This result is obtained by classical manipulations of the partial differential equa-

tions for sk. Note that m1ψ1 +m2ψ2 stands for an interfacial energy20.
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This proposition permits to define the interfacial pressure Pi in function of the

interfacial velocity Vi. An advantage of this closure is that entropy inequality (2.32)

obviously degenerates to give the expected – single phase – entropy inequality on

each side of the 1-contact discontinuity. Herein, system (2.7) is completely closed.

Using results of appendix A, equation (2.32) leads to the Rankine-Hugoniot jump

relation

Vi

(
η(Wr) − η(Wl)

)
= Fη(Wr) − Fη(Wl)

for the field associated with Vi and alternatively to the last 1-Riemann invariant

I1
4 (W ) =

ς1
ς2
. (2.33)

Now, the parametrisation through the 1-wave which is defined by the 1-Riemann

invariants (I1
p )p=1,...,6 may be explicitly given (recall that this parametrisation is

identical to the parametrisation given by Rankine-Hugoniot jump relations for this

linearly degenerate field). This is done is appendix B. The main result in this ap-

pendix is that the connection betweenWl andWr through the 1-wave is in agreement

with the maximum principle on the volume fraction and the positivity requirements

on densities and internal energies. This leads to the following result:

Proposition 9. We assume now that (α1)L 6= (α1)R and that each phase is gov-

erned by a perfect gas equation of state. The connection of constant states through

elementary waves in the solution of the Riemann problem (2.7)-(2.19) ensures that

all states are in agreement with positivity requirements for volume fraction, mass

fractions and partial pressures.

We insist that though the result seems obvious from a physical view point, it

may actually not be clear whether solutions of the Riemann problem (2.7)-(2.19)

should agree with the positivity requirement. The choice of the above closures a

posteriori ensures that physical positivity requirements hold. Unfortunately, the

great complexity of the system (2.7) seems to prohibit the exact resolution of the

Riemann problem. Indeed, eigenvalues are not arranged in order, which leads to

an important number of different cases to investigate. Moreover, the connection

through the 1-wave is not totally clear since, for a given state Wl, zero, one or two

states Wr may be selected by the parametrisation. Hence, a deeper analysis of the

1-wave may be required, as done in Ref. 6 or Ref. 48 for rather simple models and

Ref. 25.

The interfacial pressure as a function of 1-Riemann invariants Here, the

non-conservative product Pi∂xα1 is directly closed using a definition of the interfa-

cial pressure such that Pi remains unchanged when α1 admits a discontinuity. In

other words, recalling that the volume fraction α1 only jumps through the 1-wave,

Pi remains constant through this wave if it is a function of the 1-Riemann invariants

(I1
p )p=1,2,...,6

Pi(W ) = F
(
I1
1 (W ), I1

2 (W ), ..., I1
6 (W )

)
.
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Note that F must ensure condition (2.6). Of course, one must provide an explicit

form of F to obtain an explicit form of I1
4 . Nevertheless, F and I1

4 may be linked

by

I1
4 (W ) =

P1 − P2

2
+
(P1 + P2

2
− Pi

)
(α1 − α2) + (U1 + U2)I

1
2 (W ).

Remark that 1-Riemann invariants I1
1 and I1

4 do not satisfy the objectivity re-

quirement (whatever function F is); furthermore, a dimensionless condition may be

invoked, leading to the following list of arguments:

Pi(W ) = G
(
I1
3 (W ), I1

2 (W )
(
I1
5 (W )

)1/2
, I1

1 (W )
(
I1
6 (W )

)1/2)
.

Owing to condition (2.6), function G must satisfy G(a, 0, 0) = a. Numerous functions

G satisfy all these requirements. Among these, a simple choice could be

G(a, b, c) = a+ C1(C2|b| + (1 − C2)|c|), (2.34)

with C1 and C2 two real constants such that C1 > 0 and 0 ≤ C2 ≤ 1. In addition to

the dimensionless condition, the objectivity requirement and condition (2.6), this

choice provides the positivity of the interfacial pressure Pi. Note that the particular

choice G(a, b, c) = a corresponds to the closure retained in Ref. 47.

This deserves a few comments about closure laws available in the literature. We

note first that proposals by Glimm and co-workers23,24 are quite different. Actually,

coefficients occuring in their closure play a symmetric role in the interface velocity

and interface pressure. Even more, they assume that the interface velocity tends

towards the velocity of the vanishing phase Vi = U1 when one phase is no longer

present (α1 = 0). Their proposal looks like Pi = α2P1+α1P2 and Vi = α2U1+α1U2.

Note that the closure for Vi implies that the 1-wave corresponds to a genuinely

non-linear field. Turning now to the work of Saurel and Abgrall45, we note that the

usual choice of interface velocity is (2.22). Nonetheless, their closure for the interface

pressure is completely different from ours and takes the form: Pi = α1P1 + α2P2.

Here again, when some phase (phase labelled 1 for instance, which means that

α1 = 0) disappears, the couple of interface variables (Vi, Pi) coincides with the

velocity-pressure couple in the remaining phase, namely (U2, P2). Furthermore, in

Ref. 47, the closures are (2.22) and G(a, b, c) = a in (2.34), but no information is

provided about the Riemann problem. In Refs. 2,35,20, the closures correspond to

Pi = P1 (dropping some terms in Ref. 20) and Vi = U2, where subscript 1 refers to

the gas phase. As mentioned above, this set of closure satisfies Propositions 7 and

8. Moreover, this choice provides a conservative entropy inequality on each phase.

3. Numerical methods

This section is devoted to the presentation of different Finite Volume methods com-

puted here to approximate the solution of the Cauchy problem (2.1)-(2.3) (note

that explicit definitions of interfacial pressure Pi and interfacial velocity Vi are not

required to present both following methods). Though the current presentation is
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in one dimension, the extension to the multidimensional frame is straightforward.

In the following of this paper, diffusion terms are omitted. Convective terms and

source terms (relaxation terms) are taken into account by a fractional step ap-

proach. It is well known the latter is not optimal in terms of accuracy (see Ref.
18 for instance), but it nonetheless leads to very stable algorithms. Each step aims

at approximating the different terms. First, we note δt the time step and δx the

length of a cell (xj−1/2;xj+1/2) of the regular mesh. Let W n be the Finite Volume

approximation at time tn = nδt, n ∈ N. The approximated solution W n+1 (i.e. at

time tn+1 = (n+ 1)δt) of the Cauchy problem





(Id+D(W ))
∂W

∂t
+
∂F (W )

∂x
+ C(W )

∂W

∂x
= S(W ), t ∈ (tn, tn+1), x ∈ R,

W (tn, x) = Wn(x), x ∈ R,

is approximated by splitting the complete problem in two steps. The first one

corresponds to the convective part:





(Id+D(W ))
∂W

∂t
+
∂F (W )

∂x
+ C(W )

∂W

∂x
= 0, t ∈ (tn, tn+1), x ∈ R,

W (tn, x) = Wn(x), x ∈ R,

(3.35)

which provides W n,1 (the approximation of W (tn+1, .), the solution of (3.35) at

time tn+1). The second one corresponds to the relaxation process:





(Id+D(W ))
∂W

∂t
= S(W ), t ∈ (tn, tn+1), x ∈ R,

W (tn, x) = Wn,1(x), x ∈ R,
(3.36)

which finally gives W n+1 (the approximation of W (tn+1, .), the solution of (3.36)

at time tn+1).

3.1. Computing hyperbolic systems under non-conservative form

Two Finite Volume schemes are presented here. The first one is based on the

Rusanov scheme42 and the second is an extension of an approximate Godunov

scheme, namely the VFRoe-ncv scheme. As usual, the notation

Wn
j =

1

δx

∫ xj+1/2

xj−1/2

W (tn, x)dx, n ≥ 0, j ∈ R,

is adopted in the following. Finite Volume schemes are merely designed to hyper-

bolic systems of conservation laws. Here, the set of partial differential equations

(3.35) cannot be written under conservative form. An adaptation is thus required

to take into account non-conservative terms in the method. Several techniques have

been proposed but numerical difficulties have been pointed out in Ref. 32. Neverthe-

less, the frame investigated in these references concerns non-conservative products
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for genuinely non-linear fields. Here, non-conservative products only arise for lin-

early degenerate fields and are locally well defined (see appendix A). Therefore, one

may expect that both Finite Volume schemes presented below are “consistent”with

(3.35), since no additional information to the convective system is required to close

non-conservative products.

3.1.1. The Rusanov scheme

We detail herein the Rusanov scheme for the two-fluid two-pressure model (2.7).

The equation on the volume fraction α1 (2.7a) is approximated by

δx
(
(α1)

n,1
j − (α1)

n
j

)
+ δt(Vi)

n
j

(
(α1)

n
j+1/2 − (α1)

n
j−1/2

)

−
δt

2

(
rj+1/2

(
(α1)

n
j+1 − (α1)

n
j

))
+
δt

2

(
rj−1/2

(
(α1)

n
j − (α1)

n
j−1

))
= 0.

Equations (2.7b-2.7g) become for k = 1, 2:

δx
(
(Zk)n,1

j − (Zk)n
j

)
+ δt

(
(Hk)n

j+1/2 − (Hk)n
j−1/2

)

− δt(Pi)
n
j (φk)j

(
(αk)n

j+1/2 − (αk)n
j−1/2

)
= 0.

where

Zk =




mk

mkUk

αkEk


 , Hk =




mkUk

mk(Uk)2 + αkpk

αkUk(Ek + pk)


 , (φk)n

j =




0
1

(Vi)
n
j




and

rj = max(|(Vi)
n
j |, |(U1)

n
j | + (c1)

n
j , |(U2)

n
j | + (c2)

n
j ),

rj+1/2 = max(rj , rj+1),

2(Hk)n
j+1/2 = (Hk)n

j + (Hk)n
j+1 − rj+1/2((Zk)n

j+1 − (Zk)n
j ),

2(αk)n
j+1/2 = (αk)n

j + (αk)n
j+1.

One may easily prove that the Rusanov scheme preserves the maximum principle

for the volume fraction and the positivity of partial masses

0 < (α1)
n,1
j < 1 and (mk)n,1

j > 0, k = 1, 2

if Wn in (3.35) belongs to Ω and under the classical C.F.L. condition

δt

δx
|λMAX | ≤ 1,

where λMAX is the maximal speed of wave, computed on each cell of the mesh.

These properties can be extended to the multidimensional framework.

3.1.2. The VFRoe-ncv scheme
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The VFRoe-ncv scheme4 is an approximate Godunov scheme. This means that it

may be written in a similar form to the Godunov scheme27, but the solution at

each interface of the mesh is approximated. This approximation is provided by a

linearisation of the convective system written with respect to a non-conservative

variable (which explains the name of the scheme). Numerous numerical tests18

show that the VFRoe-ncv scheme provides accurate results, even when focusing on

resonant systems48. Eventually, results obtained by the VFRoe-ncv scheme are very

close to results provided by the Godunov scheme, when dealing with convergence

in space (that is when the mesh is refined) as well as with convergence in time (i.e.

convergence towards steady states when t→ +∞).

Here again, the system which is computed corresponds to system (2.7) instead

system of (3.35). Note that these two systems are equivalent, even when focusing

on discontinuous solutions. The associated VFRoe-ncv scheme may be written on

the cell j ∈ Z as

δx
(
Wn,1

j −Wn
j

)
+ δt

(
F (W ∗

j+1/2) − F (W ∗
j−1/2)

)

+
δt

2

(
G(W ∗

j−1/2) +G(W ∗
j+1/2)

)(
(α1)

∗
j+1/2 − (α1)

∗
j−1/2

)
= 0. (3.37)

where vector G is

G(W ) = T
(
Vi(W ), 0,−Pi(W ),−Pi(W )Vi(W ), 0, Pi(W ), Vi(W )Pi(W )

)
.

The core of the method is the computation of values indexed by (.)∗j+1/2, j in Z.

These values are computed from local Riemann problems at each interface of the

mesh xj+1/2, j ∈ Z, as done with the Godunov scheme. Whereas the exact solution

of these local Riemann problems is used for the Godunov scheme, the VFRoe-ncv

scheme only approximates the solution, allowing a great reduction of the complexity

of the solver when dealing with non-linear systems. Moreover, we mentioned above

that the complete computation of the exact solution of the Riemann problem (2.7)-

(2.19) seems out of reach; nonetheless, the approximate solution of the VFRoe-

ncv scheme is obtained by straightforward calculations. Let us provide the main

guidelines to compute values (.)∗j+1/2, j ∈ Z. We focus on the local Riemann

problem associated with interface xj+1/2 at time tn. It is composed by the set of

partial differential equations (2.7) and by the initial condition

W (t = 0, x) =

{
Wn

i if x < xj+1/2,

Wn
i+1 if x > xj+1/2.

(3.38)

Let Ψ be a regular function from R
7 to R

7 and define Y = Ψ(W ). Here, we choose

the variable Y = T (α1, s1, U1, P1, s2, U2, P2). The system (2.7) may be written for

smooth solutions as
∂Y

∂t
+B(Y )

∂Y

∂x
= 0
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where B(Ψ(W )) = Ψ′(W )(Id+D(W ))−1(F ′(W ) + C(W ))(Ψ′(W ))−1 and is given

by (2.8). This system is linearised, which gives the following local Riemann problem:





∂Y

∂t
+B(Ŷ )

∂Y

∂x
= 0,

Y (t = tn, x) =

{
Ψ(Wn

i ) if x < xj+1/2

Ψ(Wn
i+1) if x > xj+1/2

,
(3.39)

where Ŷ = (Ψ(Wn
i ) + Ψ(Wn

i+1))/2. The solution of this system is obvious and its

solution yields for all t > tn and x in R

Y (t, x) = Ψ(W n
i ) +

∑

fλp<(x−xj+1/2)/(t−tn)

(
T l̃p.(Ψ(Wn

i+1) − Ψ(Wn
i ))
)
r̃p (3.40a)

= Ψ(Wn
i+1) −

∑

fλp>(x−xj+1/2)/(t−tn)

(
T l̃p.(Ψ(Wn

i+1) − Ψ(Wn
i ))
)
r̃p (3.40b)

where (l̃p)p=1,...,7, (r̃p)p=1,...,7 and (λ̃p)p=1,...,7 are the left and right eigenvectors and

eigenvalues of the matrix B(Ŷ ) (see (2.9)), respectively. Therefore, since problem

(3.39) provides a self-similar solution, we may set

W ∗
j+1/2 = Ψ−1(Y (t > tn, x = xj+1/2))

which completes the construction of the VFRoe-ncv scheme. Of course, the prop-

erties of this scheme depend on the choice of Y (in general, the function Ψ is non-

linear). Consequently, the behaviour of the VFRoe-ncv scheme is closely related

to the definition of Y . Here, Y = T (α1, s1, U1, P1, s2, U2, P2) has been selected in

agreement with the analysis of the Riemann problem (2.7)-(2.19) and with numer-

ical tests17.

We emphasize that both the Rusanov scheme and the VFRoe-ncv scheme may

preserve some well-known solutions. Assume first that the equation of state of both

phases verifies (2.4). If, for all cell j ∈ Z, the approximated initial condition agrees

with (U1)
0
j = (U2)

0
j = U0 and (P1)

0
j = (P2)

0
j = P0, the approximation of the solution

computed by both schemes then agrees, at each time step n ∈ N and on each cell

j ∈ Z, with

(U1)
n
j = (U2)

n
j = U0 and (P1)

n
j = (P2)

n
j = P0.

3.2. Numerical treatment of source terms

Source terms of (2.1) are computed using a fractional step method, separating

velocity relaxation, pressure relaxation and other contributions. Since ∂tα1 may be

given by the first equation of system (2.1), we have

∂W

∂t
= SU (W ) + SP (W ) + SO(W )
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with

SU (W ) = T
(
0, 0, −KU(U1 − U2), −KUVi(U1 − U2),

0, +KU (U1 − U2), +KUVi(U1 − U2)
)
,

SP (W ) = T
(
KP (P1 − P2), 0, 0, −KPPi(P1 − P2), 0, 0, +KPPi(P1 − P2)

)
,

SO(W ) = T
(
0, ṁ, +ṁVi, +ṁEi, −ṁ, −ṁVi, −ṁEi

)
,

which is split in the three systems (steps 1, 2, 3):

∂tW = SU (W ) , ∂tW = SP (W ) and ∂tW = SO(W ) .

According to this decomposition, we introduce some notations. W n,U , Wn,P and

Wn,O are the approximations of the solution after respectively: the velocity relax-

ation by SU with Wn,1 as initial condition; the pressure relaxation SP with Wn,U

as initial condition; and remaining phenomena SO with Wn,P as initial condition

(the initial time corresponds to tn). We examine below whether αk, mk and Pk and

their approximations remain positive through these steps assuming that W n,1 does

lie in Ω and relaxation processes are time continuous.

3.2.1. Step 1: velocity relaxation

Continuous frame The initial condition for this step is W n,1, which is supposed

to lie in Ω. Note that volume fractions αk and partial masses mk remain unchanged

during this step. Only the velocities Uk and the energies Ek may vary, which yields

the following system:

∂αk

∂t
=
∂mk

∂t
= 0, (3.41)

mk
∂Uk

∂t
= (−1)kKU (W )(U1 − U2), (3.42)

mk
∂

∂t

(
ek + (Uk)2/2

)
= (−1)kKU (W )Vi(U1 − U2), (3.43)

k = 1, 2. We assume of course that (U1)
n,1 6= (U2)

n,1. The second ordinary differ-

ential equation may be easily replaced by the following equations for the pressures

Pk, k = 1, 2:

mk
∂εk

∂Pk

∂Pk

∂t
= (−1)kKU (W )(U1 − U2)(Vi − Uk). (3.44)

This equation yields the following result:

Lemma 1. If ∂εk/∂Pk > 0, then for all t ≥ tn we have Pk(t) > 0 with k = 1, 2.

In fact, using the general definition of Vi (2.5), equation (3.44) becomes

mk
∂εk

∂Pk

∂Pk

∂t
= βk′(W )KU (W )(U1 − U2)

2, (3.45)



A two-fluid two-pressure model 21

with k′ = 3− k, β1 = β and β2 = 1−β. Recalling that 0 ≤ β ≤ 1 (which holds true

when using β(W ) = m1/(m1 + m2)), pressures P1 and P2 remain positive (since

∂tPk is positive for k = 1, 2) when focusing on simple thermodynamical laws, such

as Tammann equation of state or perfect gas equation of state, i.e. equation of state

following (2.4). In that case, we simply have mk∂εk/∂Pk = αkgk > 0.

Let us focus now on the variation of U1−U2 during the velocity relaxation step.

From equation (3.42), one may deduce the ordinary differential equation

∂

∂t
(U1 − U2) = −

m1 +m2

m1m2
KU (W )(U1 − U2).

This provides for t ≥ tn

(U1 − U2)(t) = (U1 − U2)(t
n) exp

(
−

∫ t

tn

KU (W (τ))
(m1 +m2

m1m2

)
(τ) dτ

)
.

It results the lemma:

Lemma 2. The velocity relaxation governed by system (3.41-3.43) satisfies

(U1 − U2)(t) . (U1 − U2)(t
n) > 0, for all t ≥ tn,

the function |U1 − U2| is monotone decreasing over [tn; +∞)

and lim
t→+∞

(U1 − U2)(t) = 0.

Numerical approximation We turn now to the numerical approximation of the

system (3.41-3.43). Since ∂tα1 = ∂tmk = 0, k = 1, 2, there simply results

(α1)
n,U = (α1)

n,1 and (mk)n,U = (mk)n,1 , k = 1, 2 .

The velocities Uk, governed by the ordinary differential equation (3.42), are approx-

imated by

(
(m1)

n,1 +Kn,1
U δt −Kn,1

U δt

−Kn,1
U δt (m2)

n,1 +Kn,1
U δt

)(
(U1)

n,U

(U2)
n,U

)
=

(
(m1)

n,1(U1)
n,1

(m2)
n,1(U2)

n,1

)
,

(spatial indices are dropped since this scheme is local on each cell and we note

Kn,1
U = KU (Wn,1)). We now approximate the solution of (3.45) by

(Pk)n,U − (Pk)n,1 =
δtβk′ (Wn,U )KU (Wn,U )

(αk)n,Ugk

(
(U1)

n,U − (U2)
n,U
)2

,

assuming that the equation of state takes the form (2.4). Finally, using the equation

of state and other relations, we obtain W n,U . Note that, like in the “continuous”

frame, the new pressures (Pk)n,U are positive if W n,1 belongs to Ω.

3.2.2. Step 2: pressure relaxation



22 A two-fluid two-pressure model

Continuous frame We study now the following system of ordinary differential

equations:

∂α1

∂t
= KP (W )(P1 − P2), (3.46)

∂mk

∂t
=
∂mkUk

∂t
= 0, (3.47)

mk
∂ek

∂t
= (−1)kKP (W )Pi(P1 − P2), (3.48)

for k = 1, 2. The initial condition associated with this system is W n,U (which

belongs to Ω). As above, we assume that (P1)
n,U 6= (P2)

n,U . This system simply

leads to equation

αk
∂Pk

∂t
+

(
γ̂k + (Pi − Pk)

(
ρkPk

∂εk

∂Pk

)−1
)
Pk
∂αk

∂t
= 0. (3.49)

Subtracting (3.49) from (3.49) with k = k′ gives

∂(Pk − Pk′ )

∂t
+KP (W )

(
γ̂i1P1

α1
+
γ̂i2P2

α2

)
(Pk − Pk′) = 0

where k′ = 3 − k and

γ̂ik = γ̂k + (Pi − Pk)
(
ρkPk

∂εk

∂Pk

)−1

.

Therefore, for t ≥ tn, we have

(Pk − Pk′ )(t) = (Pk − Pk′ )(tn) exp

(
−

∫ t

tn

KP (W (τ))

(
γ̂i1P1

α1
+
γ̂i2P2

α2

)
(τ) dτ

)
.

(3.50)

This provides the following result, which is the counterpart of Lemma 2:

Lemma 3. If α2γ̂i1P1 + α1γ̂i2P2 > 0, then the system (3.46-3.48) yields

(Pk − Pk′)(t) (Pk − Pk′ )(tn) > 0, for all t ≥ tn,

the function |Pk − Pk′ | is monotone decreasing over [tn; +∞)

and lim
t→+∞

(Pk − Pk′ )(t) = 0.

Now, we divide equation (3.49) by αkPk:

∂

∂t
(LogPk) + γ̂ik

∂

∂t
(Logαk) = 0

and add it for k = 1 and 2:

∂

∂t

(
Log(P1P2)

)
+ γ̂i1

∂

∂t
(Logα1) + γ̂i2

∂

∂t
(Logα2) = 0, (3.51)

which becomes for t ≥ tn

(P1P2)(t) = (P1P2)(t
n) exp

(
−

∫ t

tn

(
γ̂i1

∂

∂t
(Logα1)

)
(τ) +

(
γ̂i2

∂

∂t
(Logα2)

)
(τ) dτ

)
.

Therefore, we have



A two-fluid two-pressure model 23

Lemma 4. For all t ≥ tn, Pk(t) > 0 holds with k = 1, 2.

We focus now on the preservation of the maximum principle for the volume

fraction during this relaxation step. We introduce equation (3.50) in (3.46), which

provides

∂α1

∂t
= KP (W )(P1 − P2)(t

n) exp

(
−

∫ t

tn

KP (W (τ))

(
γ̂i1P1

α1
+
γ̂i2P2

α2

)
(τ) dτ

)
.

Furthermore, multiplying by (1/α1 + 1/α2) the latter equation, there holds

∂

∂t

(
Log

α1

α2

)
=
KP (W )

α1α2
(P1 − P2)(t

n)

exp

(
−

∫ t

tn

KP (W (τ))

(
γ̂i1P1

α1
+
γ̂i2P2

α2

)
(τ) dτ

)
.

Thus, there follows for t ≥ tn

(α1

α2

)
(t) =

(α1

α2

)
(tn) exp

(∫ t

tn

KP (W (τ))

(α1α2)(τ)
(P1 − P2)(t

n)

exp

(
−

∫ τ

tn

KP (W (s))

(
γ̂i1P1

α1
+
γ̂i2P2

α2

)
(s) ds

)
dτ

)
.

(3.52)

This gives the following lemma.

Lemma 5. For all t ≥ tn, 0 < α1(t) < 1 holds.

Numerical approximation Of course, according to (3.47), we have

(mk)n,P = (mk)n,U and (Uk)n,P = (Uk)n,U . (3.53)

In the following, we use an explicit form of KP (see equation (2.11)), that is

KP =
1

θ

α1(1 − α1)

P1 + P2

where θ is assumed to be constant. Therefore, multiplying equation (3.46) by

(1/α1 + 1/α2), we have for t ≥ tn

( α1

1 − α1

)
(t) =

( α1

1 − α1

)
(tn) exp

(
1

θ

∫ t

tn

(
P1 − P2

P1 + P2

)
(τ) dτ

)
.

Therefore, we compute (α1)
n,P using

( α1

1 − α1

)n,P

=
( α1

1 − α1

)n,U

exp

(
1

θ

∫ tn+1

tn

(
P1 − P2

P1 + P2

)
(τ) dτ

)
. (3.54)
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This equation has one and only one solution in (0; 1), in agreement with Lemma 5,

whatever the approximation of the integral in (3.54) is. In practice, the integral is

approximated by A(tn)δt where A(τ) is the function inside the integral.

The scheme for the computation of pressures is based on a discrete form of

equations (3.50) and (3.51). It is

(Pk − Pk′)n,P = (Pk − Pk′ )n,U exp

(
−

1

θ

∫ tn+1

tn

(
α2γ̂i1P1 + α1γ̂i2P2

P1 + P2

)
(τ) dτ

)
,

(3.55)

(P1P2)
n,P = (P1P2)

n,U

(
(α1)

n,P

(α1)n,U

)−γ̂i1(W
n,U )(

(α2)
n,P

(α2)n,U

)−γ̂i2(W
n,U )

. (3.56)

As above, the integrals in (3.55) and (3.56) are approximated using the value of

functions at time tn. Equations (3.55-3.56) provide two couples (P1, P2) of solutions.

One consists of both negative pressures and the other of two positive pressures. Of

course, the latter is retained, which agrees with Lemma 4. One may easily check

that this couple verifies the discrete counterpart of Lemma 3.

Remark 3. To increase the accuracy of the scheme (3.53-3.56), the time step δt may

be divided into several local time steps, in particular if θ is much smaller than δt.

In such a case, the local time step may be set to θ.

3.2.3. Step 3: other source terms

Other source terms such as the gravity field are accounted for using a centered

approximation. No details are given here.

4. Numerical results

In the following, we assume that the equations of state within each phase agrees

with

ε1(P1, ρ1) =
P1

(γ1 − 1)ρ1
and ε2(P2, ρ2) =

P2

(γ2 − 1)ρ2
. (4.57)

The C.F.L. number NCFL satifies stability condition

max(|Uk| + ck)δt < NCFLδx. (4.58)

In the following, NCFL is set to 0.45. Note that for the Rusanov scheme, the

maximum is computed using cell values whereas for the VFRoe-ncv scheme, the

maximum is computed using interface values.

4.1. Moving contact discontinuity

The length of the domain is 1000m. the initial datum for the first Riemann problem

are given by :
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α1 τ1 U1 P1 τ2 U2 P2

Left 0.9 1 100 105 1 100 105

Right 0.5 8 100 105 8 100 105

We also set γ1 = γ2 = 1.4. The resulting flow is rather simple, since P1(x, t) =

P2(x, t) = 105 Pa and U1(x, t) = U2(x, t) = 100m/s. Thus the mass fractions and

the volume fraction are governed by the mass balance equations and the solution is

α1(t, x) = α1(0, x− 100 t) and αkρk(t, x) = αkρk(0, x− 100 t), k = 1, 2.

The results displayed in Figure 1 have been obtained using 1000 cells. The final

time is TMAX = 3 s.

0 200 400 600 800 1000
0.50

0.60

0.70

0.80

0.90

VFRoe−ncv
Rusanov

a – Volume fraction α1

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

VFRoe−ncv
Rusanov

b – Partial mass m1

0 200 400 600 800 1000
0.060

0.070

0.080

0.090

0.100

VFRoe−ncv
Rusanov

c – Partial mass m2

0 200 400 600 800 1000
90

95

100

105

110

VFRoe−ncv
Rusanov

d – Velocity U1

0 200 400 600 800 1000
90

95

100

105

110

VFRoe−ncv
Rusanov

e – Velocity U2

0 200 400 600 800 1000
90

95

100

105

110

VFRoe−ncv
Rusanov

f – Velocity Vi

0 200 400 600 800 1000
90000

95000

100000

105000

110000

VFRoe−ncv
Rusanov

g – Pressure P1

0 200 400 600 800 1000
90000

95000

100000

105000

110000

VFRoe−ncv
Rusanov

h – Pressure P2

0 200 400 600 800 1000
90000

95000

100000

105000

110000

VFRoe−ncv
Rusanov

i – Pressure Pi

Figure 1: Moving contact discontinuity

One may check in Figure 1 that both schemes exactly preserve constant velocities

and pressures. Figures 1.a to 1.c show that the numerical diffusion of the VFRoe-ncv
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scheme is less important than the numerical diffusion associated with the Rusanov

scheme.

4.2. Shock tube test

In the second test case, we assume a strong desequilibrium between both phases in

terms of pressure fields. Initial conditions are

α1 τ1 U1 P1 τ2 U2 P2

Left 0.9 1 0 105 0.1 0 104

Right 0.5 8 0 104 0.8 0 103

Due to the number of different waves, this test has been performed on a very fine

mesh (it contains 50000 cells) in order to obtain good approximation of intermediate

states.

All figures are plotted with TMAX = 0.7 s. Figures 2.a to 2.c permit to locate

different waves. It is worth noting in Figure 2.c that the 7-wave (that is the wave

associated with the eigenvalue U2 + c2) is resonant with the 1-wave. Indeed, the

7-wave is composed by a rarefaction wave followed by a constant state and a shock

wave. The jump of m2 at the end of the rarefaction wave corresponds to the 1-

contact discontinuity. Figures 2.d to 2.i represent the six 1-Riemann invariants

defined in equations (2.24-2.28) and (2.33), zoomed around the position of the 1-

wave. Bold lines correspond to the numerical location of the 1-contact discontinuity

expanded due to the numerical diffusion of schemes. Let us emphasize that the

scale of the y-axis in Figures 2.d to 2.i is very small with regard to the amplitude of

variations of each 1-Riemann invariants (the scale of the y-axis represents around

2% and 10% of the difference between the maximal value and the minimal value of

the k-Riemann invariant which is plotted).

4.3. The water faucet problem

This test case is a classical benchmark test in the frame of the numerical simulation

of two-phase flow39. This is a one-dimensional configuration, corresponding to a

L = 12m long vertical tube. The initial condition is a uniform column of water

(indexed by 1) in the air (indexed by 2), with a volume fraction of the water α1

equal to 0, 8 over the domain. Note that we set γ1 = 1, 0005 and γ2 = 1, 4 in (4.57).

The velocity of the water U1 is 10 and the velocity of the air U2 is null. All pressures

are set to 105. The initial densities are ρ1(t = 0, .) = 1000 and ρ2(t = 0, .) = 1.

This initial datum may be interpreted as a flow of water without gravity.

The simulation consists in introducing the gravity field for t > 0. The flow is

thus driven by the boundary conditions: α1(t, 0) = 0, 8, U1(t, 0) = 10, U2(t, 0) = 0,

P1(t, L) = P2(t, L) = 105, and by the governing equations (2.7) complemented

by gravity terms g = 9.8 in (0;L). Moreover, the drag force is not included and

the time scale is θ = 5.10−4 s in the pressure relaxation term (2.11). An analytical

solution of this test is available for a very simple model, which is actually too simple

since the present model (2.7) cannot degenerate to it unless assuming unrealistic
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Figure 2: Shock tube test case with resonance
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hypotheses30. After some time steps, the volume fraction (α1)
n
0 becomes different

from 0, 8 and the solution of the associated partial Riemann problem (in the sense of

F. Dubois12) cannot be solved exactly. Therefore, the previous boundary condition

has been changed to α1(t, x < 0) = 0, 8, ρ1(t, x < 0) = 1000, ρ2(t, x < 0) = 1,

U1(t, x < 0) = 10, U2(t, x < 0) = 0 and P1(t, x < 0) = P2(t, x < 0) = 105. This

“Dirichlet” boundary condition is solved using the linearisation of the VFRoe-ncv

scheme. Concerning the boundary condition at x = L, we may reasonably assume

that Vi > 0 since the velocities U1 and U2 are positive all along the simulation. In

such a case, the volume fraction α1(t, L
−), t > tn, is equal to (α1)

n
N (where N is

the index of the last cell of the domain) and the partial Riemann problem may be

exactly solved by the technique proposed by F. Dubois.

The first results presented here correspond to the profiles plotted at TMAX =

0.5 s. Only the VFRoe-ncv scheme has been tested here for the convective part

(3.35). Several meshes have been used. A common problem of the two-fluid one-

pressure approach is that, for this test, some complex speeds of waves arise and

if the cell number is too large (more than 1000 cells), the volume fraction of the

air α2 becomes negative. Here, computations have been performed over 20000 cells

(and may be extended to smaller space steps δx). This is due to the unconditional

hyperbolicity of the model. Note that, for the finest mesh presented here, the

approximate solution of α2 in Figure 3 seems smoothed. This is a consequence of

the pressure relaxation which is not instantaneous. Furthermore, profiles of velocity

U1 in Figure 4 are in agreement with classical results obtained when focusing on

two-fluid one-pressure models, since no pressure relaxation term appears in the

governing equations of velocities U1 and U2.
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Figure 3: Water faucet
Volume fraction α2
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Figure 4: Water faucet
Water velocity U1

We now focus on the convergence of the scheme when t → ∞. In order to

evaluate the convergence of the VFRoe-ncv scheme, the normalised time variations
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in the L2-norm associated with α1 and U1,

ln

(∑

i

(
(α1)

n+1
i − (α1)

n
i

))1/2

max
{n;tn≤TMAX}

(∑

i

(
(α1)

n+1
i − (α1)

n
i

))1/2

and

ln

(∑

i

(
(U1)

n+1
i − (U1)

n
i

))1/2

max
{n;tn≤TMAX}

(∑

i

(
(U1)

n+1
i − (U1)

n
i

))1/2
,

are plotted in Figures 5-6.

4.4. The sedimentation test case

This test case corresponds to a very simple configuration, which is a classical bench-

mark test for the simulation of two-phase flows1,8,9. A uniform mixture of gas and

liquid, α1(0, x) = 0, 5, x ∈ [0; 7, 5], lies in a vertical tube (the subscript 1 corresponds

to the water and the subscript 2 corresponds to the air). The initial densities are set

to ρ1(0, x) = 103 and ρ2(0, x) = 1, both pressures are P1(0, x) = P2(0, x) = 105 and

velocities U1(0, x) and U2(0, x) are null, x ∈ [0; 7, 5]. The domain is closed, which

means that rigid wall boundary conditions are imposed at x = 0 and x = 7, 5. The

equations of state are the same as for the previous test case and θ = 5.10−4 s is the

pressure relaxation time scale (2.11) (here again, the drag force is not taken into

account). The gravity field provides a separation of the phases for t > 0 and the

solution at t = +∞ is composed by a distribution at rest of pure air for x ∈ [0; 3, 25]

and by a distribution of pure water for x ∈ [3, 25; 7, 5]. The Figure 7 corresponds

to the results obtained by the VFRoe-ncv scheme over 200 cells. This test clearly
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Figure 7: Variation of α1 for the sedimentation test case (distance vs α1)

shows that the VFRoe-ncv scheme reproduces the maximum principle for α1.

5. Conclusion

Some new results concerning modeling of two-phase flows with help of the two-

fluid approach have been presented herein. The main difference with the models

issued from the classical literature about the simulation of two-phase flows is that

the phase pressures are assumed to be distinct. The system requires giving ade-

quate closures for the interface velocity and the interface pressure, in addition with

standard closure laws for drag terms, viscous terms and mass transfer terms. The

interfacial velocity has been chosen such that the 1-wave (which corresponds to the

transport of the volume fraction) is a contact discontinuity. This implies that this

interface remains infinitely thin whatever the initial condition is. Concerning the

interfacial pressure, several ways of closure are proposed. The first way of closure

aims at defining products of distributions occuring in non-conservative terms. This

may be done choosing the interfacial pressure as a function of the 1-Riemann invari-

ants. The other way of closure permits to obtain a meaningful entropy inequality.

It enables to check that intermediate states occuring in the solution of the one di-

mensional Riemann problem are physically releavant, which means that expected

positive constraints on some quantities are preserved throughout the connection of

states through waves. The system obtained with these closures thus seems adequate

to compute two-phase flows. The property of hyperbolicity ensures that for all ini-

tial data in Ω the speeds of waves are real. Furthermore, for a class of closure laws

for the interfacial pressure and the interfacial velocity, the connection through these

waves is in agreement with the maximum principle for the volume fraction and with
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the positivity requirements for partial masses and pressures. Note that these im-

portant properties are maintained through the relaxation processes. Actually, our

study has been led following the theory associated to Riemann problems, such as

the one presented in Ref. 50 in the frame of gas dynamics for instance. Nonetheless,

another way of investigation should be proposed. Indeed, the model presented here

may be seen as an extension by a relaxation process of the well-known six equations

model9, which assumes the pressure equilibrium. Then, one might try to follow the

analyses of T.P. Liu38 and G.Q. Chen, C.D. Levermore and T.P. Liu5 of hyperbolic

systems with relaxation.

Two different Finite Volume methods to compute the convective set have been

described, which are based on a non-conservative form of Rusanov scheme and a

modified form of VFRoe scheme with non-conservative variables. Source terms have

been accounted using a splitting method. Several properties of both methods have

been described and emphasized by numerical tests. Evenmore, some computational

results enable deeper understanding of the solution of the whole set of partial differ-

ential equations, in particular for the resonance phenomenon. A classical benchmark

for the simulation of two-phase flows, namely the water faucet problem, has been

tested. Very encouraging results have been obtained, since the computations may be

performed over very fine meshes without a loss of stability and physical releavance,

due to the unconditional hyperbolicity of the model.
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Appendix A. Rankine-Hugoniot jump relations for a linearly degenerate

field of a non-conservative system

Let us study the following system:

∂

∂t
W +A(W )

∂

∂x
W = 0, (A.1)

with W a function from R+ × R to Ω (Ω an open subset of R
p). We suppose that

this system is non-conservative and hyperbolic. We focus on the kth field (1≤k≤p),

which is assumed to be linearly degenerate, which means that

∇λk(W ).rk(W ) = 0, W ∈ Ω, (A.2)

where λk(W ) is the kth eigenvalue of A(W ) and rk(W ) the kth right eigenvector of

A(W ). Let (Ik
l )l=1,...,p−1 be a family of k-Riemann invariants, i.e. smooth functions

from Ω to R satisfying

∇Ik
l (W ).rk(W ) = 0, W ∈ Ω. (A.3)

Assume now that the gradients of the k-Riemann invariants (Ik
l )l=1,...,p−1 are lin-

early independent (such a family of k-Riemann invariants exists, see Proposition
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17.2 of Ref. 50). Using this set of k-Riemann invariants, one may define the curve

Ck(WL), WL in Ω, by

Ck(WL) =
{
W ∈ Ω; Ik

l (W ) = Ik
l (WL), 1 ≤ l ≤ p− 1

}
. (A.4)

We suppose that there exists a parametrisation Φk(WL, ε) of Ck(WL), from Ω × R

to Ω, such that Φk(WL, 0) = WL. One may easily check that

∂

∂ε
Ik
l (Φk(WL, ε)) = 0, ∀1 ≤ l ≤ p− 1. (A.5)

We have the following result:

Proposition 10. The curve Ck(WL) is the integral curve of the vector field rk

passing through the point WL.

Proof. Let us define the function V by V (ε) = Φk(WL, ε). Obviously, V (0) = WL

holds. We now aim at verify that vectors V ′(ε) and rk(V (ε)) are collinear in R
p.

Equation (A.5) becomes

∇Ik
l (V ).V ′(ε) = 0, ∀1 ≤ l ≤ p− 1. (A.6)

Therefore, recalling that the right eigenvector rk satisfies equation (A.3), this proof

reduces to check that the family (∇Ik
l (V ))l=1,...,p−1 is free, which holds.

Let us introduce now two smooth functions u and f from Ω to R such that

u′(W )A(W ) = f ′(W ), W ∈ Ω, (A.7)

or equivalently such that

∂

∂t
u(W (t, x)) +

∂

∂x
f(W (t, x)) = 0, W ∈ Ω. (A.8)

Note that the partial differential equation (A.8) is a conservation law which is, in

general, only available for smooth solutions W of system (A.1). However, focusing

on the kth field, the following Rankine-Hugoniot jump relation holds:

Theorem A.1. Let us note σ(W ) = λk(W ). Then we have

σ(W )
(
u(W ) − u(WL)

)
= f(W ) − f(WL), ∀W ∈ Ck(WL). (A.9)

Proof. As above, we define the function V by V (ε) = Φk(WL, ε). Moreover, we set

E(ε) = −σ(V (ε))
(
u(V (ε)) − u(WL)

)
+
(
f(V (ε)) − f(WL)

)
. (A.10)

Clearly, E(0) = 0. Note that by definition λk(W ) is a k-Riemann invariant, which

provides σ(W ) = λk(WL) for all W in Ck(WL). Derivating equation (A.10) with

respect to ε gives

E′(ε) = −σ(V (0))u′(V (ε)).V ′(ε) + f ′(V (ε)).V ′(ε)

= −σ(V (0))u′(V (ε)).V ′(ε) + u′(V (ε))A(V (ε)).V ′(ε).
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Using Proposition 10, it follows

E′(ε) = −σ(V (0))u′(V (ε)).rk(V (ε)) + u′(V (ε))A(V (ε)).rk(V (ε))

= u′(V (ε)).
(
A(V (ε))rk(V (ε)) − λk(V (ε))rk(V (ε))

)

= 0.

Hence, E(ε) = 0 for all ε in R.

As done before for Ck(WL) with k-Riemann invariants, we define the curve

Sk(WL) from Rankine-Hugoniot jump relations of the form (A.9) associated with

system (A.1). A straightforward consequence is that curves Ck(WL) and Sk(WL)

coincide. So, the k-contact discontinuity propagates at speed σ = λk (which is con-

stant through the discontinuity) and is defined by the curve Sk(WL) (or equivalently

by Ck(WL)). Finally, the non-conservative frame is identical to the conservative

frame when focusing on linearly degenerate fields (note that this result has already

been stated3).
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Appendix B. Connection through the 1-wave

The system studied here corresponds to the set of partial differential equations (2.7)

with the interfacial velocity Vi defined by (2.5)-(2.22) and the interfacial pressure

Pi given by (2.29-2.31), associated with the Riemann initial datum (2.19). Both

equations of state follow Pk = (γk − 1)ρkek, γk > 1, k = 1, 2. We focus here on

the parametrisation through the 1-contact discontinuity between Wl and Wr (see

notations in the body of the text). Recall that 1-Riemann invariants and Rankine-

Hugoniot jump relations lead to the same parametrisation, since this field is linearly

degenerate. Therefore, through the 1-wave, the equality

I1
p (Wl) = I1

p (Wr) (B.1)

holds for all 1 ≤ p ≤ 6, where the 1-Riemann invariants (I1
p )p=1,...,6 are given in

equations (2.24-2.28)-(2.33). Combining I1
2 , I1

3 , I1
5 and I1

6 leads to

I1
3 (W ) = (I1

2 (W ))2
(
γ1 + 1

2γ1

1

m1
+
γ2 + 1

2γ2

1

m2

)
+I1

5 (W )
γ1 − 1

γ1
m1+I

1
6 (W )

γ2 − 1

γ2
m2.

(B.2)

Inserting the jump relations (B.1) in (B.2) yields

I1
3 (Wl) = (I1

2 (Wl))
2

(
γ1 + 1

2γ1

1

(m1)r
+
γ2 + 1

2γ2

1

(m2)r

)

+ I1
5 (Wl)

γ1 − 1

γ1
(m1)r + I1

6 (Wl)
γ2 − 1

γ2
(m2)r,

(B.3)

where only (m1)r and (m2)r are unknown.

We turn now to the jump relation (B.1) with p = 4. Since we are dealing

with a perfect gas state law within each phase, specific entropies are defined by

sk = Pkρ
−γk

k , k = 1, 2. One can easily obtain

sk =
α−γk+1

k

mγk

k

(
γk − 1

γk

)(
I1
k+4(W )mk −

(I1
2 (W ))2

2mk

)
. (B.4)

So, Rankine-Hugoniot jump relations (B.1) and equation (B.4) yield

(1 − (α1)r)
−γ2+1

(m2)
γ2
r

(
γ2 − 1

γ2

)(
I1
6 (Wl)(m2)r −

(I1
2 (Wl))

2

2(m2)r

)

=
(s2)l

(s1)l

(α1)
−γ1+1
r

(m1)
γ1
r

(
γ1 − 1

γ1

)(
I1
5 (Wl)(m1)r −

(I1
2 (Wl))

2

2(m1)r

)
. (B.5)

As mentioned above, focusing on the complete Riemann problem, we have (α1)r =

(α1)R, where (α1)R denotes α1(t = 0, x > 0), which means that (α1)r is not an

unknown. Hence, equations (B.3) and (B.5) compose a non-linear system of two

equations with two unknowns (m1)r and (m2)r. Let us describe the solution of

this system. First, equation (B.5) is rewritten to provide (m2)r as a function of
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(m1)r. The partial mass (m2)r is then replaced in (B.3) by the expression, in order

to obtain an equation of the form

H((m1)r) = I1
3 (Wl) (B.6)

where H is the suitable function defined from (B.3) and (B.5). Hence, the resolution

of the 2× 2 system is reduced to the inversion of the function H. The behaviour of

H may be describe by the following table:

m 0 m0 +∞
H′(m) −∞ − 0 + +∞

+∞ +∞

H(m)

@
@

@
@

@
@R �

�
�

�
�

��

H(m0)

where

m0 =

(
(γ1 + 1)(I1

2 (Wl))
2

2(γ1 − 1)I1
5 (Wl)

) 1
2

.

Some constraints on the solution (m1)r must be added, in order to ensure that

Wr is an admissible state, that is Wr ∈ Ω. Of course, (α1)r belongs to ]0, 1[ since

(α1)r = (α1)R. Furthermore, assuming that (m1)r > 0, positivity of partial mass

(m2)r is directly ensured by equation (B.3). The internal energy of phase 1 noted

(e1)r is positive if

(m1)
2
r > µ0 where µ0 =

(I1
2 (Wl))

2

2I1
5 (Wl)

. (B.7)

Finally, the internal energy (e2)r is positive using the equality I1
4 (Wl) = I1

4 (Wr).

Therefore, if a solution (m1)r of equation (B.6) verifies inequality (B.7), the whole

state Wr calculated from (m1)r and jump relations (B.1) is admissible. This allows

to state proposition 9.

We discuss now the existence of solutions of equation (B.6) (see Figure B.1 for

an illustration). A first condition comes from the value of I1
3 (Wl). If I1

3 (Wl) <

H(m0), then equation (B.6) admits no solution (see Remark 4 for more details).

If I1
3 (Wl) ≥ H(m0), two solutions of equations (B.6) can be constructed (which

coincide if the inequality is an equality), refered as (m1)
−
r and (m1)

+
r on Figure

B.1. We turn now to inequality (B.7). Note that, since γ1 > 1, we have m0 > µ0.

Hence, (m1)
+
r always verifies (B.7), which means that if (m1)

+
r exists, this is always

an admissible solution of (B.6). Moreover, the root (m1)
−
r is admissible if and only if

(m1)
−
r > µ0, which provides two distinct solutions of equation (B.6) (it corresponds

to Figure B.1).
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H(m)

m

H(µ0)

I1
3 (Wl)

H(m0)

µ0 (m1)
−
r m0 (m1)

+
r

Figure B.1: Resolution of equation (B.6)
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Remark 4. As mentioned above, if I1
3 (Wl) < H(m0), equation (B.6) admits no

solution. It means that no state Wr can be connected to Wl by the 1-contact

discontinuity. Therefore, a wave must appear between Wl and the wave Vi to solve

the Riemann problem. The same phenomenon occurs when focusing on systems

with source terms37,6,25 or systems with a flux function involving discontinuous

coefficients33,48.
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18. T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate godunov schemes to



38 A two-fluid two-pressure model

compute shallow-water equations with topography, Computers and Fluids, 2003,
vol. 32-4, pp. 479–513.

19. S. Gavrilyuk and J. Fabre, Lagrangien coordinates for a drift flux model of a
gas-liquid mixture, Int. J. of Multiphase Flow, 1996, vol. 22, pp. 453–460.

20. S. Gavrilyuk and R. Saurel, Mathematical and numerical modelling of two phase
compressible flows with inertia, J. Comp. Phys., 2002, vol. 175-1, pp. 326–360.

21. J.-M. Ghidaglia, A. Kumbaro and G. LeCoq, Une approche volume fini à flux
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court (France), March 1998. In French, available on



A two-fluid two-pressure model 39

http://www-gm3.univ-mrs.fr/∼leroux/publications/ay.le roux.html.
38. T. P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys.,

1988, vol. 108, pp. 153–175.
39. V. H. Ransom, Numerical benchmark tests, Multiphase Science and Technology,

Hemisphere publishing corporation, 1987, G.F. Hewitt, J.M. Delhaye & N. Zuber
edition.

40. V. H. Ransom and D. L. Hicks, Hyperbolic two-pressure models for two-phase
flow, J. Comp. Phys., 1984, vol. 53-1, pp. 124–151.

41. P. L. Roe, Approximate Riemann solvers, parameter vectors and difference
schemes, J. Comp. Phys., 1981, vol. 43, pp. 357–372.

42. V. V. Rusanov, Calculation of interaction of non-steady shock waves with obsta-
cles, J. Comp. Math. Phys. USSR, 1961, vol. 1, pp. 267–279.

43. L. Sainsaulieu, Finite Volume approximations of two phase-fluid flows based on
approximate Roe-type Riemann solver, J. Comp. Phys., 1995, vol. 121, pp. 1–28.

44. L. Sainsaulieu, Traveling-wave solutions of convection-diffusion systems in non-
conservative form, SIAM J. Math. Anal., 1996, vol. 27-5, pp. 1286–1310.

45. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible mul-
tifluid and multiphase flows, J. Comp. Phys., 1999, vol. 150, pp. 425–467.

46. R. Saurel and R. Abgrall, A simple method for compressible multifluid flows,
SIAM J. Sci. Comp., 1999, vol. 21-3, pp. 1115–1145.

47. R. Saurel and O. LeMetayer, A multiphase model for compressible flows with in-
terfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 2001, vol. 431,
pp. 239–271.

48. N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation
law with a flux function with discontinuous coefficients, Math. Mod. Meth. Appl.
Sci. (M3AS), 2003, vol. 13-2.

49. O. Simonin, Modélisation numérique des écoulements turbulents diphasiques à
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