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and CREST

email: bouchard@ccr.jussieu.fr

December 28, 2004

Abstract

We discuss the no-arbitrage conditions in a general framework for discrete-

time models of financial markets with proportional transaction costs and general

information structure. We extend the results of Kabanov and al. (2002), Kabanov

and al. (2003) and Schachermayer (2004) to the case where bid-ask spreads are not

known with certainty. In the “no-friction” case, we retrieve the result of Kabanov

and Stricker (2003).

Key words: Absence of arbitrage, proportional transaction costs, imperfect information,

optional projection.
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1 Introduction

While the “insider trading” problem, where the agent’s filtration H is strictly bigger than

the asset’s filtration FS, has been widely studied in the recent literature, see e.g. [1], [5],

∗Web page: http://felix.proba.jussieu.fr/pageperso/bouchard/boucharda.htm
†I am grateful to Fabian Astic for his remarks.
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[8] and the references therein, less care has been given to the imperfect information case

where H does not contain FS. Such situations may arise for instance if the small investor

has not a direct access to the market. In this case, his orders can be executed with a

delay and therefore at a price which is not known in advance, see [4] and [12]. From the

point of view of the arbitrage theory, the “insider trading” case is well known. Indeed, all

the necessary and sufficient condition for the absence of arbitrage opportunities available

in the case H = FS apply to the general case FS ⊂ H. In particular, the usual “no-

arbitrage” conditions imply that, roughly speaking (see [6] and [7] for precise results),

prices must be semi-martingales in the filtration H and that there must be an equivalent

probability measure Q under which they are (Q, H)-local martingales.

The case of imperfect information where H ⊂ FS and H 6= FS is much more difficult

to handle. In particular, the arguments of [6] do not work in this situation. Even in the

case of infinite discrete time, the proof of [18] does not apply. However, in finite discrete

time, it was noticed in [12] that the proof of the Dallang-Morton-Willinger theorem

reported in [10] still holds up to minor modifications for any given filtration H. In this

case, the no-arbitrage condition is equivalent to the existence of a probability measure

Q such that the optional projection under Q, (EQ[St | Ht])t, of the asset prices (St)t on

H = (Ht)t is a (Q, H)-martingale.

The aim of this paper is to extend this result to the case where exchanges are subject

to proportional transaction costs. In the recent literature, such models have been widely

studied, from the seminal work of [9] to the recent papers [11], [13], [14], [17], [16], [15]

and [2] among others. The recent abstract formulation consists in introducing a sequence

of random closed convex cones (Kt)t and describing the wealth process as Vt =
∑

s≤t ξs

with ξs ∈ −Ks a.s. The “usual” example is given by

− Kt(ω) = {x ∈ Rd : ∃ a ∈ Md
+, xi ≤

∑

j≤d

aji − aijπij
t (ω) , i ≤ d} , (1.1)

where Md
+ denotes the set of square d-dimensional matrices with non-negative entries.

Here πij should be interpreted as the costs in units of asset i one has to pay to obtain

one unit of asset j. If we allow to throw out money, an exchange ξt at time t is then

affordable if ξt ∈ −Kt a.s.

In the case of imperfect information, i.e. π is not H-adapted, this approach cannot be

used since K is no longer H-adapted. Hence, we have to change the modelisation. Instead

of considering the ξ’s as the controls, we have to rewrite them as ξi
t =

∑

j≤d ηji
t − ηij

t πij
t ,

where η is an H-adapted process with values in the set of square d-dimensional matrices

with non-negative entries Md
+. Here, ηji

t is the number of physical units of i we obtain,

at time t, against ηji
t πji

t units of j. Because the ξ may not be adapted the proofs of [13],

[14] and [17] does not apply to this setting and, in contrast to [12], we have to work a

bit more to extend their results.

In the above model, we fix the number of units ηij
t of asset j we want to buy and
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the number of units of asset i one has to sell is given by ηij
t πij

t . In the case of perfect

information, i.e. π is H-adapted, one can also fix the amount η̃ij
t of units of asset i

one wants to sell and compute ηij
t accordingly by using the formula η̃ij

t = ηij
t πij

t . But

in the case where π is not H-adapted this is no more possible and one cannot control

exactly η̃ij
t . This means that orders can be formulated only in terms of the quantity

of units of the asset we want to buy and we shall see in Subsection 3.3 that, in such a

situation, orders may be non-reversible even in the case of no-friction where πij = πji

for all i, j ≤ d. Clearly, this is not reasonable and in practice one should also be able to

fix η̃ij
t . To pertain for such orders, one can slightly modify the above model by taking

ξ in the form ξi
t =

∑

j≤d ηji
t (1 + λij

t (ω)1I
η

ji
t <0) − ηij

t τ ij
t (ω)(1 + λij

t (ω)1I
η

ij
t >0) where η is

H-adapted process with values in the set Md of square d-dimensional matrices. Here, τ ij

stands for the costs in units of asset i one has to pay to obtain one unit of asset j, before

to pay the transaction costs. The transaction costs ηij
t τ ij

t λij(ω)1I
η

ij
t >0 + ηji

t λji
t (ω)1I

η
ji
t <0

are paid in units of the sold asset i. With the above notation, one has πij
t = τ ij

t (1+λij).

This corresponds to

− Kt(ω) = {x ∈ Rd : ∃ a ∈ Md, (1.2)

xi ≤
∑

j≤d

aji(1 + λij
t (ω)1Iaij<0) − aijτ ij

t (ω)(1 + λij
t (ω)1Iaij>0) , i ≤ d} ,

Contrary to the model (1.1), we can now fix the number of units of asset i we want to

sell against units of asset j by fixing ηji
t < 0 so that |ηji

t | coincides with the amount of

exchanged units of i. Once again, in the case of perfect information both models are

equivalent, but this is no more true if τ and/or λ are not H-adapted. One could also

argue that paying the transaction costs in units of the asset which is sold, as in (1.2),

is not the same thing than paying these costs in units of the asset which is bought.

Here again one could consider a more general model which pertains for different costs

structures.

In order to take into account all these different situations, we propose a general

formalism where the wealth process V is written as Vt =
∑

s≤t Fs(ηs), for some sequence

of random maps F = (Ft)t. Here, η is H-adapted process with values in a closed convex

cone A of Md (we have in mind to take A = Md, however, in order to take also the

model (1.1) into account it is more convenient to allow for the possibility of having A =

Md
+). We make no assumption on the filtration under which F is adapted. Thus, this

approach pertains for the cases of “insider trading” or imperfect information and for all

other mixed cases (for instance, we can imagine that we do not observe the price of the

assets but have some extra information which is not contained in the filtration induced

by the processes of exchange rates. Observe that, if we know that the price of some asset

will double between today and tomorrow, we can make an arbitrage without knowing

this price - assuming that transaction costs are reasonable).

In Section 2, we study the no-arbitrage conditions considered in [13], [14] and [17] in
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this abstract setting. Examples of application are provided in Section 3

2 The abstract formulation

Throughout this paper, we fix a finite time horizon T ∈ N and consider a complete

probability space (Ω,F , P) supporting a filtration H = (Ht)t∈T with T = {0, . . . , T}.

Importantly, we only assume that HT ⊂ F . In particular, most of the processes con-

sidered in this paper need not be H-adapted. In all this paper, inequalities involving

random variables must be understood in the P−a.s. sense, if it is clear from the context,

and inclusive relations between elements of F are assumed to hold up to P-null sets.

2.1 The model

We consider a closed convex cone A of Md, d ≥ 1, and denote by F the set of continuous

maps F from Md into Rd such that

HF1 : For λ ≥ 0 and a ∈ Md, λF (a) = F (λa) .

HF2 : For λ ≥ 0, β ≥ 0 and a, a′ ∈ A, F (λa + βa′) − (λF (a) + βF (a′)) ∈ Rd
+.

We then define F as the set of F -measurable sequences F = (Ft)t∈T such that Ft takes

a.s. values in F, for each t ∈ T. Observe that HF1 implies that F (0) = 0.

Given F ∈ F, we define N(F ) = (Nt(F ))t∈T and N0(F ) = (N0
t (F ))t∈T by

Nt(F ) =
{

Ft(η), η ∈ L0(A;Ht)
}

and N0
t (F ) = Nt(F ) ∩ (−Nt(F )) .

Here, for E ⊂ Md (or E ⊂ Rd) and a σ-algebra G included in F , L0(E;G) denotes the

set of E-valued G-measurable random variables. For a process ξ such that ξt ∈ Nt(F )

for all t ∈ T, we shall simply write ξ ∈ N(F ). We shall similarly write ξ ∈ N0(F ) if

ξt ∈ N0
t (F ) for all t ∈ T.

Given a process ξ with values in Rd, we finally define

Vt(ξ) =

t
∑

s=0

ξs and At(F ) :=
{

Vt(ξ) − r, ξ ∈ N(F ), r ∈ L0(Rd
+;F)

}

, t ∈ T .

Observe that we do not impose that the above processes are H-adapted: Ft, ξt and Vt(ξt)

need not be Ht-measurable.

Remark 2.1 In financial applications, F i
t (ηt) will correspond to the change in the num-

ber of units of asset i held in the portfolio V (ξ) at time t. This results from the different

exchanges ηij
t and ηji

t made between the i-th asset and the other j-th assets, under the
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self-financing condition and after paying the transaction costs. In this case, At(F ) stands

for the set of contingent claims, labeled in physical units, that can be super-hedged by

trading up to time t and starting with an initial endowment equal to 0. This formalism

applies to model (1.2) with A = Md and

F i
t (ηt)(ω) =

∑

j≤d

ηji
t (1 + λij

t (ω)1I
η

ij
t <0) − ηij

t τ ij
t (ω)(1 + λij

t (ω)1I
η

ij
t >0) , i ≤ d .

This model will be further discussed in Section 3.

In this section, we provide sufficient conditions under which AT (F ) is closed in proba-

bility and study abstract versions of the no-arbitrage conditions of [13], [14] and [17].

2.2 Sufficient conditions for the closedness of AT (F )

In all this subsection, we shall assume that the sequence of random maps F satisfies the

following conditions:

KP: For each ξ and ξ̃ in N(F ), VT (ξ) + VT (ξ̃) ∈ L0(Rd
+;F) implies that ξ ∈ N0(F ) and

VT (ξ) + VT (ξ̃) = 0.

HN0: For t ∈ T and η ∈ L0(A;Ht), Ft(η) ∈ N0
t (F ) ⇒ Ft(−η) = −Ft(η) and

−η ∈ L0(A;Ht).

We call the first condition KP as “key property” as it results from what was called “key

Lemma” in [14], see condition (iii) in [14] and Lemma 3 in [13]. In Subsection 2.4, we

shall provide sufficient conditions for this property to hold.

In financial models with transaction costs, the second condition can be understood as

follows: ξt := Ft(ηt) ∈ N0
t (F ) means that the exchange ξt is reversible, i.e. starting with

the endowment ξt we can make immediate exchanges so as to come back to 0. Intuitively,

this means that ηt corresponds to exchanges between assets that can be exchanged freely,

i.e. without paying transaction costs. In this case, we should be able to do the opposite

operation, −ηt, to reverse these transactions. In the formalism of [13] and [14] such an

assumption is not required and the only important property is that if ξt ∈ N0
t (F ) then

−ξt ∈ Nt(F ), which, in their setting, implies that −ξt is also an admissible exchange.

Since, in our case, −ξt may not be Ht-measurable, we need to rewrite it as some Ft(η̃t)

for some suitable η̃t ∈ L0(A;Ht). In view of the above discussion, it is natural to assume

that such a η̃t should be simply given by −ηt.

The aim of this section is to show that it implies the closedness (in probability) of the

set AT (F ).
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For the reader’s convenience, we first recall the following Lemma whose proof can be

found in [10].

Lemma 2.1 Set G ⊂ F and E ⊂ Rd. Let (ηn)n≥1 be a sequence in L0(E;G). Set Ω̃

:= {lim infn→∞ ‖ηn‖ < ∞}. Then, there is an increasing sequence of random variables

(τ(n))n≥1 in L0(N;G) such that τ(n) → ∞ a.s. and ητ(n)1IΩ̃ converges a.s. to η∗1IΩ̃ for

some η∗ ∈ L0(E;G).

In the following, we shall denote by L0(A; H) the set of A-valued H-adapted processes.

Proposition 2.1 Fix F ∈ F such that KP and HN0 hold. Then, AT (F ) is closed in

probability.

Proof. Let us define At,T := {
∑T

s=t ξs − r, ξ ∈ N(F ), r ∈ L0(Rd
+;F)}, t ∈ T. We claim

that AT,T is closed in probability (see 3. below) and use an inductive argument. We

assume that At+1,T is closed in probability for some t ≤ T−1 and show that At,T is closed

too. Let (gn)n≥1 be a sequence in At,T which converges a.s. to some g ∈ L0(Rd;F). We

have to show that g ∈ At,T . Let (ηn, rn)n≥1 be a sequence in L0(A; H)×L0(Rd
+;F) such

that

VT (ξn) − rn = gn (2.1)

with ξn := F (ηn) and ηn = 0 on {0, . . . , t−1}. Set αn := ‖ηn
t ‖ and B := {lim infn→∞ αn <

∞}. Since B ∈ Ht, we can work separately on B and Bc, by considering the two

sequences (ηn1IB, rn1IB)n≥1 and (ηn1IBc , rn1IBc)n≥1, and therefore do as if either P [B] = 1

or P [B] = 0.

1. If P [B] = 1, then, by Lemma 2.1, there is a random sequence (τ(n))n≥1 in L0(N;Ht)

such that τ(n) → ∞ a.s. and η
τ(n)
t converges a.s. to some η∗

t ∈ L0(A;Ht). Then, by a.s.

continuity of Ft, Ft(η
τ(n)
t ) converges to Ft(η

∗
t ). Since by construction gτ(n) − Ft(η

τ(n)
t )

∈ At+1,T (F ), and, by assumption, the later is closed in probability, we can find some ξ̃ ∈

N(F ) such that ξ̃ = 0 on {0, . . . , t} and
∑T

s=t+1 ξ̃s = g − Ft(η
∗
t ). Since Ft(η

∗
t ) ∈ Nt(F ),

this shows that g ∈ At,T .

2. If P [B] = 0 then we set η̄n := ηn/(αn ∨ 1). Since lim infn→∞ ‖η̄n
t ‖ < ∞ a.s., we

can assume (after possibly passing to a Ht-measurable random subsequence as above)

that η̄n
t converges a.s. to some element of L0(A;Ht). Arguing as above, using HF1 and

observing that gn/(αn∨1) converges a.s. to 0, we can find some η̄ ∈ L0(A; H), such that

η̄n
t → η̄t, and r̄ ∈ L0(Rd

+;F) for which

T
∑

s=t

Fs(η̄s) − r̄ = 0 . (2.2)

From KP, we deduce that r̄ = 0 and ξ̄s := Fs(η̄s) ∈ N0
s (F ) for all s ≥ t. Since

‖η̄t‖ = 1, there is partition of B into (possibly empty) disjoint sets (Bij)i,j≤d such that

6



Bij ⊂ {η̄ij
t 6= 0}. We then define η̃n

s :=
∑

i,j≤d(η
n
s −βij

n η̄s)1IBij
1Is≥t where βij

n = (ηn
t )ij/η̄ij

t

on Bij and βij
n = 0 on Bc

ij. Set Cij = {βij
n = |βij

n |} ∩ Bij and C̃ij = {βij
n = −|βij

n |} ∩

Bij . By HF1, HF2, HN0, (2.2) and the fact that r̄ = 0, we get

VT (F (η̃n)) =
∑

i,j≤d

T
∑

s=t

Fs(η
n
s ) + |βij

n |Fs(η̄s(1IC̃ij
− 1ICij

)) + řn

=
∑

i,j≤d

T
∑

s=t

Fs(η
n
s ) + |βij

n |
(

Fs(η̄s)1IC̃ij
− Fs(η̄s)1ICij

)

+ řn

= gn + rn + řn ,

for some sequence (řn)n≥1 in L0(Rd
+;F). Hence, we have constructed a new sequence

(ξ̃n := F (η̃n), r̃n := rn + řn)n≥1 for which (2.1) holds and (η̃n
t )ij = 0 on Bij . Re-

peating this argument recursively on the different Bij ’s and arguing as in [13], we can

finally obtain, in a finite number of operations, a sequence (η̂n)n≥1 in L0(A; H) such

that lim infn→∞ ‖η̂n
t ‖ < ∞ a.s. and

∑T

s=t Fs(η̂
n
s ) = gn + r̂n, for some sequence (r̂n)n≥1 in

L0(Rd
+;F). Applying the argument of 1. above then concludes the proof.

3. The fact that AT,T is closed in probability is obtained by similar arguments. Given

a sequence (gn)n≥1 in AT,T which converges a.s. to some g ∈ L0(Rd;F), we consider a

sequence (ηn
T , rn)n≥1 in L0(A;HT )×L0(Rd

+;F) such that FT (ηn
T )−rn = gn. Considering

separately the event sets {lim infn→∞ ‖ηn
T‖ < ∞} and {lim infn→∞ ‖ηn

T‖ = ∞} as in

1. and 2., we can construct a new sequence (η̂n
T , r̂n)n≥1 such that FT (η̂n

T ) − r̂n = gn

and lim infn→∞ ‖η̂n
T‖ < ∞. By possibly passing to a random subsequence, we can then

assume that η̂n
T converges a.s. to some η̂T ∈ L0(A;HT ) and therefore r̂n converges to

some r̂ ∈ L0(Rd
+;F) for which FT (η̂T ) − r̂ = g. 2

2.3 Abstract weak no-arbitrage property

In this section, we use Proposition 2.1 to provide a dual characterization of the weak

no-arbitrage condition studied in [11] and [13], see also the references therein,

NAw : AT (F ) ∩ L0(Rd
+;F) = {0} .

As observed in [17], in financial models, it corresponds to the usual no-arbitrage con-

dition. Here, we keep the notations of [11] and [13] to enhance the difference with the

notions of strict no-arbitrage and robust no-arbitrage that we shall consider in Subsection

2.4.

We denote by eij the element of Md
+ whose component (i, j) is equal to one and all others

are equal to 0, i, j ≤ d. In addition to KP, we make the following assumption on A.

HA : 1. F (δeij) = 0 if δeij /∈ A, δ ∈ {−1, 1}, i, j ≤ d.

2. For η in L0(Md;F), F (η) =
∑

i,j≤d(η
ij)+F (eij) + (ηij)−F (−eij).

7



Here, x+ and x− stands for the positive and negative parts of x. Condition 1. can be

viewed as a convention. The reason for imposing this assumption will be clear in Section

3. In the examples of Section 3, eij (resp. −eij) will correspond to a transfer of units of

asset i so as obtain (resp. get rid of) one unit of asset j. Since an order, η, can be viewed

as a composition of single transfers of the form eij or −eij , condition 2. simply means

that the induced changes Ft(η) in the portfolio should correspond to the combination of

the changes Ft(eij) and Ft(−eij) associated to these single transfers.

Observe from HF1, HF2 that, for all i, j, k ≤ d,

F k(eji) ≤ −F k(−eji) if (eji,−eji) ∈ A×A , (2.3)

since F (eji − eji) = F (0) = 0.

We shall also assume in the sequel that

Ft(eij) and Ft(−eij) ∈ L1(Rd;F) for all i, j ≤ d and t ∈ T . (2.4)

Here, L1(Rd;F) denotes the set of P-integrable elements of L0(Rd;F).

Remark 2.2 Observe that we can always reduce to this case by passing to the equivalent

probability measure whose density with respect to P is defined by H/E [H ] with H :=

exp(−
∑

i,j≤d

∑

t∈T ‖Ft(eij)‖ + ‖Ft(−eij)‖).

Remark 2.3 If F ∈ F satisfies HA, then it is completely characterized by the family

{F (eij), F (−eij)}i,j≤d.

2.3.1 Dual characterization of NAw under KP

For Z ∈ L∞(Rd;F), the set of bounded random variables in L0(Rd;F), and η ∈

L0(A; H), we define

F̄t(ηt; Z) := E [Z · Ft(ηt) | Ht] , t ∈ T .

Here “·” denotes the natural scalar product of Rd. By (2.4) and HA, these conditional

expectations are well defined.

We then define D(F ) as the set of elements Z of L∞(Rd;F) satisfying Z i > 0 for all

i ≤ d and such that for all η ∈ L0(A; H) and t ∈ T

D1: F̄t(ηt; Z) ≤ 0.

D2: Ft(ηt)1IF̄t(ηt;Z)=0 ∈ N0
t (F ).

Theorem 2.1 Let F ∈ F be such that HA holds. Then, D(F ) 6= ∅ ⇒ NAw. If

moreover HN0 and KP hold, then NAw ⇒ D(F ) 6= ∅.
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The proof will be provided in the next subsection.

In order to relate the above result to the literature, we now provide an alternative

characterization of the set D(F ). To Z ∈ L∞((0,∞)d;F), we associate the H-martingale

Z̄ defined by Z̄t = E [Z | Ht], t ∈ T. Then, to F ∈ F satisfying HA, we associate F̂ (·; Z)

defined as the element of F satisfying HA and

F̂ k
t (δeij; Z) = E

[

ZkF k
t (δeij) | Ht

]

/Z̄k
t , i, j, k ≤ d , t ∈ T , δ ∈ {−1, 1} ,

see Remark 2.3. Observe that Z̄ · F̂ (·; Z) = F̄ (·; Z). Given i, j ≤ d, we then introduce

the sequence of random convex cones K̂ij(F, Z) = (K̂ij
t (F, Z))t∈T defined by

K̂ij
t (F, Z)(ω) = cone{−F̂t(eij ; Z)(ω) , −F̂t(−eij ; Z)(ω)} + Rd

+ ,

where, for E ⊂ Rd, cone{E} is the smallest closed convex cone that contains E. We also

define the sequence K̂ij∗(F, Z) = (K̂ij∗
t (F, Z))t∈T by

K̂ij∗
t (F, Z)(ω) = {y ∈ Rd : x · y ≥ 0, for all x ∈ K̂ij

t (F, Z)(ω)} .

In the case of perfect information, i.e. F is H-adapted, K̂(F, Z) :=
∑

i,j≤d K̂ij(F, Z)

coincides with the sequence of random “solvency” cones defined in [13] and [14]. The

following proposition combined with Theorem 2.1 then extends the results of [13], [14]

and [17] to our context, see also Remark 2.4 below.

Proposition 2.2 Let F ∈ F be such that HN0 and HA hold. Then, D(F ) is the set of

elements Z of L∞((0,∞)d;F) such that Z̄t ∈
⋂

i,j≤d ri(K̂ij∗
t (F, Z)) a.s. for all t ∈ T.

Proof. Let D′(F ) denote the set of elements Z of L∞((0,∞)d;F) such that Z̄t ∈
⋂

i,j≤d ri(K̂ij∗
t (F, Z)), for all t ∈ T.

1. We fix t ∈ T. Since Z̄ · F̂ (·; Z) = F̄ (·; Z), it follows that F̄t(δeij; Z) ≤ 0 for all

δ ∈ {−1, 1} is equivalent to Z̄t ∈ K̂ij∗
t (F, Z), for all i, j ≤ d.

2. Assume that D(F ) 6= ∅, fix Z ∈ D(F ) and i, j ≤ d. Set B := {Z̄t /∈ ri(K̂ij∗
t (F, Z))}.

If P [B] > 0, we can find some ξ̂ in L0(Rd;Ht) with values in (−K̂ij
t (F, Z)) \ K̂ij

t (F, Z)

on B such that ξ̂ · Z̄t = 0. Since ξ̂ ∈ −K̂ij
t (F, Z), there is some (η, r) ∈ L0(A;Ht)

×L0(Rd
+;F) such that ηkl = 0 if (k, l) 6= (i, j) and ξ̂ = F̂t(η; Z)− r, recall HF2. By D1,

it satisfies F̄t(η; Z) = 0 and r = 0. Set ξ := Ft(η). We claim that ξ /∈ N0
t (F ), which,

in view of D2, leads to a contradiction. To see this observe from HN0 that F̂t(η; Z)

= −F̂t(−η; Z) whenever ξ ∈ N0
t (F ). By HA, this implies that ξ̂ ∈ K̂ij

t (F, Z) on B, a

contradiction too. Hence P [B] = 0. This shows that D(F ) ⊂ D′(F ).

3. Assume that D′(F ) 6= ∅ and fix Z ∈ D′(F ). In view of 1. and HA, it remains to show

that if ξ ∈ Nt(F ) is such that E [Z · ξ | Ht] = 0, then ξ ∈ N0
t (F ). Set η ∈ L0(A;Ht)

such that ξ = Ft(η). Since F̄t(η; Z) = 0, it follows from HA that

0 =
∑

i,j≤d

(ηij)+F̄t(eij ; Z) + (ηij)−F̄t(−eij ; Z) . (2.5)
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Since Z̄t ∈
⋂

i,j≤d K̂ij∗
t (F, Z), we deduce that

ηij = 0 on {F̄t(eij ; Z) < 0} ∩ {F̄t(−eij ; Z) < 0} . (2.6)

We claim that

{F̄t(eij ; Z) = 0} = {F̄t(−eij ; Z) = 0} ⊂ {Ft(eij) = −Ft(−eij)} , i, j ≤ d . (2.7)

In view of (2.6) and HA, this implies that Ft(η) = −Ft(−η) and therefore ξ ∈ N0
t (F ).

It remains to prove (2.7). Fix i, j ≤ d. Since Z̄t ∈ ri(K̂ij∗
t (F, Z)), we must have

{F̄t(eij; Z) = 0} = {F̄t(−eij ; Z) = 0} =: Bij . If (eij ,−eij) ∈ A × A, then (2.3) implies

that Ft(eij)+Ft(−eij) = 0 on Bij , recall that Z has a.s. positive components. If eij /∈ A,

then Ft(eij) = 0, recall HA, and F̄t(−eij ; Z) = 0 implies Ft(−eij) = 0 since otherwise

Z̄t would not take values in ri(K̄ij∗
t (F, Z)) a.s. Similarly, if −eij /∈ A, then Ft(−eij) = 0

and F̄t(eij ; Z) = 0 implies Ft(eij) = 0. 2

Remark 2.4 Under the assumptions of Proposition 2.2,
⋂

i,j≤d ri(K̂ij∗
t (F, Z)) is a.s.

non-empty whenever D(F ) 6= ∅. It follows that

ri(
⋂

i,j≤d

K̂ij∗
t (F, Z)) =

⋂

i,j≤d

ri(K̂ij∗
t (F, Z)) .

Recalling that K̂t(F, Z) :=
∑

i,j≤d K̂ij
t (F, Z), we then have

ri(K̂∗
t (F, Z)) =

⋂

i,j≤d

ri(K̂ij∗
t (F, Z)) ,

where

K̂∗
t (F, Z)(ω) = {y ∈ Rd : x · y ≥ 0, for all x ∈ K̂t(F, Z)(ω)} .

2.3.2 Proof of Theorem 2.1

The two following Lemmas prepare for the proof of Theorem 2.1 which will be concluded

at the end of this subsection.

Lemma 2.2 Let F ∈ F be such that HA holds. Assume that D(F ) 6= ∅. Then, for all

g ∈ AT (F ) and Z ∈ D(F ) such that E [Z · g | HT ]− ∈ L1(R;F), E [Z · g] ≤ 0.

Proof. We use a resursive agument as in [13]. If g ∈ A0(F ) then g = F0(η0) − r for

some η0 ∈ L0(A;H0) and r ∈ L0(Rd
+;F). By D1, we have E [Z · g | H0] ≤ F̄0(η0; Z)

≤ 0. Next assume that for g ∈ At−1(F ) such that E [Z · g | Ht−1]
− ∈ L1(R;F) we have

E [Z · g] ≤ 0, for some 0 < t ≤ T . Then, if g =
∑t

s=0 Fs(ηs)−r for some η ∈ L0(A; H) and

r ∈ L0(Rd
+;F), we have Z · g ≤ Z ·

∑t

s=0 Fs(ηs) and, by D1, E
[

Z ·
∑t−1

s=0 Fs(ηs) | Ht

]

≥

−E
[

Z ·
∑t

s=0 Fs(ηs) | Ht

]−
. It follows that E

[

Z ·
∑t−1

s=0 Fs(ηs) | Ht−1

]−
∈ L1(R;F) and

therefore E
[

Z ·
∑t−1

s=0 Fs(ηs)
]

≤ 0. Since by D1, F̄t(ηt; Z) ≤ 0, it follows that E [Z · g] ≤

0. Observe that we have no problem in defining the above conditional expectations

thanks to (2.4) and HA. 2
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Lemma 2.3 Let F ∈ F be such that NAw, KP, HN0 and HA hold. Then, for all

t ∈ T and µ ∈ L0(A;Ht), there is Zµ ∈ L∞(Rd;F) with (Zµ)i > 0 for all i ≤ d such

that

(i) F̄s(ηs; Z
µ) ≤ 0 for all η ∈ L0(A; H) and s ∈ T

(ii) Ft(µ)1IF̄t(µ;Zµ)=0 ∈ N0
t (F ).

Proof. We follow the argument of Lemma 4 in [14]. Observe from HF1 and HF2 that

A1
T (F ) := AT (F ) ∩ L1(Rd;F) is a convex cone which contains −L1(Rd

+;F). Since it is

closed in L1(Rd;F), see Proposition 2.1, and satisfies A1
T (F ) ∩ L1(Rd

+;F) = {0}, see

NAw, we deduce from the Hahn-Banach separation theorem together with a classical

exhaustion argument, see e.g. Section 3 in [18], that there is some Z ∈ L∞(Rd;F) with

Z i > 0 for all i ≤ d such that E [Z · g] ≤ 0 for all g ∈ A1
T (F ). Let Z denote the set of

such random variables Z.

1. It is clear that (i) holds for all Z ∈ Z. Indeed, assume that for some η ∈ L0(A; H)

and s ∈ T, B := {F̄s(ηs; Z) > 0} has positive probability. Set g̃ := HsFs(ηs)1IB with

Hs := exp(−‖ηs‖) ∈ L0((0,∞);Hs). By HF1, HsFs(ηs)1IB = Fs(Hsηs1IB) so that, by

(2.4) and HA, g̃ ∈ A1
T (F ). Since E [Z · g̃] > 0, we get a contradiction to the definition

of Z.

2. By the same argument as in Lemma 4 in [14], we can find some Zµ such that

P
[

F̄t(µ; Zµ) < 0
]

= maxZ∈Z P
[

F̄t(µ; Z) < 0
]

. Set B := {F̄t(µ; Zµ) = 0} and Bk :=

B ∩ {‖µ‖ ≤ k}, k ∈ N. We claim that if (ii) fails for (µ, Zµ) then −Ft(µ1IBk
) /∈

A1
T (F ) for some k > 0. Indeed, otherwise, for all k > 0, we could find some ηk

∈ L0(A; H) and rk ∈ L0(Rd
+;F) such that VT (F (ηk)) = −Ft(µ1IBk

)+rk ∈ A1
T (F ), so that

VT (F (ηk)) + Ft(µ1IBk
) ∈ L0(Rd

+;F). By KP, this would imply that Ft(µ1IBk
) ∈ N0

t (F ),

so that, by HN0, Ft(µ1IBk
) = −Ft(−µ1IBk

). Sending k → ∞, we would then get

Ft(µ1IB) = −Ft(−µ1IB), showing that Ft(µ1IB) ∈ −Nt(F ), a contradiction. Hence, if (ii)

fails −Ft(µ1IBk
) /∈ A1

T (F ) for some k > 0. Repeating the argument of 1., we can then find

some Z ∈ L∞(Rd
+;F) such that E [Z · g] ≤ 0 < E [Z · (−Ft(µ1IBk

))] for all g ∈ A1
T (F ).

Taking Z̃ = Z + Zµ, we obtain P

[

F̄t(µ; Z̃) < 0
]

> P
[

F̄t(µ; Zµ) < 0
]

, a contradiction to

the definition of Zµ. This shows that (ii) must hold. 2

Proof of Theorem 2.1. 1. The first implication follows from Lemma 2.2 since the

elements of D(F ) have a.s. positive entries.

2. We now prove the converse implication. Let Z ij,t
+ (resp. Z ij,t

− ) be an element of

L∞((0,∞)d;F) such that (i) and (ii) of Lemma 2.3 hold for the process (eij1Is=t)s∈T

(resp. (−eij1Is=t)s∈T), i, j ≤ d and t ∈ T. We claim that Ẑ :=
∑

t∈T

∑

i,j≤d Z ij,t
+ + Z ij,t

−

belongs to D(F ). Clearly, it satisfies D1. Fix η ∈ L0(A;Ht) for some t ∈ T, and recall

from HA that

Ft(η) =
∑

i,j≤d

(ηij)+Ft(eij) + (ηij)−Ft(−eij) . (2.8)
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Set B := {F̄t(η; Ẑ) = 0}. From the definition of (Z ij,t
+ , Z ij,t

− )i,j,t, we deduce that

(ηij)+Ft(eij)1IB and (ηij)−Ft(−eij)1IB belongs to N0
t (F ) for all i, j ≤ d. By HN0, HA

and (2.8), we then deduce that

−Ft(η1IB) =
∑

i,j≤d

−(ηij)+Ft(eij) − (ηij)−Ft(−eij)

=
∑

i,j≤d

(ηij)+Ft(−eij) + (ηij)−Ft(eij)

= Ft(−η1IB)

so that Ft(η1IB) = −Ft(−η1IB) ∈ −Nt(F ) and therefore Ft(η1IB) ∈ N0
t (F ). Hence, Ẑ

satisfies D2. 2

2.4 Strict and robust no-arbitrage conditions

In this section, we study the other no-arbitrage conditions considered in [13], [14] and

[17].

Following [13], we say that F ∈ F satisfies the strict no-arbitrage condition if one has

NAs : At(F ) ∩ (−Nt(F ) + L0(Rd
+;F)) ⊂ N0

t (F ) for all t ∈ T ,

and that the model has “efficient frictions” if

EF : N0
t (F ) = {0} for all t ∈ T .

As in [17], we also define a robust version of the no-arbitrage property. We say that F

∈ F satisfies the robust no-arbitrage condition, NAr, if there is some sequence G ∈ F

such that for all η ∈ L0(A; H), t ∈ T and i ≤ d:

1. Gi
t(ηt) ≥ F i

t (ηt)

2. Ft(ηt) /∈ N0
t (F ) ⇒ {∃ k ≤ d such that Gk

t (ηt) > F k
t (ηt)} 6= ∅

3. NAw holds for G.

In financial models, the last condition can be interpreted as the existence of a model

with slightly lower transaction costs (for those that are not already equal to 0) in which

the weak no-arbitrage condition still holds, see [17].

In this section, we first show that these properties imply the condition KP used above.

We will then be able to use Theorem 2.1 to provide a dual characterization of the absence

of arbitrage opportunities in the spirit of [13], [14] and [17], see Theorem 2.2 below.

Lemma 2.4 Let F ∈ F be such that one of the above conditions holds:

(i) NAr

(ii) NAs and EF.

Then, KP holds.
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Proof. Set ξ and ξ̃ in N(F ) such that VT (ξ) + VT (ξ̃) ∈ L0(Rd
+;F). Let η and η̃ be

elements of L0(A; H) such that ξ = F (η) and ξ̃ = F (η̃), set η̄ := η + η̃ and ξ̄ := F (η̄).

1. We start with NAr. Let G be as in the definition of NAr and define ξ̄′ := G(η̄). By

1. and 2. of NAr, if for some t ∈ T Ft(η) /∈ N0
t (F ), then we can find i ≤ d and B ∈ F

with positive measure such that V i
T (G(η̄)) > V i

T (ξ̄) on B. By 1. of NAr and HF2, we

then have VT (ξ̄′) − VT (ξ) − VT (ξ̃) ∈ L0(Rd
+;F) \ {0}. Since VT (ξ) + VT (ξ̃) ∈ L0(Rd

+;F),

this leads to a contradiction to the fact that NAw holds for G. Hence, F (η) ∈ N0(F )

and we must have VT (ξ̄′) = 0 so that VT (ξ) + VT (ξ̃) = 0.

2. We now assume that NAs and EF hold. Assume that, for some t ∈ T, ξt /∈ N0
t (F )

or ξ̃t /∈ N0
t (F ) and set t∗ := max{t ∈ T : ξt /∈ N0

t (F ) or ξ̃t /∈ N0
t (F )}. Then, by EF

and HF2, Vt∗−1(ξ̄) =
∑t∗−1

s=0 ξs + ξ̃s + r = −ξt∗ − ξ̃t∗ + r = −ξ̄t∗ + r + r′ for some r, r′ in

L0(Rd
+;F). This shows that Vt∗−1(ξ̄) ∈ (−Nt∗(F ) + L0(Rd

+;F)) ∩ At∗(F ). By NAs and

EF, we must have ξ̄t∗ ∈ N0
t∗(F ) = {0} and r = r′ = 0. Hence, ξt∗ = −ξ̃t∗ ∈ N0

t∗(F ), thus

providing a contradiction to the definition of t∗. 2

Observe that NAr implies NAw and that NAs also implies NAw whenever N0
T = {0}.

In view of Lemma 2.4, we can then apply Proposition 2.1 and Theorem 2.1 to deduce

that, under HN0 and HA, NAr and (NAs and EF) both imply that AT (F ) is closed

in probability and that D(F ) is non-empty. Conversely, if D(F ) 6= ∅, on can show that

NAs and NAr hold.

Theorem 2.2 Let F ∈ F be such that HN0 and HA hold. Then,

(i) If either NAr or (NAs and EF) hold, then D(F ) 6= ∅ and AT (F ) is closed in

probability.

(ii) If D(F ) 6= ∅ then NAs and NAr hold.

Proof. 1. Since NAr implies NAw and NAs also implies NAw whenever EF holds,

combining Lemma 2.4 with Proposition 2.1 and Theorem 2.1 leads to (i) . To show

that NAs holds under D(F ) 6= ∅, we set Vt ∈ At(F ) such that Vt = −Ft(η̃) + r for

some η̃ ∈ L0(A;Ht) and r ∈ L0(Rd
+;F). By D1, E [Z · Vt | Ht] ≥ −F̄t(η̃; Z) ≥ 0, and

therefore, by Lemma 2.2, we must have E [Z · Vt | Ht] = 0, r = 0 and F̄t(η̃; Z) = 0 for

all Z ∈ D(F ). Then D2 implies that Ft(η̃) ∈ N0
t (F ).

2. We now prove that D(F ) 6= ∅ implies NAr. To avoid unnecessary complications, we

first consider the case where (eji,−eji) ∈ A×A for all i, j ≤ d. We shall explain in 2.d.

how to adapt our arguments to the general case.

Fix Z ∈ D(F ) and consider the random variables

δ+
ji,t := −F̄t(eji; Z) and δ−ji,t := −F̄t(−eji; Z) , i, j ≤ d , t ∈ T .

It follows from D1 that

δ+
ji,t ≥ 0 and δ−ji,t ≥ 0 , i, j ≤ d , t ∈ T . (2.9)
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We claim that, for all i, j ≤ d and t ∈ T,

δ+
ji,t > 0 and δ−ji,t > 0 on {F̄t(eji; Z) < 0} = {F̄t(−eji; Z) < 0} . (2.10)

Indeed, by construction, we have δ+
ji,t > 0 on {F̄t(eji; Z) < 0} and δ−ji,t > 0 on {F̄t(−eji; Z)

< 0}. Now, set B+ := {F̄t(eji; Z) = 0} and B− := {F̄t(−eji; Z) = 0}. From D2 and

HN0, we deduce that Ft(eji1IB+
) = −Ft(−eji1IB+

) so that F̄t(−eji; Z) = 0 on B+. This

shows that B+ ⊂ B−. Similarly, we can show the converse inclusion, which implies

(2.10).

We can now construct G. For all i, j, k ≤ d, we set

Gk(eji) =
(

F k(eji) + δ+
ji,t/(d Z̄k

t )
)

∧ (−F k(−eji))

Gk(−eji) =
(

F k(−eji) + δ−ji,t/(d Z̄k
t )

)

∧ (−Gk(eji)) . (2.11)

For x ∈ Md, we then set

G(x) =
∑

i,j≤d

(xji)+G(eji) + (xji)−G(−eji) .

It satisfies HF1. By (2.3), it also satisfies the condition 1. of NAr, recall (2.9). It

remains to check that HF2, 2. and 3. of NAr hold.

2.a. We first check HF2. We fix i, j, k ≤ d, α ≥ β ≥ 0. Then, Gk(αeji − βeji) =

(α − β)Gk(eji). By (2.11), it follows that Gk(αeji − βeji) ≥ αGk(eji) +βGk(−eji). In

the case where β ≥ α ≥ 0, we obtain the same result. Since G satisfies HA, this shows

that it also satisfies HF2.

2.b. We now check 2. of NAr. Set η ∈ L0(A;Ht) and t ∈ T such that Ft(η) /∈ N0
t (F ).

We must show that, with positive probability, we can find k ≤ d such that Gk
t (η) >

F k
t (η). First observe that we cannot have {ηji 6= 0} ⊂ {Ft(eji) = −Ft(−eji)} for all

i, j ≤ d since this would imply that Ft(η) ∈ N0
t (F ). Hence, there is (i, j) and k ≤ d such

that B := {ηji 6= 0} ∩ {F k
t (eji) < −F k

t (−eji)} 6= ∅, recall (2.3). Since, by D1 and (2.3),

{F k
t (eji) < −F k

t (−eji)} ⊂ {F̄t(eji; Z) < 0} ∪ {F̄t(−eji; Z) < 0}, (2.10) and (2.11) imply

that Gk
t (η) > F k

t (η) on B.

2.c. To check 3. of NAr, it suffices to observe that, for η ∈ L0(A; H) and Z ∈ D(F ), we

have Ḡ(η; Z) ≤ 0. Since Z has a.s. positive entries, the same arguments as in Lemma

2.2 imply NAw for G.

2.d. We now explain how to consider the case where some eji or −eji do not belong to

A. We assume that, for some (i, j), eji or −eji ∈ A, otherwise there is nothing to prove.

We keep the definition of G as above except that in the right hand-sides of (2.11), we

replace −F k(−elm) by +∞ if −elm /∈ A and −Gk(elm) by +∞ if elm /∈ A. Using the

convention 1. of HA, we see that G satisfies HF1 and 1. of NAr. The arguments of 2.a.

and 2.c. still hold, so that it also satisfies HF2 and 3. of NAr. To obtain 2. of NAr, we

just recall that F k
t (elm) < 0, for some k ≤ d, implies F̄t(elm; Z) < 0 whenever −elm /∈ A,

see D2, HN0 and recall 1. of HA. With this in mind, adapting the arguments of 2.b.

is straightforward. 2
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3 Applications to financial markets with proportional

transaction costs

In this section, we apply the above results to three examples of discrete time financial

markets with proportional transaction costs. The first one corresponds to a “security

market” where it is possible to make transactions only between a “non-risky asset”

and some “risky” ones, direct transactions between the “risky assets” being prohibited.

The two other ones correspond to “currency markets” where transactions between all

assets (interpreted as currencies) are possible. The information of the financial agent is

modeled by the filtration H and a strategy is a process η ∈ L0(A; H).

3.1 Security market

We take the first asset as a numéraire and consider an Md
+-valued process π such that

π1i ≥ πi1 > 0 for all i, j ≤ d and πii = 1 for all i ≤ d. Here, πi1 must be interpreted as

the number of physical units of asset 1 one receives when selling one unit of i, and π1i

as the number of units of asset 1 one pays to buy one unit of i. The condition π1i
t ≥ πi1

t

is natural since otherwise their would be trivial arbitrages. The case π1i
t = πi1

t (resp.

π1i
t > πi1

t ) corresponds to the situation with no-friction (resp. with frictions) between

the assets i and 1.

We construct the sequence of random maps F as follows. To ρ ∈ Md
+ such that ρ1i ≥

ρi1 > 0, we associate the map f(·; ρ) from Md into Rd defined by

f 1(a; ρ) =
∑

i≤d

a1i
(

ρi11Ia1i>0 + ρ1i1Ia1i<0

)

and f i(a; ρ) = −a1i for i > 1 .

Then, we set Ft(·) = f(·; πt) for t ∈ T. For the sake of simplicity, we take A = Md.

Observe that HA and HF1 trivially holds, and that the condition π1i ≥ πi1, i ≤ d,

implies HF2.

If positive, the quantity η1i
t corresponds to the number of units of asset i which are

sold in exchange of η1i
t πi1

t units of asset 1. Otherwise |η1i
t | corresponds to the number

of units of asset i which are obtained by converting |η1i
t π1i

t | units of asset 1. The other

components of η play no role in this model.

In order to apply the result of the previous section, we first check that HN0 holds in

this model.

Lemma 3.1 Let F be defined as above, then HN0 holds.

Proof. Fix t ∈ T and η ∈ L0(Md;Ht) such that Ft(η) ∈ N0
t (F ). We have to show that

Ft(−η) = −Ft(η). By definition, there is η̃ ∈ L0(Md;Ht) such that Ft(η) = −Ft(η̃).
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Define S ∈ L0((0,∞)d;F) by Si = (π1i
t + πi1

t )/2, i ≤ d. Recalling that π11 = 1, direct

computation shows that

0 = S · (Ft(η) + Ft(η̃)) =

d
∑

i=1

η1i
(

−(π1i
t + πi1

t )/2 + πi1
t 1Iη1i>0 + π1i

t 1Iη1i<0

)

+

d
∑

i=1

η̃1i
(

−(π1i
t + πi1

t )/2 + πi1
t 1Iη̃1i>0 + π1i

t 1Iη̃1i<0

)

=
d

∑

i=1

(

|η1i| + |η̃1i|
) (

πi1
t − π1i

t

)

/2 .

Since π1i
t ≥ πi1

t for all i, j ≤ d, this shows that η1i is equal to 0 on {π1i
t − πi1

t > 0} and

therefore Ft(−η) = −Ft(η). 2

Then, it follows from Theorem 2.2 that NAr ⇔ D(F ) 6= ∅ ⇒ NAs and that the last

implication is an equivalence if EF holds. We then assume that NAr or (NAs and EF)

hold, fix Z ∈ D(F ), and define the process π̄ by

π̄ij
t := E

[

Z1πij
t | Ht

]

/Z̄1
t , i, j ≤ d .

With this notation, one easily checks that Z̄t ∈ ri(K̂1i∗
t (Z, F )) if and only if

Z̄1
t π̄

i1
t ≤ Z̄ i

t ≤ Z̄1
t π̄

1i
t ,

with strict inequalities on {π̄1i
t > π̄i1

t }.

Let Q be the equivalent probability measure defined by dQ/dP = Z1/E [Z1]. Then,

π̄ is the optional projection under Q of π on H, i.e. π̄t = EQ[πt | Ht], and there is a

(Q, H)-martingale Z̄/Z̄1 such that each component i evolves in the relative interior of

the “estimated” bid-ask spread [π̄i1
t , π̄1i

t ]. This extends the discrete-time version of the

result of [9].

In the “no frictions” case, i.e. πi1 = π1i, then Z̄1
t π̄

i1
t = Z̄ i

t = Z̄1
t π̄

1i
t and we deduce that

there is an equivalent probability measure under which the optional projection π̄ of the

discounted price processes π on H are (Q, H)-martingales. This is the result of [12].

3.2 Currency market #1

We now consider a (0,∞)d-valued process S which models the price of the different

currencies, before transaction costs. Then τ ji
t = Si

t/S
j
t is the number of units of asset j

that one can exchange at time t against one unit of asset i, before to pay the transaction

costs. Transaction costs are modeled by a process λ with values in Md
+, i.e. λji

t is the

proportional costs to pay in units of j for an exchange at time t between j and i.
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To construct the sequence of random maps F , we first define the maps f(·; ρ, ℓ) from

Md into Rd by

f i(a; ρ, ℓ) =

d
∑

j=1

aji
(

1 + ℓij1Iaji<0

)

− aijρij
(

1 + ℓij1Iaij≥0

)

, ρ, ℓ ∈ Md
+ .

Then, we set Ft(·) = f(·; τt, λt), t ∈ T. For A = Md, this corresponds to the model (1.2)

described in the introduction. Clearly HA, HF1 and HF2 hold.

The quantity ηij
t corresponds to number of units of asset j which are obtained by con-

verting units of asset i. For such an exchange, the transaction costs are paid in units of

asset i.

Here again, we need to check that HN0 holds in this model. For sake of simplicity, we

assume that {λij
t > 0} = {λji

t > 0} for all i, j ≤ d and t ∈ T.

Lemma 3.2 Let F be defined as above, then HN0 holds.

Proof. Fix t ∈ T and η ∈ L0(Md;Ht) such that Ft(η) ∈ N0
t (F ). We have to show that

Ft(−η) = −Ft(η). By definition, there is η̃ ∈ L0(Md;Ht) such that Ft(η) = −Ft(η̃).

Since Ft(η) + Ft(η̃) = 0, direct computation shows that

0 = St · (Ft(η) + Ft(η̃)) = −
d

∑

i,j=1

|ηij|Sj
t

(

λji
t 1Iηij<0 + λij

t 1Iηij>0

)

−
d

∑

i,j=1

|η̃ij|Sj
t

(

λji
t 1Iη̃ij<0 + λij

t 1Iη̃ij>0

)

.

This shows that (ηij)+ = (ηij)− = 0 on {λij
t > 0} = {λji

t > 0} and therefore Ft(−η) =

−Ft(η). 2

It then follows from Theorem 2.2 that NAr ⇔ D(F ) 6= ∅ ⇒ NAs and that the last

implication is an equivalence if EF holds. We then assume that NAr or (NAs and EF)

hold, fix Z ∈ D(F ), and define the processes τ̄ and λ̄ by

τ̄ ij
t := E

[

Z iτ ij
t

(

1 + λij
t

)

| Ht

]

/(Z̄ i
t(1 + λ̄ij

t )) and λ̄ij
t := E

[

Z iλij
t | Ht

]

/Z̄ i
t .

With this notation, one easily checks that Z̄t ∈ ri(K̂ij∗
t (Z, F )) if and only if

Z̄j
t τ̄

ji
t /(1 + λ̄ij

t ) ≤ Z̄ i
t ≤ Z̄j

t τ̄
ji
t (1 + λ̄ji

t ) ,

with strict inequalities on {τ̄ ji
t (1 + λ̄ji

t ) > τ̄ ji
t /(1 + λ̄ij

t )}.
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3.3 Currency market #2

The model (1.1) discussed in the introduction corresponds to the one presented in the

previous subsection with f defined by

f i(a; ρ, ℓ) =

d
∑

j=1

aji1Iaji>0 − aijρij
(

1 + ℓij
)

1Iaij>0 , ρ, ℓ ∈ Md
+ ,

i.e. F is defined by Ft(·) = f(·; τt, λt), t ∈ T.

For A = Md
+, the conditions HF1, HF2 and HA hold (this is a case where −eji /∈ A).

However, by construction, HN0 does not hold except when N0(F ) = {0}. As in perfect

information models, this is the case if λij + λji > 0 for all i, j ≤ d.

Lemma 3.3 Fix t ∈ T and assume that for all B ∈ Ht there is B′ ⊂ B with positive

probability such that, for all i, j, k ≤ d, (1 + λij
t ) ≤ (1 + λik

t )(1 + λkj
t ) and λij

t + λji
t > 0

on B′. Then N0
t (F ) = {0}.

Proof. Fix η ∈ L0(Md
+;Ht) and set B := {η 6= 0}. Under the above conditions, on

easily checks that the random cone

Kt = {x ∈ Rd : a ∈ Md
+, x +

∑

j≤d

aji − aijτ ij
t

(

1 + λij
t

)

≥ 0 , ∀ i ≤ d}

satisfies Kt∩(−Kt) = {0} on B′, see e.g. [3] or [13]. Since N0
t (F ) ⊂ {ξ ∈ L0(Rd;F) : ξ ∈

Kt ∩ (−Kt)}, this shows that Ft(η) = 0. 2

Remark 3.1 The condition P

[

(1 + λij
t ) ≤ (1 + λik

t )(1 + λkj
t ) | Ht

]

> 0 is natural since

otherwise it would be a.s. cheaper to transfer money from i to j by passing through k

than directly. In this case, any “optimal” strategy would induce an effective transaction

cost corresponding to λ̃ij
t := (1 + λik

t )(1 + λkj
t ) − 1.

As argued in the introduction, if τ or λ are not H-adapted, transactions may be non-

reversible even when transaction costs are equal to zero.

Lemma 3.4 Assume that for some t ∈ T and i ≤ d, τ ij
t (1 + λij

t ) is not Ht-measurable

for all j ≤ d. Then, for all η ∈ L0(Md
+;Ht), Ft(η) ∈ N0

t (F ) implies
∑

j≤d ηji + ηij = 0.

Proof. Fix η ∈ L0(Md
+;Ht) such that Ft(η) ∈ N0

t (F ). By definition, there is η̃ ∈

L0(Md
+;Ht) such that Ft(η) = −Ft(η̃). Hence,

∑

j≤d

ηji + η̃ji =
∑

j≤d

(ηij + η̃ij)τ ij
t (1 + λij

t ) .

If
∑

j≤d(η
ij + η̃ij) 6= 0, then the left hand-side term is Ht-measurable while the right

hand-side is not. It follows that both terms must be equal to 0, so that
∑

j≤d ηji+ηij = 0.
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2

Since the conditions HF1 and HF2 hold, one can argue as in the above subsection to

obtain that, if N0(F ) = {0}, then NAr and NAs are equivalent to the existence of some

Z ∈ D(F ) which must satisfy

Z̄ i
t < Z̄j

t τ̄ ji
t (1 + λ̄ji

t ) , i, j ≤ d , t ∈ T .
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