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Abstract

We study a spin system on a large box with both Ising interaction
and Sherrington-Kirpatrick couplings, in the presence of an external
field. Our results are: (i) existence of the pressure in the limit of an in-
finite box. When both Ising and Sherrington-Kirpatrick temperatures
are high enough, we prove that: (ii) the value of the pressure is given
by a suitable replica symmetric solution, and (iii) the fluctuations of
the pressure are of order of the inverse of the square of the volume
with a normal distribution in the limit. In this regime, the pressure
can be expressed in terms of random field Ising models.

Key Words: Ising model, Sherrington-Kirpatrick model, spin-glass, thermody-

namic limit, pressure, quadratic coupling
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1 Introduction

We consider a d-dimensional Ising model in a magnetic field h, perturbed by
a mean field interaction of spin-glass type. The Hamiltonian contains two
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Ising-Sherrington-Kirpatrick model 2

parameters, β and κ, which play the role of two inverse temperatures. When
β = 0 the model reduces to the Ising model at temperature 1/κ, while for κ =
0 one recovers the Sherrington-Kirkpatrick (SK) model at temperature 1/β.
The understanding of the SK model has recently witnessed great progress
(see, e.g., [10] [8] [14]). The main interest in the analysis of this model is
the possibility of investigating the robustness of the phenomena typical of
mean field spin glass models, in the presence of additional interactions of
non-mean-field character.

The model has been previously considered in [3] under the additional
assumptions that h = 0 and that the Ising model is ferromagnetic. Under
these conditions it was proven that, if β and κ are small enough, the infinite
volume pressure is given by the sum of the Ising pressure and of the SK one,
at the respective temperatures. Moreover, the disorder fluctuations of the
pressure were found to be of order 1/V , V being the volume of the system,
and to satisfy a central limit theorem.

In the present paper, the Ising interaction decays exponentially fast with
distance, but is not necessarily ferromagnetic. It turns out that the presence
of the magnetic field changes qualitatively the picture with respect to [3].
Indeed we find, still for κ and β small enough, that the limit pressure is given
in terms of the pressure of an Ising model with random external field, the
strength of the randomness being related to the typical value of the overlap
between two replicas of the system. It is remarkable, though natural, that
the random field Ising model, which has its own interest [2], plays such an
important role in our model. Note also that the pressure of our model can be
computed only via the thermodynamic limit of another disordered system.
This is contrast with the case h = 0 we mentioned above, and also of course
with the case κ = 0 of the standard SK model. The second difference is
that the fluctuations of the pressure in presence of h satisfy a central limit
theorem on the scale 1/

√
V rather than 1/V . The same phenomenon is

known to happen in the case of the usual SK model, see for instance [1] [4]
[11].

In the region of thermodynamic parameters we consider, the system is
in a “replica-symmetric” (RS) phase, the overlap between two independent
replicas being a non-random value in the thermodynamic limit. Our methods
fail beyond some values β0(h) and κ0(h), which we believe to be an artifact of
our approach, rather than representing the true boundary of the RS region.
The same inconvenient has been previously encountered in the analysis of
the SK model [15], [9]. In principle one could improve these values by em-
ploying the replica symmetry breaking scheme which for instance enabled
M. Talagrand [16] to control the whole replica-symmetric region of the SK
model, and later the entire phase space [14]. However, in the present case (as
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well as in [3]) one of the reasons why we do not reach the true critical line
is due to an incomplete control of the underlying random field Ising model,
and this problem would not be fixed by the methods of [16]. For this reason,
we prefer to use a generalization of the technically simpler “quadratic replica
coupling” technique introduced in [9].

It would be of course an interesting challenge to go beyond the present
approach, and to deal with lower-temperature situations where the Ising-SK
system possibly shows a RSB-like behavior.

2 Description of the model and results

The model we consider is defined on the d-dimensional hypercubic box ΛN =
{−N, · · · , N}d and its partition function is:

ZN(κ, β, h; J) =
∑

σ∈{−1,+1}ΛN

exp

(

−κHI
N (σ) − βHSK

N (σ; J) + h
∑

i∈ΛN

σi

)

. (1)

The Hamiltonian of the Sherrington-Kirkpatrick (SK) model is defined as

HSK
N (σ; J) = − 1

√

2|ΛN |
∑

i,j∈ΛN

Jijσiσj

and the couplings Jij are i.i.d. Gaussian random variables N (0, 1). On the
other hand, the Hamiltonian of the Ising model is

HI
N(σ) = −1

2

∑

i,j∈ΛN

K(i − j)σiσj ,

where we assume that the interaction decays exponentially, i.e.,

|K(i)| ≤ C1e
−C2|i| (2)

for some C1, C2 > 0. We do not require the interaction to be ferromagnetic.
The finite volume (disorder-dependent) pressure is defined as usual as

pN(κ, β, h; J) =
1

|ΛN |
log ZN(κ, β, h; J).

Later, we will need to consider the (Gaussian) Random Field Ising Model,
defined by the partition function

ZRFIM
N (κ, h, γ; J) =

∑

σ∈{−1,+1}ΛN

exp

(

−κHI
N(σ) +

∑

i∈ΛN

σi(h + γJi)

)

,
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Ji being i.i.d. standard Gaussian variables, and being also independent from
the Jij ’s in the sequel. The existence of the infinite volume pressure of the
RFIM,

pRFIM(κ, h, γ) = lim
N→∞

E pRFIM
N (κ, h, γ; J)

= a.s. − lim
N→∞

pRFIM
N (κ, h, γ; J) ,

is a well known consequence of additivity and of the ergodic theorem, e.g.
[17].

Our main results can be summarized as follows:

Theorem 1. For all h ∈ R, and all κ, β > 0, the limit

p(κ, β, h) = lim
N→∞

E pN(κ, β, h; J) (3)

exists and

pN (κ, β, h; J)
N→∞−→ p(κ, β, h) (4)

for a.e. J and in the Lp-norm (p ∈ [1,∞)).

Theorem 2. For all h ∈ R, there exist κ0(h) > 0 and β0(h) > 0 such that,
for 0 ≤ κ ≤ κ0(h) and 0 ≤ β ≤ β0(h)

p(κ, β, h) = inf
0≤q≤1

(

pRFIM(κ, h, β
√

q) +
β2

4
(1 − q)2

)

(5)

In the case κ = 0, it is established in [7] that the infimum in (5) is
achieved at a unique point. As explained below (see Section 3.2), we take
small enough κ0(h) so that, for 0 ≤ κ ≤ κ0(h) and 0 ≤ β ≤ β0(h), the
infimum in (5) is achieved at a unique q. In the following, we will always
denote by q̄ = q̄(κ, β, h) the value that realizes the infimum in (5).

We emphasize that κ0(h) is taken small enough so that the RFIM is
inside Dobrushin’s uniqueness region for every realization of the external
fields Ji, i ∈ Z

d. Let 〈·〉∞,J be the unique infinite volume Gibbs measure

for the RFIM with γ = β
√

q̄, depending on Ji, i ∈ Z
d. If � denotes the

lexicographic order in Z
d, define

Γ = Γ(κ, β, h) = EJi,i�0

(

EJ ′

0,Ji,i≺0 log
〈

eβ
√

q̄(J ′

0−J0)σ0

〉

∞,J

)2

,

where J ′
0 is an independent copy of J0, J ′

0 being independent of (Ji, i ∈ Z
d).

Here, the E-expectations are conditional, and the subscripts of E indicate on
which variables the expectation is performed. Then, we have the following
central limit theorem:
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Theorem 3. For 0 ≤ κ ≤ κ0(h) and 0 ≤ β ≤ β0(h),

√

|ΛN |
(

pN(κ, β, h; J) − E pN(κ, β, h; J)
)

law−→ N
(

0, Γ − β2

2
q̄2

)

. (6)

One can check by expansion around κ = β = 0, h 6= 0, that the limiting
variance Γ− β2

2
q̄2 is strictly positive for any fixed non-zero h and small κ, β.

This proves that the fluctuations of pN (κ, β, h; J) are truly of order of the
square root of the volume inverse in this region of the parameters. To match
with the breakdown in the order of magnitude of fluctuations at zero external
field, we observe that both q̄ and Γ vanish as h → 0, and also that they are
equal to zero when h = 0.

3 Proofs

3.1 For small κ the RFIM is inside the Dobrushin uniqueness

region

Let i 6= k be lattice points. Under any (infinite volume) RFIM Gibbs measure
〈·〉∞,J the law 〈·|η〉i,∞,J of σi given σj = ηj , j 6= i, is Bernoulli with parameter
proportional to exp{σi[Hi,k;η + κK(i − k)ηk]} with

Hi,k;σ = κ
∑

j 6=i,k

K(i − j)σj + h + γJi.

Following e.g. Section 2 in [5], we define the Dobrushin’s influence coefficient

Cki = sup

{

1

2
‖ 〈·|η〉i,∞,J − 〈·|η′〉i,∞,J ‖var; η = η′ off k

}

where ‖ · ‖var is the variation norm. With a straightforward computation,

‖ 〈·|η〉i,∞,J − 〈·|η′〉i,∞,J ‖var = 2| 〈+|η〉i,∞,J − 〈+|η′〉i,∞,J |

≤ 2| sinh 2κK(i − k)|
cosh[2Hi,k;η] + cosh[2κK(i − k)]

for such η, η′, and so

Cki ≤ | tanh 2κK(i − k)| ≤ |2κK(i − k)| (7)

Therefore, for κ < κ1 = (2
∑

i6=0 |K(i)|)−1 we derive from (7) and (2) that

a = supi

∑

k ρ|i−k|Cki < 1 for some ρ > 1, which implies (see Section 2.3 in
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[5]) that the Gibbs measure 〈·〉∞,J is unique and has exponentially decreasing
correlations. More precisely, for all local functions f, g, there is a finite
constant C = C(a, f, g) such that for all i ∈ Z

d

| 〈f ; g ◦ θi〉∞,J | ≤ Cρ−|i| , (8)

with θi the shift of vector i and 〈f ; g〉∞,J the covariance of f, g.

3.2 Uniqueness of q̄

Introduce

F (q, κ) = Fβ,h(q, κ) = pRFIM(κ, h, β
√

q) +
β2

4
(1 − q)2

which is, in view of (8), a smooth function of all its arguments if κ < κ1 (e.g.,
Cor. 8.37 in [6]).

Proposition 1. Assume h 6= 0. For all β, there exists κ2 = κ2(β, h) > 0
such that q 7→ F (q, κ) has a unique minimizer on [0, 1] for κ < κ2.

By [7], we know that the minimizer q0 of F (q, 0) is unique, strictly positive
and that1

∂2

∂2q
F (q0, 0) > 0. (9)

By (8), the function F is continuous in κ uniformly in q ∈ (0, 1]. Hence,

∀δ > 0 ∃κ̃ : ∀κ < κ̃ argmin[0,1] F (·, κ) ⊂ (q0 − δ, q0 + δ) (10)

Again by (8), the function F is C2 in a neighborhood of (q0, 0). By the
implicit function theorem for the equation

∂

∂q
F (q, κ) = 0

(which applies thanks to condition (9)) we then derive that there exist neigh-
borhoods U of q0 and V of κ = 0 and a function q̄ : V 7→ U such that, for
q ∈ V, κ ∈ U , the above equation is equivalent to q = q̄(κ). With δ small
enough so that (q0 − δ, q0 + δ) ⊂ V , we choose now κ2 < κ̃ (with κ̃ from (10))
such that (−κ2, κ2) ⊂ U . Then, for κ < κ2, F (·, κ) has a unique minimum
at q = q̄(κ).

As for the case h = 0, one can prove similarly the following results, that
we mention for comparison but will neither prove nor use.

1[7], p.166
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Proposition 2. For all β 6= 1, there exists κ3 = κ3(β) > 0 such that q 7→
Fβ,0(q, κ) has a unique minimizer on [0, 1] for κ < κ3. If β < 1, the minimizer
is q = 0.

Remark The restriction β 6= 1 is due to the fact that for β = βc = 1 (the
critical point of the Sherrington-Kirkpatrick model) one has q0(βc, 0) = 0
and, in contrast with (9),

∂2

∂2q
Fβc,0(0, 0) = 0.

3.3 Proof of Theorem 1

Proof of (3) The proof is standard, we just sketch the main steps. Consider

the box ΛmN , with m, N ∈ N, and partition it into sub-boxes Λ
(ℓ)
N , ℓ =

1, · · · , md, congruent to ΛN . Moreover, let Z̃mN be the partition function of
the system where, with respect to (1), HSK

mN (σ; J) is replaced by

−
md
∑

ℓ=1

1
√

2|ΛN |
∑

i,j∈Λ
(ℓ)
N

J
(ℓ)
ij σiσj ,

the J
(ℓ)
ij being md independent families of standard Gaussian variables. Note

that, in this system, the different sub-boxes interact only through the Ising
potential K(.). Then, following the ideas of [10], it is easy to prove that

pmN(κ, β, h) ≥ 1

|ΛmN |
E log Z̃mN (κ, β, h; J (ℓ)).

Since the Ising potential is summable, the interaction among the different
sub-boxes due to the potential K grows at most proportionally to κ and to
the the total surface, d mdNd−1. As a consequence, one has the approximate
monotonicity

pmN(κ, β, h) ≥ pN(κ, β, h) − κ
C

N
,

for some constant C depending on the potential K(.). From this, it is a
standard fact to deduce that the sequence {pmN}N has a limit when N → ∞,
that it does not depend on m, and that it coincides with limN pN .

Proof of (4) The almost sure convergence is standard and follows from
exponential self-averaging of the pressure (see for instance Proposition 2.18
of [12]), which in the present case reads

P (|pN(κ, β, h; J) − E pN(κ, β, h; J)| ≥ u) ≤ D1 e−D2(β)|ΛN |u2

,

together with Borel-Cantelli’s lemma. The Lp-convergence comes from uni-
form integrability, which again follows from exponential concentration.
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3.4 Proof of Theorem 2

For 0 ≤ t ≤ 1 and any q ≥ 0, define the interpolating partition function

Z(t) =
∑

σ∈{−1,+1}ΛN

exp
(

−H(t)(σ)
)

(11)

H(t)(σ) = κHI
N(σ) + β

√
tHSK

N (σ; J) −
∑

i∈ΛN

σi

(

h + β
√

q(1 − t)Ji

)

with the properties

Z(0) = ZRFIM
N (κ, h, β

√
q; J)

Z(1) = ZN(κ, β, h; J).

The t-derivative of the corresponding pressure

pN (t) =
1

|ΛN |
E log Z(t)

is easily computed: We denote by 〈·〉t the Gibbs measure associated to
H(t), by 〈·〉⊗2

t its tensor product acting on a pair (σ1, σ2) ∈ {−1, +1}ΛN ×
{−1, +1}ΛN , by q12 = |ΛN |−1

∑

i∈ΛN
σ1

i σ
2
i the overlap between configura-

tions σ1 and σ2, and we get by the Gaussian integration by parts formula
E JiF (Ji) = E F ′(Ji),

d

dt
pN(t) =

β

2|ΛN |
E

{

1
√

2|ΛN |t
∑

i,j∈ΛN

Jij 〈σiσj〉t −
√

q√
1 − t

∑

i∈ΛN

Ji 〈σi〉t

}

int.by parts
=

β

2|ΛN |
E

{

β

2|ΛN |
∑

i,j∈ΛN

(1 −
〈

σ1
i σ

1
j σ

2
i σ

2
j

〉⊗2

t
) − βq

∑

i∈ΛN

(1 −
〈

σ1
i σ

2
i

〉⊗2

t
)

}

=
β2

4
(1 − q)2 − β2

4
E
〈

(q12 − q)2
〉⊗2

t
(12)

so that, integrating in t between 0 and 1, taking the N → ∞ limit and
optimizing on q, we have the “first half” of Eq. (5):

p(κ, β, h) ≤ inf
q≥0

(

pRFIM(κ, h, β
√

q) +
β2

4
(1 − q)2

)

. (13)

Note that the inequality holds for any values of β and κ.

Next, consider a system of two coupled replicas: For λ > 0 let

Z(2)(t, λ) =
∑

σ1,σ2∈{−1,+1}ΛN

exp

(

−H(t)(σ1) − H(t)(σ2) +
β2

2
|ΛN |λ(q12 − q)2

)
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and denote by 〈·〉t,λ the Gibbs measure on {−1, +1}ΛN × {−1, +1}ΛN asso-

ciated to this partition function. (Of course, 〈·〉t,0 = 〈·〉⊗2
t and Z(2)(t, 0) =

Z(t)2.) With

p
(2)
N (t, λ) =

1

2|ΛN |
E log Z(2)(t, λ)

we have by a computation similar to (12) and using symmetry in σ1, σ2,

d
dt

p
(2)
N (t, λ0 − t) =

=
β

4|ΛN |
E

{

2
√

2|ΛN |t
∑

i,j∈ΛN

Jij

〈

σ1
i σ

1
j

〉

t,λ0−t
− 2

√
q√

1 − t

∑

i∈ΛN

Ji

〈

σ1
i

〉

t,λ0−t

−β|ΛN |
〈

(q12 − q)2
〉

t,λ0−t

}

int.by parts
=

β

4|ΛN |
E

{

β

|ΛN |
∑

i,j∈ΛN

(1 +
〈

σ1
i σ

1
j σ

2
i σ

2
j

〉

t,λ0−t
− 2

〈

σ1
i σ

1
j σ

3
i σ

3
j

〉⊗2

t,λ0−t
)

−2βq
∑

i∈ΛN

(1 +
〈

σ1
i σ

2
i

〉

t,λ0−t
− 2

〈

σ1
i σ

3
i

〉⊗2

t,λ0−t
) − β|ΛN |

〈

(q12 − q)2
〉

t,λ0−t

}

=
β2

4
(1 − q)2 − β2

2
E
〈

(q13 − q)2
〉⊗2

t,λ0−t

so that, integrating,

p
(2)
N (t, λ) ≤ β2

4
(1 − q)2t +

1

2|ΛN |
E log Z(2)(0, t + λ). (14)

Now, setting uN(t) = pRFIM
N (κ, h, β

√
q) + β2

4
(1 − q)2t− pN(t), which is a non

negative function by (12), and using convexity of the pressure with respect

to λ and the identity p
(2)
N (t, 0) = pN(t), we obtain for any λ > 0

d

dt
uN(t)

(12)
=

∂

∂λ
p

(2)
N (t, 0)

convexity

≤ p
(2)
N (t, λ) − pN(t)

λ
(15)

(14)

≤ 1

λ

[

uN(t) +
1

2|ΛN |
E log

Z(2)(0, t + λ)

Z(2)(0, 0)

]

.

Since Z(2) is increasing in λ, Eq. (15) implies

d

dt
log

[

uN(t) +
1

2|ΛN |
E log

Z(2)(0, 1 + λ)

Z(2)(0, 0)

]

≤ 1

λ
,
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which, recalling that uN(0) = 0, can be immediately integrated to give

uN(t) ≤
(

et/λ − 1
)

× 1

2|ΛN |
E log

Z(2)(0, 1 + λ)

Z(2)(0, 0)
(16)

and Eq. (5) follows if we can prove that

lim
N→∞

1

2|ΛN |
E log

Z(2)(0, λ0)

Z(2)(0, 0)
= 0 (17)

for some λ0 > 1, if q is chosen properly. (Note that λ0 = λ+1 > 1 is required
so that one can take t up to 1 and still have λ > 0, which is needed in (15).)

Define for any µ ∈ R, q ≥ 0

αN(µ; J) =
1

2|ΛN |
log
〈

eµ|ΛN |(q12−q)
〉⊗2

κ,β
√

q,N

and αN(µ) = E αN(µ; J). We denote by 〈.〉⊗2
κ,β

√
q,N the Gibbs measure for two

replicas of the RFIM with parameters κ and γ = β
√

q and volume ΛN . Later

we will also use the notation 〈.〉(µ)
κ,β

√
q,N for

〈A〉(µ)
κ,β

√
q,N =

〈

A eµ|ΛN |(q12−q)
〉⊗2

κ,β
√

q,N

〈eµ|ΛN |(q12−q)〉⊗2
κ,β

√
q,N

.

Let q̄N = q̄N (β, κ, h) be the value which minimizes

pRFIM
N (κ, h, β

√
q) +

β2

4
(1 − q)2

with respect to q, cf (5). Clearly, q̄N satisfies the “self-consistent equation”

q = E 〈q12〉⊗2
κ,β

√
q,N =

∑

i∈ΛN
E 〈σi〉2κ,β

√
q,N

|ΛN |
. (18)

An analysis analogous to the one of Section 3.2 shows that the solution of
(18) is unique for κ small enough, for N sufficiently large, and that q̄N → q̄
for N → ∞. A Taylor expansion around µ = 0 gives immediately

αN(µ; J) = αN(0; J) + µα′
N(0; J) +

∫ µ

0

dy

∫ y

0

du α′′
N(u; J),
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where

αN(0; J) = 0 (19)

α′
N(0; J) =

1

2

(

〈q12〉⊗2
κ,β

√
q̄N ,N − E 〈q12〉⊗2

κ,β
√

q̄N ,N

)

(20)

α′′
N(u; J) =

|ΛN |
2

(

〈

q2
12

〉(u)

κ,β
√

q̄N ,N
− (〈q12〉(u)

κ,β
√

q̄N ,N
)2
)

(21)

=
1

2|ΛN |
∑

i,j∈ΛN

〈

(σ1
i σ

2
i −

〈

σ1
i σ

2
i

〉

)(σ1
j σ

2
j −

〈

σ1
j σ

2
j

〉

)
〉(u)

κ,β
√

q̄N ,N
.(22)

We can view 〈.〉(u)

κ,β
√

q̄N ,N as the Gibbs measure of a system with 2|ΛN | spins,
with exponentially decaying pair interactions. Since κ is small, taking µ
itself sufficiently small, we keep this system inside the Dobrushin uniqueness
region. Using exponential decay of correlations as in Section 3.1, we obtain
that α′′

N(u; J) is bounded above by a constant, uniformly in N ,J and in
u ∈ [0, µ], so that

αN(µ; J) ≤ µα′
N(0; J) + Cµ2 (23)

for κ < κ0(h). Note that this bound holds for any µ, since it does for small
µ and the function α can grow at most linearly at infinity.

With this in hand, we go back to proving (17). After a Gaussian trans-
formation

Z(2)(0, λ0)

Z(2)(0, 0)
=

∫

dz

√

|ΛN |
2π

e−|ΛN | z2

2

〈

eβz
√

λ0|ΛN |(q12−q̄N )
〉⊗2

κ,β
√

q̄N ,N

=

∫

dz

√

|ΛN |
2π

e|ΛN |(−z2/2+2αN (βz
√

λ0;J)).

Equations (23) and (20) imply that, for β < β0(h) = 1/
√

4Cλ0

1

2|ΛN |
E log

Z(2)(0, λ0)

Z(2)(0, 0)
≤ 1

2|ΛN |
E log

∫

dz

√

|ΛN |
2π

e|ΛN |(−z2/2(1−4Cβ2λ0)+2zβ
√

λ0α′

N (0;J))

≤ C ′
E (α′

N(0; J))2

=
C ′

4|ΛN |2
∑

i,j∈ΛN

E((〈σi〉2 − E 〈σi〉2)(〈σj〉2 − E 〈σj〉2)), (24)

where for simplicity we have written 〈.〉 for 〈.〉⊗2
κ,β

√
q̄N ,N

. We now show that

the last expression is of order 1/|ΛN |. Indeed, take two distinct sites i, j
and consider the d-dimensional ball Bij of radius |i − j|/2 centered at i. If
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〈σi〉 were depending only on (Jk, k ∈ Bij) and 〈σj〉 on (Jk, k ∈ Bc
ij) only,

the corresponding term in (24) would be zero by independence. But in the
Dobrushin region, we can approximate 〈σi〉 by the expectation of σi for the
finite volume RFIM on Bij with an error which is exponentially small in the
radius |i−j|/2, uniformly in the Jk’s. Doing similarly with 〈σj〉, we conclude
that

E((〈σi〉2 − E 〈σi〉2)(〈σj〉2 − E 〈σj〉2)) ≤ C ′ρ−C′′|i−j|

for suitable constants C ′, C ′′ > 0. This, together with (24), immediately
implies that

1

2|ΛN |
E log

Z(2)(0, λ0)

Z(2)(0, 0)
≤ c

|ΛN |
.

At this point, recalling Eq. (16), one finds

pN(κ, β, h) ≥ pRFIM
N (κ, h, β

√
q̄N) +

β2

4
(1 − q̄N)2 −

(

e1/(λ0−1) − 1
) c

|ΛN |
,

which, together with (13), proves the convergence in average of the pressure
to the expression (5). Moreover, from Eqs. (15) and (12) one deduces that

lim sup
N→∞

sup
0≤t≤1

|ΛN |E
〈

(q12 − q̄N )2
〉⊗2

t
< ∞ , (25)

which will be needed in next section, where we deal with pressure fluctua-
tions.

3.5 Proof of Theorem 3

We follow the strategy which was introduced in [11], adapted to the present
case where short-range interactions are also present. Let

f̂N(t) =
√

|ΛN |
(

log Z(t)

|ΛN |
− pN(t)

)

,

where Z(t), pN(t) were defined in Eqs. (11)-(12) and it is understood that
q is taken to be q̄N = q̄N(β, κ, h) as in Eq. (18), to be distinguished from
q̄ = lim q̄N .

We will prove that

lim
N→∞

E eiuf̂N (t) = exp

(

−u2

2
(Γ − β2

2
tq̄2)

)

(26)

for any u ∈ R, 0 ≤ t ≤ 1, from which Eq. (6) follows for t = 1.
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By means of integrations by parts one finds

∂tE eiuf̂N (t) = iuE eiuf̂N (t) d

dt
f̂N(t)

=
β2

4
u2q̄2

NE eiuf̂N (t) − β2

4
u2

E eiuf̂N (t)
〈

(q12 − q̄N)2
〉⊗2

t

−i
β2

4
u
√

|ΛN |E eiuf̂N (t)
(

〈

(q12 − q̄N)2
〉⊗2

t
− E

〈

(q12 − q̄N )2
〉⊗2

t

)

and, using Eq. (25),

∂tE eiuf̂N (t) =
β2u2q̄2

4
E eiuf̂N (t) + o(1).

Integrating in t, Eq. (26) is then proven provided that we show that

lim
N→∞

E eiuf̂N (0) = exp

(

−u2

2
Γ

)

, (27)

i.e., a central limit theorem for pressure fluctuations of the RFIM at high
temperature.

To this purpose, we employ the central limit theorem for martingales [13],
which we recall for convenience. Let (Ω,A, P ) be a probability space, F (n) =
{Fn

k }0≤k≤n a filtration of A, for n ∈ N, such that Fn
0 = {∅, Ω}, and ξ(n) =

{ξn,k}1≤k≤n a sequence of random variables adapted to F (n). We denote

by En,k (respectively P n,k) the expectation (respectively the probability)
conditioned to Fn

k and by V n,k the conditional variance

V n,k(X) = En,k(X2) −
(

En,kX
)2

,

of a random variable X. We say that the triangular array {ξn,k}n>0,1≤k≤n is
asymptotically negligible if for any ε > 0

n
∑

k=1

P n,k−1 (|ξn,k| ≥ ε)
P−→ 0 (28)

when n → ∞. Then, the following holds:

Theorem 4. Let {ξn,k}n>0,1≤k≤n be an asymptotically negligible triangular
array of square integrable random variables, and assume that for some Γ > 0,

n
∑

k=1

En,k−1(ξn,k)
P−→ 0 (29)
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and

n
∑

k=1

V n,k−1(ξn,k)
P−→ Γ, (30)

for n → ∞. Then,

n
∑

k=1

ξn,k
law−→ N (0, Γ).

To simplify notations in our case, let |ΛN | = n, h + β
√

q̄NJi = hi and

pn,h = pRFIM
N (κ, h, β

√
q̄N ; J).

Introducing the usual lexicographic ordering of the sites in ΛN , we define
Fn

k , for k ∈ ΛN , as the σ-algebra generated by the random fields Ji for
i ∈ ΛN , i � k, and

ξn,k =
√

n(En,kpn,h − En,k−1pn,h)

so that

√

|ΛN |(pRFIM
N (κ, h, β

√
q̄N ; J) − E pRFIM

N (κ, h, β
√

q̄N ; J)) =
∑

k∈ΛN

ξn,k. (31)

Of course, En,k(.) = EJℓ,ℓ∈ΛN ,ℓ≻k(.), and by convention Fn
k = {∅, Ω} if k

precedes the first site in ΛN . One can rewrite

ξn,k = − 1√
n

EJ ′

k
,Jℓ,ℓ≻k log

〈

e(h′

k−hk)σk

〉

n,h

where J ′
k is an independent copy of Jk – independent of (Jl, l ∈ Z

d) –, and
h′

k = h + β
√

q̄NJ ′
k, so that

|ξn,k| ≤ n−1/2
EJ ′

k
|h′

k − hk| ≤ Cn−1/2(|hk| + C)

for some constant C and

En,k−1 |ξn,k|3 ≤ C ′n−3/2.

This implies asymptotic negligibility (28), since

∑

k∈ΛN

P n,k−1 (|ξn,k| ≥ ε) ≤ 1

ε3

∑

k∈ΛN

En,k−1
(

|ξn,k|3
)

≤ C ′

ε3
√

n
.
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In order to apply Theorem 4, we have to check conditions (29) and (30). The
first one is evident, since

En,k−1ξn,k = 0

identically. As for the second, notice that

V n,k−1(ξn,k) =
1

n
EJk

(

EJ ′

k
,Jℓ,ℓ≻k log

〈

e(h′

k
−hk)σk

〉

n,h

)2

. (32)

Let k correspond to a site “in the bulk” of ΛN , i.e., assume that the distance
between k and the boundary of ΛN is larger than, say, n1/(2d). In this case,
we will write k ∈ BN . We want to replace 〈.〉n,h in (32) with the unique
infinite-volume Gibbs measure 〈.〉∞,h. To this purpose, note preliminarily
that

∣

∣

∣

∣

∣

log

〈

e(h′

k
−hk)σk

〉

n,h
〈

e(h′

k
−hk)σk

〉

∞,h

∣

∣

∣

∣

∣

≤ 2|h′
k − hk|.

Moreover, thanks to Dobrushin’s theorem,
〈

e(h′

k
−hk)σk

〉

n,h
〈

e(h′

k
−hk)σk

〉

∞,h

= 1 +
e(h′

k
−hk) − e−(h′

k
−hk)

〈

e(h′

k
−hk)σk

〉

∞,h

δn,h (33)

with some δn,h such that

lim
n→∞

sup
k∈BN

sup
h

|δn,h| ≡ lim
n→∞

ǫn = 0.

Denoting by An,k the event

An,k =

{

|h′
k − hk| ≤

1

2
log

(

1

2ǫn

)}

,

and using the fact that | log(1 + x)| ≤ D|x| for |x| ≤ 1/2 for some finite
constant D, one can write

∣

∣

∣

∣

∣

log

〈

e(h′

k
−hk)σk

〉

n,h
〈

e(h′

k
−hk)σk

〉

∞,h

∣

∣

∣

∣

∣

≤ Dǫne
2|h′

k
−hk| + 2|h′

k − hk|1AC
n,k

.

Therefore one has

V n,k−1(ξn,k) =
1

n
EJk

(

EJ ′

k
,Jℓ,ℓ≻k log

〈

e(h′

k
−hk)σk

〉

∞,h

)2

+
1

n
o(1)

=
1

n
(φ(θ−kh) + o(1)) ,
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where o(1) → 0 for n → ∞ uniformly in k ∈ BN , θk is the shift of vector k
and

φ(h) = EJ0

(

EJ ′

0,Jℓ,ℓ≻0 log
〈

e(h′

0−h0)σ0

〉

∞,h

)2

,

the subscript 0 referring of course to the origin of the lattice Z
d. Note that

there is a residual n-dependence in φ, since the fields hi are defined through
q̄N , but this dependence is easily seen to be harmless thanks to the exponen-
tial decay of correlations inside Dobrushin’s uniqueness region, and to the
fact that q̄N → q̄. Finally, defining h̃i = h + β

√
q̄Ji, the ergodic theorem

implies that, for almost every J ,

lim
n→∞

∑

k∈ΛN

V n,k−1(ξn,k) = lim
n→∞

1

n

∑

k∈ΛN

φ(θ−kh) = E φ(h̃) ≡ Γ(κ, β, h),

where we used the fact that the contribution of the spins k /∈ BN vanishes
for |ΛN | → ∞. At this point, all the conditions necessary to apply Theorem
4 are fulfilled and, recalling (31), one has (27), which concludes the proof of
Theorem 3.
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place Jussieu, 75251 Paris Cedex 05, France. Email: comets@math.jussieu.fr
http://www.proba.jussieu.fr/pageperso/comets/comets.html

Francesco Guerra: Dipartimento di Fisica, Università di Roma “La Sapienza”
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