
Introduction to linear logic and ludics, part II

Pierre-Louis Curien

To cite this version:

Pierre-Louis Curien. Introduction to linear logic and ludics, part II. Advances in polymer
science, Springer Verlag, 2006, 35 (1), pp.1-44. <hal-00003939>

HAL Id: hal-00003939

https://hal.archives-ouvertes.fr/hal-00003939

Submitted on 19 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47127929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00003939

cc
sd

-0
00

03
93

9,
 v

er
si

on
 1

 -
 1

9
Ja

n
20

05

Introduction to linear logic and ludics, Part II

Pierre-Louis Curien (CNRS & Université Paris VII)∗

January 19, 2005

Abstract

This paper is the second part of an introduction to linear logic and ludics, both due to Girard.
It is devoted to proof nets, in the limited, yet central, framework of multiplicative linear logic
(section 1) and to ludics, which has been recently developped in an aim of further unveiling the
fundamental interactive nature of computation and logic (sections 2, 3, 4, and 5). We hope to
offer a few computer science insights into this new theory.

Keywords: Cut-elimination (03F05), Linear logic (03F52), Logic in computer science (03B70), In-
teractive modes of computation (68Q10), Semantics (68Q55), Programming languages (68N15).

Prerequisites

This part depends mostly on the first two sections of part I, and should therefore be accessible to any
one who has been exposed to the very first steps of linear logic. We have used the following sources:
[29, 23, 38] for proof nets, and and [35, 36] for ludics.

1 Proof nets

Proof nets are graphs that give a more economical presentation of proofs, abstracting from some
irrelevant order of application of the rules of linear logic given in sequent calculus style (sections 2
and 3 of part I). We limit ourselves here to multiplicative linear logic (MLL), and we shall even begin
with cut-free MLL. Proof nets for MLL are graphs which are “almost trees”, and we stress this by our
choice of presentation. We invite the reader to draw proof nets by himself while reading the section.

What plays here the role of a proof of a sequent ⊢ A1, . . . , An is the forest of the formulasA1, . . . , An

represented as trees, together with a partition of the leaves of the forest in pairs (corresponding to
the application of an axiom ⊢ C,C⊥). Well, not quite. A proof may not decompose each formula
completely, since an axiom ⊢ C,C⊥ can be applied to any formula. Hence we have to specify partial
trees for the formulas A1, . . . , An. One way to do this is to specify the set of leaves of each partial
tree as a set of (pairwise disjoint) occurrences. Formally, an occurrence is a word over {1, 2}, and the
subformula A/u at occurrence u is defined by the following formal system:

A/ǫ = A (A1 ⊗A2)/1u = (A1OA2)/1u = A1/u (A1 ⊗A2)/2u = (A1OA2)/2u = A2/u .

∗Laboratoire Preuves, Programmes et Systèmes, Case 7014, 2 place Jussieu, 75251 Paris Cedex 05, France,

curien@pps.jussieu.fr.

1

A partial formula tree AU consists of a formula A together with a set U of pairwise disjoint occurrences
such that (∀u ∈ U A/u is defined). Recall that a partition of a set E is a set X of non-empty subsets
of E which are pairwise disjoint and whose union is E. If X = {Y1, . . . , Yn} we often simply write
X = Y1, . . . , Yn.

Definition 1.1 A proof structure is given by

{AU1

1 , . . . , AUn
n }[X] ,

where {AU1

1 , . . . , AUn
n } is a multiset of partial formula trees and where X is a partition of {A1/u |

u ∈ U1} ∪ . . . ∪ {An/u | u ∈ Un} (disjoint union) whose classes are pairs of dual formulas. We shall
say that each class of the partition is an axiom of the proof structure, and that A1, . . . , An are the
conclusions of the proof structure.

More generally, we shall manipulate graphs described as a forest plus a partition of its leaves, with-
out any particular requirement on the partition. This notion is faithful to Girard’s idea of paraproof,
discussed in the next section.

Definition 1.2 A paraproof structure is given by {AU1

1 , . . . , AUn
n }[X], where X is a partition of

{A1/u | u ∈ U1} ∪ . . . ∪ {An/u | u ∈ Un} (disjoint union) . We shall say that each class of the
partition is a generalized axiom , or daimon (anticipating on a terminology introduced in the following
section), and that A1, . . . , An are the conclusions of the paraproof structure.

The actual graph associated to this description is obtained by:

• drawing the trees of the formulas A1, . . . , An stopping at U1, . . . , Un, respectively (i.e., there is
a node corresponding to each subformula Ai/u, where u < ui for some ui ∈ Ui); and

• associating a new node with each class of the partition and new edges from the new node to
each of the leaves of the class (in the case of proof structures, one can dispense with the new
node, and draw an edge between the matching dual formulas – such edges are usually drawn
horizontally).

We next describe how to associate a proof structure with a proof. The following definition follows
the rules of MLL.

Definition 1.3 The sequentializable proof structures for (cut-free) MLL are the proof structures ob-
tained by the following rules:

{C{ǫ}, (C⊥){ǫ}}[{{C,C⊥}}]

{AU1

1 , . . . , AUn
n , BV , CW }[X]

{AU1

1 , . . . , AUn
n , (BOC)U}[X]

{AU1

1 , . . . , AUn
n , BV }[X] {A′U

′

1

1 , . . . , A′U
′

n′

n′ , CW }[Y]

{AU1

1 , . . . , AUn
n , A′U

′

1

1 , . . . , A′U
′

n′

n′ , (B ⊗ C)U}[X ∪ Y]

where U = {1v | v ∈ V } ∪ {2w | w ∈W}. Sequentializable proof structures are called proof nets.

2

It should be clear that there is a bijective correspondence between MLL proofs and the proofs
of sequentialization. Let us check one direction. We show that if a proof structure with conclu-
sions A1, . . . , An is sequentializable, then a proof that it is so yields an MLL proof of the sequent
⊢ A1, . . . , An. This is easily seen by induction: the proof associated with {C{ǫ}, (C⊥){ǫ}}[{{C,C⊥}}]
is the axiom ⊢ C,C⊥, while the last steps of the proofs associated with {AU1

1 , . . . , AUn
n , (BOC)U}[X]

and {AU1

1 , . . . , AUn
n , A′U

′

1

1 , . . . , A′U
′

n
n , (B ⊗ C)U}[X] are, respectively:

⊢ A1, . . . , An, B, C

⊢ A1, . . . , An, BOC

⊢ A1, . . . , An, B ⊢ A′
1, . . . A

′
n′ , C

⊢ A1, . . . , An, A
′
1, . . . , A

′
n′ , B ⊗ C

The question we shall address in the rest of the section is the following: given a proof structure,
when is it the case that it is sequentializable? It turns out that the right level of generality for this
question is to lift it to paraproof nets, which are defined next.

Definition 1.4 The sequentializable paraproof structures for (cut-free) MLL are the paraproof struc-
tures obtained by the following rules:

{A
{ǫ}
1 , . . . , A

{ǫ}
n }[{{A1, . . . , An}}]

{AU1

1 , . . . , AUn
n , BV , CW }[X]

{AU1

1 , . . . , AUn
n , (BOC)U}[X]

{AU1

1 , . . . , AUn
n , BV }[X] {A′U

′

1

1 , . . . , A′U
′

n′

n′ , CW }[Y]

{AU1

1 , . . . , AUn
n , A′U

′

1

1 , . . . , A′U
′

n′

n′ , (B ⊗ C)U}[X ∪ Y]

where U = {1v | v ∈ V } ∪ {2w | w ∈ W}. Sequentializable paraproof structures are called paraproof
nets.

What is the proof-theoretic meaning of a paraproof net? Well, the above bijective correspon-
dence extends to a correspondence between sequentialization proofs of paraproof structures and MLL
paraproofs, which are defined by the following rules:

⊢ Γ

⊢ Γ1, B ⊢ Γ2, C

⊢ Γ1,Γ2, B ⊗ C

⊢ Γ, B, C

⊢ Γ, BOC

where in the first rule Γ is an arbitrary multiset of formulas. The first rule is called generalized axiom,
or daimon rule. Starting in a proof search mode from an MLL formula A one may build absolutely
freely a paraproof of A, making arbitrary decisions when splitting the context in a ⊗ rule. Any
choice is as good as another, in the sense that the process will be successful at the end, i.e., we shall
eventually reach generalized axioms. There is an interesting subset of paraproofs, which we call the
extreme ones. An extreme paraproof is a paraproof in which in each application of the ⊗ rule we have
Γ1 = ∅ or Γ2 = ∅. The following definition formalizes this notion.

Definition 1.5 The extreme paraproof nets for (cut-free) MLL are the proof structures obtained by
the following rules:

3

{A
{ǫ}
1 , . . . , A

{ǫ}
n }[{{A1, . . . , An}}]

{AU1

1 , . . . , AUn
n , BV , CW }[X]

{AU1

1 , . . . , AUn
n , (BOC)U}[X]

{AU1

1 , . . . , AUn
n , BV }[X] {CW }[Y]

{AU1

1 , . . . , AUn
n , (B ⊗ C)U}[X ∪ Y]

{BV }[X] {AU1

1 , . . . , AUn
n , CW }[Y]

{AU1

1 , . . . , AUn
n , (B ⊗ C)U}[X ∪ Y]

where U = {1v | v ∈ V } ∪ {2w | w ∈W}.

Extreme paraproofs will be soon put to use, but for the time being we are concerned with general
paraproofs. Our first tool is the notion of switching. Let S be a paraproof stucture. A switching is a
function from the set of all internal nodes of (the forest part of) S of the form B1OB2, to {L,R}. A
switching induces a correction (sub)graph, defined as follows. At each internal node B1OB2, we cut
exactly one of the two edges linking B1OB2 to its immediate subformulas, namely the edge between
B1OB2 and B2 if the switching is set to L, and the edge between B1OB2 and B1 if the switching is
set to R. The following definition is due to Danos and Regnier [23], and arose as a simplification of
the original criterion proposed by Girard [29].

Definition 1.6 (DR) We say that a paraproof stucture S satisfies the DR-criterion if all the correc-
tion graphs induced by a switching of S are connected and acyclic (that is, are trees).

Proposition 1.7 All sequentializable paraproof structures satisfy the DR-criterion. Moreover, in each
correction graph, when a switch corresponding to a formula B1OB2 is, say, on the left, then the path
from B1 to B2 does not go through B1OB2.

Proof. We proceed by induction on the definition of paraproof nets. If N is a generalized axiom,
then there is just one switching (the empty one) and the associated correction graph is the graph itself,
which is obviously a tree. If N is obtained from N1 and N2 by a ⊗ rule acting on a conclusion B of N1

and a conclusion C of N2, then a switching of N is a pair of a switching of N1 and a switching of N2.
We know by induction that the corresponding two correction graphs are trees. We can thus organize
them in a tree form, with roots B, C respectively. Then the correction graph for N is obtained by
adding a new root and edges between the new root and B and C, respectively: this is obviously a tree.
Finally, suppose that N is obtained from N1 by a O rule acting on two conclusions B and C of N1,
and consider a switching for N , which assigns, say L, to the new O node. The rest of the switching
determines a correction graph for N1 which is a tree by induction. We can organize the correction
graph for N1 in such a way that B is the root. Then the correction graph for N is obtained by adding
a new root and an edge between the new root and B, and this is again obviously a tree. The second
property of the statement is obvious to check, by induction on the sequentialization proof too. �

Our next tool is a parsing procedure, which takes a paraproof structure and progressively shrinks
it, or contracts it. If the procedure is not blocked, then the paraproof structure is a paraproof net.
This criterion was first discovered by Danos [21]. Guerrini explained the criterion as a successful
parsing procedure [37]. Here we (straightforwardly) extend the procedure from proof structures to
paraproof structures.

4

Definition 1.8 We define the following rewriting system on paraproof structures:

A/u = B1OB2

{Γ, AU∪{u1,u2}}[X, {∆, B1, B2}]→P {Γ, AU∪{u}}[X, {∆, (B1OB2)}]

A/u = B1 ⊗B2

{Γ, AU∪{u1,u2}}[X, {∆1, B1}, {∆2, B2}]→P {Γ, AU∪{u}}[X, {∆1,∆2, B1 ⊗B2}]

We say that a proof structure S = {AU1

1 , . . . , AUn
n }[X] satisfies the weak Parsing criterion if

S →⋆
P {A

{ǫ}
1 , . . . , A{ǫ}

n }[{A1, . . . , An}]

and that it satisfies the strong Parsing criterion if any reduction sequence S →⋆
P S′ can be completed

by a reduction S′ →⋆
P {A

{ǫ}
1 , . . . , A

{ǫ}
n }[{A1, . . . , An}].

Lemma 1.9 If S →P S′, and if S satisfies the DR-criterion, then S′ satisfies the DR-criterion.

Proof. Suppose that S →P S′ by the O rule, and that a switching for S′ has been fixed. S is the
same graph as S′ except that S has two additional vertices B1 and B2 and that the edge connecting
B1OB2 with its class in S′ is replaced by a diamond of edges between B1OB2, B1, B2, and its class
{∆, B1, B2} in S. We extend the switching to S by assigning, say L, to B1OB2 (which is internal in
S). By assumption, the correction graph is a tree. We can take B2 as a root, which has the class
{∆, B1, B2} as unique son, which has B1 among his sons, which has B1OB2 as unique son. Then the
correction graph for the original switching relative to S′ is obtained by collapsing B2 with {∆, B1, B2}
and B1 with B1OB2, and is still a tree.

Suppose now that S →P S′ by the ⊗ rule. A switching of S′ is also a switching for S, whose
associated correction graph is thus a tree. Let us take B1 ⊗ B2 as a root. Then the correction graph
for S′ is obtained as follows: collapse B1, its unique son {∆1, B1}, B2, and its unique son {∆2, B2}.
This clearly yields a tree. �

Proposition 1.10 If a proof structure satisfies the DR-criterion, then it satisfies the strong Parsing
criterion.

Proof. Let S be a paraproof structure with conclusions A1, . . . , An. Clearly, each →P reduction
strictly decreases the size of the underlying forest, hence all reductions terminate. Let S →⋆

P S′,
where S′ cannot be further reduced. We know by Lemma 1.9 that S′ also satisfies the DR-criterion.
We show that S′ must be a generalized axiom (which actually entails that S′ must precisely be

{A
{ǫ}
1 , . . . , A

{ǫ}
n }[{A1, . . . , An}], since the set of conclusions remains invariant under reduction). Sup-

pose that S′ is not a generalized axiom, and consider an arbitrary class Γ of the partition of S′. We
claim that Γ contains at least one formula whose father is a ⊗ node. Indeed, otherwise, each element
of the class is either a conclusion or a formula B whose father is a O node. Note that in the latter
case the other child of the O node cannot belong to the class as otherwise S′ would not be in normal
form. If the father of B is BOC (resp. COB), we set its switch to R (resp. L), and we extend the
switching arbitrarily to all the other internal O nodes of S′. Then the restriction of the correction
graph G to Γ and its elements forms a connected component, which is strictly included in G since S′

is not a generalized axiom. But then G is not connected, which is a contradiction.

5

We now construct a path in S′ as follows. We start from a leaf B1 whose father is a ⊗ node, say
B1 ⊗ C, we go down to its father and then up through C to a leaf B′

1, choosing a path of maximal
length. All along the way, when we meet O nodes, we set the switches in such a way that the path
will remain in the correction graph. B′

1 cannot have a ⊗ node as father, as otherwise by maximality
the other son C′

1 of this father would be a leaf too, that cannot belong to the same class as this
would make a cycle, and cannot belong to another class because S′ is in normal form. Hence, by
the claim, we can pick B2 different from B′

1 in its class whose father is a ⊗ node. We continue our
path by going up from B′

1 to its class, and then down to B2, down to its father, and we consider
again a maximal path upwards from there. Then this path cannot meet any previously met vertice,
as otherwise, setting the switches in the same way as above until this happens, we would get a cycle
in a correction graph. Hence we can reach a leaf B′

2 without forming a cycle, and we can continue like
this forever. But S′ is finite, which gives a contradiction. �

Proposition 1.11 If a paraproof structure satisfies the weak Parsing criterion, then it is sequentiali-
zable.

Proof. We claim that if S →⋆
P S′, then S can be obtained from S′ by replacing each generalized

axiom of S′ by an appropriate paraproof net. We proceed by induction on the length of the derivation.
In the base case, we have S′ = S, and we replace each generalized axiom by itself. Suppose that
S →⋆

P S′
1 →P S′. We use the notation of Definition 1.8. Suppose that S′

1 →P S′ by the O reduction
rule. By induction, we have a paraproof net N to substitute for {∆, B1, B2}. We can add a O node
to N and get a new paraproof net which when substituted for {∆, B1OB2} in S′ achieves the same
effect as the substitution of N in S′

1, keeping the same assignment of paraproof nets for all the other
generalized axioms. The case of the ⊗ rule is similar: we now have by induction two paraproof nets
N1 and N2 to substitute for {∆1, B1} and {∆2, B2}, and we form a new paraproof net by the ⊗ rule
which when substituted for {∆1,∆2, B1 ⊗ B2} in S′ achieves the same effect as the substitution of
N1 and N2 in S′

1. Hence the claim is proved. We get the statement by applying the claim to S and

{A
{ǫ}
1 , . . . , A

{ǫ}
n }[{A1, . . . , An}]. �

We can collect the results obtained so far.

Theorem 1.12 The following are equivalent for a paraproof structure S:

1. S is a paraproof net, i.e., is sequentializable,

2. S satisfies the DR-criterion,

3. S satisfies the strong Parsing criterion,

4. S satisfies the weak Parsing criterion.

Proof. We have proved (1)⇒ (2)⇒ (3) and (4)⇒ (1), and (3)⇒ (4) is obvious. �

These equivalences are easy to upgrade to “full MLL”, that is, to structures that also contain cuts.
We briefly explain how the definitions are extended. A paraproof structure can now be formalized as
[X ′]{AU1

1 , . . . , AUn
n }[X], whereX ′ is a (possibly empty) collection of disjoint subsets of {A1, . . . , An}, of

the form {B,B⊥}. The conclusions of the paraproof structure are the formulas in {A1, . . . , An}\
⋃
X ′.

The underlying graph is defined as above, with now in addition an edge between B and B⊥ for each

6

class of the partial partition X ′. A paraproof is obtained as previously, with a new proof rule, the cut
rule:

⊢ Γ1, B ⊢ Γ2, B
⊥

⊢ Γ1,Γ2

A sequentializable paraproof structure is now one which is obtained through the following formal
system, which adapts and extends (last rule) the one in Definition 1.3.

[]{A
{ǫ}
1 , . . . , A

{ǫ}
n }[{{A1, . . . , An}}]

[X ′]{AU1

1 , . . . , AUn
n , BV , CW }[X]

[X ′]{AU1

1 , . . . , AUn
n , (BOC)U}[X]

[X ′]{AU1

1 , . . . , AUn
n , BV }[X] [Y ′]{A′U

′

1

1 , . . . , A′U
′

n′

n′ , CW }[Y]

[X ′ ∪ Y ′]{AU1

1 , . . . , AUn
n , A′U

′

1

1 , . . . , A′U
′

n′

n′ , (B ⊗ C)U}[X ∪ Y]

[X ′]{AU1

1 , . . . , AUn
n , BV }[X] [Y ′]{A′U

′

1

1 , . . . , A′U
′

n′

n′ , (B⊥)W }[Y]

[X ′ ∪ Y ′ ∪ {{B,B⊥}}]{AU1

1 , . . . , AUn
n , A′U

′

1

1 , . . . , A′U
′

n′

n′ , BV , (B⊥)W }[X ∪ Y]

The parsing rewriting system is adapted and extended as follows:

A/u = B1OB2

[X ′]{Γ, AU∪{u1,u2}}[X, {∆, B1, B2}]→P [X ′]{Γ, AU∪{u}}[X, {∆, (B1OB2)}]

A/u = B1 ⊗B2

[X ′]{Γ, AU∪{u1,u2}}[X, {∆1, B1}, {∆2, B2}]→P [X ′]{Γ, AU∪{u}}[X, {∆1,∆2, B1 ⊗B2}]

[X ′, {B,B⊥}]{Γ, Bǫ, (B⊥)ǫ}[X, {∆1, B}, {∆2, B
⊥}]→P [X ′]{Γ}[X, {∆1,∆2}]

Of course, the formalization begins to become quite heavy. We encourage the reader to draw the
corresponding graph transformations. Theorem 1.12 holds for paraproof structures with cuts. The
cut rule is very similar to the ⊗ rule, and indeed the case of a cut in the proofs is treated exactly like
that of the ⊗ rule.

We have yet one more caracterization of (cut-free, this time) paraproof structures ahead, but let
us pause and take profit from cuts: once they are in the picture, we want to explain how to compute
with them, that is, how to eliminate them. There is a single cut elimination rule, which transforms a
cut between B1 ⊗B2 and B⊥

1 OB⊥
2 into two cuts between B1 and B⊥

1 , and between B2 and B⊥
2 , and

eliminates the vertices B1 ⊗B2 and B⊥
1 OB⊥

2 . Formally:

[X ′, {B1 ⊗B2, B
⊥
1 OB⊥

2 }]{Γ, (B1 ⊗B2)
U , (B⊥

1 OB⊥
2)V }[X]

→ [X ′, {B1, B
⊥
1 }, {B2, B

⊥
2 }]{Γ, B

U1

1 , BU2

2 , (B⊥
1)V1 , (B⊥

2)V2}[X]

7

where U1 = {u | 1u ∈ U} and U2, V1, V2 are defined similarly. Let us stress the difference in nature
between cut-elimination (→) and parsing (→P): the former is of a dynamic nature (we compute
something), while the latter is of a static nature (we check the correctness of something).

How are we sure that the resulting structure is a paraproof net, if we started from a paraproof
net? This must be proved, and we do it next.

Proposition 1.13 If S is a paraproof net and S → S′, then S′ is also a paraproof net.

Proof. In this proof, we use the second part of Proposition 1.7. Let us fix a switching for S′, and a
switching of the O eliminated by the cut rule, say, L. This induces a correction graph on S, which can
be represented with B⊥

1 OB⊥
2 as root, with two sons B1 ⊗ B2 and B⊥

1 , where the former has in turn
two sons B1 and B2. Let us call T1, T2 and T ′

1 the trees rooted at B1, B2 and B⊥
1 , respectively. The

correction graph for S′ is obtained by placing T1 as a new immediate subtree of T ′
1 and T2 as a new

immediate subtree of the tree rooted at B⊥
2 . We use here the fact that we know that B⊥

2 occurs in T ′
1

(the important point is to make sure that it does not occur in T2, as adding a cut between B2 and B⊥
2

would result both in a cycle and in disconnectedness). This shows that S′ satisfies the DR-criterion,
and hence is a paraproof net. �

We now describe yet another characterization of paraproof nets, elaborating on a suggestion of
Girard in [33]. This last criterion is interactive in nature, and as such is an anticipation on the style of
things that will be studied in the subsequent sections. The following definition is taken from [21, 23]
(where it is used to generalize the notion of multiplicative connective).

Definition 1.14 Let E be a finite set. Any two partitions X and Y of E induce a (bipartite) graph
defined as follows: the vertices are the classes of X and of Y , the edges are the elements of E and
for each e ∈ E, e connects the class of e in X with the class of e in Y . We say that X and Y are
orthogonal if the induced graph is connected and acyclic.

Let S be a paraproof structure with conclusions AU1

1 , . . . , AUn
n , and consider a multiset of paraproof

nets N1 = {(A⊥
1)U1}[X1], . . . , Nn = {(A⊥

1)Un}[Xn], which we call collectively a counter-proof for S.
By taking X1 ∪ . . . ∪ Xn, we get a partition of the (duals of the) leaves of S, which we call the
partition induced by the counter-proof. We are now ready to formulate the Counterproof criterion,
or CP-criterion for short.

Definition 1.15 (CP) Let S be a paraproof structure. We say that S satisfies the CP-criterion if its
partition is orthogonal to all the partitions induced by all the counter-proofs of S.

Proposition 1.16 If a paraproof structure S satisfies the DR criterion, then it also satisfies the
CP-criterion.

Proof. Let N1, . . . , Nn be a counter-proof of S. We can form a paraproof net by placing cuts between
A1 and A⊥

1 , etc..., which also satisfies the DR criterion. It is obvious to see that the cut-elimination
ends exactly with the graph induced by the two partitions, and hence we conclude by Proposition
1.13. �

Proposition 1.17 If a paraproof structure satisfies the CP-criterion, then it satisfies the DR-criterion.

8

Proof. Let S = {AU1

1 , . . . , AUn
n }[X] be a paraproof structure satisfying the CP-criterion and let us fix

a switching for S. To this switching we associate a multiset Π of extreme paraproofs of ⊢ A⊥
1 , . . . ,⊢ A

⊥
n ,

defined as follows: the ⊗ rules of the counter-proof have the form

⊢ Γ, B1 ⊢ B2

⊢ Γ, B1 ⊗B2

or
⊢ B1 ⊢ Γ, B2

⊢ Γ, B1 ⊗B2

according to whether the corresponding O of S has its switch set to L or to R, respectively. By
performing a postorder traversal of the counter-proof, we determine a sequence S1, . . . , Sp of paraproof
structures and a sequence Π1, . . . ,Πp of multisets of extreme paraproofs, such that the roots of Πi

determine a partition of the conclusions of Si, for all i. We start with S1 = S and Π1 = Π. We
construct Πi+1 by removing the last rule used on one of the trees of Πi, and Si+1 by removing from
Si the formula (and its incident edges) dual to the formula decomposed by this rule (this is cut
elimination!). We stop at stage p when Πp consists of the generalized axioms of Π only, and when Sp

consists of the partition of S only. Let Gi be the graph obtained by taking the union of Si restricted
according to the (induced) switching and of the set of the roots of Πi, and by adding edges between
a conclusion A of Si and a root ⊢ Γ of Πi if and only if A⊥ occurs in Γ. We show by induction on
p − i that Gi is acyclic and connected. Then applying this to i = p − 1 we obtain the statement,
since G1 is the correction graph associated to our switching to which one has added (harmless) edges
from the conclusions of S to new vertices ⊢ A⊥

1 , . . . ,⊢ A
⊥
n , respectively. The base case follows by

our assumption that S satisfies the CP-criterion: indeed, the graph Gp is obtained from the graph G
induced by X and the partition induced by Π by inserting a new node in the middle of each of its
edges, and such a transformation yields a tree from a tree.

Suppose that one goes from Gi to Gi+1 by removing

⊢ Γ, B1, B2

⊢ Γ, B1OB2

Then, setting N1 = ⊢ Γ, B1, B2 and N ′
1 = ⊢ Γ, B1OB2, Gi is obtained from Gi+1 by renaming N1

as N ′
1, by removing the two edges between B⊥

1 and N1 and between B⊥
2 and N1, by adding a new

vertex B⊥
1 ⊗B

⊥
2 and three new edges linking B⊥

1 ⊗B
⊥
2 with B⊥

1 , B⊥
2 , and N ′

1. Considering Gi+1 as a
tree with root N1, we obtain Gi by cutting the subtrees rooted at B⊥

1 and B⊥
2 and by removing the

corresponding edges out of N1, by adding a new son to N1 and by regrafting the subtrees as the two
sons of this new vertex. This clearly results in a new tree.

Suppose now that one goes from Gi to Gi+1 by removing, say

⊢ Γ, B1 ⊢ B2

⊢ Γ, B1 ⊗B2

Then, setting N1 = ⊢ Γ, B1 and N ′
1 = ⊢ Γ, B1 ⊗B2, Gi is obtained from Gi+1 by renaming N1 as N ′

1,
by removing the vertex ⊢ B2 and the two edges between B⊥

1 and N1 and between B⊥
2 and ⊢ B2, and

by adding a new vertex B⊥
1 OB⊥

2 and two new edges linking B⊥
1 OB⊥

2 with B⊥
1 and N ′

1. Considering
Gi+1 as a tree with root ⊢ B2, we obtain Gi by cutting the root ⊢ B2 (which had a unique son) and
by inserting a new node “in the middle” of the edge between B⊥

1 and N1, which makes a new tree. �

Hence, we have proved the following theorem.

9

Theorem 1.18 The following are equivalent for a paraproof structure S:

1. S satisfies the CP-criterion,

2. S satisfies the DR-criterion.

But there is more to say about this characterization. Let us make the simplifying assumption that
we work with paraproof structures with a single conclusion A (note that any paraproof structure can
be brought to this form by inserting enough final O nodes). Let us say that a paraproof structure of
conclusion A is orthogonal to a paraproof structure of conclusion A⊥ if their partitions are orthogonal.
Given a set H of paraproof structures of conclusion B, we write H⊥ for the set of paraproof structures
of conclusion B⊥ which are orthogonal to all the elements of H . We have (where “of” is shorthand
for “of conclusion”):

{paraproof nets of A⊥}⊥ = {paraproof nets of A}
= {extreme paraproof nets of A⊥}⊥ .

Indeed, Proposition 1.16 and the proof of Proposition 1.17 say that:

{paraproof nets of A} ⊆ {paraproof nets of A⊥}⊥ and
{extreme paraproof nets of A⊥}⊥ ⊆ {paraproof nets of A} ,

respectively, and the two equalities follow since

{paraproof nets of A⊥}⊥ ⊆ {extreme paraproof nets of A⊥}⊥ .

We also have:

{paraproof nets of A} = {paraproof nets of A}⊥⊥

= {extreme paraproof nets of A}⊥⊥ .

Indeed, using the above equalities, we have:

{paraproof nets of A}⊥⊥ = {extreme paraproof nets of A}⊥⊥

= {paraproof nets of A⊥}⊥

= {paraproof nets of A⊥⊥}
= {paraproof nets of A} ,

from which the conclusion follows. Anticipating on a terminology introduced in section 5, we thus
have that the set of paraproof nets of A forms a behaviour, which is generated by the set of extreme
paraproof nets. The paraproof nets of conclusion A are those paraproof structures that “stand the
test” against all the counter-proofs A⊥, which can be thought of opponents. We refer to Exercise 1.21
for another criterion of a game-theoretic flavour.

Putting the two theorems together, we have obtained three equivalent characterizations of sequen-
tializable paraproof structures: the DR-criterion, the Parsing criterion, and the CP-criterion. What
about the characterization of sequentializable proof structures? All these equivalences cut down to
proof structures, thanks to the following easy proposition.

Proposition 1.19 A sequentializable paraproof structure which is a proof structure is also a sequen-
tializable proof structure.

10

Proof. Notice that any application of a generalized axiom in the construction of a paraproof net
remains in the partition until the end of the construction. Hence the only possible axioms must be of
the form {C,C⊥}. �

We end the section by sketching how proof nets for MELL are defined, that is, how the proof nets
can be extended to exponentials. Recall from section 3 that cut-elimination involves duplication of
(sub)proofs. Therefore, one must be able to know exactly which parts of the proof net have to be
copied. To this aim, Girard introduced boxes, which record some sequentialization information on the
net. Boxes are introduced each time a promotion occurs. The promotion amounts to add a new node
to the graph, corresponding to the formula !A introduced by the rule. But at the same time, the part
of the proof net that represents the subproof of conclusion ⊢?Γ, A is placed in a box. The formulas of
?Γ are called the auxiliary ports of the box, while !A is called the principal port. We also add:

• contraction nodes, labelled with a formula ?A, which have exactly two incoming edges also
labelled with ?A,

• dereliction nodes, also labelled with a formula ?A, which have only one incoming edge labelled
with A,

• weakening nodes, labelled with ?A, with no incoming edge.

The corresponding cut-elimination rules are:

• the dereliction rule, which removes a cut between a dereliction node labelled ?A⊥ and a principal
port !A and removes the dereliction node and the box (and its principal port) and places a new
cut between the sons A⊥ of ?A⊥ and A of !A;

• the contraction rule, which removes a cut between a contraction node labelled ?A⊥ and a
principal port !A and removes the contraction node and duplicates the box and places two
new cuts between the two copies of !A and the two sons of ?A⊥ and adds contraction nodes
connecting the corresponding auxiliary ports of the two copies;

• the weakening rule, which removes a cut between a weakening node labelled ?A⊥ and a principal
port !A and removes the weakening node and erases the box except for its auxiliary ports which
are turned into weakening nodes.

All commutative conversions of sequent calculus (cf. part I, section 3) but one disappear in proof
nets. The only one which remains is:

• a rule which concerns the cut between an auxiliary port ?A⊥ of a box and the principal port !A
of a second box, and which lets the second box enter the first one, removing the auxiliary port
?A⊥, which is now cut inside the box.

These rules, and most notably the contraction rule, are global, as opposed to the elimination
rules for MLL, which involve only the cut and the immediately neighbouring nodes and edges. By
performing copying in local, elementary steps, one could hope to copy only what is necessary for the
computation to proceed, and continue to share subcomputations that do not depend on the specific
context of a copy. Such a framework has been proposed by Gonthier and his coauthors in two insigthful
papers [27, 28] bridging Lévy’s optimality theory [50], Lamping’s implementation of this theory [46],

11

and proof nets. A book length account of this work can be found in [7]. It is related to an important
research program, called the geometry of interaction (GOI) [30, 53, 21]. A detailed survey would
need another paper. Here we shall only sketch what GOI is about. The idea is to look at the paths
(in the graph-theoretic sense) in a given proof net and to sort out those which are “meaningful ”
computationally. A cut edge is such a path, but more generally, a path between two formulas which
will be linked by a cut later (that is, after some computation) is meaningful. Such paths may be
termed virtual (a terminology introduced by Danos and Regnier [22]) since they say something about
the reduction of the proof net without actually reducing it. Several independent characterizations of
meaningful paths have been given, and turn out to be all equivalent [6, 7]:

• Legal paths [8], whose definition draws from a careful study of the form of Lévy’s labels, which
provide descriptions of the history of reductions in the λ-calculus and were instrumental in his
theory of optimality.

• Regular paths. One assigns weights (taken in some suitable algebras) to all the edges of the
proof net, and the regular paths are those which have a non-null composed weight.

• Persistent paths. These are the paths that are preserved by all computations, i.e. that no
reduction sequence can break apart. Typically, in a proof net containing a ⊗/O cut

A B

A⊗B

A⊥ B⊥

A⊥
OB⊥

a path going down to A and then up through B⊥ gets disconnected when the cut has been
replaced by the two cuts on A and B, and hence is not persistent.

Any further information on proof nets should be sought for in [29, 32], and for additive proof nets
(which are not yet fully understood) in, say, [55, 42]. We just mention a beautiful complexity result
of Guerrini: it can be decided in (quasi-)linear time whether an MLL proof structure is a proof net
[37].

Exercise 1.20 (MIX rule) We define the Acylicity criterion by removing the connectedness require-
ment in the DR-criterion. Show that this criterion characterizes the paraproof structures that can be
sequentialized with the help of the following additional rule:

{AU1

1 , . . . , AUn
n }[X] {A′U

′

1

1 , . . . , A′U
′

n′

n′ }[Y]

{AU1

1 , . . . , AUn
n , A′U

′

1

1 , . . . , A′U
′

n′

n′ }[X ∪ Y]

that corresponds to adding the following rule to the sequent calculus of MLL, known as the MIX rule:

⊢ Γ ⊢ ∆

⊢ Γ,∆

(Hint: adapt correspondingly the Parsing criteria.)

12

Exercise 1.21 (AJ-criterion) In this exercise, we provide a criterion for cut-free proofs which is
equivalent to the Acyclicity criterion (cf. Exercise 1.20) and thus characterizes MLL+MIX cut-free
proof nets, due to Abramsky and Jagadeesan [2, 9]. Let S = {AU1

1 , . . . , AUn
n }[X] be a proof structure,

and let

M = {m+ | m = (u, i), i ∈ {1, . . . , n}, u ∈ Ui} ∪ {m
− | m = (u, i), i ∈ {1, . . . , n}, u ∈ Ui} .

(M is a set of moves, one of each polarity for each conclusion of an axiom – think of these for-
mulas as the atoms out of which the conclusions of the proof structure are built). Let U = {(v, i) |
v is a prefix of some u ∈ Ui}. Given (v, i) ∈ U and a sequence s ∈M⋆, we define s↾(v,i) as follows:

ǫ↾(v,i)= ǫ (s (u, j)λ)↾(v,i)=

{
(s↾(v,i)) (u, j)λ if i = j and v is a prefix of u
s↾(v,i) otherwise

where λ ∈ {+,−}. A finite sequence s = m−
1 m

+
2 m

−
3 . . . is called a play if it satisfies the following

three conditions:

1. for all (v, i) ∈ U , s↾(v,i) is alternating,

2. for all (v, i) ∈ U , if Ai/v = B1⊗B2, then only Opponent can switch (v, i)-components in s↾(v,i),

3. for all (v, i) ∈ U , if Ai/v = B1OB2, then only Player can switch (v, i)-components in s↾(v,i),

where component switching is defined as follows: Opponent (resp. Player) switches (v, i)-components
if s ↾(v,i) contains two consecutive moves (u, i)−(w, i)+ (resp. (u, i)+(w, i)−) where u = v1u′ and
w = v2w′, or u = v2v′ and w = v1w′.

We need a last ingredient to formulate the criterion. To the partition X we associate a function
(actually, a transposition) φ which maps (u, i) to (w, j) whenever {Ai/u,Aj/w} ∈ X.

We say that S satisfies the AJ-criterion if whenever m−
1 φ(m1)

+m−
2 φ(m2)

+ . . . m−
n is a play,

then m−
1 φ(m1)

+m−
2 φ(m2)

+ . . . m−
n φ(mn)+ is also a play. (It says that φ considered as a strategy is

winning, i.e. can always reply, still abiding to the “rules of the game”.)

Show that an MLL+MIX sequentializable proof structure satisfies the AJ-criterion and that a proof
structure satisfying the AJ-criterion satisfies the Acylicity criterion. (Hints: (1) Show using a mini-
mality argument that if there exists a switching giving rise to a cycle, the cycle can be chosen such that
no two tensors visited by the cycle are prefix one of another. (2) Fix a tensor on the cycle (there must
be one, why?), walk on the cycle going up from there, and let (u, i), φ(u, i), . . . , (w, j), φ(w, j) be the se-
quence of axiom conclusions visited along the way. Consider s = (u, i)− φ(u, i)+ . . . (w, j)− φ(w, j)+.
Show that if the AJ-criterion is satisfied, then all the strict prefixes of s are plays.) Conclude that the
AJ-criterion characterizes MLL+MIX proof nets.

Exercise 1.22 Reformulate the example of cut-elimination given in part I, section 3:

...
⊢?A⊥

O?B⊥, !(A&B)

...
⊢!A⊗!B, ?(A⊥ ⊕B⊥)

⊢!(A&B), ?(A⊥ ⊕B⊥)

using proof nets instead of sequents. Which reductions rule(s) should be added in order to reduce
this proof to (an η-expanded form of the) identity (cf. part I, Remark 3.1)? Same question for the
elimination of the cut on !(A&B). We refer to [48] for a complete study of type isomorphisms in
(polarized) linear logic.

13

2 Towards ludics

The rest of the paper is devoted to ludics, a new research program started by Girard in [36]. Ludics
arises from forgetting the logical contents of formulas, just keeping their locative structure, i.e., their
shape as a tree, or as a storage structure. For example, if (AOB)⊕A becomes an address ξ, then the
(instances of) the subformulas AOB (and its subformulas A and B) and A become ξ1 (and ξ11 and
ξ12) and ξ2, respectively. The relation between formulas and addresses is quite close to the relation
between typed and untyped λ-calculus, and this relation will be made clear in the following section
(as a modest contribution of this paper).

Thus, another aspect of resource consciousness comes in: not only the control on the use of
resources, which is the main theme of linear logic, but also the control on their storage in a shared
memory. An important consequence of this is that ludics gives a logical status to subtyping, a feature
related to object-oriented programming languages. It has been long observed that the semantics of
subtyping, record types, intersection types, is not categorical, i.e. cannot be modelled naturally in
the framework of category theory, unlike the simply typed λ-calculus, whose match with cartesian
closed categories has been one of the cornerstones of denotational semantics over the last twenty
years. Ludics points to the weak point of categories: everything there is up to isomorphism, up to
renaming. The framework of ludics forces us to explicitly recognize that a product of two structures
calls for the copying of their shape in two disjoint parts of the memory. When this is not done, we
simply get intersection types, so the product, or additive conjunction, appears as a special case of a
more general connective, called the intersection.

As a matter of fact, prior to the times of categorical semantics, denotational semantics took models
of the untyped λ-calculus as its object of study. The whole subject started with Scott’s solution to the
domain equation D = D → D, which allows us to give a meaning to self-application. The early days
of semantics were concerned with questions such as the completeness of type assignment to untyped
terms (as happens in programming languages like ML which have static type inference) [40, 10]. Types
were interpreted as suitable subsets of the untyped model, the underlying intuition being that of types
as properties: a type amounts to the collection of all (untyped) terms to which it can be assigned. In
this framework, subtyping is interpreted by inclusion, and intersection types by ... intersection [52, 12].
Ludics invites us to revisit these ideas with new glasses, embodying locations, and interactivity: in
ludics, the intuition is that of types as behaviours, which adds an interactive dimension to the old
paradigm.

Another key ingredient of ludics is the daimon, which the author of this paper recognized as an
error element. We mean here a recoverable error in the sense of Cardelli-Wegner [13]. Such an error
is a rather radical form of output, that stops execution and gets propagated to the top level. If
the language is endowed with error-handling facilities, then programs can call other programs called
handlers upon receiving such error messages, whence the name ”recoverable”. The importance of
errors in denotational semantics was first noted by Cartwright and Felleisen in (1991) (see [14]). If A
is an algorithm of two arguments such that A(err,⊥) = err, this test, or interaction between A and
(err,⊥) tells us that A wants to know its first argument before anything else. This information reveals
us a part of the computation strategy of A. Note that A(err,⊥) = ⊥ holds for an algorithm A that
will examine its second argument first. It may then seem that err and ⊥ play symmetric rôles. This
is not quite true, because ⊥ means “undefined”, with the meaning of “waiting for some information”,
that might never come. So err is definitely terminating, while we don’t know for ⊥: ⊥ is a sort of
error whose meaning is overloaded with that of non-termination.

14

In ludics, Girard introduces (independently) the daimon, denoted by z, with the following moti-
vation. Ludics is an interactive account of logic. So the meaning of a (proof of a) formula A lies in its
behavior against observers, which are the proofs of other formulas, among which the most essential
one is its (linear) negation A⊥ (not A, the negation of linear logic [29, 32]). This is just like the
contextual observational semantics of a program, where the meaning of a piece of program M is given
by all the observations of the results of the evaluation of C[M], where C ranges over full (closed,
basic type) program contexts. Now, there is a problem: if we have a proof of A, we hardly have a
proof of A⊥. There are not enough “proofs”: let us admit more! This is the genesis of the daimon.
Proofs are extended to paraproofs (cf. section 1): in a paraproof, one can place daimons to signal
that one gives up, i.e., that one assumes some formula instead of proving it. Hence there is always a
paraproof of A⊥: the daimon itself, which stands for “assume A⊥” without even attempting to start
to write a proof of it. The interaction between any proof of A and this “proof” reduced to the daimon
terminates immediately. There are now enough inhabitants to define interaction properly!

We borrow the following comparison from Girard. In linear algebra, one expresses that two vectors
x and y are orthogonal by writing that their scalar product 〈x | y〉 is 0: we are happy that there is
“enough space” to allow a vector space and its orthogonal to have a non-empty intersection. Like 0,
the daimon inhabits all (interpretations of) formulas, and plays the role of an absorbing element (as
we shall see, it is orthogonal to all its counter-paraproofs). It even inhabits – and is the only (defined)
inhabitant of – the empty sequent, which in this comparison could be associated with the base field.
But the comparison should not be taken too seriously.

In summary, errors or daimons help us to terminate computations and to explore the behavior
of programs or proofs interactively. Moreover, computation is “streamlike”, or demand-driven. The
observer detains the prompt for further explorations. If he wants to know more, he has to further defer
giving up, and hence to display more of his own behavior. This is related to lazy style in programming,
where one can program, say, the infinite list of prime numbers in such a way that each new call of
the program will disclose the next prime number. Coroutines come to mind here too, see [20] for a
discussion.

A third ingredient of ludics is focalization, which we explain next. In section 2 of part I, we
observed that the connective ⊗ distributes over ⊕ and that both connectives are irreversible, and
that on the other hand O distributes over & and that both connectives are reversible. We introduced
there the terminology of positive connectives (⊗, ⊕) and negative connectives (O, &). We extend the
terminology to formulas as follows: a formula is positive (resp. negative) if its topmost connective is
positive (resp. negative).

Andreoli shed further light on this division through his work on focalization [5]. His motivation
was to reduce the search space for proofs in linear logic. Given, say, a positive formula, one groups
its positive connectives from the root, and then its negative connectives, etc.... Each grouping is
considered as a single synthetic connective. Let us illustrate this with an example. Consider ((N1 ⊗
N2)&Q)OR, with Q,R, and P = N1 ⊗ N2 positive and N1, N2 negative. The signs, or polarities of
these formulas show evidence of the fact that maximal groupings of connectives of the same polarity
have been made. We have two synthetic connectives, a negative and ternary one that associates
(P&Q)OR with P,Q,R, and a positive one which is just the connective ⊗. The rule for the negative
synthetic connective is:

⊢ P,R,Λ ⊢ Q,R,Λ

⊢ (P&Q)OR,Λ

15

Thus, a focused proof of ((N1 ⊗N2)&Q)OR ends as follows:

⊢ N1, R,Λ1 ⊢ N2,Λ2

⊢ N1 ⊗N2, R,Λ ⊢ Q,R,Λ

⊢ ((N1 ⊗N2)&Q)OR,Λ

Notice the alternation of the active formulas in the proof: negative ((P&Q)OR), then positive (N1 ⊗
N2), etc... (We recall that at each step the active formula is the formula whose topmost connective
has just been introduced.) The same proof can be alternatively presented as follows:

N⊥
1 ⊢ R,Λ1 N⊥

2 ⊢ Λ2

⊢ N1 ⊗N2, R,Λ ⊢ Q,R,Λ

((N1 ⊗N2)
⊥ ⊕Q⊥)⊗R⊥ ⊢ Λ

The advantage of this formulation is that it displays only positive connectives. Notice also that there is
at most one formula on the left of ⊢. This property is an invariant of focalization, and is a consequence
of the following observation.

Remark 2.1 In a bottom-up reading of the rules of MALL, only the O rule augments the number of
formulas in the sequent. In the other three rules for &, ⊗, and ⊕, the active formula is replaced by
a single subformula, and the context stays the same or gets shrinked. Thus, only a negative formula
can give rise to more than one formula in the same sequent when it is active.

Adapting this remark to synthetic connectives, we see that only a negative synthetic connective can
give rise to more than one formula when it is active, and these formulas are positive by the maximal
grouping.

The focusing discipline is defined as follows:

1. Once the proof-search starts the decomposition of a formula, it keeps decomposing its subfor-
mulas until a connective of the opposite polarity is met, that is, the proof uses the rules for
synthetic connectives;

2. A negative formula if any is given priority for decomposition.

The focusing discipline preserves the invariant that a (monolateral) sequent contains at most one
negative formula. Indeed, if the active formula is positive, then all the other formulas in the sequent
are also positive (as if there existed a negative formula it would have to be the active one), and
then all the premises in the rule have exactly one negative formula, each of which arises from the
decomposition of the active formula (like N1 or N2 above). If the active formula is negative, then all
the other formulas of the sequent are positive, and each premise of the rule is a sequent consisting
of positive formulas only (cf. P,Q,R above). Initially, one wants to prove a sequent consisting of a
single formula, and such a sequent satisfies the invariant.

From now on, we consider sequents consisting of positive formulas only and with at most one
formula on the left of ⊢. We only have positive synthetic connectives, but we now have a left rule and
a set of right rules for each of them: the right rules are irreversible, while the left rule is reversible.

16

Note that the left rule is just a reformulation of the right rule of the corresponding negative synthetic
connective. Here are the rules for the ternary connective (P⊥ ⊕Q⊥)⊗R⊥:

{{P,R}, {Q,R}}
⊢ P,R,Λ ⊢ Q,R,Λ

(P⊥ ⊕Q⊥)⊗R⊥ ⊢ Λ

{P,R}
P ⊢ Γ R ⊢ ∆

⊢ (P⊥ ⊕Q⊥)⊗R⊥,Γ,∆

{Q,R}
Q ⊢ Γ R ⊢ ∆

⊢ (P⊥ ⊕Q⊥)⊗R⊥,Γ,∆

Here is how the top right rule has been synthesized:

P ⊢ Γ

⊢ P⊥ ⊕Q⊥,Γ R ⊢ ∆

⊢ (P⊥ ⊕Q⊥)⊗R⊥,Γ,∆

The synthesis of the other rules is similar. Note that the isomorphic connective (P⊥⊗Q⊥)⊕(P⊥⊗R⊥),
considered as a ternary connective, gives rise to the same rules. For example the top right rule is now
synthesized as follows:

P ⊢ Γ R ⊢ ∆

⊢ P⊥ ⊗R⊥,Γ

⊢ ((P⊥ ⊗Q⊥)⊕ (P⊥ ⊗R⊥),Γ,∆

More generally, it is easily seen that any positive synthetic connective, viewed as a linear term
over the connectives ⊗ and ⊕, can be written as a ⊕ of ⊗, modulo distributivity and associativity:

P (N1, . . . , Nk) = · · · ⊕ (Nφ(m,1) ⊗ · · · ⊗Nφ(m,jm))⊕ · · ·

where m ranges over {1, . . . n} for some n, the range of φ is {1, . . . , k}, for each m the map φ(m,) =
λj.φ(m, j) is injective, and the map λm.φ(m,) is injective (for example, for (N1⊕N2)⊗N3, we have
n = 2, j1 = j2 = 2, φ(1, 1) = 1, φ(1, 2) = 3, φ(2, 1) = 2, and φ(2, 2) = 3). Note that the connective
is equivalently described by a (finite) set of finite subsets of {1, . . . , k}. The rules for P (· · ·) are as
follows (one rule for each m ∈ {1, . . . n}):

Nφ(m,1) ⊢ Λ1 · · · Nφ(m,jm) ⊢ Λjm

⊢ P (N1, . . . , Nk),Λ1, . . .Λjm

There is one rule (scheme) corresponding to each component of the ⊕ that selects this component and
splits its ⊗. Dually, a negative synthetic connective can be written as a & of O:

N(P1, . . . , Pk) = · · · & (Pφ(m,1)O · · ·OPφ(m,jm)) & · · ·

Here is the rule for N(· · ·).

17

⊢ Pφ(1,1), . . . , Pφ(1,j1),Λ · · · ⊢ Pφ(n,1), . . . , Pφ(n,jn),Λ

N(P1, . . . , Pk)⊥ ⊢ Λ

There is one premise corresponding to each component of the &, and in each premise the O’s have
been dissolved into a sequence of positive formulas.

Remark 2.2 Note that in the negative rule we have no choice for the active formula: it is the unique
formula on the left. Thus, the negative rule is not only reversible at the level of the formula N(· · ·),
but also at the level of the sequent N(· · ·)⊥ ⊢ Λ. In contrast, in a positive rule, one has to choose not
only the m and the disjoint Λ1, . . . ,Λjm

, as noted above, but also the formula P (· · ·) in the sequent
⊢ P (· · ·),Λ.

Below, we display some examples of non-focusing proofs:

...

⊢ P&Q,N1,Λ1

...

⊢ R,N2,Λ2

⊢ P&Q,R,N1 ⊗N2,Λ1,Λ2

⊢ (P&Q)OR,N1 ⊗N2,Λ1,Λ2

...

⊢ (P&Q)OR,N1,Λ1

...

⊢ N2,Λ2

⊢ (P&Q)OR,N1 ⊗N2,Λ1,Λ2

In the first proof, we did not respect the maximal grouping of negative connectives, and we abandoned
our focus on (P&Q)OR to begin to work on another formula of the sequent. In the second proof, we
did not respect the priority for the negative formula of the sequent. These examples show that the
change of granularity induced by focusing is not innocuous, because the focusing discipline forbids
some proofs. Of course, this was the whole point for Andreoli and Pareschi, who wanted to reduce the
search space for proofs. But is the focusing discipline complete in terms of provability? The answer is
yes [5], i.e., no provable sequents are lost. The result actually holds for the whole of linear logic, with
! (resp. ?) acting on a negative (resp. positive) formula to yield a positive (resp. negative) formula
(see Remark 2.5).

Before we state and sketch the proof of the focalization theorem, we introduce a focusing sequent
calculus [5, 35] which accepts only the focusing proofs. First, we note that a better setting for polarized
formulas consists in insisting that a positive connective should connect positive formulas and a negative
connective should connect negative formulas. This is possible if we make changes of polarities explicit
with the help of change-of-polarity operators (cf., e.g., [47]). For example, ((N1 ⊗N2)&Q)OR should
be written as (↑ ((↓N1)) ⊗(↓N2))&(↑Q))O(↑R). For MALL, we get the following syntax for positive
and negative formulas (assuming by convention that the atoms X are all positive, which is no loss of
generality since we get “as many” negative atoms X⊥).

18

P ::= X || P ⊗ P || P ⊕ P || 1 || 0 ||↓N
N ::= X⊥ || NON || N&N || ⊥ || ⊤ ||↑P

The operators ↓and ↑are called the shift operations. There are two kinds of sequents: ⊢ Γ; and ⊢ Γ;P
where in the latter the only negative formulas allowed in ∆ are atoms. The zone in the sequent on
the right of “;” is called the stoup, a terminology which goes back to an earlier paper of Girard on
classical logic [31]. The stoup is thus either empty or contains exactly one formula. The rules of this
sequent calculus are as follows (we omit the units):

⊢ P⊥;P

Focalization
⊢ Γ;P

⊢ Γ, P ;

SHIFT
⊢ Γ, P ;

⊢ Γ, ↑P ;

⊢ ∆, N ;

⊢ ∆; ↓N

POSITIVE
⊢ Γ;P1

⊢ Γ;P1 ⊕ P2

⊢ Γ;P2

⊢ Γ;P1 ⊕ P2

⊢ Γ1;P1 ⊢ Γ2;P2

⊢ Γ1,Γ2;P1 ⊗ P2

NEGATIVE
⊢ N1, N2,Γ;

⊢ N1ON2,Γ;

⊢ N1,Γ; ⊢ N2,Γ;

⊢ N1&N2,Γ;

In the focalization rule we require that the negative formulas of Γ (if any) are atomic. It should be
clear that focusing proofs are in exact correspondence with the proofs of linear logic that respect
the focusing discipline. In one direction, one inserts the shift operations at the places where polarity
changes, like we have shown on a sample formula, and in the other direction one just forgets these
operations. The synthetic connective view further abstracts from the order in which the negative
subformulas of a negative connective are decomposed.

Remark 2.3 In view of the above sequent calculus, a weaker focusing discipline appears more natural,
namely that obtained by removing the constraint that in a sequent with a non-empty stoup the context
consists of positive formulas and negative atoms only. What then remains of the focusing discipline is
to maintain the focus on the decomposition of positive formulas, which is enforced under the control
of the stoup.

Theorem 2.4 (Focalization) The focusing discipline is complete, i.e., if ⊢ A is provable in linear
logic, then it is provable by a cut-free proof respecting the focusing discipline.

Proof (indication). The theorem says among other things that nothing is lost by giving priority
to the negative connectives. In the two examples of non-focusing proofs, the decomposition of the ⊗
can be easily permuted with the decomposition of the &, or of the O. Conversely, the decomposition
of O has given more possibilities of proofs for the decomposition of ⊗, allowing to send P&Q on the

19

left and R on the right. But, more importantly, the theorem also says that nothing is lost by focusing
on a positive formula and its topmost positive subformulas. More precisely, not any positive formula
of the sequent to prove will do, but at least one of them can be focused on, as the following example
shows:

⊢ N2, N
⊥
2 ⊢ N3, N

⊥
3

⊢ N2 ⊗N3, N
⊥
2 , N

⊥
3

⊢ N2 ⊗N3, N
⊥
2 ON⊥

3 ⊢ N4, N
⊥
4

⊢ N2 ⊗N3, N4 ⊗ (N⊥
2 ON⊥

3), N⊥
4

⊢ N1 ⊕ (N2 ⊗N3), N4 ⊗ (N⊥
2 ON⊥

3), N⊥
4

This proof is not focused: the decomposition of the first positive formula N1 ⊕ (N2 ⊗ N3) of the
conclusion sequent is blocked, because it needs to access negative subformulas of the second positive
formula. But focusing on the second formula works:

⊢ N2, N
⊥
2 ⊢ N3, N

⊥
3

⊢ N2 ⊗N3, N
⊥
2 , N

⊥
3

⊢ N1 ⊕ (N2 ⊗N3), N
⊥
2 , N

⊥
3

⊢ N1 ⊕ (N2 ⊗N3), N
⊥
2 ON⊥

3 ⊢ N4, N
⊥
4

⊢ N1 ⊕ (N2 ⊗N3), N4 ⊗ (N⊥
2 ON⊥

3), N⊥
4

A simple proof of the focalization theorem can be obtained by putting these observations together
(Saurin [54]). More precisely, the following properties of sequents of linear logic are easily proved:

(1) Any provable sequent ⊢ Γ, N has a proof in which N is active at the last step: this is an easy
consequence of the fact that a configuration “negative rule followed by positive rule” can be
permuted to a configuration “positive rule followed by negative rule” (and not conversely).

(2) Any provable sequent ⊢ Γ consisting of positive formulas only is such that there exists at least one
formula P of Γ and a proof of ⊢ Γ which starts (from the root) with a complete decomposition
of (the synthetic connective underlying) P . Let us sketch the proof. If the last step of the proof
is a ⊕ introduction, say, Γ = ∆, A1⊕A2 and ⊢ Γ follows from ⊢ ∆, A1, induction applied to the
latter sequent yields either A1, in which case A1⊕A2 will do, or a formula P of ∆, in which case
we take that formula, and we modify the proof of ⊢ ∆, A1 obtained by induction, as follows: we
spot the place where A1 appears when the decomposition of P is completed, and insert the ⊕
introduction there, replacing systematically A1 by A1⊕A2 from the insertion point down to the
root, yielding a proof of ⊢ ∆, A1 ⊕A2 that satisfies the statement. The tensor case is similar.

20

Then a focalized proof can be obtained out of any MALL proof by repeatedly applying (1) to a
cut-free proof so as to turn the sequent into a sequent of positive formulas only, and then (2), etc...
The size of the sequents decreases at each step, so the procedure creates no infinite branch. The
same property is likely to work in presence of exponentials, using the same kind of ordinal as in a
cut-elimination proof.

Steps (1) and (2) may seem ad hoc manipulations, but in fact, they can be taken care of by
cut-elimination. For example, setting R′ = P&Q, we can reshape the proof

...

⊢ R′
OR,N1,Λ1

...

⊢ N2,Λ2

⊢ R′
OR,N1 ⊗N2,Λ1,Λ2

so as to get a proof ending with the decomposition of the negative connective O, as follows:

...

⊢ R′
OR,N1,Λ1

⊢ R′⊥, R′ ⊢ R⊥, R

⊢ (R′
OR)⊥, R,R′

⊢ R′, R,N1,Λ1

...

⊢ N2,Λ2

⊢ R′, R,N1 ⊗N2,Λ1,Λ2

⊢ R′
OR,N1 ⊗N2,Λ1,Λ2

This kind of transformation can be performed systematically, so as to yield a proof which can be
formalized in the focused sequent calculus with cuts. The resulting proof can then be run through the
cut-elimination in the focused caclulus, yielding a focused and cut-free proof. This approach is closer
to Andreoli’s original proof (see [49] for details). �

Remark 2.5 As a hint of how the focalization theorem extends to exponentials, let us mention that
Girard has proposed to decompose !N and ?P as ↓ ♯N and ↑ ♭P , where ♯ is a negative connective,
taking a negative formula N to a negative formula ♯N and where ♭ is dually a positive connective. The
change-of-polarity aspect of ! and ? is taken care of by the already introduced just-change-of-polarity
operators ↓ and ↑. The rules for these connectives in the focusing system are as follows:

⊢?Γ, N ;

⊢?Γ, ♯N ;

⊢ Γ;P

⊢ Γ; ♭P

⊢ Γ;

⊢ Γ, ♭P ;

⊢ Γ, ♭P, ♭P ;

⊢ Γ, ♭P ;

Exercise 2.6 Show that the focusing proof system (in its weaker form) enjoys the cut-elimination
property.

Exercise 2.7 Show that ♯ is reversible, and discuss the irreversibility of ♭.

21

3 Designs

We now arrive at the basic objects of ludics: the designs, which are “untyped paraproofs” (cf. section
1). Designs are (incomplete) proofs from which the logical content has been almost erased. Formulas
are replaced by their (absolute) addresses, which are sequences of relative addresses recorded as
numbers. Thus addresses are words of natural numbers. We let ζ, ξ, · · · ∈ ω⋆ range over addresses.
We use ξ ⋆ J to denote {ξj | j ∈ J}, and we sometimes write ξ ⋆ i for ξi. The empty address is written
ǫ. Girard uses the terminology locus and bias for absolute address and relative address, respectively.
Let us apply this forgetful transformation to our example (P⊥ ⊕ Q⊥) ⊗ R⊥ of the previous section,
assigning relative addresses 1, 2, 3 to P⊥, Q⊥, R⊥, respectively.

(−, ξ, {{1, 3}, {2, 3}})
⊢ ξ1, ξ3,Λ ⊢ ξ2, ξ3,Λ

ξ ⊢ Λ

(+, ξ, {1, 3})
ξ1 ⊢ Γ ξ3 ⊢ ∆

⊢ ξ,Γ,∆

(+, ξ, {2, 3})
ξ2 ⊢ Γ ξ3 ⊢ ∆

⊢ ξ,Γ,∆

Notice the sets {1, 3} and {2, 3} appearing in the names of the rules. They can be thought of as a
reservation of some (relative) addresses, to be used to store immediate subformulas of the current
formula. Girard calls these sets ramifications.

We then consider a notion of “abstract sequent”: a negative (resp. positive) base (also called
pitchfork by Girard) has the form ξ ⊢ Λ (resp. ⊢ Λ), where Λ is a finite set of addresses, i.e., a base is
a sequent of addresses. We always assume a well-formedness conditions on bases: that all addresses
in a base are pairwise disjoint (i.e. are not prefix one of the other). We spell out this condition in the
key definitions.

The designs are trees built via the following rules (ω denotes the set of natural numbers, and Pf (ω)
denotes the set of finite subsets of ω):

Daimon: (⊢ Λ well formed)

z

⊢ Λ

Positive rule (I ⊆ ω finite, one premise for each i ∈ I, all Λi’s pairwise disjoint and included in Λ,
⊢ ξ,Λ well formed):

(+, ξ, I)
· · · ξi ⊢ Λi · · ·

⊢ ξ,Λ

Negative rule (N ⊆ Pf (ω) possibly infinite, one premise for each J ∈ N , all ΛJ ’s included in Λ,
ξ ⊢ Λ well formed):

(−, ξ,N)
· · · ⊢ ξ ⋆ J,ΛJ · · ·

ξ ⊢ Λ

22

The first rule is the type-free version of the generalized axioms of Definition 1.2, while the two other
rules are the type-free versions of the rules for the synthetic connectives given in section 2. The root
of the tree is called the base of the design. A design is called negative or positive according to whether
its base is positive or negative.

Here is how a generic negative design ends.

(−, ξ1,N1)
· · ·

(+, ξ2, I1)
· · ·

(−, ξ2i1,N2)
· · ·

(+, ξ3, I2)
· · · ξ3i2 ⊢ Λ5 · · ·

⊢ ξ2i1 ⋆ J2,Λ4 · · ·

ξ2i1 ⊢ Λ3 · · ·

⊢ ξ1 ⋆ J1,Λ2 · · ·

ξ1 ⊢ Λ1

Note that the definition allows infinite designs, because the negative rule allows for infinite branch-
ing. But we also allow vertical infinity, i.e., infinite depth, and in particular we allow for recursive
definitions of designs, as in the following fundamental example. The fax Fax ξ,ξ′ based on ξ ⊢ ξ′ is the
infinite design which is recursively specified as follows:

Fax ξ,ξ′ =

(−, ξ,Pf(ω))
· · ·

(+, ξ′, J1)
· · · Fax ξ′j1,ξj1 · · ·

⊢ ξ ⋆ J1, ξ
′ · · ·

ξ ⊢ ξ′

As its name suggests, the fax is a design for copying, which is the locative variant of identity, as it
maps data to the “same” data, but copied elsewhere. It is indeed folklore from the work on game
semantics (see e.g. [3]) – and actually from the earlier work of [11] – that computations are just
mosaics of small bricks consisting of such copycat programs. Partial (finite or infinite) versions of the
fax are obtained by deciding to place some N ’s instead of having systematically Pf (ω) everywhere.
How to define infinite designs of this kind and solve such recursive equations precisely is the matter
of exercise 3.16. Other simple examples of designs are given in definition 3.4.

Remark 3.1 Note that the three rules embody implicit potential weakening. Recall that weakening
consists in deriving Γ,Γ′ ⊢ ∆,∆′ from Γ ⊢ ∆ (for arbitrary Γ′ and ∆′). Indeed, in the Daimon rule,
Λ is arbitrary, and in the two other rules we only require that Λ contains the union of the Λi’s (resp.
the ΛJ ’s) (see also Remark 3.11).

Remark 3.2 It is immediate that the addresses appearing in a design based on ⊢ Λ (resp. on ζ ⊢ Λ)
are extensions ξξ′ of addresses ξ of Λ (resp. {ζ} ∪ Λ). Also, it is easy to see that the property of
well-formedness is forced upon designs whose base has the form ⊢ ξ or ξ ⊢, as well as the following
one (the parity of an address refers to whether its length is even or odd):

• All addresses in each base on the right of ⊢ have the same parity, and then the formula on the
left if any has the opposite parity.

23

Girard requires this propertiy explicitly in the definition of a base. It does not appear to play an
essential role, though.

Two flavors of designs. Girard also gives an alternative definition of designs, as strategies. Let us
briefly recall the dialogue game interpretation of proofs (cf. part I, section 2). In this interpretation,
proofs are considered as strategies for a Player playing against an Opponent. The Player plays
inference rules, and the opponent chooses one of the premises in order to challenge the Player to
disclose the last inference rule used to establish this premise, etc... . In a positive rule, Player chooses
a ξ and an I. (Going back to the setting of section 2, he chooses which formula (ξ) to decompose,
and which synthetic rule (I) to apply.) But in a negative rule (−, ξ,N), Player does not choose the ξ
(cf. Remark 2.2). Moreover, we can equivalently formulate the information conveyed by N by adding
a premise Ω (“undefined”) for each I 6∈ N : intuitively, the non-presence of I in N is not a choice of
Player, but rather a deficiency of her strategy: she has not enough information to answer an “attack”
of Opponent that would interrogate this branch of the tree reduced to Ω. These remarks suggest a
formulation where the negative rule disappears, or rather is merged with the positive rule:

(+, ξ, I)

i∈I
︷ ︸︸ ︷

· · ·

J∈Pf (ω)
︷ ︸︸ ︷

· · · ⊢ ξi ⋆ J,Λi,J · · · · · ·

⊢ ξ,Λ

where Λi1,J1
and Λi2,J2

are disjoint as soon as i1 6= i2. And we need to introduce Ω:

Ω

⊢ Λ

This axiom is used for each J ′ ∈ Pf (ω) \ N . Note that this change of point of view leads us to add a
new tree that did not exist in the previous definition, namely the tree reduced to the Ω axiom. Girard
calls it the partial design.

Remark 3.3 Note that in the above formulation of the rule, there are infinitely many premises, that
are split into a finite number of infinite sets of premises, one for each i ∈ I. The syntax that we shall
introduce below respects this layering.

Under this presentation of designs, an Opponent’s move consists in picking an i (or ξi), and a J .
We thus use names (−, ζ, J) to denote Opponent’s moves after a rule (+, ξ, I), with ζ = ξi for some
i ∈ I. Here is how the generic example above gets reformulated:

· · ·

Ω

⊢ ξ1 ⋆ J ′
1,Λ

′
2 · · ·

(+, ξ2, I1)
· · ·

Ω

⊢ ξ2i1 ⋆ J ′
2,Λ

′
4 · · ·

(+, ξ3, I2)
· · ·

⊢ ξ2i1 ⋆ J2,Λ4 · · ·

⊢ ξ1 ⋆ J1,Λ2 · · ·

Finally, we can get rid of the “abstract sequents”, and we obtain a tree (resp. a forest) out of a
positive (resp. negative) design, whose nodes are labelled by alternating moves (+, ξ, I) and (−, ζ, J),
which are called positive and negative actions, respectively:

24

· · ·

Ω

(−, ξ1, J ′
1) · · ·

(+, ξ2, I1)
· · ·

Ω

(−, ξ2i1, J ′
2) · · ·

(+, ξ3, I2)
· · ·

(−, ξ2i1, J2) · · ·

(−, ξ1, J1) · · ·

By abuse of language (especially for Ω), Ω and z can also be called positive actions. We say that
(+, ξ, I) (resp. (−, ζ, J)) is focalized in ξ (resp. ζ). The opposite (or dual) of an action (+, ξ, I) (resp.
(−, ξ, I)) is the action (−, ξ, I) (resp. (+, ξ, I)).

Girard describes the tree or forest of actions as its set of branches, or chronicles, which are al-
ternating sequences of actions (see Remark 3.8). A chronicle ending with a negative (resp. positive)
action is called negative (resp. positive). Here, we choose a slightly different approach, and we present
a syntax for designs. More precisely, we first present pseudo-designs, or raw designs, and we use a
typing system (or, rather, a sorting system) to single out the designs as the well-typed pseudo-designs.

Here is the syntax:

Positive pseudo-designs φ ::= Ω || z || (+, ξ, I) · {ψξi | i ∈ I}
Negative pseudo-designs ψζ ::= {(−, ζ, J)φJ | J ∈ Pf (ω)}

We shall use the notation ψζ,J for φJ . We remark:

• the rôle of I that commands the cardinality of the finite set of the ψξi’s;

• the uniform indexation by the set of all finite parts of ω of the set of trees of a pseudo-design
ψζ ;

• the rôle of the index ζ in ψζ , that commands the shape of its initial negative actions.

The syntax makes it clear that a positive design is a tree the root of which (if different from Ω and
z) is labelled by a positive action (+, ξ, I) and has branches indexed by i ∈ I and J ∈ Pf(ω). The
corresponding subtrees are grouped in a layered way (cf. Remark 3.3): for each i, the subtrees intexed
by i, J , for J varying over Pf(ω) form a negative design ψξi, each of whose trees has a root labelled
with the corresponding negative action (−, ξi, J). Note that each negative root (−, ξi, J) has a unique
son: designs are strategies, i.e., Player’s answers to Opponent’s moves are unique.

The following definition collects a few useful designs expressed in our syntax.

Definition 3.4 We set:

Dai = z

Dai−ξ = {(−, ξ, J)z | J ∈ Pf (ω)}
Skunkξ = {(−, ξ, J)Ω | J ∈ Pf(ω)}
Skunk+

(ξ,I) = (+, ξ, I) · {{(−, ξi, J)Ω | J ∈ Pf (ω)} | i ∈ I}

Ram(ξ,I) = (+, ξ, I) · {{(−, ξi, J)z | J ∈ Pf (ω)} | i ∈ I}
DirN = {(−, ǫ, I)z | I ∈ N} ∪ {(−, ǫ, I)Ω | I 6∈ N}

25

The skunk is an animal that stinks and has therefore degree zero of sociability, where sociability is
measured by the capacity for compromise, expressed by z in ludics (see Exercise 4.6).

Not every term of this syntax corresponds to a design, whence our terminology of pseudo-design.
We can recover those pseudo-designs that come from designs as the “correctly typed” ones. More
precisely, designs can be defined either as typing proofs of pseudo-designs (our first definition earlier
in the section), or as typable pseudo-designs. Girard uses the French words “dessin” and “dessein”
to name these two flavours, respectively. This is reminiscent of the distinction between typing “à la
Church” and typing “à la Curry”, respectively. Here is the “type system”:

(⊢ Λ well formed)

Ω : (⊢ Λ)

(⊢ Λ well formed)

z : (⊢ Λ)

· · · ψξi : (ξi ⊢ Λi) · · ·

i ∈ I
∀ i Λi ⊆ Λ
∀ i1, i2 (i1 6= i2 ⇒ Λi1 ∩ Λi2 = ∅)
⊢ ξ,Λ well formed

(+, ξ, I) · {ψξi | i ∈ I} : (⊢ ξ,Λ)

· · · φJ : (⊢ ζ ⋆ J,ΛJ) · · ·

J ∈ Pf (ω)
∀ J ΛJ ⊆ Λ
ζ ⊢ Λ well formed

{(−, ζ, J)φJ | J ∈ Pf (ω)} : (ζ ⊢ Λ)

We also write Ψ : {. . . , (ζi ⊢ Λi), . . .} if Ψ = {ψζ1
, . . . , ψζn

} and ψζi
: (ζi ⊢ Λi) for all i (finite number

of bases).

Definition 3.5 A design is a typable pseudo-design 6= Ω. The pseudo-design Ω, which is obviously
typable (Ω : (⊢ Λ), for any Λ), also denoted by Fid, is called the partial design.

Conversely, the following algorithm takes as input a finite positive pseudo-design φ and returns a
base ⊢ Λ such that φ : (⊢ Λ) if it is a design and otherwise returns FAIL. Actually, the inductive load
requires taking as arguments φ together with a (well-formed) base ⊢ Γ. Initially, we take Γ empty.
The algorithm is described by a formal system using the following notation:

φ : (⊢ Γ, ?) −→ φ : (⊢ Λ)

which reads as follows: the algorithm, when given φ and Γ as inputs, finds Λ such that ⊢ Λ (cf.
Remark 3.2), Γ ⊆ Λ, and φ : (⊢ Λ). The failure case is written as φ : (⊢ Γ, ?) −→ FAIL. The
induction is on φ. If the design is infinite, we apply the algorithm to finite approximations – we can
obviously not decide whether an infinite pseudo-design is a design.

Ω : (⊢ Γ, ?) −→ Ω : (⊢ Γ) z : (⊢ Γ, ?) −→ z : (⊢ Γ)

26

In the following rules, the notation Ψξi,J stands for φJ where Ψ = {ψξi | i ∈ I} and ψξi = {(−, ζ, J)φJ |
J ∈ Pf (ω)}.

· · · Ψξi,J : (⊢ ξi ⋆ J, ?) −→ Ψξi,J : (⊢ ξi ⋆ J,Λi,J) · · ·

i ∈ I, J ∈ Pf(ω)
∀ i1, i2 (i1 6= i2 ⇒ Λi1,J1

∩ Λi2,J2
= ∅)

⊢ ξ,Γ \ {ξ}
⋃

i∈I,J∈Pf (ω) Λi,J well formed

(+, ξ, I) ·Ψ : (⊢ Γ, ?) −→ (+, ξ, I) ·Ψ : (⊢ ξ,Γ \ {ξ}
⋃

i∈I,J∈Pf (ω) Λi,J)

Ψξi,J : (⊢ ξi ⋆ J, ?) −→ FAIL

(+, ξ, I) ·Ψ : (⊢ Γ, ?) −→ FAIL

Ψξi1,J1
: (⊢ ξi1 ⋆ J1, ?) −→ Ψξi1,J1

: (⊢ ξi1 ⋆ J1,Λi1,J1
)

Ψξi2,J2
: (⊢ ξi2 ⋆ J2, ?) −→ Ψξi2,J2

: (⊢ ξi2 ⋆ J2,Λi2,J2
)

(i1 6= i2 and Λi1,J1
∩ Λi2,J2

6= ∅)

(+, ξ, I) ·Ψ : (⊢ Γ, ?) −→ FAIL

· · · Ψξi,J : (⊢ ξi ⋆ J, ?) −→ Ψξi,J : (⊢ ξi ⋆ J,Λi,J) · · · (⊢ ξ,Γ \ {ξ}
⋃

i∈I,J∈Pf (ω) Λi,J not well formed)

(+, ξ, I) ·Ψ : (⊢ Γ, ?) −→ FAIL

The first rule of failure, which has a unique premise (for a given i ∈ I and a given J), expresses failure
propagation. The second rule says that failure occurs when linearity (actually, affinity) is violated.
The third rule controls the well-formedness of bases. The following statement is easy to prove.

Proposition 3.6 The above algorithm, with φ,Γ as arguments, terminates if and only if there exists
Λ′ such that φ : (⊢ Λ′) and Γ ⊆ Λ′. The base ⊢ Λ returned by the algorithm is the smallest base that
satisfies these conditions.

Proof (indication). That the algorithm returns the minimum base follows from the fact that it
collects unions of bases, which are themselves least upper bounds. �

Remark 3.7 The relation between the two flavours of designs (dessins and desseins, or typing proofs
and typable pseudo-designs) is of the same nature as the relation between proofs in natural deduction
expressed in terms of sequents and proofs in natural deduction expressed as trees of formulas with
marked hypotheses, or as the relation between linear logic proofs in the sequent calculus formulation
(cf. part I, section 2) and proof nets (cf. section 1). While proof nets allow us to identify many
sequent calculus proofs, here, as we have just seen, the two points of view (explicit sequents or not)
happen to be essentially the same, up to weakening. This is due to the focalization, which already
eliminated many sequent calculus proofs!

27

Remark 3.8 We can define an injection • mapping pseudo-designs to sets of chronicles ending with
a positive action as follows:

Ω• = ∅ ((+, ξ, I) · {ψξi | i ∈ I})• = {ǫ}
⋃

i∈I{(+, ξ, I)r | r ∈ ψ
•
ξi}

z• = {z} {(−, ζ, J)φJ | J ∈ Pf(ω)}• =
⋃

J∈Pf (ω){(−, ζ, J)r | r ∈ φ•J}

Note that the Ω’s disappear during this transformation. In [36], the designs-desseins are defined as
sets of chronicles, and properties characterizing the image of the set of designs by the function • are
given. These properties include:

• coherence : the maximal prefix of any two chronicles of the design which are not prefix of each
other ends with a positive action;

• focalization: a negative action which is not at the root must be of the form (−, ξi, J) and its father
must be of the form (+, ξ, I), with i ∈ I;

• subaddress: a positive action (+, ξ, I) is either such that ξ is an address on the positive side of the
base, or there exist ξ′, i, and J such that ξ = ξ′i, i ∈ J , and (−, ξ′, J) occurs on the chronicle between
(+, ξ, I) and the root.

Designs have an implicit pointer structure: for each action whose focus is some ξi, one looks for
the action of focus ξ below it in the forest or tree representation of the design, if any, and we say
that the former points to the latter, or is bound to the latter. Otherwise, we say that the action of
focus ξi occurs free in the design. It is easily seen that for well-typed designs the two actions must
have opposite signs, and that a free action is necessarily positive and that its focus belongs to the
right hand side of the base of the design (cf. Remark 3.2). Moreover, negative actions are always
bound and always point to the immediately preceding positive action. These are typical features of
Hyland and Ong (HO) games [43] (see [25] for precise comparisons). In [16, 17], a general formalism
of such (untyped) HO style strategies over a given alphabet of moves, called abstract Böhm trees, has
been developped. Opponent’s moves are letters of the alphabet, while Player’s moves are pairs noted

[a,
κ
←֓], where a is a letter of the alphabet and where κ is either the symbol that indicates that the

move is free, or a natural number that counts the number of Opponent’s moves encountered before
reaching the binder. The designs are abstract Böhm trees constructed on the alphabet consisting of
all the pairs (i, I) of a natural number and a finite set of natural numbers. The general shape is as
follows (rotating the tree clockwise by 90 degrees):

...
(j1, J

′
1)Ω

...

(j1, J1)[(j2, I1),
κ2

←֓]

...
(i1, J

′
2)Ω

...

(i1, J2)[(j3, I2),
κ3

←֓]
{

...
...

...

28

The difference with the (raw) designs is that we use relative addressses rather than absolute ones.
The pointers allow us to reconstruct the full addresses. Here is how the fax looks like, first, as a
design-dessein:

...

(−, ξ, J1)(+, ξ
′, J1)

...

(−, ξ′j1, J2)(+, ξj1, J2)

...

(−, ξj1j2, J3)(+, ξ
′j1j2, J3)

{
...

...
...

...

and then as abstract Böhm tree (where ξ, ξ′ end with i, i′, respectively):

...

(i, J1)[(i
′, J1), ←֓]

...

(j1, J2)[(j1, J2),
1
←֓]

...

(j2, J3)[(j2, J3),
1
←֓]

{
...

...
...

...

The pointer 1 in, say, [(j1, J2),
1
←֓], formalizes the fact that the positive action (+, ξj1, J2) is not bound

to the negative action that immediately precedes it, but, one level up, to (−, ξ, J1): Girard calls this
subfocalization.

Designs and λ-calculus. If we restrict both designs and (a variant of) λ-calculus, then we can get
a bijective correspondence, as we show now. The interest is twofold. First, this correspondence allows
us to connect designs to the well-established tradition of the λ-calculus. But also, it has suggested us
to extend the correspondence to all designs, giving rise to a term language for designs. We start with
the restricted correspondence, which applies to slices, defined next.

Definition 3.9 (Slice) A slice is a design in which each application of the rule (−, ξ,N) is such that
N is a singleton. In terms of designs as sets of chronicles, this rule says that if the design contains
two chronicles r(−, ξ, I1) and r(−, ξ, I2), then I1 = I2.

(It is easy to check that slices arise from purely multiplicative proofs.) We introduce variables and
proof terms for slices simultaneously, as follows:

29

Ω : (⊢ Λ) z : (⊢ Λ)

P : (⊢ {xj : ζj | j ∈ J},Λ′) (Λ′ ⊆ Λ)

λ{xj | j ∈ J}.P : (ζ ⊢ Λ)

· · · Mi : (ξi ⊢ Λi) · · ·

i ∈ I
∀ i Λi ⊆ Λ
∀ i1, i2 (i1 6= i2 ⇒ Λi1 ∩ Λi2 = ∅)
x fresh

x{Mi | i ∈ I} : (⊢ x : ξ,Λ)

In the first (resp. second) rule, the cardinal of J (resp. I) gives the number of head λ’s (resp. the
number of arguments of the variable). The bases ξ ⊢ Λ and ⊢ Λ are now such that Λ consists of a
set of variable declarations of the form x : ζ. Let us place the λ-calculus style syntax that we just
introduced (on the left below) in perspective with the syntax of normal forms of the λ-calculus (on
the right below):

M ::= λ{xj | j ∈ J}.P M ::= λx1 . . . xm.P
P ::= x{Mi | i ∈ I} || Ω || z P ::= xM1 . . .Mn

The difference lies in the fact that we have freed ourselves from the sequential order of application of
the ordinary λ-calculus, and that we now have explicit addresses for the arguments of the application:
i is the (relative) address of Mi.

Remark 3.10 Combining the bijection from slices to terms just given with the representation of
designs as HO style trees with pointers given above, what we have obtained is a correspondence of
the same nature as the bijection between λ-terms and λ-terms in De Bruijn notation (see e.g. [1]).
More precisely, it is exactly a bijection of this kind, replacing De Bruijn indices by other indices that
we have called Böhm indices in [17] (and that have appeared in previous works of Danos-Regnier and

Huet), which are pairs of indices of the form [i,
j
←֓] where j counts the number of λ’s separating the

variable from its binder and where i serves to identify which among the variables collectively bound by

the binder it is. For example, the Böhm indices of x1 and x2 in λ{x1, x2}.x1{λ{y1}.x2{}} are [1,
0
←֓]

and [2,
1
←֓], respectively.

Remark 3.11 It is easily checked that the typable terms are exactly the affine terms, i.e., those in
which any variable occurs at most once.

We next move on and give terms for arbitrary designs.

Ω : (⊢ Λ) z : (⊢ Λ)

30

· · · Mi : (ξi ⊢ Λi) · · ·

i ∈ I
∀ i Λi ⊆ Λ
∀ i1, i2 (i1 6= i2 ⇒ Λi1 ∩ Λi2 = ∅)
x fresh

(x.I) · {Mi | i ∈ I} : (⊢ x : ξ,Λ)

· · · PJ : (⊢ {xj : ζj | j ∈ J},ΛJ) · · ·

(
J ∈ Pf (ω)
∀ J ΛJ ⊆ Λ

)

{J = λ{xj | j ∈ J}.PJ | J ∈ Pf (ω)} : (ζ ⊢ Λ)

Forgetting now about typing rules, we have the following (untyped) syntax:

M ::= {J = λ{xj | j ∈ J}.PJ | J ∈ Pf (ω)}
P ::= (x · I){Mi | i ∈ I} || Ω || z

Since we now have two syntaxes for (pseudo-)designs, we shall refer to the two syntaxes as the abstract
syntax and the concrete syntax, respectively (in the order in which they have appeared in the paper).
As an illustration, here is the fax (recursively) expressed in concrete syntax:

Fax ξ,x:ξ′ = {I = λ{yi | i ∈ I}.(x · I){Fax ξ′i,yi:ξi | i ∈ I} | I ∈ Pf(ω)} .

In this form, the fax appears as the variable x, in all its possible (hereditarily) η-expansions. Note
the remarkable use of the additive flavour of designs: the fax is ready for any ramification I, i.e. for
any possible η-expansion (see Exercise 4.10).

Ordering designs. Two rather natural partial orders can be defined on designs:

• The usual partial information ordering on trees: to increase information, one replaces an Ω with a
tree 6= Ω (in the first representation of designs, this amounts to extend a set N in a negative rule).
This is reminiscent of the ordering between stable functions defined by the inclusion of their traces
(see e.g. [4, chapter 12]).

• The second ordering ⊑ is obtained by adding a second rule for increasing: replace a subtree by a
z. We shall see that this ordering characterizes the observational order between designs, so we shall
call it the observational ordering. It is reminiscent of the pointwise ordering between Scott continuous
functions. This ordering is defined formally as follows:

Ω ⊑ φ φ ⊑ z

· · · ψξi ⊑ ψ′
ξi · · · (i ∈ I)

(+, ξ, I) · {ψξi | i ∈ I} ⊑ (+, ξ, I) · {ψ′
ξi | i ∈ I}

· · · φJ ⊑ φ′J · · · J ∈ Pf(ω)

{. . . , (−, ζ, J)φJ , . . .} ⊑ {. . . , (−, ζ, J)φ′J , . . .}

31

φ ⊑ φ

φ1 ⊑ φ2 φ2 ⊑ φ3

φ1 ⊑ φ3

We write φ1 ≤
R φ2 (resp. φ1 ≤

L φ2) if φ1 ⊑ φ2 has been proved without using the axiom φ ⊑ z

(resp. Ω ⊑ φ). Thus, φ1 ≤R φ2 is the stable ordering, which we also denote as φ1 ⊆ φ2 (see Exercise
3.15).

Remark 3.12 We have the following decomposition property: if φ1 ⊑ φ2, then there exists a φ such
that φ1 ≤L φ ≤R φ2, obtained by first cutting some subtrees and replacing them by a z, and then
by adding some subtrees at some Ω’s. Note that this is a quite natural way of proceeding, since one
might do useless work otherwise, by adding subtrees using axiom Ω ⊑ φ that could then be removed
while using axiom φ ⊑ Ω. The decomposition is not unique, as we have both Ω ≤L Ω ≤R z and
Ω ≤L z ≤R z (see Exercise 3.17). Remarkably enough, similar decompositions have been discovered
and exploited elsewhere:

• by Winskel in his analysis of Berry’s stable ordering and bi-domains (see [18]), and

• by Laird in his extensional account of the model of sequential algorithms [45, 19].

Exercise 3.13 Complete the characterization of designs as sets of chronicles (cf. Remark 3.8). (Hint:
The only missing conditions are the ones ensuring that the designs are affine.)

Exercise 3.14 Is there a sense in which the concrete syntax and the abstract syntax of pseudo-designs
or of designs are in bijective correspondence? (Hints: Pseudo-designs in abstract syntax are more
permissive, e.g., they do not exclude the possibility of a move (+, ξi, J) “pointing” to a move (+, ξ, I).
On the other hand, “raw” terms in the concrete syntax are actually all “typable”, in a system where
the affinity constraint is relaxed.)

Exercise 3.15 Show that, on designs as sets of chronicles (cf. Remark 3.8), the stable ordering is set
inclusion, and that the extensional ordering can be characterized by the following property: φ1 ⊑ φ2

if and only if whenever r1 = r (−, ξ, I)r′1 ∈ φ1 and r2 = r (−, ξ, I)r′2 ∈ φ2 diverge after some action
(−, ξ, I), then either r′1 = Ω or r′2 = z.

Exercise 3.16 We define formally (infinite-depth) designs as ideals (i.e., downwards closed directed
subsets of designs) with respect to ⊆. Show that the equation defining the fax admits a least fixed point
which is such an ideal.

Exercise 3.17 Let ≤ be the intersection of the partial orders ≤L and ≤R. Show the following more
precise formulation of the decomposition property: if φ1 ⊑ φ2, then there exist φmin and φmax such
that:

∀φ ((φ1 ≤
L φ ≤R φ2)⇔ φmin ≤ φ ≤ φmax) .

4 Normalization of designs

Normalization is a general machinery that applies to all abstract Böhm trees, hence to designs in
particular. It can be described in various equivalent ways, see [16]. In the affine case, the execution

32

is simpler (no copying involved), so we shall describe here (in three disguises) an abstract machine
for designs taking the affine nature of designs into account. The first two presentations of the nor-
malization engine are based on the abstract and concrete syntax for designs, respectively, and use the
framework of environment machines, whose states have two components: the code to be run, and the
environment or context or counter-design. The third version is more visual, and features a simple
token game. Its main advantage is that it makes the very useful notion of the part of a design visited
during normalization explicit.

We embark on the first description, for which we shall need the following terminology.

Notation 4.1 We denote by Ψ a finite set {ψζ1
, . . . , ψζn

} of negative pseudo-designs, with the ζi’s
pairwise disjoint. We say that Ψ accepts (resp. does not accept) an address ζ if ζ ∈ {ζ1, . . . , ζn} (resp.
ζ 6∈ {ζ1, . . . , ζn}). If Ψ accepts ζ, i.e., ζ = ζj for some j, we use the notation Ψζ for ψζj

. We also
note simply ψ for {ψ}. Finally, if Ψ accepts ζ, we note Ψ \ ζ = Ψ \ {ψζ}.

We start with a design φ : (⊢ ξ,Λ1) to be normalized against a design ψ : (ξ ⊢ Λ2) (with Λ1 and
Λ2 pairwise disjoint), which we call its counter-design. The normalization should produce a design
based on ⊢ Λ1,Λ2 (think of a cut rule).

The machine has states of the form 〈φ |Ψ〉, and execution consists in applying the following state
transformation, which we call the weak reduction rule (by contrast to strong reduction, introduced
below):

(R) 〈(+, ξ, I) ·Ψ′ |Ψ〉 −→ 〈Ψξ,I |Ψ′ ∪ (Ψ \ ξ)〉 (Ψ accepts ξ)

Notice that we throw away all of Ψξ except for Ψξ,I . In particular, the negative actions (−, ξ, J) of Ψ
are not needed. That we can do this safely will be justified by Proposition 4.18.

The initial state is 〈φ | {ψ}〉. It is important to keep Ψ \ ξ in order to handle subfocalizations, as
illustrated by the example below (where ζ = ξi1i, for some i ∈ I1):

φ =

· · ·

· · ·

(+, ζ, J)

(−, ξi1, I1) · · ·

· · ·

(−, ξi2, I2) · · ·

(+, ξ, I) ψ = · · ·

· · ·

· · ·

(+, ξi2, I2)

(−, ζ, J) · · ·

(+, ξi1, I1)

(−, ξ, I) · · ·

or:

φ = (+, ξ, I) ·Ψ′

with Ψ′ = {. . . , (−, ξi1, I1)φ2, . . . , (−, ξi2, I2) · · · , . . .}
with φ2 = (+, ζ, J) ·Ψ2

ψ = {. . . , (−, ξ, I)φ1, . . .}
with φ1 = (+, ξi1, I1) ·Ψ1

with Ψ1 = {. . . , (−, ζ, J)φ3, . . .}
with φ3 = (+, ξi2, I2) · · ·

Execution goes as follows:

33

〈φ | ψ〉 −→ 〈φ1 |Ψ′ ∪ (ψ \ ξ)〉 = 〈φ1 |Ψ′〉
−→ 〈φ2 |Ψ1 ∪ (Ψ′ \ ξi1)〉
−→ 〈φ3 |Ψ2 ∪ (Ψ1 \ ξ) ∪ (Ψ′ \ ξi1)〉

At state 〈φ3 | Ψ2 ∪ (Ψ1 \ ξ) ∪ (Ψ′ \ ξi1)〉, it is essential to have Ψ′ available, as the head action of φ3

corresponds to a head action of Ψ′ and not of Ψ2, i.e., when normalization reaches (+, ξi2, I2), the
corresponding negative action on the left is not found above (+, ζ, J), but above (+, ξ, I).

The machine stops when it reaches an Ω (which one should interpret as waiting for more information
from the context), a z (that indicates convergence), or a state 〈(+, ξn, In) · Ψ′

n | Ψn〉 such that Ψn

does not accept ξn (in λ-calculus terminology, this means reaching a head variable). In all three cases,
we have found the root of the normal form of 〈φ | ψ〉 (see also Remark 4.4).

We can go on, and perform “strong reduction”, by relaunching the machine in order to get pro-
gressively, on demand, the chronicles of the normal form, and not only the first positive action of the
normal form. This can be formalized by indexing the state by the chronicle q of the normal form
under exploration. The index remains invariant in the rule (R), which is thus reformulated as:

(R) 〈(+, ξ, I) ·Ψ′ |Ψ〉q −→ 〈Ψξ,I |Ψ′ ∪ (Ψ \ ξ)〉q (Ψ accepts ξ)

Initially, the index is the empty chronicle ǫ. The chronicle is extended using the following rule (S
stands for strong reduction):

(S) 〈(+, ξ, I) ·Ψ′ |Ψ〉q −→ 〈Ψ
′
ξi,J |Ψ〉q(+,ξ,I)(−,ξi,J) (Ψ does not accept ξ and i ∈ I)

Note that this rule is non-deterministic: the choice of i, J is left to the Opponent of the normal form,
he has to say which branch of the normal form he intends to explore.

The two other termination cases remain termination cases in this setting, and are formalized as
follows:

〈Ω |Ψ〉q −→ ! qΩ
〈z |Ψ〉q −→ ! qz

Read ! qΩ (resp. ! qz) as an output, saying that the chronicle qΩ (resp. qz) belongs to the normal
form. As for rule (S), we can read that q(+, ξ, I) belongs to the normal form, but in addition we know
that the normal form contains a chronicle of the form q(+, ξ, I)(−, ξi, J)κi,J for all i ∈ I and J , and
may start an exploration in order to find any of these actions κi,J .

We denote the normal form of 〈φ | {ψ}〉 by [[φ, {ψ}]], or simply [[φ, ψ]], and more generally, we
denote the normal form of 〈φ |Ψ〉 (see Definition 4.2) by [[φ,Ψ]]. As a set of chronicles, it is obtained
by collecting all the results of execution:

[[φ,Ψ]] = {q(+, ξ, I) | ∃Ψ′,Ψ′′ 〈φ |Ψ〉ǫ −→⋆ 〈(+, ξ, I) ·Ψ′ |Ψ′′〉q}
∪ {qΩ | 〈φ |Ψ〉ǫ −→⋆ ! qΩ}
∪ {qz | 〈φ |Ψ〉ǫ −→⋆ ! qz}
∪ {qΩ | computation does not terminate and q is the maximal index reached}

Note that we have added a second case of divergence: the divergence due to the cases where the
machine does not terminate. To be more precise, we are speaking of non-termination due to rule

34

(R) only (at index q), not of non-termination due to a potentially infinite branch of the normal form
(recall that we are in a demand-driven setting).

Therefore, there are two sorts of Ω in the normal form: those that are “created” (by the magic
of a mathematical formula, not by some computation observed in a finite time), and those that come
from the Ω′s explicitly present in φ or Ψ. The overloading of the two situations is really what makes
the difference between Ω and z that otherwise behave in a dual way (cf. e.g. the definition of ≤L

and ≤R). It is also the reason for the name Fid given by Girard to the partial design Ω: you must
have faith (Fides in Latin) to wait for a result that might never come.

We still have to establish that [[φ,Ψ]] is a design, not only a pseudo-design, and hence we should
exhibit a typing proof of [[φ,Ψ]]. We first have to type the states of the machine, which we can also
call nets, using Girard’s terminology inspired from proof nets. We have seen that a state, or net,
consists of a positive design φ and a collection Ψ′ of negative designs. We stick to this situation in
the following definition.

Definition 4.2 A (positive) net is given by a positive design φ : (⊢ Λ), called the principal design of
the net, and a finite set Ψ of negative designs such that:

1. the addresses appearing in the bases of φ and of the elements of Ψ are pairwise disjoint or equal;

2. an address may appear at most twice in these bases;

3. if an address appears twice, then it appears once on the left of ⊢ and once on the right of ⊢,
thus forming a cut;

4. The graph whose set of vertices is {φ} ∪Ψ (or the associated set of bases) and whose edges are
the cuts is acyclic.

We denote the net by 〈φ |Ψ〉.

Girard requires moreover connectivity. We do not make this requirement explicit here, but it is
clear that what interests us is the connected component of φ. In this connected component, all the
ξ’s on the left of ⊢ are cut. This is easily shown by induction on the length of a path starting at ⊢ Λ.
The only interesting case is when the path has reached a node of the form ξ′ ⊢ Λ′ and proceeds from
there to a node of the form ξ′′ ⊢ Λ′′ with a cut on ξ′. But then by induction and by condition 2, the
latter node must have been visited by the path earlier and must be the one that witnesses that ξ′ is
cut. Therefore, we know by induction that ξ′′ is cut.

Hence all the non-cut addresses of the designs of the connected component stand to the right of
⊢, in φ or in one of the elements of Ψ. Let Λ be the set of these addresses. We set 〈φ |Ψ〉 : (⊢ Λ). (It
is thus the connected component that we actually type, but it is more convenient not to throw away
explicitly the elements of the other connected components.)

Proposition 4.3 If 〈φ |Ψ〉 is a net and if 〈φ |Ψ〉 : (⊢ Λ), then [[φ,Ψ]] : (⊢ Λ).

Proof. We only prove that rule (R) preserves typing, which is enough to prove the statement in the
case of a net of type ⊢ (see Remark 4.4). Suppose that 〈(+, ξ, I) · Ψ′ | Ψ〉 : (⊢ Λ). We have to prove
〈Ψξ,I |Ψ′ ∪ (Ψ \ ξ)〉 : (⊢ Λ).

Condition 4. We have (+, ξ, I)·Ψ′ : (⊢ ξ, . . .), and Ψ : (. . . , (ξ ⊢ . . .), . . .), hence Ψ′ : {(ξi ⊢ . . .) | i ∈ I}
and (Ψ)ξ,I : (⊢ ξ ⋆I, . . .). Thus we remove the bases (⊢ ξ, . . .) and (ξ ⊢ . . .) from the graph and replace

35

them by the base (⊢ ξ ⋆ I, . . .) and the bases (ξi ⊢ . . .). The edge that connected (⊢ ξ, . . .) to (ξ ⊢ . . .)
is replaced by edges that connect (⊢ ξ ⋆ I, . . .) to each of the (ξi ⊢ . . .)’s. Note that these new edges
form a connnected configuration. The edges that once arrived to (ξ ⊢ . . .) now arrive to (⊢ ξ ⋆ I, . . .),
and those that arrived to (⊢ ξ, . . .) are now either disconnected or arrive to one of the (ξi ⊢ . . .)’s. If
there was a cycle in the new graph, one would then easily construct one in the former graph (to which
we can go back by amalgamating the bases (ξi ⊢ . . .)).

Conditions 2 and 3. The two occurrences of ξ disappear, and are replaced by pairs of occurrences of
each ξi. �

Remark 4.4 A consequence of the previous proposition is that when the weak reduction machine
starting from 〈φ |Ψ〉 : (⊢ Λ) stops in a state 〈(+, ξn, In) ·Ψ′

n |Ψn〉, where Ψn does not accept ξn, then
ξn ∈ Λ. Indeed, by type preservation we have 〈(+, ξn, In) ·Ψ′

n |Ψn〉 : (⊢ Λ). On the other hand we have
(+, ξn, In) ·Ψn : (⊢ Λ0) and Ψ′

n : {ζ1 ⊢ Λ1, . . . , ζm ⊢ Λm} with ξn ∈ Λ0 and ξn 6∈ {ζ1, . . . , ζm}, that is,
ξn is not cut. Hence ξn ∈ Λ. In particular, when Λ is empty, then the weak reduction machine can
only end with an Ω or a z, and there is no need for strong reduction – this situation is quite similar
to the situation in a functional programming language like CAML, whose implementation is based on
weak reduction, which is complete for evaluating observable results of basic types. In the sequel, we
shall often place ourselves in such a situation, with φ : (⊢ ξ), Ψ = {ψ}, and ψ : (ξ ⊢), for some ξ.

Definition 4.5 For φ : (⊢ ξ) and ψ : (ξ ⊢), we write φ⊥ψ (or ψ⊥φ) if [[φ, ψ]] = z and we say
that φ is orthogonal to ψ. For a set A of designs on the same base ⊢ ξ (resp. ξ ⊢), we write
A⊥ = {ψ | ∀φ ∈ A φ⊥ψ} (resp. A⊥ = {φ | ∀ψ ∈ A φ⊥ψ}), and we write simply φ⊥ for {φ}⊥.

The definition of orthogonality is not limited to bases of the form ⊢ ξ and ξ ⊢: more generally,
if φ : (⊢ ξ1, . . . , ξn), ψ1 : (ξ1 ⊢),. . . , ψn : (ξn ⊢), and [[φ, {ψ1, . . . , ψn}]] = z, then we say that φ is
orthogonal to {ψ1, . . . , ψn}.

Exercise 4.6 Show that z is the only design which is orthogonal to the skunk (cf. Definition 3.4).

Exercise 4.7 Show that if I ⊆ J , φ : (⊢ I) and ψj : (j ⊢) for all j ∈ J , then [[φ, {ψi | i ∈ I}]] =
[[φ, {ψj | j ∈ J}]] (taking φ to be of type ⊢ J on the right side of this equality).

Exercise 4.8 Rule (R) does not make explicit the alternation between (the subdesigns of) φ and ψ:
the positive actions that guide computation are indeed alternating. The following variant of rule (R)
(to be applied systematically after the second step) makes this alternation explicit:

(R’)
〈(+, ξ, I) ·Ψ′ |Ψ〉 −→ 〈(+, ξ1, I1) ·Ψ′

1 |Ψ1〉 (Ψ1 accepts ξ1)

〈(+, ξ1, I1) ·Ψ′
1 |Ψ1〉 −→ 〈(Ψ1)ξ1,I1 |Ψ

′
1 ∪ (Ψ \ ξ)〉

(1)Using this rule, check that the execution of the above example unrolls now as follows:

〈φ | ψ〉 −→ 〈φ1 |Ψ′〉
−→ 〈φ2 |Ψ1〉
−→ 〈φ3 | (Ψ′ \ ξi1) ∪Ψ2〉

(2) Show formally that the machine obtained with (R’) is equivalent to the one defined with (R).

36

Exercise 4.9 What about normalizing a negative design against a negative design? (Hint: Use strong
reduction.)

Normalization in concrete syntax. How does normalization look like, when described in terms
of the concrete rather than the abstract syntax? We let the reader convince himself that the affine
(weak reduction) machine given above gets mapped through the bijective correspondence between the
concrete syntax and the abstract syntax to the following one:

〈(x · I){Mi | i ∈ I} | ρ ∪ (x← {. . . , I = λ{xi | i ∈ I}.PI , . . .}〉 −→ 〈PI | ρ ∪ (
⋃

i∈I

(xi ←Mi)〉

In this rule, ρ stands for an environment which is a function from a finite set of variables to terms,
described as a set of bindings of the form (x←M), and the union symbols stand for disjoint unions.
The initial state corresponding to 〈φ |ψ〉 is here of the form 〈P | {(x←M)}〉, for some P : (⊢ x : ξ,Λ1)
and M : (ξ ⊢ Λ2).

The crucial use of the affine restriction lies in the fact that x does not occur in any of the Mi’s,
and hence that the binding for x is consumed after the application of the rule. But the general case
of non necessarily affine pseudo-designs in concrete syntax is not much more difficult to describe, by
means of a very similar abstract machine, which is an instance of the (stack-free) Krivine machine
described in [16]:

〈(x · I){Mi | i ∈ I} | ρ〉 −→ 〈PI | ρI ∪ (
⋃

i∈I

(xi ← 〈Mi | ρ〉)〉

where ρ(x) = {. . . , I = 〈λ{xi | i ∈ I}.PI | ρI〉, . . .}.

The main change with respect to the affine machine is that now an environment maps variables to
closures, which are used in the implementation of functional programming languages to keep track of
a code together with the environment for its free variables. Note that we keep now all the environment
to be available for the Mi’s, even the binding for x, as x may appear in any of the Mi’s.

Exercise 4.10 Show that, for any positive P of appropriate type, the (strong version of) the machine
reduces 〈P | {x′ ← Fax ξ,x:ξ′}〉 to P [x′ ← x] (α-renaming).

Token machine: normalization as a visit. We now give our third version of normalization, which
is more intuitive. It is described in terms of pushing a token through the designs (see also [24]). Under
this interpretation, the net formed of φ and ψ remains fixed, and information (in the form of a mark
or token placed on a single node) flows through it. Initially, the token is placed at the root of φ. In
order to identify the nodes of φ and ψ, we introduce the following notation for occurrrences of actions:

(Ω)ǫ = Ω (z)ǫ = z

((+, ξ, I) · {ψξi | i ∈ I})ǫ = (+, ξ, I) ((+, ξ, I) · {ψξi | i ∈ I})iu = (ψξi)u

({(−, ζ, J)φJ | J ∈ Pf (ω)})J = (−, ζ, J) ({(−, ζ, J)φJ | J ∈ Pf (ω)})J1u = (φJ)u

37

Thus an occurrence is a word over an alphabet whose letters are either i, I, or 1, and which appear
in the order i1I11i2I21i3 The token is formalized as an occurrence u of either φ or ψ, which we
write (L, u) (resp. (R, u)) if the occurrence is in φ (resp. ψ). The token machine maintains a set of
pairs ((L, u), (R, v)) where the actions (φ)u and (ψ)v are opposite, and where each u, v occurs at most
once. These pairs are called bindings (in a sequent calculus description of cut-elimination (cf. part I,
section 3), they represent the successive cuts). Initially, the token is at occurrence (L, ǫ), and the set
of bindings is empty. The token game follows the tree structure and the pointer structure of φ and ψ,
and the bindings. The rules are as follows:

• from (L, ǫ), with (φ)ǫ = (+, ξ, I), move to (R, I) and place (((L, ǫ), (R, I)) in the list of bindings;

• from (R, u) such that (ψ)u is a negative action, move to (R, u1);

• from (R, u) such that (ψ)u = (+, ζi, I), u points to v, and ((L, v′), (R, v)) is in the set of bindings,
then move to (L, v′ i I) and add ((L, v′ i I), (R, u)) to the set of bindings;

• from (L, u) such that (φ)u = (+, ζi, I), u points to v, and ((L, v), (R, v′)) is in the set of bindings,
then move to (R, v′ i I) and add ((L, u), (R, v′ i I)) to the set of bindings;

• from (L, u) such that (φ)u is a negative action, move to (L, u1).

For example, the execution of our running example goes as follows, with the corresponding actions
(recall that ζ = ξi1i):

(L, ǫ) (R, I) (R, I1) (L, i1I1) (L, i1I11) (R, I1iJ) (R, I1iJ1) (L, i2 I2) . . .

(φ)ǫ (ψ)I ψI1 (φ)i1I1 (φ)i1I11 (ψ)I1iJ (ψ)I1iJ1 (φ)i2I2 . . .
= = = = = = = = . . .

(+, ξ, I) (−, ξ, I) (+, ξi1, I1) (−, ξi1, I1) (+, ζ, J) (−, ζ, J) (+, ξi2, I2) (−, ξi2, I2) . . .

The actions visited during normalization are all the actions (φ)u such that the token reaches
position (L, u) and all the actions (ψ)u such that the token reaches position (R, u). They determine
two designs φ1 ⊆ φ and ψ1 ⊆ ψ (the pull-back, see Theorem 4.13) which form a balanced pair (i.e.,
their sets of actions are dual). Remarkably, there is a converse to this (see Proposition 4.19).

Exercise 4.11 Show that the first and third versions are equivalent, i.e., that they yield the same
result of normalization for every pair of designs φ : (⊢ ξ) and ψ : (ξ ⊢). (Hint: At some point,
Proposition 4.18 has to be used.)

Analytical theorems. These are the following theorems:

1. the associativity theorem, that corresponds to Church-Rosser property;

2. the separation theorem, that corresponds to (an affine version of) Böhm’s theorem;

3. the monotonicity theorem, that corresponds to the syntactic continuity theorem in the λ-calculus,
due to Welch and Lévy, which states that Böhm trees commute with contexts (see e.g. [4, section
2.3]);

38

4. the stability theorem, that corresponds to the syntactic stability theorem of the λ-calculus, due
to Berry, which states that the Böhm tree function from partial terms to partial Böhm trees is
stable (it enjoys actually the stronger property of being sequential, see e.g. [4, section 2.3]).

Remark 4.12 The tradition behind the third and the fourth theorems is more widely known through
their outsprings in denotational semantics [4]: Scott ’s continuous semantics, Berry ’s stable seman-
tics. Berry’s semantics was clearly motivated by the stability theorem, while the syntactic continuity
theorem seems rather to have given an additional a posteriori confirmation of the pertinence of Scott’s
theory, which was initially suggested by results in recursion theory (theorems of Rice and of Myhill-
Shepherdson).

We start with the stability theorem.

Theorem 4.13 (Stability) If r is a chronicle of [[φ, ψ]], then there exist φ0 ⊆ φ, ψ0 ⊆ ψ minimum,
called the pull-back of r along normalization, such that r ∈ [[φ0, ψ0]].

Proof. We mark all the nodes visited during the (deterministic) normalization in order to obtain r:
all these nodes must be present, otherwise normalization would diverge, moreover they suffice (just
adding Ω’s above non visited negative actions following visited positive actions, in order to obtain
pseudo-designs). One also has to check that these pseudo-designs are actually designs (omitted). �

It is well-known that stability described in terms of pull-backs as above entails stability in algebraic
terms: if φ1, φ2 ⊆ φ and ψ1, ψ2 ⊆ ψ, then

[[φ1 ∩ φ2, ψ1 ∩ ψ2]] = [[φ1, ψ1]] ∩ [[φ2, ψ2]]

(set intersection of the designs as sets of chronicles). In particular, for φ1, φ2 ⊆ φ based on, say, ⊢ ξ,
and ψ based on ξ ⊢, we have:

(φ1 ∩ φ2)⊥ψ ⇔ φ1⊥ψ and φ2⊥ψ .

The same properties are true for any bounded intersection of φk’s, ψk’s.

Theorem 4.14 (Separation) The following equivalence holds, for all designs φ1, φ2 on the same
base: φ1 ⊑ φ2 if and only if φ⊥1 ⊆ φ

⊥
2 .

Proof. Let φ1 ⊑ φ2. By transitivity, we may restrict our attention to ≤R and to ≤L. Let ψ be such
that φ1⊥ψ. Let φ be the part of φ1 that is effectively visited during normalization (cf. the stability
theorem). If φ1 ≤R φ2, φ is also included in φ2, and we thus also have φ2⊥ψ. If φ1 ≤L φ2, and if φ is
not included in φ2, then some subtree of φ has been replaced by z, but then the normalization will
meet this z, i.e., normalization is more rapid with φ2 than with φ1.

Reciprocally, suppose that φ⊥1 ⊆ φ
⊥
2 , and that there exists a pair of chronicles, one in φ1, the other

in φ2, that are not prefix of each other. Their intersection q ends with a negative action, since after
a positive action, the set of negative actions depends only on the previous positive action, not on the
design. By Exercise 3.15, it suffices to check that the only possible configurations are the following:
either the branch that continues in φ1 is reduced to Ω, or the branch that continues in φ2 is reduced
to z. We use the following construction, that allows us to explore a chronicle interactively. We first
define the (dual) view of a chronicle (supposing that the design is based on ⊢ ǫ, for simplicity):

39

view (r(−, ζ, J)) = view (r)(+, ζ, J)
view ((+, ǫ, I)) = (−, ǫ, I)
view (r(−, ξ, J) · · · (+ξj, I)) = view (r)(+, ξ, J)(−, ξj, I))

We next define the following designs (as sets of chronicles):

• Oppr (for a positive chronicle r) consists of the set of the views of the prefixes of r, plus view (r)z;
we have that Oppr is the minimum design such that r⊥Oppr, by construction;

• Oppq (for a negative chronicle) consists of the set of the views of the prefixes of q, plus all the
chronicles of the form view(q)(−, ζ, J)Ω; we have that Oppq is the minimum design such that
(qz)⊥Oppq, by construction.

Back to the proof. Let q be the maximum common prefix. We distinguish three cases:

1. qz ∈ φ1. Then we have (qz)⊥Oppq, hence φ1⊥Oppq. We should then have φ2⊥Oppq, but the
interaction between φ2 and Oppq follows q, and then has not “enough fuel” to continue in φ2.
This case is thus impossible.

2. r = q(+, ξ, I) ∈ φ1. We reason similarly. We have r⊥Oppr, and the interaction has not “enough
fuel” to continue in φ2, except if qz ∈ φ2 (second allowed configuration).

3. qΩ ∈ φ1. This is the first allowed configuration. �

Remark 4.15 We have made a crucial use of the affinity condition in the proof of the separation
theorem. Consider a chronicle of the form q (+, ξ)(−, ξi1) . . . (+, ξ)(−, ξi2). . ., forgetting ramifications
for simplicity. Then we collect two views

view (q) (−, ξ) (+, ξi1) and view (q) (−, ξ) (+, ξi2)

that do not fit together in a design, since a strategy answers an Opponent’s move uniquely.

Theorem 4.16 (Associativity) Let φ, Ψ1, and Ψ2 be such that φ and Ψ1 ∪ Ψ2 form a net. Then
we have:

[[[[φ,Ψ1]],Ψ2]] = [[φ,Ψ1 ∪Ψ2]] .

Proof (indication). Let r be a chonicle of [[φ,Ψ1 ∪Ψ2]], with pullback φ′,Ψ′
1,Ψ

′
2. One shows that

r can be pulled back along normalization of 〈[[φ,Ψ1]] |Ψ2〉, with a pullback φ′,Ψ′′
2 such that Ψ′

2 = Ψ′′
2

and the pullback of φ′ along normalization of [[φ,Ψ1]] is φ′,Ψ′
1. A similar statement can be proved in

the other direction. These statements are best proved using a strong reduction version of the token
machine. Intuitively, the machine execution corresponding to the left hand side does some extra work
with respect to the execution on the right hand side net: as the execution proceeds, it records the
part of the normal form of the net 〈φ |Ψ1〉 that is being built. �

Theorem 4.17 (Monotonicity) If φ1 ⊑ φ2 and ψ1,1 ⊑ ψ2,1, . . . , ψ1,n ⊑ ψ2,n, then

[[φ1, {ψ1,1, . . . , ψ1,n}]] ⊑ [[φ2, {ψ2,1, . . . , ψ2,n}]] .

40

Proof. We have to show that [[φ1, {ψ1,1, . . . , ψ1,n}]]⊥Ψ implies [[φ2, {ψ2,1, . . . , ψ2,n}]]⊥Ψ, for all Ψ. By
associativity, this amounts to deduce [[φ2, {ψ1,1, . . . , ψ1,n}∪Ψ]] = z from [[φ1, {ψ2,1, . . . , ψ2,n}∪Ψ]] = z,
which is a consequence of the assumptions (recall that any increase in the order ⊑ only fastens
normalization). �

We end the section by showing that normalization explores only multiplicative parts.

Proposition 4.18 The pull-back of a chronicle is always a slice (cf. Definition 3.9). More generally,
the pullback of a slice is a slice. Moreover, each node of this slice is visited only once.

Proof. We limit ourselves to a normalization between φ : (⊢ ξ) and ψ : (ξ ⊢) (and hence to the
pullback of z). For two negative actions (−, ξi, I1) and (−, ξi, I2) with the same focus and above the
same positive action (+, ξ, I) to be visited, we need on the other side two positive actions (+, ξi, I1)
and (+, ξi, I2) pointing to the same negative action (−, ξ, I). We reason by minimal counter-example,
where minimality is taken with respect to the time at which the hypothetical second visit takes place.
Typing excludes that these two positive actions be one above another (the address is consumed after
the first visit). Thus they must appear in incompatible positions in the tree, and the divergence starts
from a positive action. Then typing implies that the first two negative actions on the two diverging
paths must have the same focus (disjointness of contexts). These two actions must have been visited
before, a contradiction to minimality. Note that the reasoning applies a fortiori with I1 = I2, which
proves the last part of the statement. �

Notice that Proposition 4.18 implies that the token machine terminates on finite designs (a property
which is obvious with our first formalization of normalization).

Proposition 4.19 If two finite slices φ and ψ are such that their underlying set of actions are oppo-
site, then the normalization of 〈φ | ψ〉 visits all of φ and ψ.

Proof. (A more general statement is proved in [35, Proposition 1]). Note that since we deal with
slices, we can omit the ramifications, and name the actions simply with their sign and their focus. We
say that two slices satisfying the condition in the statement form a balanced pair: (+, ξ) (resp. (−, ξ))
occurs in φ if and only if (−, ξ) (resp. (+, ξ)) occurs in ψ.

The proof is by contradiction. If the normalization stops before having explored φ and ψ entirely,
it stops having visited φ′ ⊆ φ and ψ′ ⊆ ψ, where φ′ and ψ′ form a balanced pair, and we have, say,
φ′ 6= φ, but then also ψ′ 6= ψ since φ′ and ψ′ have the same addresses. Consider the actions on the
border, i.e., which are not in φ′ nor in ψ′, but whose father is in φ′ or ψ′: they must be negative,
since otherwise the normalization procedure would have visited them. So let us pick an action (−, ξ1)
on the border, say in φ \ φ′. Then also (+, ξ1) occurs somewhere in ψ \ ψ′. Consider the chronicle
(determined by) (+, ξ1), and let (−, ξ2) be the action of this chronicle which lies on the border. We
can continue this and build an infinite sequence of actions (−, ξn). Now, for all n, we have ξn = ξ′nin
and (+, ξ′n) ∈ φ′ ∪ ψ′, for some ξ′n and in (focalization condition, cf. Remark 3.8). We also have
that (−, ξ′n) ∈ φ′ ∪ ψ′, since φ′ and ψ′ form a balanced pair. The action (−, ξ′n) appears on the
chronicle (+, ξn) (subaddress condition), and hence by construction (−, ξ′n) occurs before (+, ξ′n+1) on
this chronicle. It follows that (−, ξ′n) is visited before (+, ξ′n+1) during normalization. Since (+, ξ′n) is
visited right before (−, ξ′n), we have that (+, ξ′n+1) is visited strictly after (+, ξ′n). But this contradicts
the termination of the normalization procedure, which as we have seen is a consequence of Proposition
4.18. �

41

Several characterizations of those designs φ which can be entirely visited during normalization
against a counter-design ψ are given in [26].

Exercise 4.20 Show that in presence of the separation property, associativity is equivalent to (a
general formulation of) the following statement (called closure principle). If φ : (⊢ ξ) and ψ : (ξ ⊢ λ),
then [[φ, ψ]] is the unique design φ′ such that [[φ′, ψ′]] = [[φ, {ψ, ψ′}]] for all ψ′ : (λ ⊢).

5 Behaviours

A positive behaviour on a base ⊢ Λ (resp. a negative behaviour on a base ξ ⊢ Λ) is a set G of designs
of type (⊢ Λ) (resp. (ξ ⊢ Λ)) closed by taking the bi-orthogonal, i.e., G = G⊥⊥. In most cases, we
suppose that the base is of the form ⊢ ξ or ξ ⊢. Equivalently, a behaviour, say, on the base ⊢ ξ (resp.
(ξ ⊢)) is a set of the form A⊥, where A is an arbitrary set of designs of type (ξ ⊢) (resp. (⊢ ξ)).
Throughout the section, we take ξ = ǫ. Here are some examples of behaviours:

• If A = ∅, then A⊥ is the set of all the designs of type (ǫ ⊢) (resp. (⊢ ǫ)): this behaviour is
denoted ⊤.

• If A = ⊤ is negative (resp. positive), it is easy to see that A⊥ = {Dai} (resp. A⊥ = {Dai−}).
Hence a behaviour is never empty, it always contains Dai or Dai−.

• If φ is a design, the smallest behaviour that contains it is:

{φ}⊥⊥ = {φ′ | φ ⊑ φ′} .

Indeed, for any A, we have A⊥ = {φ′ | A ⊆ φ′⊥}, so in particular {φ}⊥⊥ = {φ′ | φ⊥ ⊆ φ′⊥} =
{φ′ | φ ⊑ φ′}.

Below, we list a few closure properties of behaviours, which are easily checked:

• If G is a behaviour and if φ ∈ G and φ ⊑ φ′, then φ′ ∈ G (by the separation theorem).

• If G is a behaviour and if φk is a bounded family of designs (considered as sets of chronicles) of
G, i.e., ∃φ (∀ k φk ⊆ φ)), then their intersection is a design of G (by the stability theorem).

• Every intersection of behaviours is a behaviour (as, say, A⊥ ∩B⊥ = (A ∪B)⊥).

Definition 5.1 (incarnation) If G is a behaviour and if φ ∈ G, we call the incarnation of φ in G
the smallest design ⊆ φ of G (whose existence follows from the second closure property listed above).
We denote it as |φ|G or simply |φ|. An incarnated design is a design φ such that φ = |φ|. We set
|G| = {φ ∈ G | φ = |φ|G}.

The stability theorem and the definition of behaviour allow us to give a more operational char-
acterization of the incarnation: |φ|G is the set of chronicles that are visited during a normalization
of φ against some design ψ of G⊥ (different designs may be used for witnessing the visit of different
chronicles).

Incarnation is clearly contravariant: if G ⊆ H and φ ∈ G, then |φ|H ⊆ |φ|G. The extreme case is
|ψ|

⊤
= Skunk (negative base).

42

Lemma 5.2 For any behaviour, we have G⊥ = |G|⊥.

Proof. We get G⊥ ⊆ |G|⊥ by contravariance. Now let ψ ∈ |G|⊥ and let φ ∈ G. Then ψ⊥|φ|G, and
hence ψ⊥φG by monotonicity. �

Additives. We now have enough material to return to types and logic. The paradigm is that of
behaviours as types. The rest of the section is devoted to constructions on behaviours, corresponding
to those of linear logic, and more. Some of these constructions are reminiscent of phase semantics (cf.
part I, section 5), but the present framework is obviously much richer.

Definition 5.3 (Intersection, Union) If Gk is a family of behaviours on the same base, the set
intersection of this familly is a behaviour (cf. above), that we call the intersection of these behaviours,
notation

⋂

k Gk. We define the union of behaviours
⊔

k Gk as the bi-orthogonal of their set union:
⊔

k Gk = (
⋃

k Gk)⊥⊥.

The ordinary additives correspond to the particular case where the connectives are applied to
disjoint behaviours – a notion that we define now (using some of the designs of Definition 3.4).

Definition 5.4 (Directory) A directory is a set of ramifications (i.e., a subset of Pf (ω)). If G is
a positive behaviour on ⊢ ǫ, we define the directory Dir(G) as follows: Dir(G) = {I | Ram(ǫ,I) ∈ G}.

If G is negative, we define Dir(G) by the equation DirDir(G) = |Dai−|G.

The following properties show the relevance of this definition:

• If G is positive, then Dir(G) is the set of the I’s such that G contains a design beginning
with (+, ǫ, I). Let us check this. If φ ∈ G begins with (+, ǫ, I), then φ ⊑ Ram(ǫ,I), hence
Ram(ǫ,I) ∈ G, i.e., I ∈ Dir(G). The reciprocal is immediate.

• We have Dir(G⊥) = Dir(G). The proof goes as follows. Since G⊥⊥ = G, we may suppose
that G is positive. We have I ∈ Dir(G⊥) if and only if there exists φ ∈ G such that the
normalization of 〈φ | Dai−〉 explores the branch (−, ǫ, I) of Dai−, i.e., such that φ begins with
(+, ǫ, I). But by the previous property, this amounts to I ∈ Dir(G).

• If G is a negative behaviour and if ψ is incarnated in G on base ξ ⊢, then Dir(G) = {I |
(−, ξ, I) is an initial action of ψ}. Indeed, each φ of G⊥ induces a visit on ψ, which starts with
a (−, ξ, I) matching φ’s initial action: collecting all these visits together (which is the definition
of incarnation), we get the statement.

Definition 5.5 (Disjoint behaviours) We say that two behaviours G and G′ on the same base are
disjoint if Dir(G) and Dir(G′) are disjoint sets.

If two negative behaviours G and H are disjoint (that is, Dir(G)∩Dir(H) = ∅), and if ψ1 and ψ2

are respective incarnated designs of G and H, their union is well-defined. Moreover, it is obviously
a design of G ∩H. This actually defines a bijection between |G| × |H| and |G ∩H|. Hence in the
disjoint case, intersection is product! Girard calls this striking property the “mystery of incarnation”.

Lemma 5.6 If G and H are disjoint negative behaviours, then (G ∩H)⊥ = G⊥ ∪H⊥.

43

Proof. By contravariance, we have G⊥ ⊆ (G ∩ H)⊥ and H⊥ ⊆ (G ∩ H)⊥. It remains to show
(G ∩H)⊥ ⊆ G⊥ ∪H⊥. Let φ ∈ (G ∩H)⊥. If φ = z, then φ belongs to any behaviour, and hence a
fortiori to G⊥∪H⊥. So we can suppose that φ starts with a positive action. For any pair of incarnated
designs ψ1 ∈ G and ψ2 ∈ H, we have (cf. above) ψ1 ∪ψ2 ∈ G∩H, and hence φ⊥(ψ1 ∪ψ2). Then φ’s
initial action (+, ξ, I) matches an initial action of (exclusively) either ψ1 or ψ2, say, not of ψ2: then
all normalizatiojn takes place in ψ1, so we have in fact φ⊥ψ1. Now we can let ψ1 vary over |G| while
keeping ψ2 fixed. Then we have φ⊥ψ for all ψ ∈ |G|, that is, φ ∈ |G|⊥, and we conclude by Lemma
5.2. �

Definition 5.7 (Additive connectives) If G and H are two disjoint negative (resp. positive)
behaviours, we rebaptize their intersection (resp. union) in the sense of definition 5.3 as follows:
G ∩H = G&H (resp. G

⊔
H = G⊕H).

Proposition 5.8 If G and H are negative and disjoint, then |G&H| ≈ |G| × |H|.

Proof. We have constructed above a mapping from |G| × |H| to G∩H, which takes ψ1 and ψ2 and
returns ψ1 ∪ ψ2. This design is incarnated, since the whole of ψ1 is visited by normalisation against
the designs of G⊥ (which are a fortiori designs of (G ∩H)⊥), and similarly for ψ2. Hence we have
defined a map from |G| × |H| to |G ∩H|. This map is injective by the disjointness assumption. We
are left to show that it is surjective. Let ψ be an incarnated design of G ∩H, Then, by Lemma 5.6,
we can write ψ = ψ1 ∪ ψ2, where, say, ψ1 = {ψφ | φ ∈ G⊥} (where ψφ is the part of ψ visited during
the normalization of 〈φ | ψ〉), which is incarnated in G. �

Remark 5.9 Note that the cartesian product is associative only up to isomorphism, while intersection
is isomorphic up to equality. Girard points out that a way to get a better match is to redefine the product
of two disjoint sets X and Y as follows: X×Y = {x∪y | x ∈ X and y ∈ Y }. Note that this definition
makes also sense when the condition on X and Y is not satisfied, but one then does not obtain a
product (in the category of sets) of X and Y anymore.

The ⊕ connective has also a remarkable property: one can get rid of the bi-orthogonal. Moreover,
it is also a union at the level of incarnations (see Exercise 5.13).

Proposition 5.10 Let G and H be positive and disjoint behaviours. Then G ⊕H is simply the set
union of G and H.

Proof. This is an immediate consequence of Lemma 5.6:

G ∪H = G⊥⊥ ∪H⊥⊥ = (G⊥ ∩H⊥)⊥ = (G ∪H)⊥⊥ .

�

Remark 5.11 Girard calls internal completeness the situation when a new behaviour can be defined
from other behaviours without using a bi-orthogonal. Indeed, given a set A of designs, the set A⊥ can
be viewed as the set of the (counter-)models of A, and then A being closed under bi-orthogonal means
that everything valid was already there.

44

What if two behaviours are not disjoint? Then we can still form a & or a ⊕, provided we force
disjunction by copying the behaviours, or delocating them, as Girard says (see Exercises 5.14 and
5.15).

But intersections are not less useful than products. They have been introduced long ago in the
study of models of untyped λ-calculi [15, 44], and have been used to give semantic foundations to
object-oriented programming (see, e.g. [39]). We show here a simple example of how records can
be encoded as designs, and how they can be observed by suitable behaviours. Let us consider three
fields: radius, angle, colour. Assuming that we have fixed an origin and two orthogonal vectors of
equal norm, then giving a positive number r as radius and a positive number φ (mod 360) gives us a
point in the plane, while giving an r and a coulour, say, blue, gives us a blue circle. If the three fields
are given a value, then we get a couloured point. To encode these simple data, we shall use negative
designs (recall that & is a negative connective), on base ǫ ⊢. Let I1, I2, I3 be arbirtrary ramifications
(i.e., finite subsets of ω), which are pairwise distinct, for example, I1 = {i1}, I2 = {i2}, I3 = {i3}
with i1, i2, i3 distinct. We shall use them to encode the three fields radius, angle, and colour,
respectively. Here is a red point on the horizontal axis, negative side, at distance 2 from the origin
(yes, we encode here only denumerably many points..., and, say, red is encoded by 9):

ψ = {(−, ǫ, {i1}) (+, i1, {2}) · {Skunk i12},
(−, ǫ, {i2}) (+, i2, {180}) · {Skunk i2⋆(180)},
(−, ǫ, {i3}) (+, i3, {9}) · {Skunk i39}}

Suppose that we are only interested in the underlying red circle (centered at the origin) – yes, with
this representation, the type of points is a subtype of the type of circles centered at the origin: we
simply forget the angle component. Formally, we define the following behaviour G of coloured circles:

G = {(+, ǫ, {i1}) · {Dai−i1} , (+, ǫ, {i3}) · {Dai−i3}}
⊥ .

We have |ψ|G = {(−, ǫ, {i1}) (+, i1, {2}) · {Skunk i12} , (−, ǫ, {i3}) (+, i3, {9}) · {Skunk i39}}. One
could similarly define the behaviour G′ of (uncoloured) points. Then G ∩ G′ is the behaviour of
coloured points, and this behaviour is not a product. We could also define the behaviours G1 and G2

of circles and colours, respectively, and then we recover G as the intersection of G1 and G2, which
in this case is a product.

There is more material in [35] and in [51], to which we refer for further reading:

• In ludics, one can define different sorts of commutative and non-commutative tensor products
of designs and of behaviours. The basic idea is to glue two positive designs φ1 and φ2 starting
respectively with (+, ξ, I) and (+, ξ, J) into a design starting with (+, ξ, I ∪ J), the problem
being what to do on I ∩ J : the non-commutative versions give priority to one of the designs,
while the commutative versions place uniformly ⊥ (resp. z) after all actions (−, ξk, L), where
k ∈ I ∩ J . The degenerate cases of the definition (tensoring with Fid) are a bit tricky, and have
led Maurel to introduce an additional design, called negative divergence (see [51]).

• Ludics suggests new kinds of quantifications, in a vein similar to what we have seen for additives.

• Girard proves a full completeness result for a polarized version of MALL (cf. section 2) with
quantifiers. To this aim, behaviours must be enriched with partial equivalence relations, to cope
with the uniform, or parametric nature of proofs (think of axiom ⊢ X,X⊥ as parametric in the
atom X).

45

• Exponentials can be handled by introducing a quantitative framework, where positive actions
in designs are combined through formal probability trees: probabilities allow us to count repeti-
tions, and to lift the separation property to a framework of designs with repetition and pointers
(see [51]).

Exercise 5.12 Show that two positive behaviours are disjoint if and only if their set intersection is
{z}, and that two negative behaviours G and G′ are disjoint if and only if for all ψ ∈ G and ψ′ ∈ G′

we have |ψ|G ∩ |ψ′|G′ = ∅ (as sets of chronicles).

Exercise 5.13 Show that if G and H are positive and disjoint, then |G⊕H| = |G| ∪ |H|.

Exercise 5.14 What conditions should a function θ from addresses to addresses satisfy to be such
that it induces a well defined transformation on designs, replacing every action, say, (+, ξ, I) with
(+, θ(ξ), J) such that θ(ξ) ⋆ J = {θ(ξi) | i ∈ I}? Such a function is called a delocation function.

Exercise 5.15 Show that for any two behaviours G1 and G2 on the same base, one can find two
delocation functions θ1 and θ2 such that θ1(G1) and θ2(G2) are disjoint.

Exercise 5.16 Show that as operations on behaviours ⊗ and ⊕ are such that ⊗ distributes over ⊕.

Acknowledgements

I wish to thank Song Fangmin and the University of Nanjing for an invitation in October 2001, which
offered me the occasion to give a few lectures on linear logic, and Aldo Ursini and the University
of Siena for providing most hospitable conditions for me to write this survey article and to give the
corresponding course.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy, Explicit substitutions, Journal of Functional
Programming 1(4), 375-416 (1992).

[2] S. Abramsky and R. Jagadeesan, Games and full completeness for multiplicative linear logic,
Journal of Symbolic Logic 59, 543-574 (1994).

[3] S. Abramsky and G. McCusker, Game semantics, in Computational Logic, U. Berger and H.
Schwichtenberg eds, Springer Verlag (1999).

[4] R. Amadio and P.-L. Curien, Domains and lambda-calculi, Cambridge University Press (1998).

[5] J.-M. Andreoli: Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and
Compuation 2(3), 297-347 (1992).

J.-M. Andreoli and R. Pareschi, Linear objects: logical processes with built-in inheritance, New
Generation Computing 9(3-4), 445-473 (1991).

[6] A. Asperti, V. Danos, C. Laneve, and L. Regnier, Paths in the lambda-calculus, in Proc. Logic
in Computer Science 1994.

46

[7] A. Asperti and S. Guerrini, The optimal implementation of functional programming languages,
Cambridge University Press (1998).

[8] A. Asperti and C. Laneve, Paths, computations and labels in the λ-calculus, Thoretical Computer
Science 142(2), 277-297 (1993).

[9] P. Baillot, Approches dynamiques en sémantique de la logique linéaire: jeux et géométrie de
l’interaction, Thèse de Doctorat, Université Aix-Marseille II (1999).

[10] H. Barendregt, M. Coppo, and M. Dezani, A filter lambda model and the completeness of type
assignment, Journal of Symbolic Logic 48, 931-940 (1983).

[11] G. Berry and P.-L. Curien, Sequential algorithms on concrete data structures, Theoretical Com-
puter Science 20, 265-321 (1982).

[12] K. Bruce and G. Longo, A modest model of records, inheritance and bounded quantification,
Information and Computation 87, 196-240 (1990).

[13] L. Cardelli and P. Wegner, On understanding types, data abstraction, and polymorphism, Com-
puting Surveys 17(4), 471-522 (1985).

[14] R. Cartwright, P.-L. Curien, and M. Felleisen, Fully abstract models of observably sequential
languages, Information and Computation 111 (2), 297-401 (1994).

[15] Coppo, M., Dezani, M.A., and Sallé, P., Functional Characterization of some Semantic Equalities
inside lambda-calculus, ICALP Graz, Lecture Notes in Computer Science, Springer Verlag, 1979.

[16] P.-L. Curien and H. Herbelin, Computing with abstract Böhm trees, Third Fuji International
Symposium on Functional and Logic Programming, April 1998, Kyoto, World Scientific (1998)

[17] P.-L. Curien, Abstract Böhm trees, Mathematical Structures in Computer Science 8(6), 559-591
(1998).

[18] P.-L. Curien, G. Plotkin, and G. Winskel, Bistructure models of linear logic, Milner Festschrift,
MIT Press (1999).

[19] P.-L. Curien, Sequential algorithms as bistable maps, to appear (2004).

[20] P.-L. Curien, Symmetry and interactivity in programming, Bulletin of Symbolic Logic 9, 169-180
(2003).

[21] V. Danos, La logique linéaire appliquée à l’étude de divers processus de normalization (princi-
palement du λ-calcul), Thèse de Doctorat, Université Paris 7 (1990).

[22] V. Danos and L. Regnier, Local and asynchronous beta-reduction, Proc. of Logic in Computer
Science 1993.

[23] V. Danos and L. Regnier, The structure of multiplicatives, Archive for Mathematical Logic 28,
181-203 (1989).

[24] C. Faggian, Travelling on designs: ludics dynamics, in Proc. CSL 2002, Lecture Notes in Computer
Science 2471 (2002).

47

[25] C. Faggian and M. Hyland, Designs, disputes and strategies, in Proc. CSL 2002, Lecture Notes
in Computer Science 2471 (2002).

[26] C. Faggian, Interactive observability in ludics, in Proc. of ICALP 2004, Lecture Notes in Com-
puter Science (2004).

[27] G. Gonthier, M. Abadi and J.-J. Lévy, The geometry of optimal lambda reduction, in Proc.
Principles of Programming Languages 1992.

[28] G. Gonthier, M. Abadi and J.-J. Lévy, Linear logic without boxes, in Proc. Logic in Computer
Science 1992.

[29] J.-Y. Girard, Linear logic, Theoretical Computer Science 50, 1-102 (1987).

[30] J.-Y. Girard, Geometry of interaction I: interpretation of system F, in Proc. Logic Colloquium
’88, 221-260, North Holland (1989).

[31] J.-Y. Girard, A new constructive logic: classical logic, Mathematical Structures in Computer
Science 1, 255-296 (1991).

[32] J.-Y. Girard, Linear logic: it’s syntax and semantics, in Advances of Linear Logic, J.-Y. Girard,
Y. Lafont, and L. Regnier eds, Cambridge University Press, 1-42 (1995).

[33] J.-Y. Girard, On the meaning of logical rules I: syntax vs. semantics, in Computational Logic, U.
Berger and H. Schwichtenberg eds, 215-272, Nato Series F 165, Springer (1999).

[34] J.-Y. Girard, On the meaning of logical rules II: multiplicative/additive case, in Foundation of
Secure Computation, NATO series F 175, 183-212, IOS Press (2000).

[35] J.-Y. Girard, Locus solum: from the rules of logic to the logic of rules, Mathematical Structures
in Computer Science 11(3), 301-506 (2001).

[36] J.-Y. Girard, From foundations to ludics, Bulletin of Symbolic Logic 9, 131-168 (2003).

[37] S. Guerrini, Correctness of multiplicative proof nets is linear, in Proc. Logic in Computer Science
1999.

[38] S. Guerrini and A. Masini, Parsing MELL proof nets, Theoretical Computer Science 254 (1-2),
317-335 (2001)..

[39] Theoretical aspects of object-oriented proigramming: types, semantics, and language design, C.
Gunter and J. Mitchell eds., MIT Press (1994).

[40] R. Hindley, The completeness theorem for typing lambda-terms, Theoretical Computer Science
22, 1-17 (1983).

[41] G. Huet and D. Oppen, Equations and Rewrite Rules: a Survey, in Formal Language Theory:
Perspectives and Open Problems, R. Book (ed.), Academic Press, 349-405 (1980).

[42] D. Hughes and R. van Glabbeek, Proof nets for unit-free multiplicative-additive linear logic, in
Proc. Logic in Computer Science (2003).

48

[43] M. Hyland and L. Ong, On Full Abstraction for PCF, Information and Computation 163, 285-408
(2000).

[44] J.-L. Krivine, Lambda-calculus, types and models, Ellis Horwood (1993).

[45] J. Laird, Bistability: an extensional characterization of sequentiality, in Proc. Computer Science
Logic 2003, Springer LNCS 2803 (2003).

[46] J. Lamping, An algorithm for optimal lambda calculus reduction. Proc. Principles of Program-
ming Languages 1990, 16-30.

[47] O. Laurent, Etude de la polarisation en logique, PhD Thesis, Université Aix-Marseille II (2002).

[48] O. Laurent, Classical isomorphisms of types, to appear in Mathematical Structures in Computer
Science (2004).

[49] O. Laurent, A proof of the focalization property of linear logic, draft (2003).

[50] J.-J. Lévy, Optimal reductions in the lambda-calculus, in To H.B. Curry: Essays in Combinatory
Logic, Lambda Calculus and Formalism, J. Seldin and R. Hindley eds, 159-191, Academic Press
(1980).

[51] F. Maurel, Un cadre quantitatif pour la ludique, PhD Thesis, Paris 7 Univ. (2004).

[52] J. Mitchell, Polymorphic type inference and containment, Information and Computation 76, 211-
249 (1988).

[53] L. Regnier, Lambda-calcul et réseaux, Thèse de Doctorat, Université Paris 7 (1992).

[54] A. Saurin, A note on focalization property and synthetic connectives, draft (2004).

[55] L. Tortora de Falco, Additives of linear logic and normalization – Part I: a (restricted) Church-
Rosser property, Theoretical Computer Science 294 (3), 489-524 (2003).

49

