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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47127779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00004604


cc
sd

-0
00

04
60

4,
 v

er
si

on
 1

 -
 3

0 
M

ar
 2

00
5

Limit theorems for bipower variation

in financial econometrics

Ole E. Barndorff-Nielsen

Department of Mathematical Sciences,
University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark

oebn@imf.au.dk

Svend Erik Graversen

Department of Mathematical Sciences,
University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark

matseg@imf.au.dk

Jean Jacod

Laboratoire de Probabilités et Modèles Aléatoires (CNRS UMR 7599)
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1 Introduction

In this paper we discuss the limiting theory for a novel, unifying class of non-parametric measures

of the variation of financial prices. The theory covers commonly used estimators of variation

such as realised volatility, but it also encompasses more recently suggested quantities like realised

power variation and realised bipower variation. We considerably strengthen existing results on

the latter two quantities, deepening our understanding and unifying their treatment. We will

outline the proofs of these theorems, referring for the very technical, detailed formal proofs of the

general results to a companion probability theory paper (Barndorff-Nielsen, Graversen, Jacod,

Podolskij, and Shephard 2004). Our emphasis is on exposition, explaining where the results

come from and how they sit within the econometrics literature.

Our theoretical development is motivated by the advent of complete records of quotes or

transaction prices for many financial assets. Although market microstructure effects (e.g. dis-

creteness of prices, bid/ask bounce, irregular trading etc.) mean that there is a mismatch

between asset pricing theory based on semimartingales and the data at very fine time intervals

it does suggest the desirability of establishing an asymptotic distribution theory for estimators

as we use more and more highly frequent observations. Papers which directly model the impact

of market microstructure noise on realised variance include (Bandi and Russell 2003), (Hansen

and Lunde 2003), (Zhang, Mykland, and Aı̈t-Sahalia 2005), (Barndorff-Nielsen, Hansen, Lunde,

and Shephard 2004) and (Zhang 2004). Related work in the probability literature on the impact

of noise on discretely observed diffusions can be found in (Gloter and Jacod 2001a) and (Gloter

and Jacod 2001b), while (Delattre and Jacod 1997) report results on the impact of rounding on

sums of functions of discretely observed diffusions. In this paper we ignore these effects.

Let the d-dimensional vector of the log-prices of a set of assets follow the process

Y =
(

Y 1, ..., Y d
)′
.

At time t ≥ 0 we denote the log-prices as Yt. Our aim is to calculate measures of the variation

of the price process (e.g. realised volatility) over discrete time intervals (e.g. a day or a month).

Without loss of generality we can study the mathematics of this by simply looking at what

happens when we have n high frequency observations on the time interval t = 0 to t = 1 and

study what happens to our measures of variation as n → ∞ (e.g., for introductions to this,

(Barndorff-Nielsen and Shephard 2002)). In this case returns will be measured over intervals of

length n−1 as

∆n
i Y = Yi/n − Y(i−1)/n, i = 1, 2, ..., n, (1)

where n is a positive integer.
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We will study the behaviour of the realised generalised bipower variation process

1

n

⌊nt⌋
∑

i=1

g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ), (2)

as n becomes large and where g and h are two given, matrix functions of dimensions d1 × d2

and d2 × d3 respectively, whose elements have at most polynomial growth. Here ⌊x⌋ denotes the

largest integer less than or equal to x.

Although (2) looks initially rather odd, in fact most of the non-parametric volatility measures

used in financial econometrics fall within this class (a measure not included in this setup is the

range statistic studied in, for example, (Parkinson 1980)). Here we give an extensive list of

examples and link them to the existing literature. More detailed discussion of the literature on

the properties of these special cases will be given later.

Example 1 (a) Suppose g(y) =
(

yj
)2

and h(y) = 1, then (2) becomes

⌊nt⌋
∑

i=1

(

∆n
i Y

j
)2
,

which is called the realised quadratic variation process of Y j in econometrics, e.g. (Jacod

1994), (Jacod and Protter 1998), (Barndorff-Nielsen and Shephard 2002), (Barndorff-Nielsen

and Shephard 2004a) and (Mykland and Zhang 2005). The increments of this quantity, typically

calculated over a day or a week, are often called the realised variances in financial economics

and have been highlighted by (Andersen, Bollerslev, Diebold, and Labys 2001) and (Andersen,

Bollerslev, and Diebold 2005) in the context of volatility measurement and forecasting.

(b) Suppose g(y) = yy′ and h(y) = I, then (2) becomes, after some simplification,

⌊nt⌋
∑

i=1

(∆n
i Y ) (∆n

i Y )′ .

This is the realised covariation process. It has been studied by (Jacod and Protter 1998),

(Barndorff-Nielsen and Shephard 2004a) and (Mykland and Zhang 2005). (Andersen, Bollerslev,

Diebold, and Labys 2003) study the increments of this process to produce forecast distributions

for vectors of returns.

(c) Suppose g(y) =
∣

∣yj
∣

∣

r
for r > 0 and h(y) = 1, then (2) becomes

n−1+r/2

⌊nt⌋
∑

i=1

∣

∣∆n
i Y

j
∣

∣

r
,

which is called the realised r-th order power variation. When r is an integer it has been studied

from a probabilistic viewpoint by (Jacod 1994) while (Barndorff-Nielsen and Shephard 2003) look
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at the econometrics of the case where r > 0. The increments of these types of high frequency

volatility measures have been informally used in the financial econometrics literature for some

time when r = 1, but until recently without a strong understanding of their properties. Examples

of their use include (Schwert 1990), (Andersen and Bollerslev 1998) and (Andersen and Boller-

slev 1997), while they have also been informally discussed by (Shiryaev 1999, pp. 349–350) and

(Maheswaran and Sims 1993). Following the work by (Barndorff-Nielsen and Shephard 2003),

(Ghysels, Santa-Clara, and Valkanov 2004) and (Forsberg and Ghysels 2004) have successfully

used realised power variation as an input into volatility forecasting competitions.

(d) Suppose g(y) =
∣

∣yj
∣

∣

r
and h(y) =

∣

∣yj
∣

∣

s
for r, s > 0, then (2) becomes

n−1+(r+s)/2

⌊nt⌋
∑

i=1

∣

∣∆n
i Y

j
∣

∣

r ∣
∣∆n

i+1Y
j
∣

∣

s
,

which is called the realised r, s-th order bipower variation process. This measure of variation

was introduced by (Barndorff-Nielsen and Shephard 2004b), while a more formal discussion of

its behaviour in the r = s = 1 case was developed by (Barndorff-Nielsen and Shephard 2005a).

These authors’ interest in this quantity was motivated by its virtue of being resistant to finite

activity jumps so long as max(r, s) < 2. Recently (Barndorff-Nielsen, Shephard, and Winkel

2004) and (Woerner 2004) have studied how these results on jumps extend to infinite activity

processes, while (Corradi and Distaso 2004) have used these statistics to test the specification of

parametric volatility models.

(e) Suppose

g(y) =

(

∣

∣yj
∣

∣ 0

0
(

yj
)2

)

, h(y) =

(
∣

∣yj
∣

∣

1

)

.

Then (2) becomes,














⌊nt⌋
∑

i=1

∣

∣∆n
i Y

j
∣

∣

∣

∣∆n
i+1Y

j
∣

∣

⌊nt⌋
∑

i=1

(

∆n
i Y

j
)2















.

(Barndorff-Nielsen and Shephard 2005a) used the joint behaviour of the increments of these two

statistics to test for jumps in price processes. (Huang and Tauchen 2003) have empirically

studied the finite sample properties of these types of jump tests. (Andersen, Bollerslev, and

Diebold 2003) and (Forsberg and Ghysels 2004) use bipower variation as an input into volatility

forecasting.

We will derive the probability limit of (2) under a general Brownian semimartingale, the

workhorse process of modern continuous time asset pricing theory. Only the case of realised

quadratic variation, where the limit is the usual quadratic variation QV (defined for general
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semimartingales), has been previously been studied under such wide conditions. Further, under

some stronger but realistic conditions, we will derive a limiting distribution theory for (2), so

extending a number of results previously given in the literature on special cases of this framework.

The outline of this paper is as follows. Section 2 contains a detailed listing of the assumptions

used in our analysis. Section 3 gives a statement of a weak law of large numbers for these statistics

and the corresponding central limit theory is presented in Section 4. Extensions of the results

to higher order variations is briefly indicated in Section 5. Section 6 illustrates the theory by

discussing how it gives rise to tests for jumps in the price processes, using bipower and tripower

variation. The corresponding literature which discusses various special cases of these results is

also given in these sections. Section 8 concludes, while there is an Appendix which provides an

outline of the proofs of the results discussed in this paper. For detailed, quite lengthy and highly

technical formal proofs we refer to our companion probability theory paper (Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard 2004).

2 Notation and models

We start with Y on some filtered probability space
(

Ω,F , (Ft)t≥0 , P
)

. In most of our analysis

we will assume that Y follows a d-dimensional Brownian semimartingale (written Y ∈ BSM).

It is given in the following statement.

Assumption (H): We have

Yt = Y0 +

∫ t

0
audu+

∫ t

0
σu−dWu, (3)

where W is a d′-dimensional standard Brownian motion (BM), a is a d-dimensional process

whose elements are predictable and has locally bounded sample paths, and the spot covolatility

d, d′-dimensional matrix σ has elements which have càdlàg sample paths.

Throughout we will write

Σt = σtσ
′
t,

the spot covariance matrix. Typically Σt will be full rank, but we do not assume that here. We

will write Σjk
t to denote the j, k-th element of Σt, while we write

σ2
j,t = Σjj

t .

Remark 1 Due to the fact that t 7→ σjk
t is càdlàg all powers of σjk

t are locally integrable with

respect to the Lebesgue measure. In particular then
∫ t
0 Σjj

u du <∞ for all t and j.

Remark 2 Both a and σ can have, for example, jumps, intraday seasonality and long-memory.
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Remark 3 The stochastic volatility (e.g. (Ghysels, Harvey, and Renault 1996) and (Shephard

2005)) component of Y ,
∫ t

0
σu−dWu,

is always a vector of local martingales each with continuous sample paths, as
∫ t
0 Σjj

u du < ∞
for all t and j. All continuous local martingales with absolutely continuous quadratic varia-

tion can be written in the form of a stochastic volatility process. This result, which is due to

(Doob 1953), is discussed in, for example, (Karatzas and Shreve 1991, p. 170–172). Using the

Dambis-Dubins-Schwartz Theorem, we know that the difference between the entire continuous

local martingale class and the SV class are the local martingales which have only continuous,

not absolutely continuous1, QV. The drift
∫ t
0 audu has elements which are absolutely continuous.

This assumption looks ad hoc, however if we impose a lack of arbitrage opportunities and model

the local martingale component as a SV process then this property must hold ((Karatzas and

Shreve 1998, p. 3) and (Andersen, Bollerslev, Diebold, and Labys 2003, p. 583)). Hence (3) is

a rather canonical model in the finance theory of continuous sample path processes.

We are interested in the asymptotic behaviour, for n → ∞, of the following volatility mea-

suring process:

Y n(g, h)t =
1

n

⌊nt⌋
∑

i=1

g(
√
n ∆n

i Y )h(
√
n ∆n

i+1Y ), (4)

where g and h are two given conformable matrix functions and recalling the definition of ∆n
i Y

given in (1).

3 Law of large numbers

To build a weak law of large numbers for Y n(g, h)t we need to make the pair (g, h) satisfy the

following assumption.

Assumption (K): All the elements of f on Rd are continuous with at most polynomial growth.

This amounts to there being suitable constants C > 0 and p ≥ 2 such that

x ∈ Rd ⇒ ‖f(x)‖ ≤ C(1 + ‖x‖p). (5)

We also need the following notation.

ρσ(g) = E {g(X)} , where X|σ ∼ N(0, σσ′),

1An example of a continuous local martingale which has no SV representation is a time-change Brownian
motion where the time-change takes the form of the so-called “devil’s staircase,” which is continuous and non-
decreasing but not absolutely continuous (see, for example, (Munroe 1953, Section 27)). This relates to the work
of, for example, (Calvet and Fisher 2002) on multifractals.
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and

ρσ(gh) = E {g(X)h(X)} .

Example 2 (a) Let g(y) = yy′ and h(y) = I, then ρσ(g) = Σ and ρσ(h) = I.

(b) Suppose g(y) =
∣

∣yj
∣

∣

r
then ρσ(g) = µrσ

r
j , where σ2

j is the j, j-th element of Σ, µr = E(|u|r)
and u ∼ N(0, 1).

This setup is sufficient for the proof of Theorem 1.2 of (Barndorff-Nielsen, Graversen, Jacod,

Podolskij, and Shephard 2004), which is restated here.

Theorem 1 Under (H) and assuming g and h satisfy (K) we have that

Y n(g, h)t → Y (g, h)t :=

∫ t

0
ρσu

(g)ρσu
(h)du, (6)

where the convergence is in probability, locally uniform in time.

The result is quite clean as it is requires no additional assumptions on Y and so is very close

to dealing with the whole class of financially coherent continuous sample path processes.

This Theorem covers a number of existing setups which are currently receiving a great deal

of attention as measures of variation in financial econometrics. Here we briefly discuss some of

the work which has studied the limiting behaviour of these objects.

Example 3 (Example 1(a) continued). Then g(y) =
(

yj
)2

and h(y) = 1, so (6) becomes

⌊nt⌋
∑

i=1

(

∆n
i Y

j
)2 →

∫ t

0
σ2

j,udu = [Y j]t,

the quadratic variation (QV) of Y j. This well known result in probability theory is behind much

of the modern work on realised volatility, which is compactly reviewed in (Andersen, Bollerslev,

and Diebold 2005).

(Example 1(b) continued). As g(y) = yy′ and h(y) = I, then

⌊nt⌋
∑

i=1

(∆n
i Y ) (∆n

i Y )′ →
∫ t

0
Σudu = [Y ]t,

the well known multivariate version of QV.

(Example 1(c) continued). Then g(y) =
∣

∣yj
∣

∣

r
and h(y) = 1 so

n−1+r/2

⌊nt⌋
∑

i=1

∣

∣∆n
i Y

j
∣

∣

r → µr

∫ t

0
σr

j,udu.

This result is due to (Jacod 1994) and (Barndorff-Nielsen and Shephard 2003).
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(Example 1(d) continued). Then g(y) =
∣

∣yj
∣

∣

r
and h(y) =

∣

∣yj
∣

∣

s
for r, s > 0, so

n−1+(r+s)/2

⌊nt⌋
∑

i=1

∣

∣∆n
i Y

j
∣

∣

r ∣
∣∆n

i+1Y
j
∣

∣

s → µrµs

∫ t

0
σr+s

j,u du,

a result due to (Barndorff-Nielsen and Shephard 2004b), who derived it under stronger conditions

than those used here.

(Example 1(e) continued). Then

g(y) =

(

∣

∣yj
∣

∣ 0

0
(

yj
)2

)

, h(y) =

(
∣

∣yj
∣

∣

1

)

,

so














⌊nt⌋
∑

i=1

∣

∣∆n
i Y

j
∣

∣

∣

∣∆n
i+1Y

j
∣

∣

⌊nt⌋
∑

i=1

(

∆n
i Y

j
)2















→
(

µ2
1

1

)∫ t

0
σ2

j,udu.

(Barndorff-Nielsen and Shephard 2005a) used this type of result to test for jumps as this partic-

ular bipower variation is robust to jumps.

4 Central limit theorem

4.1 Motivation

It is important to be able to quantify the difference between the estimator Y n(g, h) and Y (g, h).

In this subsection we do this by giving a central limit theorem for
√
n(Y n(g, h) − Y (g, h)). We

have to make some stronger assumptions both on the process Y and on the pair (g, h) in order

to derive this result.

4.2 Assumptions on the process

We start with a variety of assumptions which strengthen (H) and (K) given in the previous

subsection.

Assumption (H0): We have (H) with

σt = σ0 +

∫ t

0
a∗udu+

∫ t

0
σ∗u−dWu +

∫ t

0
v∗u−dZu, (7)

where Z is a d′′-dimensional Lévy process, independent of W . Further, the processes a∗, σ∗, v∗

are adapted càdlàg arrays, with a∗ also being predictable and locally bounded.

Assumption (H1): We have (H) with

σt = σ0 +

∫ t

0
a∗udu+

∫ t

0
σ∗u−dWu +

∫ t

0
v∗u−dVu (8)

+

∫ t

0

∫

E
ϕ ◦ w(u−, x) (µ− ν) (du,dx) +

∫ t

0

∫

E
(w − ϕ ◦ w) (u−, x)µ (du,dx) .
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Here a∗, σ∗, v∗ are adapted càdlàg arrays, with a∗ also being predictable and locally bounded.

V is a d′′-dimensional Brownian motion independent of W . µ is a Poisson measure on (0,∞)×E
independent of W and V , with intensity measure ν(dt,dx) = dt ⊗ F (dx) and F is a σ-finite

measure on the Polish space (E, E). ϕ is a continuous truncation function on Rdd′ (a function

with compact support, which coincide with the identity map on the neighbourhood of 0). Finally

w(ω, u, x) is a map Ω × [0,∞) × E into the space of d × d′arrays which is Fu⊗ E−measurable

in (ω, x) for all u and càdlàg in u, and such that for some sequences (Sk) of stopping times

increasing to +∞ we have

sup
ω∈Ω,u<Sk(ω)

‖w(ω, u, x)‖ ≤ ψk(x) where

∫

E

(

1 ∧ ψk(x)
2
)

F (dx) <∞.

Assumption (H2): Σ = σσ′ is everywhere invertible.

Remark 4 Assumption (H1) looks quite complicated but has been setup so that the same con-

ditions on the coefficients can be applied both to σ and Σ = σσ′. If there were no jumps then it

would be sufficient to employ the first line of (8). The assumption (H1) is rather general from

an econometric viewpoint as it allows for flexible leverage effects, multifactor volatility effects,

jumps, non-stationarities, intraday effects, etc.

4.3 Assumptions on g and h

In order to derive a central limit theorem we need to impose some regularity on g and h.

Assumption (K1): f is even (that is f(x) = f(−x) for x ∈ Rd) and continuously differentiable,

with derivatives having at most polynomial growth.

In order to handle some of the most interesting cases of bipower variation, where we are

mostly interested in taking low powers of absolute values of returns which may not be differen-

tiable at zero, we sometimes need to relax (K1). The resulting condition is quite technical and

is called (K2). It is discussed in the Appendix.

Assumption (K2): f is even and continuously differentiable on the complement Bc of a closed

subset B ⊂ R
d and satisfies

||y|| ≤ 1 =⇒ |f(x+ y) − f(x)| ≤ C(1 + ||x||p)||y||r

for some constants C, p ≥ 0 and r ∈ (0, 1]. Moreover

a) If r = 1 then B has Lebesgue measure 0.

9



b) If r < 1 then B satisfies

for any positive definite d× d matrix C and
any N(0, C)-random vector U the distance d(U,B)
from U to B has a density ψC on R+, such that
supx∈R+,|C|+|C−1|≤AψC(x) <∞ for all A <∞,















(9)

and we have

x ∈ Bc, ‖y‖ ≤ 1
∧ d(x,B)

2
⇒







‖∇f(x)‖ ≤ C(1+‖x‖p)
d(x,B)1−r ,

‖∇f(x+ y) −∇f(x)‖ ≤ C(1+‖x‖p)‖y‖
d(x,B)2−r .

(10)

Remark 5 These conditions accommodate the case where f equals
∣

∣xj
∣

∣

r
: this function satisfies

(K1) when r > 1, and (K2) when r ∈ (0, 1] (with the same r of course). When B is a finite

union of hyperplanes it satisfies (9). Also, observe that (K1) implies (K2) with r = 1 and B = ∅.

4.4 Central limit theorem

Each of the following assumptions (J1) and (J2) are sufficient for the statement of Theorem 1.3

of (Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard 2004) to hold.

Assumption (J1): We have (H1) and g and h satisfy (K1).

Assumption (J2): We have (H1), (H2) and g and h satisfy (K2).

The result of the Theorem is restated in the following.

Theorem 2 Assume at least one of (J1) and (J2) holds, then the process

√
n (Y n(g, h)t − Y (g, h)t)

converges stably in law towards a limiting process U(g, h) having the form

U(g, h)jkt =

d1
∑

j′=1

d3
∑

k′=1

∫ t

0
α(σu, g, h)

jk,j′k′

dBj′,k′

u , (11)

where
d1
∑

l=1

d3
∑

m=1

α(σ, g, h)jk,lmα(σ, g, h)j
′k′,lm = A(σ, g, h)jk,j′k′

,

and

A(σ, g, h)jk,j′k′

=

d2
∑

l=1

d2
∑

l′=1

{

ρσ

(

gjlgj′l′
)

ρσ

(

hlkhl′k′

)

+ ρσ

(

gjl
)

ρσ

(

hl′k′

)

ρσ

(

gj′l′hlk
)

+ρσ

(

gj′l′
)

ρσ

(

hlk
)

ρσ

(

gjlhl′k′

)

−3ρσ

(

gjl
)

ρσ

(

gj′l′
)

ρσ

(

hlk
)

ρσ

(

hl′k′

)}

.

Furthermore, B is a standard Wiener process which is defined on an extension of
(

Ω,F , (Ft)t≥0 , P
)

and is independent of the σ–field F .
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Remark 6 Convergence stably in law is slightly stronger than convergence in law. It is discussed

in, for example, (Jacod and Shiryaev 2003, pp. 512-518).

Remark 7 Suppose d3 = 1, which is the situation looked at in Example 1(e). Then Y n(g, h)t

is a vector and so the limiting law of
√
n(Y n(g, h) − Y (g, h)) simplifies. It takes on the form of

U(g, h)jt =

d1
∑

j′=1

∫ t

0
α(σu, g, h)

j,j′ dBj′
u , (12)

where
d1
∑

l=1

α(σ, g, h)j,lα(σ, g, h)j
′,l = A(σ, g, h)j,j

′

.

Here

A(σ, g, h)j,j
′

=

d2
∑

l=1

d2
∑

l′=1

{

ρσ(gjlgj′l′)ρσ(hlhl′) + ρσ(gjl)ρσ(hl′)ρσ(gj′l′hl)

+ ρσ(gj′l′)ρσ(hl)ρσ(gjlhl′) − 3ρσ(gjl)ρσ(gj′l′)ρσ(hl)ρσ(hl′)
}

.

In particular, for a single point in time t,

√
n (Y n(g, h)t − Y (g, h)t) →MN

(

0,

∫ t

0
A(σu, g, h)du

)

,

where MN denotes a mixed Gaussian distribution. and A(σ, g, h) denotes a matrix whose j, j′-th

element is A(σ, g, h)j,j
′

.

Remark 8 Suppose g(y) = I, then A becomes

A(σ, g, h)jk,j′k′

= ρσ(hjkhj′k′

) − ρσ(hjk)ρσ(hj′k′

).

4.5 Leading examples of this result

Example 4 Suppose d1 = d2 = d3 = 1, then

U(g, h)t =

∫ t

0

√

A(Σu, g, h) dBu, (13)

where

A(σ, g, h) = ρσ(gg)ρσ(hh) + 2ρσ(g)ρσ(h)ρσ(gh) − 3 {ρσ(g)ρσ(h)}2 .

We consider two concrete examples of this setup.

(i) Power variation. Suppose g(y) = 1 and h(y) =
∣

∣yj
∣

∣

r
where r > 0, then ρσ(g) = 1,

ρσ(h) = ρσ(gh) = µrσ
r
j , ρσ(hh) = µ2rσ

2r
j .

11



This implies that

A(σ, g, h) = µ2rσ
2r
j + 2µ2

rσ
2r
j − 3µ2

rσ
2r
j

=
(

µ2r − µ2
r

)

σ2r
j

= vrσ
2r
j ,

where vr = Var(|u|r) and u ∼ N(0, 1). When r = 2, this yields a central limit theorem for the

realised quadratic variation process, with

U(g, h)t =

∫ t

0

√

2σ4
j,u dBu,

a result which appears in (Jacod 1994), (Mykland and Zhang 2005) and, implicitly, (Jacod and

Protter 1998), while the case of a single value of t appears in (Barndorff-Nielsen and Shephard

2002). For the more general case of r > 0 (Barndorff-Nielsen and Shephard 2003) derived,

under much stronger conditions, a central limit theorem for U(g, h)1. Their result ruled out

leverage effects, which are allowed under Theorem 2. The finite sample behaviour of this type

of limit theory is studied in, for example, (Barndorff-Nielsen and Shephard 2005b), (Goncalves

and Meddahi 2004) and (Nielsen and Frederiksen 2005).

(ii) Bipower variation. Suppose g(y) =
∣

∣yj
∣

∣

r
and h(y) =

∣

∣yj
∣

∣

s
where r, s > 0, then

ρσ(g) = µrσ
r
j , ρσ(h) = µsσ

s
j, ρσ(gg) = µ2rσ

2r
j ,

ρσ(hh) = µ2sσ
2s
j , ρσ(gh) = µr+sσ

r+s
j .

This implies that

A(σ, g, h) = µ2rσ
2r
j µ2sσ

2s
j + 2µrσ

r
jµsσ

s
jµr+sσ

r+s
j − 3µ2

rσ
2r
j µ

2
sσ

2s
j

=
(

µ2rµ2s + 2µr+sµrµs − 3µ2
rµ

2
s

)

σ2r+2s
j .

In the r = s = 1 case (Barndorff-Nielsen and Shephard 2005a) derived, under much stronger

conditions, a central limit theorem for U(g, h)1. Their result ruled out leverage effects, which

are allowed under Theorem 2. In that special case, writing

ϑ =
π2

4
+ π − 5,

we have

U(g, h)t = µ2
1

∫ t

0

√

(2 + ϑ)σ4
j,u dBu.

Example 5 Suppose g = I, h(y) = yy′. Then we have to calculate

A(σ, g, h)jk,j′k′

= ρσ(hjkhj′k′

) − ρσ(hjk)ρσ(hj′k′

).

12



However,

ρσ(hjk) = Σjk, ρσ(hjkhj′k′

) = ΣjkΣj′k′

+ Σjj′Σkk′

+ Σjk′

Σkj′,

so

A(σ, g, h)jk,j′k′

= ΣjkΣj′k′

+ Σjj′Σkk′

+ Σjk′

Σkj′ − ΣjkΣj′k′

= Σjj′Σkk′

+ Σjk′

Σkj′.

This is the result found in (Barndorff-Nielsen and Shephard 2004a), but proved under stronger

conditions, and is implicit in the work of (Jacod and Protter 1998).

Example 6 Suppose d1 = d2 = 2, d3 = 1 and g is diagonal. Then

U(g, h)jt =

2
∑

j′=1

∫ t

0
α(σu, g, h)

j,j′ dBj′
u , (14)

where
2
∑

l=1

α(σ, g, h)j,lα(σ, g, h)j
′,l = A(σ, g, h)j,j

′

.

Here

A(σ, g, h)j,j
′

= ρσ(gjjgj′j′)ρσ(hjhj′) + ρσ(gjj)ρσ(hj′)ρσ(gj′j′hj)

+ρσ(gj′j′)ρσ(hj)ρσ(gjjhj′) − 3ρσ(gjj)ρσ(gj′j′)ρσ(hj)ρσ(hj′).

Example 7 Joint behaviour of realised QV and realised bipower variation. This sets

g(y) =

(
∣

∣yj
∣

∣ 0
0 1

)

, h(y) =

(

∣

∣yj
∣

∣

(

yj
)2

)

.

The implication is that

ρσ(g11) = ρσ(g22g11) = ρσ(g11g22) = µ1σj, ρσ(g22) = 1, ρσ(g11g11) = σ2
j , ρσ(g22g22) = 1,

ρσ(h1) = µ1σj, ρσ(h2) = ρσ(h1h1) = σ2
j , ρσ(h1h2) = ρσ(h2h1) = µ3σ

3
j , ρσ(h2h2) = 3σ4

j ,

ρσ(g11h1) = σ2
j , ρσ(g11h2) = µ3σ

3
j , ρσ(g22h1) = µ1σj, ρσ(g22h2) = σ2

j .

Thus

A(σ, g, h)1,1 = σ2
jσ

2
j + 2µ1σjµ1σjσ

2
j − 3µ1σjµ1σjµ1σjµ1σj

= σ4
j

(

1 + 2µ2
1 − 3µ4

1

)

= µ4
1(2 + ϑ)σ4

j ,

while

A(σ, g, h)2,2 = 3σ4
j + 2σ4

j − 3σ4
j = 2σ4

j ,

13



and

A(σ, g, h)1,2 = µ1σjµ3σ
3
j + µ1σjσ

2
jµ1σj + µ1σjµ3σ

3
j − 3µ1σjµ1σjσ

2
j

= 2σ4
j

(

µ1µ3 − µ2
1

)

= 2µ2
1σ

4
j .

This generalises the result given in (Barndorff-Nielsen and Shephard 2005a) to the leverage case.

In particular we have that

(

U(g, h)1t
U(g, h)2t

)

=









µ2
1

∫ t

0

√

2σ4
udB1

u + µ2
1

∫ t

0

√

ϑσ4
udB2

u
∫ t

0

√

2σ4
udB1

u.









5 Multipower variation

A natural extension of generalised bipower variation is to generalised multipower variation

Y n(g)t =
1

n

⌊nt⌋
∑

i=1







I∧(i+1)
∏

i′=1

gi′(
√
n ∆n

i−i′+1Y )







.

This measure of variation, for the gi′ being absolute powers, was introduced by (Barndorff-

Nielsen and Shephard 2005a).

We will be interested in studying the properties of Y n(g)t for given functions {gi} with the

following properties.

Assumption (K∗): All the {gi} are continuous with at most polynomial growth.

The previous results suggests that if Y is a Brownian semimartingale and Assumption (K∗)

holds then

Y n(g)t → Y (g)t :=

∫ t

0

I
∏

i=0

ρσu
(gi)du.

Example 8 (a) Suppose I = 4 and gi(y) =
∣

∣yj
∣

∣, then ρσ(gi) = µ1σj so

Y (g)t = µ4
1

∫ t

0
σ4

j,udu,

a scaled version of integrated quarticity.

(b) Suppose I = 3 and gi(y) =
∣

∣yj
∣

∣

4/3
, then

ρσ(gi) = µ4/3σ
4/3
j

so

Y (g)t = µ3
4/3

∫ t

0
σ4

j,udu.
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Example 9 Of some importance is the generic case where gi(y) =
∣

∣yj
∣

∣

2/I
, which implies

Y (g)t = µI
2/I

∫ t

0
σ2

j,udu.

Thus this class provides an interesting alternative to realised variance as an estimator of in-

tegrated variance. Of course it is important to know a central limit theory for these types of

quantities. (Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard 2004) show that

when (H1) and (H2) hold then

√
n [Y n(g)t − Y (g)t] →

∫ t

0

√

ω2
Iσ

4
j,u dBu,

where

ω2
I = Var

(

I
∏

i=1

|ui|2/I

)

+ 2

I−1
∑

j=1

Cov

(

I
∏

i=1

|ui|2/I ,

I
∏

i=1

|ui−j |2/I

)

,

with ui ∼ NID(0, 1). Clearly ω2
1 = 2, while recalling that µ1 =

√

2/π,

ω2
2 = Var(|u1| |u2|) + 2Cov(|u1| |u2| , |u2| |u3|)

= 1 + 2µ2
1 − 3µ4

1,

and

ω2
3 = Var((|u1| |u2| |u3|)2/3) + 2Cov((|u1| |u2| |u3|)2/3 , (|u2| |u3| |u4|)2/3)

+2Cov((|u1| |u2| |u3|)2/3 , (|u3| |u4| |u5|)2/3)

=
(

µ3
4/3 − µ6

2/3

)

+ 2
(

µ2
4/3µ

2
2/3 − µ6

2/3

)

+ 2
(

µ4/3µ
4
2/3 − µ6

2/3

)

.

Example 10 The law of large numbers and the central limit theorem also hold for linear combi-

nations of processes like Y (g) above. For example one may denote by ζn
i the d× d matrix whose

(k, l) entry is
∑d−1

j=0 ∆n
i+jY

k∆n
i+jY

l. Then

Zn
t =

nd−1

d!

[nt]
∑

i=1

det(ζn
i )

is a linear combinations of processes Y n(g) for functions gl being of the form gl(y) = yjyk. It

is proved in (Jacod, Lejay, and Talay 2005) that under (H)

Zn
t → Zt :=

∫ t

0
det(σuσ

′
u)du

in probability, whereas under (H1) and (H2) the associated CLT is the following convergence in

law:
√
n(Zn

t − Zt) →
∫ t

0

√

Γ(σu) dBu,
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where Γ(σ) denotes the covariance of the variable det(ζ)/d!, and ζ is a d× d matrix whose (k, l)

entry is
∑d−1

j=0 U
k
j U

l
j and the Uj’s are i.i.d. centered Gaussian vectors with covariance σσ′.

This kind of result may be used for testing whether the rank of the diffusion coefficient is

everywhere smaller than d (in which case one could use a model with a d′ < d for the dimension

of the driving Wiener process W ).

6 Conclusion

This paper provides some rather general limit results for realised generalised bipower variation.

In the case of power variation and bipower variation the results are proved under much weaker

assumptions than those which have previously appeared in the literature. In particular the no-

leverage assumption is removed, which is important in the application of these results to stock

data.

There are a number of open questions. It is rather unclear how econometricians might exploit

the generality of the g and h functions to learn about interesting features of the variation of

price processes. It would be interesting to know what properties g and h must possess in order

for these statistics to be robust to finite activity and infinite activity jumps. A challenging

extension is to construct a version of realised generalised bipower variation which is robust

to market microstructure effects. Following the work on the realised volatility there are two

leading strategies which may be able to help: the kernel based approach, studied in detailed

by (Barndorff-Nielsen, Hansen, Lunde, and Shephard 2004), and the subsampling approach of

(Zhang, Mykland, and Aı̈t-Sahalia 2005) and (Zhang 2004). In the realised volatility case these

methods are basically equivalent, however it is perhaps the case that the subsampling method

is easier to extend to the non-quadratic case.
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8 Proof of Theorem 2

8.1 Strategy for the proof

Below we give a fairly detailed account of the basic techniques in the proof of Theorem 2, in the

one-dimensional case and under some relatively minor simplifying assumptions. Throughout we

set h = 1 for the main difficulty in the proof is being able to deal with the generality in the

16



g function. Once that has been mastered the extension to the bipower measure is not a large

obstacle. We refer the reader to (Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard

2004) for readers who wish to see the more general case. In this subsection we provide a brief

outline of the content of the Section.

The aim of this Section is to show that

√
n





1

n

[nt]
∑

i=1

g
(√
n△n

i Y
)

−
∫ t

0
ρσu

(g)



→
∫ t

0

√

ρσu
(g2) − ρσu

(g)2 dBu (15)

where B is a Brownian motion independent of the process Y and the convergence is (stably) in

law. This case is important for the extension to realised generalised bipower (and multipower)

variation is relatively simple once this fundamental result is established.

The proof of this result is done in a number of steps, some of them following fairly standard

reasoning, others requiring special techniques.

The first step is to rewrite the left hand side of (15) as follows

√
n





1

n

[nt]
∑

i=1

g(
√
n△n

i Y ) −
∫ t

0
ρσu

(g)du





=
1√
n

[nt]
∑

i=1

{

g(
√
n△n

i Y ) − E
[

g(△n
i Y ) | F i−1

n

]}

+
√
n





1

n

[nt]
∑

i=1

E
[

g(△n
i Y ) | F i−1

n

]

−
∫ t

0
ρσu

(g)du



 .

It is rather straightforward to show that the first term of the right hand side satisfies

1√
n

[nt]
∑

i=1

{

g(
√
n△n

i Y ) − E
[

g(△n
i Y ) | F i−1

n

]}

→
∫ t

0

√

ρσu
(g2) − ρσu

(g)2dBu.

Hence what remains is to verify that

√
n





1

n

[nt]
∑

i=1

E
[

g(△n
i Y ) | F i−1

n

]

−
∫ t

0
ρσu

(g)du



→ 0. (16)

We have

√
n





1

n

[nt]
∑

i=1

E
[

g(△n
i Y ) | F i−1

n

]

−
∫ t

0
ρσu

(g)du





=
1√
n

[nt]
∑

i=1

E
[

g(△n
i Y ) | F i−1

n

]

−√
n

[nt]
∑

i=1

∫ i/n

(i−1)/n
ρσu

(g)du

+
√
n





[nt]
∑

i=1

∫ i/n

(i−1)/n
ρσu

(g)du−
∫ t

0
ρσu

(g)du



 (17)
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where

√
n







[nt]
∑

i=1

∫ i/n

(i−1)/n
ρσu

(g)du−
∫ t

0
ρσu

(g)du







→ 0.

The first term on the right hand side of (17) is now split into the difference of

1√
n

[nt]
∑

i=1

{

E
[

g(△n
i Y ) | F i−1

n

]

− ρ i−1

n

}

(18)

where

ρ i−1

n

= ρσ i−1
n

(g) = E
[

g(σ i−1

n

△n
i W ) | F i−1

n

]

and

√
n

[nt]
∑

i=1

∫ i/n

(i−1)/n

{

ρσu
(g)du− ρ i−1

n

}

du. (19)

It is rather easy to show that (18) tends to 0 in probability uniformly in t. The challenge is thus

to show the same result holds for (19).

To handle (19) one splits the individual terms in the sum into

√
n Φ′

(

σ i−1

n

)

∫ i/n

(i−1)/n

(

σu − σ i−1

n

)

du (20)

plus
√
n

∫ i/n

(i−1)/n

{

Φ(σu) − Φ
(

σ i−1

n

)

− Φ′
(

σ i−1

n

)

·
(

σu − σ i−1

n

)}

du, (21)

where Φ(x) is a shorthand for ρx(g) and Φ′(x) denotes the derivative with respect to x. That

(21) tends to 0 may be shown via splitting it into two terms, each of which tends to 0 as is

verified by a sequence of inequalities, using in particular Doob’s inequality. To prove that (20)

converges to 0, again one splits, this time into three terms, using the differentiability of g in

the relevant regions and the mean value theorem for differentiable functions. The two first of

these terms can be handled by relatively simple means, the third poses the most difficult part

of the whole proof and is treated via splitting it into seven parts. It is at this stage that the

assumption that g be even comes into play and is crucial.

This section has six other subsections. In subsection 8.2 we introduce our basic notation,

while in 8.3 we set out the model and review the assumptions we use. In subsection 8.4 we state

the theorem we will prove. Subsections 8.5, 8.6 and 8.7 give the proofs of the successive steps.

8.2 Notational conventions

All processes mentioned in the following are defined on a given filtered probability space (Ω,F , (Ft), P ).

We shall in general use standard notation and conventions. For instance, given a process (Zt)

we write

△n
i Z := Z i

n
− Z i−1

n

, i, n ≥ 1.
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We are mainly interested in convergence in law of sequences of càdlàg processes. In fact all

results to be proved will imply convergence ‘stably in law’ which is a slightly stronger notion.

For this we shall use the notation

(Zn
t ) → (Zt),

where (Zn
t ) and (Zt) are given càdlàg processes. Furthermore we shall write

(Zn
t )

P→ 0 meaning sup
0≤s≤t

|Zn
s | → 0 in probability for all t ≥ 0,

(Zn
t )

P→ (Zt) meaning (Zn
t − Zt)

P→ 0.

Often

Zn
t =

[nt]
∑

i=1

an
i for all t ≥ 0,

where the an
i ’s are F i−1

n

-measurable. Recall here that given càdlàg processes (Zn
t ), (Y n

t ) and

(Zt) we have

(Zn
t ) → (Zt) if (Zn

t − Y n
t )

P→ 0 and (Y n
t ) → (Zt).

Moreover, for h : R → R Borel measurable of at most polynomial growth we note that

x 7→ ρx(h) is locally bounded and continuous if h is continuous at 0.

In what follows many arguments will consist of a series of estimates of terms indexed by i, n and

t. In these estimates we shall denote by C a finite constant which may vary from place to place.

Its value will depend on the constants and quantities appearing in the assumptions of the model

but it is always independent of i, n and t.

8.3 Model and basic assumptions

Throughout the following (Wt) denotes a ((Ft), P )-Wiener process and (σt) a given càdlàg (Ft)-

adapted process. Define

Yt :=

∫ t

0
σs− dWs t ≥ 0,

implying that is (Yt) is a continuous local martingale. We have deleted the drift of the (Yt)

process as taking care of it is a simple technical task, while its presence increase the clutter of

the notation. Our aim is to study the asymptotic behaviour of the processes

{(Xn
t (g)) |n ≥ 1 }

where

Xn
t (g) =

1

n

[nt]
∑

i=1

g(
√
n△n

i Y ), t ≥ 0, n ≥ 1.
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Here g : R → R is a given continuous function of at most polynomial growth. We are especially

interested in g’s of the form x 7→ |x|r (r > 0) but we shall keep the general notation since

nothing is gained in simplicity by assuming that g is of power form. We shall throughout the

following assume that g furthermore satisfies the following.

Assumption (K): g is an even function and continuously differentiable in Bc where B ⊆ R is

a closed Lebesgue null-set and ∃ M, p ≥ 1 such that

|g(x+ y) − g(x)| ≤M(1 + |x|p + |y|p) · |y| ,

for all x, y ∈ R.

Remark 9 The assumption (K) implies, in particular, that if x ∈ Bc then

|g′(x)| ≤M(1 + |x|p).

Observe that only power functions corresponding to r ≥ 1 do satisfy (K). The remaining case

0 < r < 1 requires special arguments which will be omitted here (for details see (Barndorff-

Nielsen, Graversen, Jacod, Podolskij, and Shephard 2004)).

In order to prove the CLT-theorem we need some additional structure on the volatility

process (σt). A natural set of assumptions would be the following.

Assumption (H0): (σt) can be written as

σt = σ0 +

∫ t

0
a∗s ds+

∫ t

0
σ∗s dWs +

∫ t

0
v∗s− dZs

where (Zt) is a ((Ft), P )-Lévy process independent of (Wt) and (σ∗t ) and (v∗t ) are adapted càdlàg

processes and (a∗t ) a predictable locally bounded process.

However, in modelling volatility it is often more natural to define (σ2
t ) as being of the above

form, i.e.

σ2
t = σ2

0 +

∫ t

0
a∗s ds+

∫ t

0
σ∗s dWs +

∫ t

0
v∗s− dZs.

Now this does not in general imply that (σt) has the same form; therefore we shall replace (H0)

by the more general structure given by the following assumption.

Assumption (H1): (σt) can be written, for t ≥ 0, as

σt = σ0 +

∫ t

0
a∗s ds+

∫ t

0
σ∗s dWs +

∫ t

0
v∗s− dVs

+

∫ t

0

∫

E
q ◦ φ(s−, x) (µ− ν)(ds dx)

+

∫ t

0

∫

E
{φ(s−, x) − q ◦ φ(s−, x)} µ(ds dx).
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Here (a∗t ), (σ∗t ) and (v∗t ) are as in (H0) and (Vt) is another ((Ft), P )-Wiener process independent

of (Wt) while q is a continuous truncation function on R, i.e. a function with compact support

coinciding with the identity on a neighbourhood of 0. Further µ is a Poisson random measure

on (0,∞) × E independent of (Wt) and (Vt) with intensity measure ν(ds dx) = ds ⊗ F (dx), F

being a σ-finite measure on a measurable space (E, E) and

(ω, s, x) 7→ φ(ω, s, x)

is a map from Ω× [ 0,∞)×E into R which is Fs ⊗E measurable in (ω, x) for all s and càdlàg

in s, satisfying furthermore that for some sequence of stopping times (Sk) increasing to +∞ we

have for all k ≥ 1
∫

E

{

1 ∧ ψk(x)
2
}

F (dx) <∞,

where

ψk(x) = sup
ω∈Ω, s<Sk(ω)

|φ(ω, s, x)|.

Remark 10 (H1) is weaker than (H0), and if (σ2
t ) satisfies (H1) then so does (σt).

Finally we shall also assume a non-degeneracy in the model.

Assumption (H2): (σt) satisfies

0 < σ2
t (ω) for all (t, ω).

According to general stochastic analysis theory it is known that to prove convergence in

law of a sequence (Zn
t ) of càdlàg processes it suffices to prove the convergence of each of the

stopped processes (Zn
Tk∧t) for at least one sequence of stopping times (Tk) increasing to +∞.

Applying this together with standard localisation techniques (for details see (Barndorff-Nielsen,

Graversen, Jacod, Podolskij, and Shephard 2004)), we may assume that the following more

restrictive assumptions are satisfied.

Assumption (H1a): (σt) can be written as

σt = σ0 +

∫ t

0
a∗s ds+

∫ t

0
σ∗s− dWs +

∫ t

0
v∗s− dVs +

∫ t

0

∫

E
φ(s−, x)(µ− ν)(ds dx) t ≥ 0.

Here (a∗t ), (σ∗t ) and (v∗t ) are real valued uniformly bounded càdlàg (Ft)-adapted processes; (Vt) is

another ((Ft), P )-Wiener process independent of (Wt). Further µ is a Poisson random measure
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on (0,∞) × E independent of (Wt) and (Vt) with intensity measure ν(ds dx) = ds ⊗ F (dx), F

being a σ-finite measure on a measurable space (E, E) and

(ω, s, x) 7→ φ(ω, s, x)

is a map from Ω× [ 0,∞)×E into R which is Fs ⊗E measurable in (ω, x) for all s and càdlàg

in s, satisfying furthermore

ψ(x) = sup
ω∈Ω, s≥0

|φ(ω, s, x)| ≤M <∞ and

∫

ψ(x)2 F (dx) <∞.

Likewise, by a localisation argument, we may assume

Assumption (H2a): (σt) satisfies

a < σ2
t (ω) < b for all (t, ω) for some a, b ∈ (0,∞).

Observe that under the more restricted assumptions (Yt) is a continuous martingale having

moments of all orders and (σt) is represented as a sum of three square integrable martingales

plus a continuous process of bounded variation. Furthermore, the increments of the increas-

ing processes corresponding to the three martingales and of the bounded variation process are

dominated by a constant times △t, implying in particular that

E
[

|σv − σu|2
]

≤ C (v − u), for all 0 ≤ u < v. (22)

8.4 Main result

As already mentioned, our aim is to show the following special version of the general CLT-result

given as Theorem 2.

Theorem 3 Under assumptions (K), (H1a) and (H2a), there exists a Wiener process (Bt)

defined on some extension of (Ω,F , (Ft), P ) and independent of F such that





√
n





1

n

[nt]
∑

i=1

g(
√
n△n

i Y ) −
∫ t

0
ρσu

(g) du







→
∫ t

0

√

ρσu−
(g2) − ρσu−

(g)2 dBu. (23)

Introducing the notation

Ut(g) =

∫ t

0

√

ρσu−
(g2) − ρσu−

(g)2 dBu t ≥ 0
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we may reexpress (23) as
(√

n

(

Xn
t (g) −

∫ t

0
σu(g) du

))

→ (Ut(g)). (24)

To prove this, introduce the set of variables {βn
i | i, n ≥ 1} given by

βn
i =

√
n · σ i−1

n

· △n
i W, i, n ≥ 1.

The βn
i ’s should be seen as approximations to

√
n△n

i Y . In fact, since

√
n△n

i Y − βn
i =

√
n

∫ i/n

(i−1)/n
(σs − σ i−1

n

) dWs

and (σt) is uniformly bounded, a straightforward application of (22) and the Burkholder-Davis-

Gundy-inequalities (e.g. (Revuz and Yor 1999, pp. 160-171)) gives for every p > 0 the following

simple estimates.

E
[

|√n△n
i Y − βn

i |p | F i−1

n

]

≤ Cp

np∧1
(25)

and

E
[

|√n△n
i Y |p + |βn

i |p | F i−1

n

]

≤ Cp (26)

for all i, n ≥ 1. Observe furthermore that

E
[

g(βn
i ) | F i−1

n

]

= ρσ i−1
n

(g), for all i, n ≥ 1.

Introduce for convenience, for each t > 0 and n ≥ 1, the shorthand notation

Un
t (g) =

1√
n

[nt]
∑

i=1

{

g(
√
n△n

i Y ) − E
[

g(
√
n△n

i Y ) | F i−1

n

]}

and

Ũn
t (g) =

1√
n

[nt]
∑

i=1

{

g(βn
i ) − ρσ i−1

n

(g)

}

=
1√
n

[nt]
∑

i=1

{

g(βn
i ) − E

[

g(βn
i ) | F i−1

n

]}

.

The asymptotic behaviour of (Ũn
t (g)) is well known. More precisely under the the given assump-

tions ( in fact much less is needed ) we have

(Un
t (g)) → (Ut(g)).

This result is a rather straightforward consequence of (Jacod and Shiryaev 2003, Theorem

IX.7.28). Thus, if (Un
t (g) − Ũn

t (g))
P→ 0 we may deduce the following result.

Theorem 4 Let (Bt) and (Ut(g)) be as above. Then

(Ũn
t (g)) → (Ut(g)).
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Proof.

As pointed out just above it is enough to prove that

(Un
t (g) − Ũn

t (g))
P→ 0.

But for t ≥ 0 and n ≥ 1

Un
t (g) − Ũn

t (g) =

[nt]
∑

i=1

(

ξn
i − E

[

ξn
i | F i−1

n

])

where

ξn
i =

1√
n

{

g(
√
n△n

i Y ) − g(βn
i )
}

, i, n ≥ 1.

Thus we have to prove




[nt]
∑

i=1

{

ξn
i − E

[

ξn
i | F i−1

n

]}





P→ 0.

But, as the left hand side of this relation is a sum of martingale differences, this is implied by

Doob’s inequality (e.g. (Revuz and Yor 1999, pp. 54-55)) if for all t > 0

[nt]
∑

i=1

E[(ξn
i )2] = E[

[nt]
∑

i=1

E[(ξn
i )2 | F i−1

n

] ] → 0 as n→ ∞.

Fix t > 0. Using the Cauchy-Schwarz inequality and the Burkholder-Davis-Gundy inequalities

we have for all i, n ≥ 1.

E
[

(ξn
i )2 | F i−1

n

]

=
1

n
E
[

{

g(
√
n△n

i Y ) − βn
i + βn

i − g(βn
i )
}2 | F i−1

n

]

≤ C

n
E
[

(1 + |√n△n
i Y |p + |βn

i |p)2 · (
√
n△n

i Y − βn
i )2 | F i−1

n

]

≤ C

n

√

E
[

(1 + |√n△n
i Y |2p + |βn

i |2p) | F i−1

n

]

·
√

E
[

(
√
n△n

i Y − βn
i )4 | F i−1

n

]

≤ C

√

√

√

√

√E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)

dWu

)4

| F i−1

n





≤ C

√

√

√

√

√E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)2
du

)2

| F i−1

n



.
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Thus

[nt]
∑

i=1

E[(ξn
i )2] ≤ Cn

t

n

[nt]
∑

i=1

E







√

√

√

√

√E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)2
du

)2

| F i−1

n











≤ C tn

√

√

√

√

√

1

n

[nt]
∑

i=1

E





(

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)2
du

)2




≤ Ctn

√

√

√

√

1

n2

[nt]
∑

i=1

E

[

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)4
du

]

≤ Ct

√

√

√

√

[nt]
∑

i=1

∫ i/n

(i−1)/n
E

[

(

σu− − σ i−1

n

)2
]

du

→ 0,

as n→ ∞ by Lebesgue’s Theorem and the boundedness of (σt).

�

To prove the convergence (24) it suffices, using Theorem 4 above, to prove that

(

Un
t (g) −√

n

{

Xn
t (g) −

∫ t

0
ρσu

(g) du

})

P→ 0.

But as

Un
t (g) −√

nXn
t (g) = − 1√

n

[nt]
∑

i=1

E
[

g(
√
n△n

i Y ) | F i−1

n

]

and, as is easily seen,





√
n

∫ t

0
ρσu

(g) du−
[nt]
∑

i=1

√
n

∫ i/n

(i−1)/n
ρσu

(g) du





P→ 0,

the job is to prove that
[nt]
∑

i=1

ηn
i

P→ 0 for all t > 0,

where for i, n ≥ 1

ηn
i =

1√
n

E
[

g(
√
n△n

i Y ) | F i−1

n

]

−√
n

∫ i/n

(i−1)/n
ρσu

(g) du.

Fix t > 0 and write, for all i, n ≥ 1,

ηn
i = η(1)ni + η(2)ni

where

η(1)ni =
1√
n

{

E
[

g(
√
n△n

i Y ) | F i−1

n

]

− ρσ i−1
n

(g)

}

(27)
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and

η(2)ni =
√
n

∫ i/n

(i−1)/n

{

ρσu
(g) − ρσ i−1

n

(g)

}

du. (28)

We will now separately prove

η(1)n =

[nt]
∑

i=1

η(1)ni
P→ 0 (29)

and

η(2)n =

[nt]
∑

i=1

η(2)ni
P→ 0. (30)

8.5 Some auxiliary estimates

In order to show (29) and (30) we need some refinements of the estimate (22) above. To state

these we split up (
√
n△n

i Y − βn
i ) into several terms. By definition

√
n△n

i Y − βn
i =

√
n

∫ i/n

(i−1)/n

(

σu− − σ i−1

n

)

dWu

for all i, n ≥ 1. Writing

En = {x ∈ E | |Ψ(x)| > 1/
√
n }

the difference σu − σ i−1

n

equals

∫ u

(i−1)/n
a∗s ds+

∫ u

(i−1)/n
σ∗s− dWs +

∫ u

(i−1)/n
v∗s− dVs +

∫ u

(i−1)/n

∫

E
φ(s−, x) (µ− ν)(ds dx)

=

5
∑

j=1

ξ(j)ni (u),

for i, n ≥ 1 and u ≥ (i− 1)/n where

ξ(1)ni (u) =

∫ u

(i−1)/n
a∗s ds+

∫ u

(i−1)/n

(

σ∗s− − σ∗i−1

n

)

dWs +

∫ u

(i−1)/n

(

v∗s− − v∗i−1

n

)

dVs

ξ(2)ni (u) = σ∗i−1

n

(

Wu −W i−1

n

)

+ v∗i−1

n

(

Vu − V i−1

n

)

ξ(3)ni (u) =

∫ u

(i−1)/n

∫

Ec
n

φ(s−, x) (µ− ν)(ds dx)

ξ(4)ni (u) =

∫ u

(i−1)/n

∫

En

{

φ(s−, x) − φ

(

i− 1

n
, x

)}

(µ− ν)(ds dx)

ξ(5)ni (u) =

∫ u

(i−1)/n

∫

En

φ

(

i− 1

n
, x

)

(µ− ν)(ds dx)

That is, for i, n ≥ 1,

√
n△n

i Y − βn
i =

5
∑

j=1

ξ(j)ni (31)
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where

ξ(j)ni =
√
n

∫ i/n

(i−1)/n
ξ(j)ni (u−) dWu for j = 1, 2, 3, 4, 5.

The specific form of the variables implies, using Burkholder-Davis-Gundy inequalities, that for

every q ≥ 2 we have

E[ |ξ(j)ni |q ] ≤ Cq n
q/2 E





(

∫ i/n

(i−1)/n
ξ(j)ni (u)2 du

)q/2




≤ n

∫ i/n

(i−1)/n
E[ |ξ(j)ni (u)|q ] du

≤ sup
(i−1)/n≤u≤i/n

E[ |ξ(j)ni (u)|q ]

for all i, n ≥ 1 and all j. These terms will now be estimated. This is done in the following series

of lemmas where i and n are arbitrary and we use the notation

dn
i =

∫ i/n

(i−1)/n
E

[

(

σ∗s− − σ∗i−1

n

)2
+
(

v∗s− − v∗i−1

n

)2
+

∫

E

{

φ(s−, x) − φ

(

i− 1

n
, x

)}2

F (dx)

]

ds.

Lemma 1

E[ (ξ(1)ni )2] ≤ C1 · (1/n2 + dn
i ).

Lemma 2

E[ (ξ(2)ni )2] ≤ C2/n.

Lemma 3

E[ (ξ(3)ni )2] ≤ C3 ϕ(1/
√
n)/n,

where

ϕ(ǫ) =

∫

{ |Ψ|≤ǫ }
Ψ(x)2 F (dx).

Lemma 4

E[ (ξ(4)ni )2] ≤ C4 d
n
i .

Lemma 5

E[ (ξ(5)ni )2] ≤ C5/n.

The proofs of these five Lemmas rely on straightforward martingale inequalities.

Observe that Lebesgue’s Theorem ensures, since the processes involved are assumed càdlàg

and uniformly bounded, that as n→ ∞
[nt]
∑

i=1

dn
i → 0 for all t > 0.

Taken together these statements imply the following result.
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Corollary 1 For all t > 0 as n→ ∞
[nt]
∑

i=1

{

E[ (ξ(1)ni )2] + E[ (ξ(3)ni )2] + E[ (ξ(4)ni )2]
}

) → 0.

Below we shall invoke this Corollary as well as Lemmas 2 and 5.

8.6 Proof of η(2)n P→ 0

Recall we wish to show that

η(2)n =

[nt]
∑

i=1

η(2)ni
P→ 0. (32)

¿From now on let t > 0 be fixed. We split the η(2)ni ’s according to

η(2)ni = η′(2)ni + η′′(2)ni i, n ≥ 1

where, writing Φ(x) for ρx(g),

η′(2)ni =
√
n Φ′

(

σ i−1

n

)

∫ i/n

(i−1)/n

(

σu − σ i−1

n

)

du

and

η′′(2)ni =
√
n

∫ i/n

(i−1)/n

{

Φ(σu) − Φ
(

σ i−1

n

)

− Φ′
(

σ i−1

n

)

·
(

σu − σ i−1

n

)}

du.

Observe that the assumptions on g imply that x 7→ Φ(x) is differentiable with a bounded

derivative on any bounded interval not including 0; in particular (see (H2a))

|Φ(x) − Φ(y) − Φ′(y) · (x− y) | ≤ Ψ(|x− y|) · |x− y|, x2, y2 ∈ (a, b), (33)

where Ψ : R+ → R+ is continuous, increasing and Ψ(0) = 0.

With this notation we shall prove (32) by showing

[nt]
∑

i=1

η′(2)ni
P→ 0

and
[nt]
∑

i=1

η′′(2)ni
P→ 0.

Inserting the description of (σt) (see (H1a)) we may write

η′(2)ni = η′(2, 1)ni + η′(2, 2)ni

where for all i, n ≥ 1

η′(2, 1)ni =
√
n Φ′

(

σ i−1

n

)

∫ i/n

(i−1)/n

(

∫ u

(i−1)/n
a∗s ds

)

du
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and

η′(2, 2)ni =
√
n Φ′

(

σ i−1

n

)

∫ i/n

(i−1)/n

[

∫ u

(i−1)/n
σ∗s− dWs +

∫ u

(i−1)/n
v∗s− dVs

+

∫

E
φ(s−, x) (µ− ν)(ds dx)

]

du.

By (H2a) and (33) and the uniform boundedness of (a∗t ) we have

|η′(2, 1)ni | ≤ C
√
n

∫ i/n

(i−1)/n
{u− (i− 1)/n} du ≤ C/n3/2

for all i, n ≥ 1 and thus
[nt]
∑

i=1

η′(2, 1)ni
P→ 0.

Since

(Wt), (Vt) and

(∫ t

0

∫

E
φ(s−, x)(µ− ν)(ds dx)

)

are all martingales we have

E
[

η′(2, 2)ni | F i−1

n

]

= 0 for all i, n ≥ 1.

By Doob’s inequality it is therefore feasible to estimate

[nt]
∑

i=1

E[ (η′(2, 2)ni )2].

Inserting again the description of (σt) we find, applying simple inequalities, in particular Jensen’s,

that

(η′(2, 2)ni )2

≤ C n

(

∫ i/n

(i−1)/n

{

∫ u

(i−1)/n
σ∗s− dWs

}

du

)2

+ C n

(

∫ i/n

(i−1)/n

{

∫ u

(i−1)/n
v∗s− dVs

}

du

)2

+C n

(

∫ i/n

(i−1)/n

∫ u

(i−1)/n

{∫

E
φ(s−, x) (µ− ν)(ds dx)

}

du

)2

≤ C

∫ i/n

(i−1)/n

(

∫ u

(i−1)/n
σ∗s− dWs

)2

du+ C

∫ i/n

(i−1)/n

(

∫ u

(i−1)/n
v∗s− dVs

)2

du

+C

∫ i/n

(i−1)/n

(

∫ u

(i−1)/n

∫

E
φ(s−, x) (µ− ν)(ds dx)

)2

du.

The properties of the Wiener integrals and the uniform boundedness of (σ∗t ) and (v∗t ) ensure

that

E





(

∫ u

(i−1)/n
σ∗s− dWs

)2

| F i−1

n



 ≤ C ·
(

u− i− 1

n

)
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and likewise

E





(

∫ u

(i−1)/n
v∗s− dVs

)2

| F i−1

n



 ≤ C ·
(

u− i− 1

n

)

for all i, n ≥ 1. Likewise for the Poisson part we have

E





(

∫ u

(i−1)/n

∫

E
φ(s−, x) (µ− ν)(ds dx)

)2

| F i−1

n





≤ C

∫ u

(i−1)/n

∫

E
E[φ2(s, x) | F i−1

n

]F (dx) ds

yielding a similar bound. Putting all this together we have for all i, n ≥ 1

E[ (η′(2, 2)ni )2 | F i−1

n
] ≤ C

∫ i/n

(i−1)/n
(u− (i− 1)/n) du

≤ C/n2.

Thus as n→ ∞ so
[nt]
∑

i=1

E[ (η′(2, 2)ni )2] → 0.

and since

E
[

η′(2, 2)ni | F i−1

n

]

= 0 for all i, n ≥ 1

we deduce from Doob’s inequality that

[nt]
∑

i=1

η′(2, 2)ni
P→ 0

proving altogether
[nt]
∑

i=1

η′(2)ni
P→ 0.

Applying once more (H2a) and (33) we have for every ǫ > 0 and every i, n that

|η′′(2)ni | ≤ √
n

∫ i/n

(i−1)/n
Ψ
(∣

∣

∣
σu − σ i−1

n

∣

∣

∣

)

·
∣

∣

∣
σu − σ i−1

n

∣

∣

∣
du

≤ √
nΨ(ǫ)

∫ i/n

(i−1)/n

∣

∣

∣σu − σ i−1

n

∣

∣

∣ du+
√
nΨ(2

√
b)/ǫ

∫ i/n

(i−1)/n

∣

∣

∣σu − σ i−1

n

∣

∣

∣

2
du.

Thus from (22) and its consequence

E
[∣

∣

∣σu − σ i−1

n

∣

∣

∣

]

≤ C/
√
n

we get
[nt]
∑

i=1

E[ |η′′(2)ni | ] ≤ CtΨ(ǫ) +
C Ψ(b)√
n ǫ

30



for all n and all ǫ. Letting here first n→ ∞ and then ǫ→ 0 we may conclude that as n→ ∞
[nt]
∑

i=1

E[ |η′′(2)ni | ] → 0

implying the convergence
[nt]
∑

i=1

η(2)ni
P→ 0.

Thus ending the proof of (30).

�

8.7 Proof of η(1)n P→ 0

Recall we are to show that

η(1)n =

[nt]
∑

i=1

η(1)ni
P→ 0. (34)

Let still t > 0 be fixed. Recall that

η(1)ni =
1√
n

{

E
[

g(
√
n△n

i Y ) | F i−1

n

]

− ρσ i−1
n

(g)

}

=
1√
n

E
[

g(
√
n△n

i Y ) − g(βn
i ) | F i−1

n

]

.

Introduce the notation (recall the assumption (K))

An
i = { |√n△n

i Y − βn
i | > d(βn

i , B)/2 }.

Since B is a Lebesgue null set and βn
i is absolutely continuous, g′(βn

i ) is defined a.s. and, by

assumption, g is differentiable on the interval joining △n
i Y (ω) and βn

i (ω) for all ω ∈ An c
i . Thus,

using the Mean Value Theorem, we may for all i, n ≥ 1 write

g(
√
n△n

i Y ) − g(βn
i )

=
{

g(
√
n△n

i Y ) − g(βn
i )
}

· 1An
i

+g′(βn
i ) · (√n△n

i Y − βn
i ) · 1An c

i

+
{

g′(αn
i ) − g′(βn

i )
}

· (√n△n
i Y − βn

i ) · 1An c
i

=
√
n {δ(1)ni + δ(2)ni + δ(3)ni } ,

where αn
i are random points lying in between

√
n△n

i Y and βn
i , i.e.

√
n△n

i Y ∧ βn
i ≤ αn

i ≤ √
n△n

i Y ∨ βn
i ,

and
δ(1)ni = [ {g(√n△n

i Y ) − g(βn
i )} − g′(βn

i ) · (√n△n
i Y − βn

i ) ] · 1An
i
/
√
n

δ(2)ni = {g′(αn
i ) − g′(βn

i )} · (√n△n
i Y − βn

i ) · 1An c
i
/
√
n

δ(3)ni = g′(βn
i ) · (√n△n

i Y − βn
i )/

√
n.
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Thus it suffices to prove

[nt]
∑

i=1

E
[

δ(k)ni | F i−1

n

]

P→ 0, k = 1, 2, 3.

Consider the case k = 1. Using (K) and the fact that βn
i is absolutely continuous we have

a.s.

|g(√n△n
i Y ) − g(βn

i )|

≤ M(1 + |√n△n
i Y − βn

i |p + |βn
i |p) · |

√
n△n

i Y − βn
i |

≤ (2p + 1)M(1 + |√n△n
i Y |p + |βn

i |p) · |
√
n△n

i Y − βn
i |,

and

| g′(βn
i ) · (√n△n

i Y − βn
i ) | ≤M(1 + |βn

i |p) · |
√
n△n

i Y − βn
i |.

By Cauchy-Schwarz’s inequality E[ |δ(1)ni | ] is therefore for all i, n ≥ 1 less than

C · E[ 1 + |√n△n
i Y |3p + |βn

i |3p]1/3 · E[ (
√
n△n

i Y − βn
i )2/n ]1/2 · P (An

i )1/6

implying for fixed t, by means of (16), that

E[





[nt]
∑

i=1

| δ(1)ni |



 ≤ C · sup
i≥1

P (An
i )1/6

[nt]
∑

i=1

E[ (△n
i Y − βn

i )2/n ]1/2

≤ C · sup
i≥1

P (An
i )1/6

[nt]
∑

i=1

1/n

≤ Ct · sup
i≥1

P (An
i )1/6.

For all i, n ≥ 1 we have for every ǫ > 0

P (An
i ) ≤ P (An

i ∩ {d(βn
i , B) ≤ ǫ}) + P (An

i ∩ {d(βn
i , B) > ǫ})

≤ P (d(βn
i , B) ≤ ǫ) + P (|√n△n

i Y − βn
i | > ǫ/2)

≤ P (d(βn
i , B) ≤ ǫ) +

4

ǫ2
· E[ (

√
n△n

i Y − βn
i )2]

≤ P (d(βn
i , B) ≤ ǫ) +

C

n ǫ2
.

But (H2a) implies that the densities of βn
i are pointwise dominated by a Lebesgue integrable

function ha,b providing, for all i, n ≥ 1, the estimate

P (An
i ) ≤

∫

{x | d(x,B)≤ǫ}
ha,b dλ1 +

C

n ǫ2
(35)

= αǫ +
C

n ǫ2
.
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Observe limǫ→0 αǫ = 0. Taking now in (35) sup over i and then letting first n → ∞ and then

ǫ ↓ 0 we get

lim
n

sup
i≥1

P (An
i ) = 0

proving that

E





[nt]
∑

i=1

| δ(1)ni |



 → 0

and thus
[nt]
∑

i=1

E
[

δ(1)ni | F i−1

n

]

P→ 0.

Consider next the case k = 2. As assumed in (K), g is continuously differentiable outside of

B. Thus for each A > 1 and ǫ > 0 there exists a function GA, ǫ : (0, 1) → R+ such that for given

0 < ǫ′ < ǫ/2

∣

∣g′(x+ y) − g′(x)
∣

∣ ≤ GA, ǫ(ǫ
′) for all |x| ≤ A, |y| ≤ ǫ′ < ǫ < d(x,B).

Observe that limǫ′↓0GA, ǫ(ǫ
′) = 0 for all A and ǫ. Fix A > 1 and ǫ ∈ (0, 1). For all i, n ≥ 1 we

have

|g′(αn
i ) − g′(βn

i )| · 1An c
i

= |g′(αn
i ) − g′(βn

i )| · 1An c
i

(1{|αn
i |+|βn

i |>A} + 1{|αn
i |+|βn

i |≤A})

≤ |g′(αn
i ) − g′(βn

i )| · |α
n
i | + |βn

i |
A

+ |g′(αn
i ) − g′(βn

i )| · 1An c
i ∩{|αn

i |+|βn
i |≤A}

≤ C

A
· (1 + |αn

i |p + |βn
i |p)2 + |g′(αn

i ) − g′(βn
i )| · 1An c

i ∩{|αn
i |+|βn

i |≤A}

≤ C

A
· (1 + |√n△n

i Y |2p + |βn
i |2p) + |g′(αn

i ) − g′(βn
i )| · 1An c

i ∩{|αn
i |+|βn

i |≤A}.

Now writing

1 = 1{d(βn
i ,B)≤ǫ} + 1{d(βn

i ,B)>ǫ}

= 1{d(βn
i ,B)≤ǫ}

+1{d(βn
i ,B)>ǫ} ∩{|αn

i −βn
i |≤ǫ′}

+1{d(βn
i ,B)>ǫ} ∩{|αn

i −βn
i |>ǫ′}

for all 0 < ǫ′ < ǫ/2 we have

1An c
i ∩{|αn

i |+|βn
i |≤A} ≤ 1{d(βn

i ,B)≤ǫ}∩An c
i ∩{|αn

i |+|βn
i |≤A}

+1An c
i ∩{|αn

i |+|βn
i |≤A}∩ {d(βn

i ,B)>ǫ}∩{|αn
i −βn

i |≤ǫ′}

+1An c
i ∩{|αn

i |+|βn
i |≤A}∩ {d(βn

i ,B)>ǫ} ·
|αn

i − βn
i |

ǫ′
.
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Combining this with the fact that

|g′(αn
i ) − g′(βn

i )| ≤ C(1 + |αn
i |p + |βn

i |p)

≤ CAp

on An c
i ∩ {|αn

i | + |βn
i | ≤ A} we obtain that

|g′(αn
i ) − g′(βn

i )| · 1An c
i ∩{|αn

i |+|βn
i |≤A}

≤ CAp ·
(

1{d(βn
i ,B)≤ǫ} +

|αn
i − βn

i |
ǫ′

)

+GA, ǫ(ǫ
′)

≤ CAp · (1{d(βn
i ,B)≤ǫ} +

|√n△n
i Y − βn

i |
ǫ′

) +GA, ǫ(ǫ
′).

Putting this together means that

√
n |δ(2)ni | = |g′(αn

i ) − g′(βn
i )| · |√n△n

i Y − βn
i | · 1An c

i

≤
{

C

A
· (1 + |√n△n

i Y |2p + |βn
i |2p) +GA, ǫ(ǫ

′)

}

· |√n△n
i Y − βn

i |

+CAp ·
(

1{d(βn
i ,B)≤ǫ} · |

√
n△n

i Y − βn
i | +

|√n△n
i Y − βn

i |2
ǫ′

)

.

Exploiting here the inequalities (16) and (17) we obtain, for all A > 1 and 0 < 2ǫ′ < ǫ < 1 and

all i, n ≥ 1, using Hölder’s inequality, the following estimate

E[ |δ(2)ni | ] ≤ C

(

1

An
+
GA, ǫ(ǫ

′)

n
+
Ap √αǫ

n
+

Ap

ǫ′ n3/2

)

implying for all n ≥ 1 and t ≥ 0 that

[nt]
∑

i=1

E[ |δ(2)ni | ] ≤ Ct

(

1

A
+GA, ǫ(ǫ

′) +Ap √αǫ +
Ap

ǫ′ n1/2

)

.

Choosing in this estimate first A sufficiently big, then ǫ small (recall that limǫ→0 αǫ = 0 ) and

finally ǫ′ small, exploiting that limǫ′↓0GA, ǫ(ǫ
′) = 0 for all A and ǫ, we may conclude that

lim
n

[nt]
∑

i=1

E [ |δ(2)ni | ] = 0

and thus
[nt]
∑

i=1

E
[

δ(2)ni | F i−1

n

]

P→ 0.

So what remains to be proved is the convergence

[nt]
∑

i=1

E
[

δ(3)ni | F i−1

n

]

P→ 0.
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As introduced in (31)

√
n△n

i Y − βn
i =

5
∑

j=1

ξ(j)ni = ψ(1)ni + ψ(2)ni

for all i, n ≥ 1 where

ψ(1)ni = ξ(1)ni + ξ(3)ni + ξ(4)ni ,

ψ(2)ni = ξ(2)ni + ξ(5)ni ,

and as

δ(3)ni = g′(βn
i ) · (ψ(1)ni + ψ(2)ni )/

√
n

it suffices to prove





[nt]
∑

i=1

E
[

g′(βn
i ) · ψ(k)ni | F i−1

n

]

/
√
n





P→ 0, k = 1, 2.

The case k = 1 is handled by proving

1√
n

[nt]
∑

i=1

E[ |g′(βn
i ) · ξ(j)ni | ] → 0, j = 1, 3, 4. (36)

Using Jensen’s inequality it is easily seen that for j = 1, 3, 4

1√
n

[nt]
∑

i=1

E[ |g′(βn
i ) · ξ(j)ni | ] ≤ C t ·

√

√

√

√

1

n

[nt]
∑

i=1

E[ g′(βn
i )2] ·

√

√

√

√

[nt]
∑

i=1

E[ (ξ(j)ni )2]

and so using (26)

1√
n

[nt]
∑

i=1

E[ |g′(βn
i ) · ξ(j)ni | ] ≤ C t ·

√

√

√

√

[nt]
∑

i=1

E[ (ξ(j)ni )2]

since almost surely

|g′(βn
i )| ≤ C (1 + |βn

i |p)

for all i, n ≥ 1. From here, (36) is an immediate consequence of Lemmas 1-5.

The remaining case k = 2 is different. The definition of ψ(2)ni implies, using basic stochastic

calculus, that ψ(2)ni /
√
n, for all i, n ≥ 1, may be written as

∫ i/n

(i−1)/n

{

σ′i−1

n

(

Wu −W i−1

n

)

+M(n, i)u

}

dWu

= σ′i−1

n

∫ i/n

(i−1)/n

(

Wu −W i−1

n

)

dWu

+△n
i M(n, i) · △n

i W

+

∫ i/n

(i−1)/n

(

Wu −W i−1

n

)

dM(n, i)u,
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where (M(n, i)t) is the martingale defined by M(n, i)t ≡ 0 for t ≤ (i− 1)/n and

M(n, i)t = v∗i−1

n

(

Vt − V i−1

n

)

+

∫ t

(i−1)/n

∫

En

φ

(

i− 1

n
, x

)

(µ− ν)(ds dx)

otherwise. Thus for fixed i, n ≥ 1

E
[

g′(βn
i ) · ψ(2)ni | F i−1

n

]

/
√
n

is a linear combination of the following three terms

E

[

g′(βn
i ) · σ′i−1

n

∫ i/n

(i−1)/n

(

Wu −W i−1

n

)

dWu | F i−1

n

]

,

E
[

g′(βn
i ) · △n

i M(n, i) · △n
i W | F i−1

n

]

and

E[ g′(βn
i ) ·

∫ i/n

(i−1)/n
Wu dM(n, i)u | F i−1

n

].

But these three terms are all equal to 0 as seen by the following arguments.

The conditional distribution of

(

Wt −W i−1

n

)

t≥ i−1

n

|F i−1

n

is clearly not affected by a change of sign. Thus since g being assumed even and g′ therefore

odd we have

E

[

g′(βn
i )

∫ i/n

(i−1)/n

(

Wu −W i−1

n

)

dWu | F i−1

n

]

= 0

implying the vanishing of the first term.

Secondly, by assumption,
(

Wt −W i−1

n

)

t≥ i−1

n

and (M(n, i)t)t≥ i−1

n

are independent given

F i−1

n

. Therefore, denoting by F 0
i,n the σ-field generated by

(

Wt −W i−1

n

)

i−1

n
≤t≤i/n

and F i−1

n

,

the martingale property of (M(n, i)t) ensures that

E[ g′(βn
i ) · △n

i M(n, i) · △n
i W | F 0

i,n ] = 0

and

E[

[

g′(βn
i ) ·

∫ i/n

(i−1)/n
Wu dM(n, i)u | F 0

i,n

]

= 0.

Using this the vanishing of

E
[

g′(βn
i ) · △n

i M(n, i) · △n
i W | F i−1

n

]
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and

E

[

g′(βn
i ) ·

∫ i/n

(i−1)/n
Wu dM(n, i)u | F i−1

n

]

is easily obtained by successive conditioning.

The proof of (29) is hereby completed.

�
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