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Université Pierre et Marie Curie Paris VI

dalelane@ccr.jussieu.fr

April 19, 2005

Abstract

In one-dimensional density estimation on i.i.d. observations we suggest an adaptive cross-
validation technique for the selection of a kernel estimator. This estimator is both asymp-
totic MISE-efficient with respect to the monotone oracle, and sharp minimax-adaptive
over the whole scale of Sobolev spaces with smoothness index greater than 1/2. The
proof of the central concentration inequality avoids “chaining” and relies on an additive
decomposition of the empirical processes involved.
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1 Introduction

For many years, adaptive estimation procedures have stimulated the statistical interest. Such
estimates achieve minimax convergence rates relying on very little prior knowledge about the
properties of the curves to be estimated. Oracle inequalities fit into this framework, but
give much more precise information about the performance of an estimate. They compare
the risk of an adaptive candidate not to the minimax, but to the best possible risk. Oracle
inequalities have been proposed for a variety of problems and estimator, Kneip (1994) and
Donoho, Johnstone (1994) presumably being the first papers to state some. More recent
examples are Hall, Kerkyacharian, Picard (1999), Cavalier, Tsybakov (2001), Cay (2003),
Efromovich (2004).

In the following we will consider oracle inequalities in density estimation, and it was
wavelet estimators that have received the main attention in this context. During the 90’s,
authors like Donoho, Johnstone, Hall, Kerkyacharian and Picard developed various estimation
techniques that satisfied more and more refined oracle inequalities. Efromovich also examined
Fourier series estimates. Of course, even the case of data controlled bandwidth selection
investigated in the 80’s, can be regarded as kind of an oracle problem. But the only source for
a more general oracle inequality for a kernel density estimator is Rigollet (2004). Remarkably,
unlike the other oracle inequalities on density estimators, Rigollet’s is an exact one. Our
contribution gives another exact oracle inequality for kernel density estimation, but the two
do not cover one another in neither direction.

Rigollet’s application of Stein’s blockwise estimator to non-parametric density estimation
is a sharp minimax-adaptive kernel selection rule. The procedure approximates the so-called
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monotone oracle by the use of kernel functions with piecewise constant Fourier transform.
The monotone oracle is a pseudo-estimator, which minimizes the quadratic risk (MISE) over
the class of all kernel functions, whose Fourier transform is real, symmetric and decreases
monotonously on R

+.
When considering the concept of curve smoothing from the viewpoint of signal recogni-

tion, a monotone Fourier transform appears to be a natural assumption to a kernel. Given
that the unknown density is square-integrable, it is equivalent with respect to MISE either
to estimate the density itself or to reconstruct it from an estimate of its Fourier transform.
On the other hand it is known that with increasing frequency, random influences overbal-
ance the true value in the empirical Fourier transform. For this reason, the Fourier series
projection estimator omits empirical Fourier coefficients beyond a critical frequency. In the
famous Pinsker-filter, the rigid cut-off is weakened to a monotone shrinkage of the unreliable
coefficients by the Pinsker-wheights. The focus on kernels with monotonously decreasing,
but otherwise arbitrary Fourier transform is just a further generalization of the this notion.

The objective of the present work is to propose a purely data dependent estimator that
approximates the monotone oracle in an exact oracle inequality. In comparison to Rigollet
(2004), we abandon the assumption of the kernel’s piecewise constant Fourier transform,
our kernels only being band-limited to [−n, n] and having a monotone Fourier transform.
Asymptotic exact MISE-efficiency is shown to hold over the set of all bounded, L2-integrable
densities, which are not infinitely differenciable. Sharp asymptotic minimax-adaptivity on the
whole scale of Sobolev spaces with smoothness index greater than 1/2 follows automatically.

There are essentially two quantities to determine the statement of an oracle inequality: the
set of estimators disposable to the minimization of risk; and the set of true parameters, over
which the oracle inequality is supposed to hold. Evidently, the larger these sets, the stronger
the oracle inequality. In a non-parametric setting, regularity conditions are the natural way
to specify the space of parameters. Classes of estimators considered have been quite diverse
and cover many familiar non-parametric estimation methods. However, all the classes, for
which oracle inequalities were proven so far, share an important property – whether fixed or
growing with the number of observations, their dimension is finite.

This is natural, when dealing with wavelet or Fourier coefficients. In ordered linear
smoothers and blockwise Stein’s method, the assumptions “ordered” and “blockwise”, respec-
tively, assure the finite dimensionality. For penalized least squars estimators, the dimension
is always explicitly determined.

Note that oracle inequalities rely on special concentration inequalities, because it is nec-
essary to approximate the maximum of an empirical process indexed by a class of functions;
functional limit theorems are imperative. With finite dimension we have access to the uni-
form entropy of the estimator class and chaining arguments provide us with a suitable bound
for the process. Yet these approximations unavoidably contain the factor dimension in one
way or another.

Estimators indexed by kernels with monotone Fourier transform is a class that has obvi-
ously not finite dimension. But it is known that the set of monotone functions also allows for
an approximation of its uniform covering number. Unfortunately, the approximations do not
carry over from the Fourier to the space domain. And so the chaining approach is obstructed
to us.

Instead, we pursue an alternative way to approximate our empirical process, namely an
additive decomposition. The process, indexed by the class of kernels, is decomposed into
a linear combination of countably many basis processes. Separate arguments as regards
the basis processes (exponential inequalities) and the size of the non-random coefficients are
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combined. The resulting threshold is equivalent to those in finite dimensional model classes,
except that the factor containing the dimension is replaced by ln(n).

For an outline of the exact procedure, see section 4, appendix A1 and A2. The theorem
along with the hypothesis is formulated in section 2. Section 3 contains the proof of the the-
orem relying on the proposition that the empirical process can be bounded to an appropriate
magnitude. Some practical considerations will be found in section 5.

2 Main results

Let (X1,X2, . . . ,Xn) ∈ R
n be an i.i.d. sample with common density function f . Let the

density f be bounded, ‖f‖∞ < ∞, have finite L2-norm, ‖f‖2 < ∞, and denote by f̂(ω) =∫
f(x)eixωdx the characteristic function of f . Let f̃K(x) be the standard kernel estimator

with kernel K

f̃K(x) =
1

n

n∑

i=1

K(Xi − x) (1)

and consider the quadratic risk

MISE(K) = E

∫ (
f̃K(x) − f(x)

)2
dx. (2)

The cross-validation criterion

CV (K) :=

∫
f̃2
K(x)dx− 2

n(n− 1)

∑

i6=j
K(Xi −Xj) (3)

is an unbiased estimator for MISE up to the summand ‖f‖2
2. Let K be the set of all L2-

integrable kernel functions with real, symmetric, non-negative and unimodal Fourier trans-
form K̂(ω) :=

∫
K(x)eiωxdx. For technical reason let ‖K‖2 be ≤ √

n. This does not represent
a real constraint, since the MISE of a sequence of kernels with L2-norm growing faster than
n cannot approach 0.

Define K∗ to be the MISE-optimal kernel function for f and n among the class K, i.e.
the monotone oracle, and let K0 be the CV-optimal kernel function among K restricted to
kernels, whose Fourier transform additionally has support in [−n, n].

K∗ := arg min
{
MISE(K)

∣∣∣K ∈ K
}

K0 := arg min
{
CV (K)

∣∣∣K ∈ K, supp K̂ ⊆ [−n, n]
}

(4)

Theorem Under the aforementioned hypotheses, for all δ > 0 the following exact oracle
inequality holds:

|E[ISE(K0)] −MISE(K∗)| = O(n−δ)MISE(K∗) +O(nδ−1 ln5/2n)

Remark 1 Although the theorem is stated for a fixed density, we could of course let f vary
in some appropriate set. Investigating the influence of f on the asserted oracle inequality,
we find that both residuals O(n−δ) and O(nδ−1 ln5/2n) contain constants depending on f :
namely ‖f‖2 and max f . Obviously, these are uniformly bounded within Sobolev classes Sβ(L)

with smoothness index β > 1/2 (Sβ(L) ⇐⇒ f ∈ L2 and 1
2π

∫
|ωβ f̂(ω)|2dω ≤ L). We will

explicitly indicate those steps in the proofs, where the dependence enters our approximations.
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Corollary f̃K0
is asymptotically sharp minimax-adaptive on the whole scale of Sobolev

classes with smoothness index greater than 1/2.

Remark 2 In case the true density f is not infinitly smooth, the assertion of the theo-
rem is equivalent to a general MISE-efficiency, analogously defined to Hall (1983) and Stone
(1984):

E[ISE(K0)]

MISE(K∗)
−→ 1

3 Proofs

Proof of the Theorem First of all, it can bee seen that for L2-integrable f the difference
between MISE(K∗) and the MISE of a truncated version of K∗ is negligible in proportion
to MISE(K∗). So the minimization of MISE on K is equivalent to that on

Kn := {K ∈ K | suppK ⊆ [−n, n]}

Next let us assume the following propositions, the validity of which will be shown in section
4 by wavelet decomposition of the empirical processes: For any λ < ∞, there exists a set
An ⊆ R

n, such that for an arbitrary observation X = (X1, . . . ,Xn) ∈ An and for δ > 0 it
holds that:

A1 |ISE(K) − C̃V (K)| = O(n−δ)MISE(K) +O(nδ−1 ln5/2n) ∀K ∈ Kn
A2 |ISE(K) −MISE(K)| = O(n−δ)MISE(K) +O(nδ−1 ln5/2n) ∀K ∈ Kn
A3 P (X ∈ Acn) = O(n−λ)

where O(n−δ) and O(nδ−1 ln5/2n) do not depend on K. In case f is a density function that
can only be estimated at a rate nε−1, n−δMISE(K) will dominate nδ−1 for small enough
δ > 0 at the right-hand side of these equations. Otherwise, if either δ is too big or if f can
be estimated at a faster rate, the term nδ−1 ln5/2n will be dominating.

C̃V is a criterion derived from CV , such that C̃V (K) − C̃V (K ′) = CV (K) − CV (K ′)
for any K,K ′ in K, and will be defined below. In addition, it holds that: ISE(K) ≤
(‖K‖2 + ‖f‖2)

2 ≤ (n1/2 + ‖f‖2)
2. As a consequence, we can proceed in the following way:

E[ISE(K0)] −MISE(K∗)

= E
[
ISE(K0) − ISE(K∗)

]

≤ EAn

[
ISE(K0) − ISE(K∗)

]
+ P (Acn) sup

K∈K
ISE(K)

= EAn

[
ISE(K0) − C̃V (K0) + C̃V (K0) − C̃V (K∗) + C̃V (K∗) − ISE(K∗)

]

+O(n−λ)
(√
n+ ‖f‖2

)2
(A3)

≤ EAn

[
ISE(K0) − C̃V (K0)

]
+ 0 + EAn

[
C̃V (K∗) − ISE(K∗)

]
+O(n−λ+1)

= O(n−δ)EAn [MISE(K0)] +O(n−δ)MISE(K∗) +O(nδ−1 ln5/2n) +O(n−λ+1) (A1)

= O(n−δ)EAn [ISE(K0)] +O(n−δ)MISE(K∗) +O(nδ−1 ln5/2n) (A2)
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for λ sufficiently large. In order to return to E[ISE(K0)], we exert again proposition A3 so
as to find |EAn [ISE(K0)] − E[ISE(K0)]| = O(n−λ+1), and therewith

E[ISE(K0)] −MISE(K∗) = O(n−δ)E[ISE(K0)] +O(n−δ)MISE(K∗) +O(nδ−1 ln5/2n)

=⇒ E[ISE(K0)] =
(
1 +O(n−δ)

)
MISE(K∗) +O(nδ−1 ln5/2n)

By A2, the opposite is also readily shown:

MISE(K∗) − E[ISE(K0)] = O(n−δ)E[ISE(K0)] +O(nδ−1 ln5/2n)

=⇒ MISE(K∗) =
(
1 +O(n−δ)

)
E[ISE(K0)] +O(nδ−1 ln5/2n)

which implies the desired result:

|E [ISE(K0)]−MISE(K∗)| = O(n−δ)MISE(K∗)+O(nδ−1 ln5/2n) �

Proof of the Corollary The minimax risk of density estimation in Sobolev classes Sβ(L) =
{f ∈ L2|‖f (β)‖2

2 ≤ L}, where β ∈ N
+ and L <∞, is known since Efroimovich, Pinsker (1983).

It is also known that kernel estimators employing suitable kernels maintain the minimax risk.
One of these so-called minimax kernels is Kβ with

Kβ(x) =
β!

π

β∑

j=1

sin(j) x

(β − j)! xj+1
and K̂β(ω) =

(
1 − |ω|β

)
+

Obviously, the Fourier transform of anyKβ , β ∈ N
+, is unimodal, so it is contained in K. That

means, the MISE-optimal estimator (monotone oracle) f̃K∗ cannot be worse than the minimax
estimator f̃Kβ

. On the other hand, the CV-optimal estimator f̃K0
is asymptotically as good

as f̃K∗, where the convergence is uniform on Sobolev classes with β > 1/2, as emphasized in
Remark 1 in section 2. It follows that f̃K0

is asymptotically minimax simultaneously on the
scale of Sobolev classes Sβ(L) with β ∈ N

+.
The consideration of the minimax risk of density estimators can be extended to Sobolev

type classes with non-integer smoothness index β ∈ R
+, defined as

Sβ(L) :=

{
f ∈ L2

∣∣∣ 1

2π

∫
|ωβ f̂(ω)|2dω

}

For β > 1/2, both the minimax risk and the minimax kernel Kβ take forms analogous to those
in ordinary Sobolev classes, although the proofs have to be adjusted (see Dalelane (2005)).
The same idea as before leads to simultaneous asymptotic minimaxity of f̃K0

on the whole
scale of Sobolev type classes Sβ(L) with β ∈ R

+, β > 1/2 . �

4 The empirical process

As the proof of proposition A2 is very much the same as the one for A1, we confine ourselves
to a demonstration of how |ISE(K)− C̃V (K)| can be approximated by O(n−δ)MISE(K)+
O(nδ−1 ln5/2n) simultaneously over Kn. The first step towards this goal will be to split up the
difference between ISE and C̃V into two empirical U-processes indexed by Kn, a degenerate
U-process of order 2 and a U-process of order 1, i.e. a partial sum process. This splitting
was already observed in Stone (1984), where the class of kernels consists but of one rescaled
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kernel function: HK = {Kh|h > 0}. Obeying some assumptions on K, it is easy to bound
the uniform covering number of HK , see Nolan, Pollard (1987). Chaining arguments apply
to both the partial sum process and the empirical U-process. But for lack of an appropriate
approximation on Kn, a generalization of Nolan/Pollard’s proof is not possible.

Instead, we define a wavelet inspired function basis for Kn, such that every kernel K ∈ Kn
can be represented as a linear combination of the functions belonging to this basis. The linear
decomposition is carried forward to the space of U-statistics made up by Kn, such that each
U-statistic in K is a weighted sum of all (countably many) U-statistics of the function basis.
The values of the basic U-statistics can be controlled by means of exponential inequalities.
On a set of “favorable events” with overwhelming probability (proposition A3), they do
not exceed a comfortable threshold of n−1λ ln3/2n. In turn, due to the unimodality of the
kernels’ Fourier transforms, we can bound the absolute sum of the (non-random) wavelet
coefficients, assigning a linear combination of basic U-statistics to a given U-statistic in K,
through lnn‖K‖2. Combining these arguments, we find that any U-statistic in K is an
O(n−1 ln5/2n)‖K‖2 = O(n−1/2 ln5/2n)

√
MISE(K), the O’s neither depending on K nor on

f .
To derive the desired bound of O(n−δ)MISE(K∗) + O(nδ−1 ln5/2n) therefrom, we have

to differentiate several constellations between the true density f and the envisaged δ. Recall
that the monotone oracle-kernel K∗ is not random and depends on nothing but f and n.

First consider f such that there exist constants 0 < lf , uf <∞ and εf > 0, which satisfy
lf · nεf−1 ≤MISE(K∗) ≤ uf · nεf−1. If δ < εf/2, then we have immediately

O(n−1/2 ln5/2n)
√
MISE(K∗) < O(n−δ)MISE(K∗).

If otherwise δ ≥ ε/2 holds, it follows that

O(n−1/2 ln5/2n)
√
MISE(K∗) ≤ O(nδ−1 ln5/2n).

This second reasoning is also true, when the convergence rate of MISE(K∗) is inferior to
nε−1 for any ε > 0, i.e. if the density f has infinitely many derivatives.

By a similar procedure but employing a different function basis, we also approximate the
partial sum process. But this is already proposition A1.

To be exact, let X1, . . . ,Xn be distributed as assumed in section 2. Let X and Y denote two
further random variables with the same distribution, independent of X1, . . . ,Xn and of each
other.

ISE(K) :=

∫ (
f̃K(x) − f(x)

)2
dx =

∫
f̃2
K(x)dx− 2

n

n∑

i=1

E [K(Xi −X)|Xi] + E [f(X)]

CV (K) =

∫
f̃2
K(x)dx− 2

n(n− 1)

∑

i6=j
K(Xi −Xj)

We obtain C̃V from CV by adding a zero and a further term which does not depend on K.
Define In(ω) := I(|ω| < n) and

hf (x) :=
1

2π

∫
f̂(ω)

(
1 − In(ω)

)
e−iωxdω (5)
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the high-frequency contribution of f̂ to f .

C̃V (K) := CV (K) +
[ 2

n

n∑

j=1

E [K(X −Xj)|Xj ] − 2E [K(X − Y )] − 2

n

n∑

j=1

E [K(X −Xj)|Xj ]

+ 2E [K(X − Y )]
]

+
2

n

n∑

j=1

(
f(Xj) − hf (Xj)

)
− 2E

[
f(Xj) − hf (Xj)

]

We can now split up the difference between the quadratic loss and the cross-validation crite-
rion into two summands:

ISE(K) − C̃V (K)

= − 2

n

n∑

i=1

E [K(Xi − Y )|Xi] + E [f(X)] +
2

n(n− 1)

∑

i6=j
K(Xi −Xj)

− 2

n

n∑

j=1

E [K(X −Xj)|Xj ] + 2E [K(X − Y )] +
2

n

n∑

j=1

E [K(X −Xj)|Xj ]

− 2E [K(X − Y )] − 2

n

n∑

j=1

(
f(Xj) − hf (Xj)

)
+ 2E

[
f(Xj) − hf (Xj)

]

=
2

n(n− 1)

∑

i6=j

(
K(Xi −Xj) − E [K(Xi −Xj)|Xi] − E [K(Xi −Xj)|Xj ]

+ E [K(Xi −Xj)]
)

+
2

n

n∑

j=1

(
E [K(X −Xj)|Xj ] − f(Xj) + hf (Xj)

− E [K(X −Xj)] − E
[
f(Xj) − hf (Xj)

])

=:
2

n(n− 1)

∑

i6=j
UK(Xi,Xj) +

2

n

n∑

j=1

(
bK(Xj) + hf (Xj) − E

[
bK(Xj) + hf (Xj)

])
(6)

where bK stands for the bias Ef̃K−f . The first term corresponds to a degenerate U-statistic,
since E[UK(X,Y )|Y ] = E[UK(X,Y )|X] = E[UK(X,Y )] = 0 for all values of X and Y . In
appendix A1, we will define a basis of father and mother wavelets for Kn, which allows the
following decomposition:

K(x) =
∑

t

αt(K) ϕt(x) +
∑

s,t

βst(K) ψst(x)

This decomposition can also be assigned to the U-statistics, such that

1

n(n− 1)

∑

i6=j
UK(Xi,Xj) :=

1

n(n− 1)

∑

i6=j

[
∑

t

αt(K) Uϕt(Xi,Xj) +
∑

s,t

βst(K) Uψst(Xi,Xj)

]

A change of summation separates the stochastic processes from the deterministic coefficients.

1

n(n− 1)

∑

i6=j
UK(Xi,Xj) =

∑

t

αt(K)


 1

n(n− 1)

∑

i6=j
Uϕt(Xi,Xj)




+
∑

s,t

βst(K)


 1

n(n− 1)

∑

i6=j
Uψst(Xi,Xj)
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The basic U-statistics can be kept “small” on a set of “favorable events” An1 ⊆ R
n (see

appendix A1), and in Lemma 1 we find bounds for the wavelet coefficients, so that on An1

the following holds

1

n(n− 1)

∑

i6=j
UK(Xi,Xj) = O

(
ln5/2n

n

)(√∫
K2(x)dx + 1

)
(7)

and for sufficiently large λ <∞, equation (10) in Lemma 2 shows that

P (Acn1) = O(n−λ
2/3+1)

On the other hand, we obtain in (6) a partial sum in bK + hf . Because of the bounded

support of K̂, bK + hf takes the form:

bK(x) + hf (x) = f ∗K(x) − f(x) + hf (x)

=
1

2π

∫
f̂(ω)

(
K̂(ω) − 1

)
e−iωxdω +

1

2π

∫
f̂(ω)

(
1 − In(ω)

)
e−iωxdω

=
1

2π

∫
f̂(ω)

(
K̂(ω) − 1

)
In(ω)e−iωxdω

It is the low-frequency component of the bias and exactly that part which really depends on
the kernel. In appendix A2, the partial sum is bounded on another set of “favorable events”
An2 ⊆ R

n.

1

n

n∑

j=1

(
bK(Xj) + hf (Xj)

)
− E

[
bK(Xj) + hf (Xj)

])

= O

(
ln2n√
n

)(√∫
b2K(x)dx+

‖f‖2√
n

)
(8)

and in equation (12) Lemma 4 we see that

P (Acn2) = O(n−λ+1)

The intersection of these two sets of “favorable events” An1 ∩ An2 =: An is the one used
in section 3 to bound C̃V-ISE (on the very same set An, ISE-MISE can be bounded to an
identical size).

The threshold for the U-statistic is of order n−1/2 ln5/2n(
√
MISE(K) + n−1/2). And the

one for the bias is of order n−1/2 ln2n(
√
MISE(K) + n−1/2), but depends on ‖f‖2. When

‖f‖2 is uniformly bounded, as in Sobolev classes with smoothness index greater than 1/2,
also this approximation is uniform. Besides, MISE converges in any case not faster than n−1.
Hence:

|ISE(K) − C̃V (K)|

≤ 2
∣∣∣ 1

n(n− 1)

∑

i6=j
UK(Xi,Xj)

∣∣∣+ 2
∣∣∣ 1
n

n∑

j=1

(
bK(Xj) + hf (Xj)

)
− E

[
bK(Xj) + hf (Xj)

]∣∣∣

= O

(
ln5/2n

n

)(√∫
K2(x)dx+ 1

)
+O

(
ln2n√
n

)(√∫
b2K(x)dx +

‖f‖2√
n

)

8



= O

(
ln5/2n√

n

)(√
MISE(K) +

1 + ‖f‖2√
n

)

= O

(
ln5/2n√

n

)
√
MISE(K)

which concludes the proof of proposition A1 and

P (Acn) ≤ P (Acn1) + P (Acn2) = O(n−λ
′

) for an appropriate λ′ <∞

which is proposition A3.

5 Practical computation

Once the statistical properties of the CV-optimal kernel function K0 have been examined, we
would like to actually compute this kernel from a sample X1, . . . ,Xn. K0 is arg minCV (K)
within the set Kn := {K ∈ K|supp K̂ ⊆ (−n, n)}. Hence we face a minimization problem.

Note that the set K is convex. With respect to the properties K̂ reel and non-negative and
‖K‖2

2 ≤ n, convexity is obvious. Given that all K̂ in K are unimodal and symmetric around

0, their mode is 0. And a convex combination of any two K̂ is again unimodal. Convexity
is also preserved through the trimming of the support of K̂. On the other hand, CV (K) is
a strictly convex function. Therefore minCV (K) over Kn is a convex optimization problem,
where the argument is itself a non-increasing function, K̂: [0, n) −→ [0, 1].

Convex problems have a unique solution, so we are theoretically save. The question is of
course to find the solution. Consider a discrete version of Kn, say Kt

n, which contains all real,
symmetric and unimodal piecewise constant functions on [0, n), with jumps at the points
2−tk, k = 1 . . . 2tn, and values ∈ [0, 1]. The minimization of CV (K) over Kt

n is still a convex
optimization problem, but this time with respect to a parameter of dimension 2tn (number
of variables) and with 2tn+ 2 constraints (unimodality, positivity and L2-norm).

The L1-distance between a kernel function K̂ in Kn and its closest neighbor K̂t in Kt
n is

not greater than 2−t (and thus the same applies for the supremum distance between K and
Kt). It follows with little effort that |CV (K) − CV (Kt) ≤ 2

π · 2−t and therwith

CV (Kt
0) := min

Kt
n

CV (K) ≤ CV
(
(K0)

t
)

≤ CV (K0) +
2

π
· 2−t

Since Kt
n ⊆ Kt+1

n , the sequence {Kt
0}t∈N converges towards K0, the unique solution of the

original problem.
There is no doubt that a profound analysis in terms of optimization would yield a more

sophisticated algorithm to solve to the problem, possibly avoiding discretization and giving
convergence rates over classes of densities.

A Appendix

A.1 Wavelet decomposition of the kernel As the class Kn itself, also the desired basis is
constructed in the Fourier domain. We are searching for a way to compress most economically
the information inherent to K̂. To this end, we utilize K̂’s assumed monotony on R

+, which
gives that for ‖K‖2 fixed, K̂(ω) ≤ ‖K‖2|2ω|−1/2 must hold. Heuristically spoken, the further

9



out we reach on the line R
+, the smaller will be the variation in K̂. But that means, we can

allow for a rougher approximation without losing much of our approximating power.
Technically we implement the idea as follows: Inspired by the well known Haar basis,

symmetric father wavelets are defined on the interval [−n, n]: ϕ̂01(ω) := 2−1/2I(|ω| ∈ [0, 1)),
ϕ̂02(ω) := 2−1/2I(|ω| ∈ [1, 2)). After that, we let the supports of the wavelets grow: with
negative scale index, we define ϕ̂−s,2(ω) := 2−(s+1)/2I(|ω| ∈ [2s, 2s+1)), 1 ≤ s ≤ dn, where
dn ∼ lnn.

father wavelets

0 5 10 15

0.
0

0.
4

0.
8

The sequence of father wavelets (ϕ̂01, ϕ̂02, ϕ̂−1,2, ϕ̂−2,2, . . . , ϕ̂−dn,2) covers the whole in-
terval [−n, n], (the support of a function being defined as the closure of the set, where it is
nonzero) and comprises dn + 2 elements. On the supporting interval of each father wavelet,
the mother wavelets are defined on refining scales. With notation Iut(ω) := I(|ω| ∈ [2−u(t−
1), 2−ut)), the mother wavelets on (−2s+1,−2s]∪[2s, 2s+1) are ψ̂u,t(ω) := 2(u−1)/2[Iu+1,2t−1(ω)
−Iu+1,2t(ω)], u = −s,−s+ 1, . . . , 0, 1, 2, . . . and t = 2s+u + 1, . . . , 2s+u+1. When we combine

all mother wavelets with the same scale index s, we arrive at a sequence of (ψ̂s,2, . . . , ψ̂s,2sn)

for s = −1, . . . ,−dn, and (ψ̂s,1, . . . , ψ̂s,2sn), for s ≥ 0. We observe that for s < 0, the corre-
sponding mother wavelets do not cover the whole interval [−n, n], but only [−n,−2s]∪ [2s, n].

mother wavelets, scale 0

0 5 10 15

−
1.

0
0.

0
1.

0

mother wavelets, scale −1

0 5 10 15

−
1.

0
0.

0
1.

0
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mother wavelets, scale −2

0 5 10 15
−

1.
0

0.
0

1.
0

Unifying the notation:

Ist(ω) := I
(
|ω| ∈

[
2−s(t− 1), 2−st

))

ϕ̂st(ω) := 2(s−1)/2Ist(ω)

ψ̂st(ω) := 2(s−1)/2 [Is+1,2t−1(ω) − Is+1,2t(ω)] ,

we have the following complete orthonomal function basis of L2((−n, n)): {ϕ̂01} ∪ {ϕ̂s2|s =
0, . . . ,−dn} ∪ {ψ̂st|s = −1, . . . ,−dn and t = 2, . . . 2sn} ∪ {ψ̂st|s ≥ 0 and t = 1, . . . , 2sn}. The
decomposition of K̂ results in:

K̂(ω) = α01(K)ϕ̂01(ω) +

−dn∑

s=0

αs2(K)ϕ̂s2(ω) +

−dn∑

s=−1

2sn∑

t=2

βst(K)ψ̂st(ω) +
∞∑

s=0

2sn∑

t=1

βst(K)ψ̂st(ω)

αst(K) :=

∫
ϕ̂st(ω)K̂(ω)dω and βst(K) :=

∫
ψ̂st(ω)K̂(ω)dω

(K and the wavelets are both symmetric, so conjugation can be dropped.) By an inverse
Fourier transferred, the additive decomposition of K̂ can be transformed to the space domain.

K(x) = α01(K)ϕ01(x) +

−dn∑

s=0

αs2(K)ϕs2(x) +

−dn∑

s=−1

2sn∑

t=2

βst(K)ψst(x) +

∞∑

s=0

2sn∑

t=1

βst(K)ψst(x)

Accordingly, the summands in the U-process decompose into:

UK(Xi,Xj) = α01(K)Uϕ01
(Xi,Xj) +

−dn∑

s=0

αs2(K)Uϕs2(Xi,Xj) +

−dn∑

s=−1

2sn∑

t=2

βst(K)Uψst(Xi,Xj)

+
∞∑

s=0

2sn∑

t=1

βst(K)Uψst(Xi,Xj),

where Uϕst(Xi,Xj) := ϕst(Xi−Xj)−E[ϕst(Xi−Xj)|Xi]−E[ϕst(Xi−Xj)|Xj ]+E[ϕst(Xi−
Xj)], and Uψst equally defined for ψst. Interchanging the order of summation, we obtain that:

1

n(n− 1)

∑

i6=j
UK(Xi,Xj) = α01(K)


 1

n(n− 1)

∑

i6=j
Uϕ01

(Xi,Xj)




+

−dn∑

s=0

αs2(K)


 1

n(n− 1)

∑

i6=j
Uϕs2(Xi,Xj)
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+

−dn∑

s=−1

2sn∑

t=2

βst(K)


 1

n(n− 1)

∑

i6=j
Uψst(Xi,Xj)




+

∞∑

s=0

2sn∑

t=1

βst(K)


 1

n(n− 1)

∑

i6=j
Uψst(Xi,Xj)


 (9)

From this point onwards, the sums of wavelet coefficients and the U-statistics can be handled
separately. The α’s and β’s are deterministic and we show in Lemma 1:

|α01(K)| +
−dn∑

s=0

|αs2(K)| ≤
√
dn + 2

√
2π

∫
K2(x)dx

2sn∑

t=2

|βst(K)| ≤
√

2π

∫
K2(x)dx for s < 0

2sn∑

t=1

|βst(K)| ≤ 2(−s+1)/2 for s ≥ 0

For a suitable constant λ <∞, we choose our set of “favorable events” as:

An1 :=
{

(X1, . . . ,Xn) :
∣∣∣ 1
n(n−1)

∑
i6=j

Uϕst(Xi,Xj)
∣∣∣ ≤ λ ln3/2n

n , (s, t) = (−dn, 2), . . . , (0, 2), (0, 1);
∣∣∣ 1
n(n−1)

∑
i6=j

Uψst(Xi,Xj)
∣∣∣ ≤ λ ln3/2n

n , s = −dn, . . . ,−1, t = 2, . . . , 2sn;

∣∣∣ 1
n(n−1)

∑
i6=j

Uψst(Xi,Xj)
∣∣∣ ≤ λ lnn+s

n , s ≥ 0, t = 1, . . . , 2sn
}

whereupon the U-statistics do not become excessively large. The fact that the complement
of the set An1 has probability tending to 0, as n −→ ∞, P (Acn1) = O(n−λ

2/3+1) (uniformly
for f ∈ Sβ(L) with β > 1/2), will be shown in Lemma 2, equation (10). On An1 it holds that
(in connection with (9)):

∣∣∣ 1

n(n− 1)

∑

i6=j
UK(Xi,Xj)

∣∣∣ ≤ λ ln3/2n

n

[
|α01(K)| +

−dn∑

s=0

|αs2(K)| +
−dn∑

s=−1

2sn∑

t=2

|βst(K)|
]

+
∞∑

s=0

λ lnn+ s

n

2sn∑

t=1

|βst(K)|

≤ λ ln3/2n

n

[
√
dn + 2

√
2π

∫
K2(x)dx+ dn

√
2π

∫
K2(x)dx

]

+

∞∑

s=0

λ lnn+ s

n
2(−s+1)/2

= O

(
ln5/2n

n

)(√∫
K2(x)dx+ 1

)

which completes (7). But two assertions are still left to be verified.
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Lemma 1 For the father and mother wavelet coefficients of K defined so far, it holds
that

|α01(K)| +
dn∑

s=0

|αs2(K)| ≤
√
dn + 2

√
2π

∫
K2(x)dx

2sn∑

t=2

|βst(K)| ≤
√

2π

∫
K2(x)dx for s < 0

2sn∑

t=1

|βst(K)| ≤ 2(−s+1)/2 for s ≥ 0

Proof Since ϕ̂st are orthonormal, we can deduce through Cauchy-Schwartz:

|α01(K)| +
dn∑

s=0

|αs2(K)| =

∫
K̂(ω)

[
ϕ̂01(ω) +

dn∑

s=0

ϕ̂s2(ω)

]
dω

≤
√∫

K̂2(ω)dω
√
dn + 2

May TV(K̂|supp Ist) denote the total variation of K̂ on the support of Ist, and the like for
max and min. It is known that for mother wavelet coefficients, it holds that:

∑

t

|βst(K)| = 2−(s+1)/2 TV

(
K̂
∣∣∣
⋃

t

supp Ist

)

For s ≥ 0, the supports of the mother wavelets cover the whole interval [−n, n], and we obtain
TV(K̂|

⋃
supp Ist) = TV(K̂) ≤ 2, due to unimodadility of K̂ (K̂(0) =

∫
K(x)dx = 1). For

s < 0,
⋃

supp Ist = [−n,−2s] ∪ [2s, n], and we use that
∫
K̂2(ω)dω =

∫ ω0

0
K̂2(ω)dω +

∫ n

ω0

K̂2(ω)dω ≤
∫ ω0

0
K̂2(ω0)dω = ω0K̂

2(ω0)

This yields

∑

t

|βst(K)| ≤ 2−(s+1)/2 TV

(
K̂
∣∣∣
⋃

t

supp Ist

)

≤ 2−(s+1)/2 2 K̂
(
2−s
)

≤ 2−(s−1)/2

√∫
K̂2(ω)dω

√
2 · 2−s

=

√∫
K̂2(ω)dω �

Lemma 2 For the father and mother wavelets defined above and arbitrary 0 < λ < ∞ it
holds that

P


 1

n(n− 1)

∣∣∣
∑

i6=j
Uϕst(Xi,Xj)

∣∣∣ > λ ln3/2n

n


 = O

(
n−λ

2/3
)

for (s, t) = (−dn, 2), . . . , (0, 2)
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and (0, 1)

P


 1

n(n− 1)

∣∣∣
∑

i6=j
Uψst(Xi,Xj)

∣∣∣ > λ ln3/2n

n


 = O

(
n−λ

2/3
)

for s = −1, . . . ,−dn

and t = 2, . . . , 2sn

P


 1

n(n− 1)

∣∣∣
∑

i6=j
Uψst(Xi,Xj)

∣∣∣ > λ lnn+ s

n


 = O

(
n−λ

2/3

e−s
)

for s = 0, 1, 2, . . .

and t = 1, . . . , 2sn

These bounds O(.) are uniform in s and t.
Acn1 is the union of all complementary sets and the approximations of Lemma 2 give

P (Acn1) = O(n−λ
2/3

)

[
(dn + 2) +

−dn∑

s=−1

2sn∑

t=2

1

]
+

∞∑

s=0

2sn∑

t=1

O
(
n−λ

2/3

e−s
)

= O(n−λ
2/3

)O(ln n+ n) +O(n−λ
2/3

)O(n) (10)

Remark As we will see in the proof, the bounds of Lemma 2 are uniform in function sets
with bounded max f . This is the case for Sobolev classes Sβ(L) with β > 1/2. So over
Sobolev classes, Lemma 2 holds uniformly.

Proof From the Bernstein type inequality for degenerate U-statistics, shown by Arcones,
Giné (1993), it follows that for all ϕst, and analogously for all ψst with s < 0, there exist
constants c1 and c2 independent from ϕst (and from ψst respectively), such that:

P


 1

n(n− 1)

∣∣∣
∑

i6=j
Uϕst(Xi,Xj)

∣∣∣ > λ ln3/2n

n




≤ c1 exp




− c2(n− 1)λ ln3/2n

n
√
E|Uϕst |2 +

(
n−1
n ‖ϕst‖2

∞
λ ln3/2n

n

)1/3





≤ c1 exp




− c2(n− 1)λ ln3/2n

n

1√
2π
‖f‖1/2

∞ ‖ϕ̂st‖2 +
(
n−1
n

1
(2π)2

‖ϕ̂st‖2
1
λ ln3/2n

n

)1/3





= O

(
exp

{
− λ2/3 lnn

1 + ‖f‖1/2
∞ ln−1/2 n

})

which is an O(n−λ
2/3

), not depending on s and t. By analogue calculations, we get for ψst
with s ≥ 0:

P


 1

n(n− 1)

∣∣∣
∑

i6=j
Uψst(Xi,Xj)

∣∣∣ > λ lnn+ s

n


 = O

(
exp

{
− λ2/3 lnn+ λ−1/3s

‖f‖1/2
∞

})

an O(n−λ
2/3

e−s), uniform in t. �
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A.2 Wavelet decomposition of the bias We are now going to apply an additive de-
composition to the bias term in the difference C̃V (K) − ISE(K):

1

n

n∑

j=1

(
bK(Xj) + hf (Xj)

)
− E

[
bK(Xj) + hf (Xj)

]

where bK(x) = f ∗K(x)− f(x), hf is the high-frequency component of f (definition (5)) and

b̂K + ĥf = b̂K · In. In the bias, everything relates to the underlying density, so we construct

basis functions depending on f . Let us define the integral of |f̂ |2 over [−ω, ω] as a function
F (ω).

F (ω) :=

∫ ω

−ω
|f̂(τ)|2dτ

This map transforms the ω-halfaxis [0,∞) by mapping ω 7−→ F (ω) to the interval [0, ‖f̂‖2
2).

F (0) = 0, Fn := F (n) =

∫ n

−n
|f̂(τ)|2dτ, lim

ω→∞
F (ω) = ‖f̂‖2

2

The initial value of an interval, say [2−s(t− 1)Fn, 2
−stFn) with length 2−s, on this axis is the

interval [F−1(2−s(t− 1)Fn), F
−1(2−stFn)) on the original axis. The integral of |f̂ |2 over the

initial interval is obviously 1
2 2−sFn.

2−sFn =

∫ F−1(2−stFn)

−F−1(2−stFn)
|f̂(ω)|2dω −

∫ F−1(2−s(t−1)Fn)

−F−1(2−s(t−1)Fn)
|f̂(ω)|2dω

Define the indicator functions:

I ′st(ω) := I
(
|ω| ∈

[
F−1

(
2−s(t− 1)Fn

)
, F−1

(
2−stFn

)))

satisfying
∫
|f̂(ω)|2I ′st(ω)dω = 2−sFn, and the orthonomal wavelet functions:

ϕ̂′
st(ω) := 2s/2F−1/2

n f̂(ω)I ′st(ω), for s = 1, . . . , sn with t = 2s − 1 and

s = sn, t = 2sn where sn ∼ lnn

ψ̂′
st(ω) := 2s/2F−1/2

n f̂(ω)
[
I ′s+1,2t−1(ω) − I ′s+1,2t(ω)

]
, for s = 1, . . . , sn − 1 with

t = 1, . . . , 2s − 1 and s = sn, sn + 1, . . . with

t = 1, . . . , 2s

{ϕ̂′
st|s = 1, . . . sn, t = 2s − 1} ∪ {ϕ̂′

sn,2sn} ∪ {ψ̂′
st|s = 1, . . . , sn − 1, t = 1, . . . 2s − 1} ∪ {ψ̂′

st|s ≥
sn, t = 1, . . . 2s} represent a complete orthonormal basis for the set of all functions {f̂ · ĝ ·In | ĝ
∈ L2}, which the bias functions b̂K · In belong to for all K ∈ K. After the inverse Fourier
transform, we have

bK(x) + hf (x) =

sn∑

s=1

α′
s2s−1(bK)ϕ′

s2s−1(x) + α′
sn2sn (bK)ϕ′

sn2sn (x) +

sn−1∑

s=1

2s−1∑

t=1

β′st(bK)ψ′
st(x)

+

∞∑

s=sn

2s∑

t=1

β′st(bK)ψ′
st(x)
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which gives in turn

1

n

n∑

j=1

(
bK(Xj) + hf (Xj)

)
− E

[
bK(Xj) + hf (Xj)

]

=

sn∑

s=1

α′
s2s−1(bK)


 1

n

n∑

j=1

ϕ′
s2s−1(Xj) − Eϕ′

s2s−1(Xj)


+ α′

sn2sn (bK)

×


 1

n

n∑

j=1

ϕ′
sn2sn (Xj) − Eϕ′

sn2sn (Xj)




+

sn−1∑

s=1

2s−1∑

t=1

β′st(bK)


 1

n

n∑

j=1

ψ′
st(Xj) − Eψ′

st(Xj)


+

∞∑

s=sn

2s∑

t=1

β′st(bK)

×


 1

n

n∑

j=1

ψ′
st(Xj) − Eψ′

st(Xj)


 (11)

Again, we will proceed separately with the aim of finding bounds to the deterministic wavelet
coefficients and the stochastic processes. Lemma 3 shows that

sn∑

s=1

|α′
s2s−1(bK)| + |α′

sn2sn (bK)| ≤
√
sn + 1

√
2π

∫
b2K(x)dx

2s−1∑

t=1

|β′st(bK)| ≤ 2

√
2π

∫
b2K(x)dx for s < sn

2s∑

t=1

|β′st(bK)| ≤ 2 · 2−s/2‖f‖2 for s ≥ sn

Over a set of “favorable events”, whose complement has an asymptotically decreasing prob-
ability (Lemma 4, inequality (12)), the partial sum processes can be controlled. For λ <∞

An2 :=
{

(X1, . . . ,Xn) : 1
n |

n∑
j=1

ϕ′
st(Xj) − Eϕ′

st(Xj)| ≤ λ lnn√
n
, (s, t) = (1, 1), . . . , (sn, 2

sn − 1), (sn, 2
sn);

1
n |

n∑
j=1

ψ′
st(Xj) − Eψ′

st(Xj)| ≤ λ lnn√
n
, s = 1, . . . , sn − 1, t = 1, . . . , 2s − 1;

1
n |

n∑
j=1

ψ′
st(Xj) − Eψ′

st(Xj)| ≤ λ lnn+s√
n

, s ≥ sn, t = 1, . . . , 2s
}

and P (Acn2) = O(n−λ+1)

Following (11) and taking into account that 2sn ≤ n−1, it holds on An2:

1

n

∣∣∣
n∑

j=1

(
bK(Xj) + hf (Xj)

)
− E

[
bK(Xj) + hf (Xj)

]∣∣∣

≤ λ lnn√
n

[
sn∑

s=1

∣∣α′
s2s−1(bK)

∣∣+
∣∣α′
sn2sn (bK)

∣∣+
sn−1∑

s=1

2s−1∑

t=1

∣∣β′st(bK)
∣∣
]

+

∞∑

s=sn

λ lnn+ s√
n

2s∑

t=1

∣∣β′st(bK)
∣∣

= O

(
ln2n√
n

)(√∫
b2K(x)dx+

‖f‖2√
n

)
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which completes (8). Now we proof the remaining assertions.

Lemma 3 The coefficients of the bias defined trough the f -depending function basis satisfy

sn∑

s=1

|α′
s2s−1(bK)| + |α′

sn2sn (bK)| ≤
√
sn + 1

√
2π

∫
b2K(x)dx

2s−1∑

t=1

|β′st(bK)| ≤ 2

√
2π

∫
b2K(x)dx for s < sn

2s∑

t=1

|β′st(bK)| ≤ 2 · 2−s/2‖f‖2 for s ≥ sn

Proof The father wavelet coefficients are bounded in the same way as in Lemma 1, such
that

sn∑

s=1

|α′
s2s−1(bK)| + |α′

sn2sn (bK)| =

√∫
|̂bK(ω)|2dω

√
sn + 1

For every t in the summation range, choose an arbitrary ωst ∈ [F−1(2−s(t−1)Fn), F
−1(2−stFn)).

Again let TV(K̂|supp I ′st) be the total variation of K̂ over the support of I ′st.

∑

t

|β′st(bK)| =
∑

t

∣∣∣
∫
b̂K(ω)ψ̂′

stdω
∣∣∣

=
∑

t

2s/2F−1/2
n

∣∣∣
∫
f̂(ω)

(
1 − K̂(ω)

)
f̂ (ω)

[
I ′s+1,2t−1(ω) − I ′s+1,2t(ω)

]
dω
∣∣∣

=
∑

t

2s/2F−1/2
n

∣∣∣
∫

|f̂(ω)|2
(
1 − K̂(ωst)

) [
I ′s+1,2t−1(ω) − I ′s+1,2t(ω)

]
dω

+

∫
|f̂(ω)|2

(
K̂(ωst) − K̂(ω)

) [
I ′s+1,2t−1(ω) − I ′s+1,2t(ω)

]
dω
∣∣∣

≤
∑

t

2s/2F−1/2
n

[(
1 − K̂(ωst)

) ∫
|f̂(ω)|2

[
I ′s+1,2t−1(ω) − I ′s+1,2t(ω)

]
dω

+

∫
|f̂(ω)|2 TV

(
K̂
∣∣∣ supp I ′s+1,2t−1

)
I ′s+1,2t−1(ω)dω

+

∫
|f̂(ω)|2 TV

(
K̂
∣∣∣ supp I ′s+1,2t(|ω|)

)
I ′s+1,2t(ω)dω

]

=
∑

t

2s/2F−1/2
n

[
0 + TV

(
K̂
∣∣∣ supp I ′st

)∫
|f̂(ω)|2I ′st(ω)dω

]

=
∑

t

2s/2F−1/2
n TV

(
K̂
∣∣∣ supp I ′st

)
Fn2

−s

= 2−s/2F 1/2
n TV

(
K̂
∣∣∣ supp

⋃

t

I ′st

)

The mother wavelets on the scales s ≥ sn are defined over the whole interval [−n, n], therefore
TV(K̂| supp

⋃
I ′st) = TV(K̂) ≤ 2. For s < sn, the mother wavelets are supported on
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[−F−1((1 − 2s)Fn), F
−1((1 − 2s)Fn)]. On this interval, the total variation amounts to at

most 2[1 − K̂
(
F−1((1 − 2s)Fn)

)
].

∑

t

|β′st(bK)| ≤ 2−s/2F 1/2
n 2

[
1 − K̂

(
F−1

(
(1 − 2s)Fn

))]

= 2−s/2F 1/2
n

(∫
|ϕ̂′
s2s(ω)|2dω

)
2
[
1 − K̂

(
F−1

(
(1 − 2s)Fn

))]

= 2s/2F−1/2
n

∫
|f̂(ω)|2I ′s2s(ω)dω 2

[
1 − K̂

(
F−1

(
2−s(2s − 1)Fn

))]

≤ 2s/2F−1/2
n 2

∫
f̂(ω)

[
1 − K̂(ω)

]
f̂ (ω)I ′s2s(ω)dω

= 2

∫
b̂K(ω) ϕ̂′

s2s(ω)dω

≤ 2

√∫
|̂bK(ω)|2dω

√∫
|ϕ̂′
s2s(ω)|2dω

= 2

√∫
|̂bK(ω)|2dω �

Lemma 4 For any λ <∞, the following inequalities hold uniformly for all indicated s and
t and, exactly as in Lemma 2, as well uniformly for f ∈ Sβ(L), β > 1/2:

P


 1

n

∣∣∣
n∑

j=1

ϕ′
st(Xj) − Eϕ′

st(Xj)
∣∣∣ > λ lnn√

n


 = O

(
n−λ

)
, (s, t) = (1, 1), . . . , (sn, 2

sn − 1),

and (sn, 2
sn)

P


 1

n

∣∣∣
n∑

j=1

ψ′
st(Xj) − Eψ′

st(Xj)
∣∣∣ > λ lnn√

n


 = O

(
n−λ

)
, s = 1, . . . , sn−1 and

t = 1, . . . , 2s − 1

P


 1

n

∣∣∣
n∑

j=1

ψ′
st(Xj) − Eψ′

st(Xj)
∣∣∣ > λ lnn+ s√

n


 = O

(
n−λe−s

)
, s = sn, sn + 1, . . . and

t = 1, . . . , 2s

Acn2 is the union of all complementary sets and the approximations yield

P (Acn2) = O(n−λ)

[
sn∑

s=1

1 + 1 +

sn−1∑

s=1

2s−1∑

t=1

1

]
+

∞∑

s=sn

2s∑

t=1

O
(
n−λe−s

)

= O(n−λ)O(lnn+ n) +O(n−λ) (12)

so P (Acn2) is less than an O(n−λ+1).

Proof According to Bernstein’s inequality (e.g. Shorack, Wellner (1986), p. 855), for
all ϕ′

st and analogously for all ψ′
st with s < sn it holds that:

P


 1

n

∣∣∣
n∑

j=1

ϕ′
st(Xj) − Eϕ′

st(Xj)
∣∣∣ > λ lnn√

n
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≤ 2 exp




−

n
2

(
λ lnn√
n

)2

E|ϕ′
st|2 + ‖ϕ′

st‖∞ λ lnn
3
√
n





≤ 2 exp

{
− λ2 ln2n

1
π‖f‖∞ + 1

π

√
2n λ lnn

3
√
n

}

= O

(
exp

{
− λ lnn

1 + ‖f‖∞λ−1 ln−1 n

})

which is a uniform O(n−λ). For ψ′
st with s ≥ sn:

P


 1

n

∣∣∣
n∑

j=1

ψ′
st(Xj) − Eψ′

st(Xj)
∣∣∣ > λ ln n+ s√

n


 = O

(
exp

{
− λ lnn+ s

1 + ‖f‖∞λ−1 ln−1 n

})

a uniform O(n−λe−s). �
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