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On processes which are infinitely divisible with respect to

time

Roger Mansuy
∗

20th April 2005

Abstract

The aim of this short note is to present the notion of IDT processes, which is a wide

generalization of Lévy processes obtained from a modified infinitely divisible property. Special

attention is put on a number of examples, in order to clarify how much the IDT processes

either differ from, or resemble to, Lévy processes.

Keywords : Infinitely divisible law, Lévy processes, Gaussian processes.
AMS 2000 subject classification :*60G48, 60G51, 60G44, 60G10

1 Introduction

Motivated by some one-to-one map from the set of infinitely divisible laws, or rather from the
set of their Lévy measures onto itself which was noticed by Barndorff-Nielsen and Thornbjørnsen
[BNT02a], it appears to be of some interest to consider the class of stochastic processes (Xt; t ≥ 0)
which enjoy the following property :

∀n ∈ N∗, (Xnt; t ≥ 0)
(d)
= (X

(1)
t + ... + X

(n)
t ; t ≥ 0) (1)

where X(1),..., X(n) are independent copies of X .
We shall call such a process an IDT process (which stands for Infinitely Divisible with respect to
Time). A simple remark, whose proof is left to the reader, is

Proposition 1.1 :
Any Lévy process is IDT

However, there are many other processes than Lévy processes which are IDT, and the purpose
of this paper is to exhibit large sets of IDT processes. More precisely, in Section 2, we give some
general examples of IDT processes; in Section 3, we characterize the Gaussian processes which are
IDT. In Section 4, we focus on the resemblance between a given IDT process and the Lévy process
with the same one-dimensional marginals at fixed times. Section 5 is devoted to a description of
IDT processes as particular path-valued infinitely divisible variables.

2 Some general examples of IDT processes

The aim of this section is to provide as many examples as possible of IDT processes which are not
Lévy processes.
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(2.1) Here is a first simple example; given a strictly stable random variable Sα with parameter
α, the process X defined by

Xt = t1/αSα, t ∈ R+,

is an IDT process. This simply relies on the fact that n1/αSα is equal in law to the sum of n
independent copies of Sα.

(2.2) A more interesting set of examples is obtained by transforming a Lévy process, more
generally an IDT process, by integration in time with respect to a measure. Namely, if X is an
IDT process and µ a measure on R+ such that

X
(µ)
t =

∫

µ(du)Xut, t ∈ R+,

is well defined, then X(µ) is again an IDT process: this property follows easily from (1).
Some particular cases of interest may be obtained with µ(du) = du

u 1[a,b](u) for any 0 < a < b < ∞.

In such a case, X
(µ)
t =

∫ bt

at
du
u Xu; in fact, this is the original example in [BNT02a] , which motivated

us to study IDT processes.
Thus, we note that this procedure allows to construct some quite regular IDT processes, i.e. if X
is a Lévy process,then

∫ t

0
du
u Xu is an absolutely continuous IDT process.

(2.3) Some similar examples can be provided using only the jumps of an IDT process X .
Indeed, if f : (0,∞) × R → R satisfies f(., 0) ≡ 0, then

Xf
t =

∑

v≥0

f(v, (∆X)vt)

is an IDT process (this easily follows from the fact that, if (Xt; t ≥ 0) is an IDT process then the
same holds for ((∆X)t; t ≥ 0)), provided it exists.

3 IDT Gaussian processes

One may wonder which among centered Gaussian processes (Gt; t ≥ 0) (which, for simplicity, we
assume to be centered) are IDT. In order to characterize IDT Gaussian processes, we first recall
the Lamperti transformation concerning self-similar processes (see the original paper [Lam62] or
[EM02] Theorem 1.5.1 p11) :

Lemma 3.1 :
A process (Xt; t ≥ 0) enjoys the scaling property of order h, i.e.

∀α > 0, (Xαt; t ≥ 0)
(d)
= (αhXt; t ≥ 0),

if, and only if, its Lamperti transform (X̃y := e−hyXey ; y ∈ R) is a strictly stationary process.

The next proposition emphasizes again how much more general IDT processes are than Lévy
processes (since the only Gaussian Lévy processes are Brownian motions with drifts).

Proposition 3.2 :
Let (Gt; t ≥ 0) be a centered Gaussian process, which is assumed to be continuous in probability
(which is equivalent to its covariance function c being continuous). Then the following properties
are equivalent :

1. (Gt; t ≥ 0) is an IDT process.
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2. The covariance function c(s, t) := E[GsGt], 0 ≤ s ≤ t, satisfies

∀α > 0, c(αs, αt) = αc(s, t), 0 ≤ s ≤ t

3. The process (Gt; t ≥ 0) satisfies the ”Brownian scaling property”, namely

∀α > 0, (Gαt; t ≥ 0)
(d)
= (

√
αGt; t ≥ 0)

4. The process (G̃y := e−y/2Gey ; y ∈ R) is stationary.

5. The covariance fonction c̃(y, z) := E[G̃yG̃z ], y, z ∈ R, is of the form

c̃(y, z) =

∫

µ(du)eiu|y−z|, y, z ∈ R

where µ is a positive, finite, symmetric measure on R.

Then, under these equivalent conditions, the covariance function c of (Gt; t ≥ 0) is given by

c(s, t) =
√

st

∫

µ(da)eia| ln( s
t
)|

Remark 3.3 (Private communication from F. Hirsch to M. Yor):
The conditions found in Proposition 3.2 are also equivalent to the positivity of the quadratic form
Q defined as

Q(f) =

∫ 1

0

du f(u)

∫ 1

0

ds f(su)c(1, s), f ∈ L2([0, 1])

Proof :

(1 ⇔ 2) The IDT property (1) is equivalent to

∀n ∈ N, c(ns, nt) = nc(s, t), 0 ≤ s ≤ t

and also to
∀q ∈ Q+, c(qs, qt) = qc(s, t), 0 ≤ s ≤ t

The result is then obtained using the density of Q+ in R+ and the continuity of c (deduced
from the continuity in probability, hence in L2, of (Gt; t ≥ 0)).

(2 ⇔ 3) Simple, since the law of a centered Gaussian process is determined by its covariance
function.

(3 ⇔ 4) Lamperti’s transformation (Lemma 3.1) of order h = 1/2.

(4 ⇔ 5) Bochner’s theorem for definite positive functions.

�

Example 3.4 :
Let ϕ ∈ L2(R+, du); then the process G(ϕ) defined by

∀t > 0, G
(ϕ)
t =

∫ ∞

0

ϕ
(u

t

)

dBu, and G
(ϕ)
0 = 0 (2)

is an IDT process.
Indeed, it suffices to note that G(ϕ) is a well defined Gaussian process with covariance function

c(s, t) = s

∫ ∞

0

dv ϕ
(s

t
v
)

ϕ(v) =
√

st

∫

µ(dy)eiy| ln( s
t
)|, s, t > 0

3



with
∫

µ(dy)eiyx = e−|x|/2
∫ ∞
0

dv ϕ(e−|x|v)ϕ(v), x ∈ R.
In particular, we can compute µ in the following simple cases :

ϕ(x) µ(dy)

x−α1x≥1

x−α1x≤1

with α > 1/2

with α < 1/2







1

2π(y2 + (1/2 − α)2)
dy

(1 − x)−α1x≤1 with α < 1/2
∞
∑

n=0

Γ(1 − α)

Γ(α)

Γ(n + α)

Γ(n + 2 − α)

n + 1/2

π(y2 + (n + 1/2)2)
dy

More generally, if ϕ(x) =
1

xα

( ∞
∑

n=0
anxn

)

with some sequence of positive numbers (an; n ≥ 0),

then

µ(dy) =

∞
∑

n=0

an

∫

dv ϕ(v) vn−α n − α + 1/2

π(y2 + (n − α + 1/2)2)
dy

Therefore, the quantity
∫

µ(dy)eiy
√

2λ may be interpreted as the Laplace transform of a positive
random variable A and µ is the law of βA, with (βt; t ≥ 0) a standard Brownian motion.

4 IDT and Lévy processes with the same marginals

First we note that the laws of finite dimensional marginals of an IDT process X are infinitely
divisible. In particular, for any fixed t, the law of Xt is infinitely divisible.

Proposition 4.1 :
Let (Xt; t ≥ 0) be a right-continuous IDT process. Denote by (X̃t; t ≥ 0) the unique Lévy process
such that

X1
(d)
= X̃1

Then (Xt; t ≥ 0) and (X̃t; t ≥ 0) have the same one-dimensional marginals,
i.e. for any fixed t ≥ 0,

Xt
(d)
= X̃t (3)

Proof :

Since, for any k ∈ N, Xk
(d)
= X

(1)
1 + ... + X

(k)
1 , it follows that Xk

(d)
= X̃k.

Identity (3) can then be obtained for any rational time since the n-th power of the characteristic
functions of Xk/n and of X̃k/n are equal and non-vanishing (because the laws of these variables
are infinitely divisible).
We conclude by using the right-continuity of paths of both X and X̃.

�

Remark 4.2 :
Proposition 4.1 just states that IDT processes ”mimick” Lévy processes in the sense of [Gyö86]
who exhibits other examples of various processes with the same 1-dimensional marginals. Further
studies in this direction can be found in [MY02] or [FWY00].
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We now illustrate Proposition 4.1 by computing the Lévy measure of X
(µ)
1 =

∫ ∞
0 dµ(u)Xu,

where X is a Lévy process (hence X(µ) is an IDT process; see (2.2)), or equivalently of the Lévy

process (X̃
(µ)
t , t ≥ 0) related to X(µ) by (3).

Proposition 4.3 :
Let X be a Lévy process and ν its Lévy measure. Let ν(µ) be the Lévy measure of the infinitely

divisible variable X
(µ)
1 =

∫ ∞
0

µ(du)Xu for a ”good” measure µ. Then for any non-negative Borel
function f , we have

∫

ν(µ)(dy)f(y) =

∫ ∞

0

dh

∫

ν(dx)f(µ([h,∞))x) (4)

Proof :
First, integration by part implies

∫ ∞

0

µ(du)Xu =

∫ ∞

0

µ([h,∞))dXh

so that

E

[

exp

(

−λ

∫ ∞

0

µ(du)Xu

)]

= exp

(

−
∫ ∞

0

dh

∫

ν(dx)
(

1 − e−λµ([h,∞))x
)

)

from which we immediately deduce (4).

�

Example 4.4 :
With µ(du) = du

u 1[0,1](u), the identity (4) becomes :

ν(µ)(dv) =

(∫

ν(dx)

x
e−v/x

)

.dv

In particular, for ν(dx) = dx√
2πx

1x>0, then ν(µ)(dv) = dv√
2v

1v>0.

5 A link with path-valued Lévy processes

It follows from the very definition of an IDT process that, viewed as a random variable taking values
in path-space (i.e. D = D([0,∞)), the space of right continuous paths over [0,∞)), this random
variable, which we shall denote by X̄ is infinitely divisible. The Lévy-Khintchine representation
theorem for such variables has been discussed in [PY82], [AG78] or [Lin86] Chapter 5, among
others.
First of all, we remark that there exist D-valued infinitely divisible variables which are not IDT.
For example, consider the random variable R associated with the path of a squared Bessel process
of dimension 1. Although the distribution of R is known to be infinitely divisible (See [SW73] or
[RY99] theorem 1.2 p440), it is not the law of an IDT process. Indeed, if it were so, the identity (1)
combined with the scaling property of Bessel processes would entail that a squared Bessel process
of dimension n is the square of a one-dimensional Brownian motion multiplied by n, which is
absurd.
Now, we try to understand some properties of IDT Lévy measures. To avoid some confusion, the
expression ”IDT Lévy measure” will indicate the Lévy measure of the IDT process considered as
an infinitely divisible D-valued variable (not the Lévy measure of the mimicked Lévy process as
in Proposition 4.1).

Lemma 5.1 :
Let X be a D-valued infinitely divisible variable. X is an IDT process if, and only if,
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• its Lévy measure M over D satisfies, for any non-negative functional F on D,
∫

D

M(dy)F (y(n·)) = n

∫

D

M(dy)F (y(·)) (5)

• its Gaussian measure ρ over D satisfies, for any t, u ∈ R,
∫

D

y(nu)y(nt)ρ(dy) = n

∫

D

y(u)y(t)ρ(dy) (6)

Proof :
The IDT property (1) admits the following equivalent formulation : for any f ∈ Cc(R+, R+),

E

[

exp−
∫ ∞

0

dtf(t)Xnt

]

=

(

E

[

exp−
∫ ∞

0

dtf(t)Xt

])n

That is
∫

D

M(dy)
(

1 − e−
∫

∞

0
dtf(t)y(nt)

)

= n

∫

D

M(dy)
(

1 − e−
∫

∞

0
dtf(t)y(t)

)

and
∫

D

∫ ∞

0

duf(u)y(nu)

∫ ∞

0

dtf(t)y(nt)ρ(dy) = n

∫

D

∫ ∞

0

duf(u)y(u)

∫ ∞

0

dtf(t)y(t)ρ(dy)

from which (5)-(6) follow in a straightforward manner.

�

This lemma provides us with some ”new” constructions of IDT processes :

Proposition 5.2 :
Let N be a Lévy measure on path space D. Define M as follows

∫

D

M(dy)F (y(·)) =

∫ ∞

0

du

∫

D

N(dy)F (y(
·
u

)) (7)

Then M is an IDT Lévy measure.

Proof :
From Lemma 5.1, all we need to show is that, for any n ∈ N,

n

∫

D

M(dy)F (y(·)) =

∫

D

M(dy)F (y(n·))

This follows from the obvious change of variable nv = u
∫ ∞

0

du

∫

D

N(dy)F (y(
n

u
·)) = n

∫ ∞

0

dv

∫

D

N(dy)F (y(
·
v
))

�

Example 5.3 :
In order to illustrate this Proposition 5.2, let us compute the IDT Lévy measure of some IDT
processes construted in paragraph (2.2). Let X be a subordinator without drift, ν its Lévy measure,
ϕ a regular function and define

X
(ϕ)
t =

∫ ∞

0

du ϕ(u)Xut

Then its IDT Lévy measure satisfies for any functional F over D
∫

D

M (ϕ)(dy)F (y(·)) =

∫ ∞

0

du

∫

ν(dx)F (xΦ(
u

· )) (8)

where Φ is the tail of the integral of ϕ : Φ(u) =
∫ ∞

u dvϕ(v).

To make a close link with Proposition 5.2, the measure N is now the image of ν by x 7→ xΦ
(

1
x

)

.
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6 Links with temporal self-decomposability

In [BNMS05], Barndorff-Nielsen, Maejima and Sato introduce the notion of temporally self de-
composable processes. These processes turn out to be deeply linked with IDT processes.
We first recall the definition of temporal self-decomposability as presented in [BNMS05] :

Definition 6.1 :

• A real-valued process (Xt; t ≥ 0) is temporally self decomposable of order 1 if for any

c ∈ (0, 1), there exists a process (U
(c)
t ; t ≥ 0), called the c-residual (of (Xt; t ≥ 0)), such

that X and (Xct + U
(c)
t ; t ≥ 0), with the obvious independence assumption, have the same

finite dimensional marginals, i.e. are identical in law.

• (Xt; t ≥ 0) is temporally self decomposable of order n > 1 if for any c ∈ (0, 1), the c-residual

(U
(c)
t ; t ≥ 0) is temporally self decomposable of order n − 1.

• (Xt; t ≥ 0) is temporally self decomposable of infinite order if (Xt; t ≥ 0) is temporally self
decomposable of order n for every n ∈ N∗.

Proposition 6.2 :
A right-continuous IDT process is temporally self decomposable of infinite order.

Proof :
Let (t1, ...., tn) ∈ Rn

+ and z = (z1, ..., zn) ∈ Rn.
Consider the characteristic function of the (t1, ...., tn)-marginal of a right-continuous IDT process
(Xt; t ≥ 0)

µ̂t1,....,tn
(z) := E



exp



i
n

∑

j=1

zjXtj









For any r ∈ Q, the IDT property implies

µ̂t1,....,tn
(z) = (µ̂rt1,....,rtn

(z))
1

r (9)

In particular, we deduce that, for c ∈ Q
⋂

(0, 1) :

µ̂t1,....,tn
(z) = µ̂ct1,....,ctn

(z) (µ̂ct1,....,ctn
(z))

1

c
−1

= µ̂ct1,....,ctn
(z)µ̂ c

c′
t1,...., c

c′
tn

(z) with
1

c′
=

1

c
− 1

where the last equality is obtained using (9).
With the continuity assumption on (Xt; t ≥ 0), we deduce that (Xt; t ≥ 0) is temporally self
decomposable and that, for any c ∈ (0, 1), the finite dimensional marginals of the associated
c-residual fit with the marginals of X suitably rescaled; hence the result.

�

7 Conclusion

In this short note, we have introduced and discussed the notion of IDT processes, and related this
notion with the temporally self decomposable processes (Section 6). We have shown that :

L ⊂ I ⊂ S∞

Where L is the family of Lévy processes, I the family of IDT processes assumed to be right-
continuous and S∞ the family of temporally self decomposable processes of infinite order.
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