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Abstract

We consider the problem of estimating an unknown function f in a homoscedastic Gaussian
white noise setting under L risk. The particularity of this model is that it has an intermediate
function, say v, which complicates the estimate significantly. While varying the assumptions on v,
we investigate the minimax rate of convergence over two balls of spaces which belong to family of
Besov classes. One is defined as usual and the other called 'weighted Besov balls’ used v explicitly.
Adopting the maxiset approach, we develop a natural hard thresholding procedure which attained
the minimax rate of convergence within a logarithmic factor over these weighted balls.

Keywords: Minimax, Muckenhoupt weights, Maxiset, Gaussian noise, warped wavelets, wavelet
thresholding.
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1 Introduction

Consider the Gaussian white noise model in which we observe processes Y; governed by
1
vn
where the operator H, : B([0,1]) — L2([0,1]) is defined by

dY, = H,(f)(t)dt + —dW,, neN*, te|0,1] (1)

_f®
Hy(f)(t) = o)
with
B([0,1]) = {f measurable on [0, 1], zl[tpl] |f(z)] < oo}
and

1
1L%(]0,1]) = {f measurable on [0, 1], ||f||2 = /0 |f(2)|?dx < oo}

The function v is supposed to be known and to satisfy the condition X belongs to L2([0, 1])’. The process
W; is a standard Brownian motion on [0,1]. The function f is the unknown function of interest. We
want to reconstruct f from the observations {fol h(t)dY:, heL2([0,1])}.

In the simplest case where v is constant, we observe the well known Gaussian white noise model
which has been considered in several papers starting from Ibragimov and Has’minskii (1977). Under
certain assumptions on the smoothness of f, the model (1) becomes an appropriate large sample limit
to more general non parametric models such as probability density estimation (see Nussbaum (1996)) or
nonparametric regression (see Brown and Low (1996)). Minimax properties in various risk over numerous
function spaces can be found in the book of Tsybakov (2004).

In the case where v is spatially inhomogeneous, the curve estimation is significantly more compli-
cated. For instance, consider the observation of data (Y1, X1), ..., (Y, X,,) where

Y = f(Xi) + o(Xi)e. (2)
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where the random variables X; are i.i.d, independent of ¢;, with density g. The ¢;’s are normal i.i.d with
mean zero and variance one. Brown and Low (1996) have shown that if o and ¢ satisfy some condition
of boundedness and f belongs to certain Sobolev classes then the model

dZ, = v(t)dY;, te[0,1] (3)

is asymptotically equivalent (in Le Cam’s sense) to (2) under the calibration v = <%=. An application of

2l

this result can be found in Efromovich and Pinsker (1996). For other equivalences concerning (3), see
Grama and Nussbaum (1998).

In this paper, we are focused on the model (1) for general v and we take the problem in the
framework of wavelet analysis. We wish to estimate f on [0, 1] by a measurable function on [0, 1] with
respect to the observations {fo t)dY;, h€1L?([0,1])} under the LP risk

/ Ft) — FPd), p>1.

We have denoted Ef the expectation with respect the distribution P of processes Y;. Our study can be
divided in two parts.

In a first part, we investigate the estimation of f over usual Besov balls Bs » »(L). We show that
the minimax properties obtain for the case where v is bounded from above and below can be extended
(without deteriorating the rate of convergence) to more general functions v. More precisely, we show
that if 7 > p > 1 and v belongs to ™ ([0, 1]) for 7’ = mazx(r,2) then the minimax rate of convergence

is of the form s

142s

n~“"? where a1 =

For other values on the parameters (s, m,r), we show that if v is bounded from above then the minimax
rate of convergence over By (L) is of the form

(

1,1
] S— = + =
n(n) )2P where ag = —L
n 2(s =) +1

In the case where ™ > p > 2, it is natural to address the following question: can we obtain the same
minimax rate over such spaces for any v which does not belong to IL™([0,1])? Using an explicit example,
we show that the answer is 'No’.

This result motivates us to devote a second part in which we investigate other function spaces
more adapted to our model. Our choice will be made on Besov balls constructed on a wavelet basis
warped by a factor depending on v. Such spaces were introduced in analysis by Qui (1982) and were
recently developed in statistics by Kerkyacharian and Picard (2005). These authors have established
good estimation results in a regression setting with random design (i.e (2) with o(.) = 1) for very
general densities g. The key of the success of our study rests on the following argument : under certain
conditions on the warping factor which refer to Muckenhoupt theory, the warped wavelet bases possess
some interesting geometrical properties in the IL.? norm which allow us to consider function spaces and
procedures deeply linked to the model.

Using these analytical tools, we show that if 7 > p > 1 and if v is subject to a property of
Muckenhoupt type then the minimax rate over weighted Besov balls BS, (L) defined starting from G,
the primitive of - 2z, is of the form

s
1+ 2s

for s large enough. The hypotheses made on v are more general than conditions of boundedness or other
conditions of integrability depending directly of the parameter .

Finally, we use this warped wavelet basis to construct a natural procedure which stay as close as
possible to the standard hard thresholding algorithm. In order to measure his performance under P risk,
we isolate the associated maziset. This statistical tool developed by Cohen, De Vore, Kerkyacharian and
Picard (2000) consists in investigating the maximal space (or maxiset) where a procedure has a given
rate of convergence. One of the main advantages of this approach is to provide a functional set which is
authentically connected to the procedure and the model. Thus, by choosing the rate

n-

where o =

S

(In(n))**n™* where «a; = T2
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and considering 7 > p > 1, we prove that our welghted Besov ball BS »r(L) is included in the maxiset
of our procedure. So, we conclude that it is 'near to the optimal’ i.e it attains the minimax rate of
convergence up to a logarithmic factor.

The paper is organized as follows.
Section 2 defines the basic tools (Muckenhoupt weights, warped wavelet basis ...), inequalities and
function spaces we shall need in the study. In Section 3 we investigate the minimax rate over usual
Besov balls. Section 4 do the same study but over the weighted Besov balls. Section 5 is devoted to the
performance of a natural hard thresholding procedure when the unknown function of interest belongs to
these weighted spaces. In Section 6, we describe another statistical model and we explain why we can
have results similar to those obtained for (1). Finally, Section 7 is devoted to the proofs of technical
lemmas.

2 Muckenhoupt condition, warped wavelet bases and function
spaces

Throughout this paper, for a weight m (i.e non negative locally integrable function) on [0, 1], we set

L2, ([0,1]) = {f measurable on [0,1] | || f||%,. / |f(t)[Pm(t)dt < oo}

where LP([0,1]) = LY ([0, 1]) denotes the usual Lebesgue space i.e
1
L7([0,1]) = {f measurable on [0,1] | |||} = / |f(t)[Pdt < oo}
0

2.1 Muckenhoupt weight
First recall the notion of Muckenhoupt weight.

Definition 2.1. Let 1 < p < oo and q such that % + 1—17 = 1. A weight m satisfies the Ap-condition
(or belongs to A,) iff there exists a constant C > 0 such that for any measurable function h and any
subinterval I of [0,1] we have

1 1 . %
(m/jlh(zﬂdx) SC(W/IIh(zH m(z)dz) ”

where |I| denotes the Lebesgue measure of I and m(I) = [, m(z)dx.

If m verifies the A, condition then it is a Muckenhoupt weight.
Example 2.1. The weight m(x) = z° satisfies the Ay,-condition withp > 1 iff -1 <o <p—1.
Let us introduce one of the most interesting property related to this notion.

Lemma 2.1. Let 1 < p < co. If w satisfies the A, condition then there exists a constant C' > 0 such
that for any subintervals S C B C [0,1] we have

1511,
w(B)(E) < Cw(S).

Proof of Lemma 2.1. Tt suffices to apply (4) with the function h = 1g and the interval I = B. O

The previous condition has been introduced by Muckenhoupt (1972) and widely used afterwards
in the context of Calderén-Zygmund theory. The A,-condition characterizes the boundedness of certain
integral operators on P, spaces like the Hardy-Littlewood maximal operator or the Hilbert transform.
For the complete theory, see the book of Stein (1993).
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2.2 Warped wavelet bases and Muckenhoupt weights

First we introduce the warped wavelet bases. Second we set some results which will be intensively used
in the sequel of this paper.

Let NV be an integer strictly positive. We denote by

{¢Tk( ( keAT7 Q/J]k( ())7 jZTa kEA]}a A]:{0332J_1}a
the warped wavelet basis adapted on the interval [0, 1] constructed starting from

e 1) the wavelet associated with a multiresolution analysis on the line V; = {¢;, k € Z} such that
Supp(¢) = Supp(y)) = [N +1,N] and [¢(t)t'dt = 0 for | = 0,..., N — 1. Let us recall that on
the unit interval there exists an integer 7 satisfying 27 > 2N such that one can built at each level
j > T a wavelet system (¢; x, 9 k) where

din(x) =256(Px —k), k=N,N,N+1,..,2 - N -1

and .
Vip(x) =252z — k), k=N,N,N+1,..,2) — N — 1.

For each functions, we add N functions on the neighborhood of 0 which have the support contained
n [0,(2N —1)277] and N functions on the neighborhood of 1 which have the support contained
n [1 — (2N —1)277,1]. For simplicity, we denote by "7 — 1" the integer such that ¢, 1 = ¢; .

e T a measurable function on [0, 1] which are an known, increasing, bijective, absolutely continuous
and satisfies
T(0)=0 and T(1)=

We associate to this function the weight
w() = ——— (5)

where T’ denotes the derivative of 7' and T~ its inverse function. Remark that for any measurable
positive function z defined on [0, 1], w satisfies

/0 (@) /0 (@@,

Note that the warped wavelet bases can be viewed as a generalization of the regular wavelet bases. See
Meyer (1990) and Daubechies (1992) for wavelet bases on the real line. See Cohen, Daubechies, Jawerth
and Vial (1992) for wavelet bases on the interval.

Let oo > p > 1. If w verifies the A, condition then, for any v > 7, any function f of LP([0, 1]) can

be decomposed on ¢7 as
f@) =Bl (@) +D Y Bhn(T(x),

i>vkeA;

where

Pf(fxz):Z o7 bix(T()), W/f )65 ()dt

J,k—/f )k (t)dt

Let us recall some properties linked to ¢7.

and

Property 2.1. Let v > 0. There exists a constant C > 0 such that

S lgin(T@)|” < 2%, xelo,1].

keA;

This inequality is always true if we exchanged ¢ by 1.
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Property 2.2. If w € A, then there ezist two constant ¢ > 0 and C > 0 such that for j > 7 we have

2% 3 |l Puf) < P (NI < 02F 7 ] Pull)

kEA; kEA;

[k k+1]

where we have set I;, = [57, %55~]. These inequalities are always true if we exchanged ¢ by 1.

2.3 Function spaces

Firstly, let us precise that weighted Besov balls BT (L) has three parameters: s measures the degree
of smoothness, 7w and r specify the type of norm used to measure the smoothness. Let us define these
spaces with precise details below.

For any measurable function f defined on [0,1], denote the associated N-th order modulus of

smoothness as

™

V5T = s (/} |Z( ) Tl(T(u)+kh))|“du>

Nh k=0

where Jyp, = {2 €[0,1]: T(xz)+ Nh €[0,1]}. Let N > s >0, o0 > m,r > 1. We say that a function f
of L™ ([0, 1]) belongs to the weighted Besov balls BT (L) iff

S,mT,T

' N
(/ (M) ldt) < L<oo
0 ts t

with the usual modification if » = co. These spaces can be viewed as a generalization of usual Besov balls.

If we are in the case where T = I; then we simply denote ¢7 = &, osz = ok, ﬂfk = Bj ks
PT(f) =P (f) and BT (L) = BS,W,T(L)‘

J 8,m,T

Starting from the previous definition, we can set a list of properties which link the weighted Besov
balls with the warped wavelet basis on the unit interval. See below three of these.

Property 2.3. If w € A, we have
feBl (L)= (Y @3 |8 wlx) ) < L. (6)

j>r—1 kEA;
form>1,r>1and N > s> 0.
Moreover, we have the reciprocity for s large enough.
Property 2.4. If w € A, we have
feBl (L) = (D @Y I8 wlx)*)) < L. (7)
j>7—1 k€A,
form>1,r>1and N > s > q(w) where
inf,~1{w satisfies the A, condition} if w is not a constant on [0, 1],
aw) = {0 if w is constant on [0, 1].
The following property is similar to Property 2.3 but expressed in term of P;(f).
Property 2.5. If w € A, we have
feBL (D)= Q@ IP/(f)— fl-))" <L (9)
Jj2T
These results are always true with the usual modification if r = oco. For further details on this

subsection, we refer the reader to the article of Kerkyacharian and Picard (2005).

In the sequel, the constants C, C’, C”, ¢, ¢/, ¢’ represent any constants we shall need, and can
different from one line to one other.
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3 Minimax study over Besov balls

Let us recall that we observe the model (1) under the two following assumptions on v and f:
e L belongs to ([0, 1]),
o [[flloc < o0

Let us set the following notations:

1

p—T s -5+

€= sT — TP
s

s 1
, = d = p_
2 0 MT1gas MY T oL

We shall exhibit the minimax rate of convergence over usual Besov balls for several values of €. The first
part of this section is devoted to the proofs of the two following theorems.

Theorem 3.1. Let co >p > 1 and co > 7 > p. Assume that v satisfies the following condition:
v e L™ ([0,1]) (10)
where ©' = max(m,2). Then for N > s >0 and co > r > 1 we have

inf  sup  Ep(|f - fl5) =0,
f f€Banr(L)

Theorem 3.2. Let co > p > 1. Assume that v satisfies the following condition:
[v]loe < 00. (11)
ThenforN>s>%, co>m>1,00>r>1 and e <0 we have

In(n)

n

inf sup  Ep(|If - fIIF) =< (— =)
f f€Bs,x,r(L)
For e =0, there exist C > 0 and ¢ > 0 satisfying

In(n)

[MiS]

-+

M)azp <inf sup Eg(|f— fIh) < C(

L )*2F (In(n))'
n f Fe€Bs (L)

<
Remark 3.1. For the two lower bounds, only the condition 1 € 1L2([0,1]) is determinant.

3.1 Proof of Theorem 3.1: upper bound and lower bound
3.1.1 Upper bound

Here, we use the standard method which consists in representing the unknown function f on a regular
wavelet basis and in studying the upper bound attained by the associated linear wavelet procedure.

Theorem 3.3. Let co > p > 1 and w > p. Assume that the condition (10) holds. Consider fl the linear
estimator defined by

fl(‘r): Z djmk(bjo,k(‘r) (12)

keAj,
where
1
Grjg b = / Gjo.k (t)v(t)dY.
0
Then for N > s> 0 and oo > r > 1 there exists a constant C' > 0 such that

sup  Ep(|f' = fIB) < Cn=?
f€Bs,x (L)

for jo the integer satisfying 270 ~ NI
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Proof of Theorem 3.3. Using Holder’s inequality, for m > p we have

Es(|IF' = fIB) < CE(F* = FIF)

Using Minkowski’s inequality and the elementary inequality

P
P

(13)

(lo+y)™ <27 (|27 + [y7), =,y €R,
the IL™ risk of f can be decomposed as follows:

Er(Iff = flIF) < CEL(IF = Py (DIF) + 1P () = f117)
= C(S1+SQ). (14)

Since f € Bsx (L) C Bs,x,00(L), Property 2.5 gives us
Sy < L27 705, (15)
Using the definition of f! and Property 2.2, one gets

Sio= Ep(l Y (Gjok — o k)jok(DIF)

kel

< PG N Bk — ajokl™))
keAj,

= (20 -bgr, (16)

Let us consider p; j, defined by

Pk = \//O vA()¢7 x (B)dlt. (17)

a]o k— Oy k = \/— / ¢jg k )th ~ Pjo,k€n

We have clearly

where ¢, is random variable such that
1
€Enp N(O, g)

To study ST, we only need the second point of the following lemma which will be proved in Appendix.
(The first point will be used later in the study.)

Lemma 3.1. Let n € N*. If V,, ~ N(0, %) then for k > 2+/27 there exists a constant C > 0 only
depending on p such that

ln(n)) < C?’Lig,

n =

o Py(|Val = 5
o Ef(|V,|") < Cn7 5.

Thus, one gets

si<on s Y g (18)
keAj,

First consider the case where 2 > 7 > 1. Hoélder’s inequality, Property 2.1 and condition (10) yield

Z P e < Z/ o2 L(t)dt) % ( Z )13

ke, kEA, k€A o k

C(2% / 2(t)dt)E 27001 %)
0
C'2%, (19)

IN

IN
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Second investigate the case where co > m > 2. Applying Hoélder’s inequality with the measure dv =
2 (t)dt, using Property 2.1 and condition (10), one gets

Jo,k
1
S e = [0 Y &

keAj, 0 keAy,
< 027w}
= ("2, (20)

Thus, considering (16), (19), (18) and (20) we obtain for 7 > 1,
Sp <2 0, (21)
Taking in account that 270 ~ nT77 | the inequalities (14), (15) and (21) imply that

C2*¥ n=F 4 g dosm)

C'nme,

Es(IIF' = £II7)

<
<

Considering (13), we deduce that for 7 > p > 1,

sup  Ep(|f' = fIB) < Cnme.
f€Bs,x,r(L)

This completes the proof of Theorem 3.3. O

3.1.2 Lower Bound

Now, introduce a key theorem which will be intensively used to exhibit the lower bounds over general
Besov balls.

First of all, remark that for any j and N of N*, there exists a constant 2N — 2 > C, > 2 such that

2 -C,
T 2N -1

e N* (22)

Tx

Theorem 3.4. Let j an integer depending on n, (wjr)rer,; o fized sequence and € a sequence such that
€ = (er)rer; € {—1,1}" where

Rj={2—I2N—-1)+N—-2; I =1,2,...,7.}. (23)

and 1, is defined by (22). Let us set the functions

g9e(r) =75 > wikertjn(T(x)) (24)

kER;

T

S,

where vy; is chosen in such a way that g. belongs to B
defined by

(L). For such ¢, if we consider €}, = (€})icr,

€; = eilfizry — €ilfizk},

then for any estimatorf we have

Uj = sup By (If - gellp)
géeB.z—:ﬂ',’l‘(L)
-
€ . _
> = > Wb inf Py (An(ger, 96) > e M) ekllh,
bR, 51‘6{_—1,"1‘1}
g i#k

where /\n(ggz,ge) denotes the likelihood ratio between the laws induced by g-x and g, defined by

d]P)ga;
dP

An(9er, ge) = (25)

9e
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Proof of Theorem 3.4. Since T is increasing with 7(0) = 0 and T'(1) = 1, for all k£ belonging to R; we
have the S7}’s defined by

—N+1 N
u)’T—l(lﬁ'_
% 2

ST = Supp(jx(T(.))) = [T7X( )]

which satisfy

STen STy =0 for k#k, kK €R;
and
Cy—1 1

27 )7T (1727)] C [Oﬂ]‘]

In the case where T" = I, we adopt the notation S} instead of SjTJC. Denote by G the set of all g
defined by (24). For any estimator f, let

Who= [ 15@) = vt @@)Pds

ST,
and

Wie= [ 17 + o000 @) P

gk

Using the fact that the ST are disjoint, for any positive sequence (0; x)ker,, we have
g k 35 i

1

Ui MZMW—%H@)
i 5 LB ([ 1Fe) e (T)Pds) 6)
keR € gk

By the definition of €} and the fact that for all k£ € R;
Card(G) = 2Card(e,e; € {—1,+1}, i # k,i,k € R;j),

we obtain

UJ 2 card Z Z ]Ega (W_]l,k + /\n(QEZﬂgé)Wﬁk)
keR €4 e{ 1 1}

1 .
Z 5 a-e{1P1f+1}5J’kEg€(1{Wl >o" }+e 1{A”(962’96)>57A}1{Wj2,k25f,k})
keR; " Ny
e »
e KER; Ele{mlfﬂ}6j”“Eg5(1“"“‘752*96>>€**}(1{Wﬁk26§’,k} + 1w, 2o ) (27)
iAk

Now, consider the sequence d;; defined by
9j.k = Vit Vinllwp-

Using Minkowski’s inequality and the change of variable y = T'(x), we see that

1 1
Wi + (W) > 2905950 (T ()l
— 2.
Therefore
Liwz, >ov 3 2 Lyw <7 3 (28)

Putting (26), (27) and (28) together, we deduce that

i2 —'7 Z w inf Pge(/\n(gef;age) > 6_)\)”1/’]‘,16”1;;,;7-

J:k —1,4+1
rer, 816{i¢k,+ }
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Theorem 3.4 can be viewed as a generalization of Lemma 10.2 which appeared in the book Hérdle,
Kerkyacharian, Picard and Tsybakov (1998).

Theorem 3.5. Let co > p > 1. There exists a constant ¢ > 0 such that for N > s> 0,00>7>1 and
oo > 1 >1 we have .

inf  sup  Eg([|f = flI}) = en™ ™.

' f€Bsxr(L)

Proof of Theorem 3.5. Let j an integer to be chosen below. Consider the functions g. defined by (24)
with

Wik = 1 and T = Id.
Since the wavelet coefficients of g-(denoted below by 37, ) are equal to ;) and Card(R;) = 1. < C27,
we have

PD(Y (G2 = DY 2
kER; kER;
< C,ijj(s-i-%)_
Using Property 2.4 with ¢(w) = 0 and taking j large enough, only the following constraint on +; is
necessary to guarantee that g. € Bs . (L):
v < C'9—i(s+3)

where C’ denotes a constant suitably chosen. Now, consider the following lemma which will be proved
in Appendix.

Lemma 3.2. If we chose v; = n~% then there ezist A > 0 and po > 0 not depending on n such that

inf P, (An(ger,ge) > e ™) > po2’.
Z 5i€{1P1,+1} g.( n(gak ge) > € ") = po
k‘ERj itk

It follows from Lemma 3.2 and Theorem 3.4 that:
-
? e p . Y
BSUP . Eq (I1f _QSHg) > B) 5 E sie{lillf,Jrl}Pge(/\n(gEz’ge) >e )ij,kllg
ge € s,ﬂ,r( ) kER]‘ itk

“A
e in 1
¥ [l (= o,

NG

Choosing j such that v; = n~% ~ 279(+3) (e 27 ~ nﬁ), one gets

Y

S

2)p
\/ﬁpo

-
. A €
inf ~sup  Ep(lf = fI7) = I
f F€Ba (L)

> d'nTP,
This ends the proof of Theorem 3.5. O

Combining Theorem 3.3 and Theorem 3.5, we obtain Theorem 3.1.
Remark 3.2. If v is a positive constant then we obtain the usual minimaz result.

Example 3.1. Let co > m > p > 1. Consider the model (1) with the operator H,, where
_z 2
vi(t) =t"2 for 71<0<F.

It is clear that the condition (10) holds. So we can apply Theorem 3.1.
Example 3.2. Let oo > 7 > p > 1. Consider the model (1) with the operator H,, where

1 1
va(t) = (1 —t)*t™" for 0<a<§ and 0<f < —.
7r

Remark that vy is not bounded from above and below and that the condition (10) holds. So we can apply
Theorem 3.1.

The following subsection proposes to investigate the minimax rate over Bs . (L) under L? loss for
other values of the parameters (s, 7, r) and other assumptions on v.
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3.2 Proof of Theorem 3.2: upper bounds and lower bound
3.2.1 Upper bounds

Let us consider the following threshold wavelet procedure:

f@(:c): Z &jy K Pjy (@ +Z Z ﬂjk (18, ‘>R\/_}1/}Jk( z) (29)

k€A, jEA kEA,
where we have set

ajkf/m 1Y, ﬂjkf/m (t)dY;,

A={j>7—-1; j1 <j<j2}forj; and j the integers verifying

271 A (n(ln(n))?l{ezo})lfm and 272 (n(ln(n))fl{eﬁ(’})@ (30)

where
a =maz(ay, az).

Following step by step the proof of Theorem 3 which appeared in Donoho, Johnstone, Kerkyacharian
and Picard (1996), one can show that the estimator (29) attains the upper bound describe in Theorem
3.2. This is an immediate consequence of the following lemma:

Lemma 3.3. Assume that the condition (11) holds. Then for any k there exist C > 0 and ' satisfying
° Ef(mj,k — Bjk*) < Cn7P

o Ps(|Bjn — Bkl > %/\/%) < (02"

The proof is rejected in Appendix.

3.2.2 Lower bound

Theorem 3.6. Let co > p > 1. There exists a constant ¢ > 0 such that for N > s > %, 0> € and
oo >1r > 1 we have

inf sup  Ep(|f - fIB) > o

f feBsr (L) n

Proof of Theorem 3.6. Consider the following family

{90 =05 gr = vj¥jk, k € R;}

where R; is defined by (23). In order to prove Theorem 3.6, let us introduce a theorem which can be
view as an adapted version of Lemma 10.1 of Hardle, Kerkyacharian, Picard and Tsybakov (1998).

Theorem 3.7. Assume the following conditions are fulfilled:
o Vk € Rj, vy, is chosen such that gi € Bs (L),

o There exists a constant py > 0 satisfying

S Py (Algor gi) = 2777) > po2 (31)
kER;

for a fized \* such that 1 > \* > 0.

Then for any estimator f we have

~ _ 27 p
sup By (|If — f15) 2 2772 G000 |5
fE€Bs x (L)
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Proof of Theorem 3.7. For sake of simplicity, let us denote by d the L metric, i.e. for any f and g which

belong to L?([0, 1])

/u gt

Vi (i1
;= ZHE Dy,

Put

From Chebychev’s inequality, we see that

577 sup Be(If - fIB) = 677 sup B (IIf — gkll?)
fE€Bs,x,r(L) k€ R;U{0}

> sup Py (If — gklly > 3))
keR]U{O}

> maX T* Z ]ng f gk) > 0 ) go( (fago) > 5]))

kER;

Since r, < 27 it suffices to prove that

max(2~7 Y By (d(F,g1) > 6), Py (d(F,90) = 5)) = 2.
kER;

Assume on the contrary that (34) is false. Then there exists an estimator, say f*, such that

max(277 Y7 Py, (d(f*, 98) = 85, By (A(F*, 90) 2 55)) < 2.
kER;

In particular, we have
Do
Py, (d(f*, g0) > 05) < 5

and since there exists ¢ > 0 such that r, > ¢2/ (for instance, ¢ = m), we have
Po
279 ) o (d(f7 k) < 6;) > e~

kER;

Putting (31) and (36) together, we obtain that for any k € R;

> Po ({d(f,95) < 63 N {A(go, ) = 2729}) > Y Py (d(f*, k) < )

kER; kER,

+ > Py (Mgo,gr) > 2727) — (2N) 12

kER;
> (c— %)Qj + o2’ — 27
Po
> =27,
2

We now use the d; defined in (32). First for all k € R,

d(gk, 90) = Vi llvj.kllp = 20;

and the triangular inequality implies that

keUR,v{d(f*’gk) < &;} C{d(f", 90) = 6;}-
Second for all k # k' € R; we have

Vi sllp + 1955 1l)

Yilltojkllp
— 2.

d(gk, 91,)

v
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Consequently the events {d(f*, gx) < 0;} are disjoint for k # k' € R;. It follows from (37) that

]P)go(d(f*’go) = 6]) 2 ]Pgo( U d(f*agk) < 5]))

ZPQO F*og1) < 65))

kER;
= D Eg(A90, 9) (s 00)<5,))
kER;
> 279 Y T By (a0 <6 A o.g)22-29})
kER;
= 27 37 By ({d(f90) < 0510 {Algo, i) 2 277))
kER;
PO o(1-2%);
—2 .
~ 2
Then we contradict (35). So, combining (33) and (34), we deduce that for any estimator f we have
p
sup  By(|If = £Ip) > 2772 D0 g (38)
f€Bsx,r(L
(]

Since the wavelet coefficients of gi, denoted below by B; k> are equal to v; with & fixed, we have

2j(s+%)(|ﬁ;k|w2—j)% = 7 9i(s+3 )(2 J)%
- ,7j2J(5+5—?_

So taking i(etd—1)
v; < C'27 ™

where C” denotes a constant suitably chosen, Property 2.4 with ¢(w) = 0 implies that the g; belong to

Bs . +(L). Now consider the following lemma:

Lemma 3.4. Let v; = co4/ ln(" . If there exists a constant ¢ > 0 such that for n large enough

In(27) > cln(n) (39)
then for a fited 1 > \* > 0 and a ¢y small enough there exists a constant py > 0 satisfying
> Py (Algo,gr) = 2747) > po2’. (40)
kER;
Thus, choosing
ln(n) . : n T
C=co\| —2, ie 20~ +1-1
i= o n ( ln(n)) ’
and remarking that for n large enough we have
. 1
In(2?) > ———(1 — In(1 1
M) 2 g () () + o)
1
> — 1
1
> 1
= N2
the condition (39) and a fortiori, the condition (31) are satisfied. So Theorem 3.7 implies that
: pod p
sup  B(|f—flp) > 272G ei il >
f€Bs,x (L)
1n(7’L) D n g1711
> 2 st
= n ) (\/ ln(n)) ’
In(n
— Qzp
o=
This ends the proof of Theorem 3.6. O
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Putting Subsection 'Upper bounds’ and Theorem 3.6 together, we establish Theorem 3.2.

3.3 When v does not belong to L™ ([0, 1])

The last part of this section is center around the following question:

Question 3.1. Let # > p > 2. Can we extend the minimax properties without deteriorating the rate of
convergence over B (L) for other v i.e functions which does not satisfy the assumption 'v belongs to
L™([0,1])" (see Theorem 3.1)?

The following theorem gives a beginning of answer by considering a function v which does not
belong to LP([0, 1]) and, a fortiori, to L7 ([0, 1]).

Theorem 3.8. Let co > p > 2 and co > m > p. Assume that we observe model (1) with the operator
H,, where

o 2
ve(t) =t"2 for p <o< 1l (41)

Then for N > s >0 and oo > r > 1 there exist two constant C > 0 and ¢ > 0 such that

en™% <inf  sup Es(|f - flp) < Cn=P
f f€Bsx (L)

where
;. S
- 2
and
_ a1 m >s5>0, mw>p,
a= srl_1
p
25—‘,—1—‘,—0—% N>s 2 ’n‘(a'p 2)7 2> p.

Proof of Theorem 3.8. First, introduce the following lemma which will be proved in Appendix.
Lemma 3.5. Let m > 2. Let us consider p; . defined by (17) with v = v, (see (41)) and n; 1 defined by

1 1 )
p = \//0 TR (42)

Then there exist two constant C > 0 and ¢ > 0 such that

02]Uﬂ<2n7k_2pk<02 (43)

kER; kEA;

3.3.1 Upper bound

Let us consider the linear estimator f! defined in (12) where v is defined by (41). Putting the inequalities
(18) and (43) together, one gets

sup  Ef(|f' = fIlp) < CEPEInTE Y pr 42700y
fEBer,T(L) kGAJO
< C/(Qjo(%—l-i-%")n—% + 2—jos7f)%
< C//n—o/p

1
for jo the integer satisfying 270 ~ p'+2s+o-%
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3.3.2 Lower bound

Consider the functions g, introduced in (24) with
Wik = 77;,% and T =1,

where 7; 1, is defined by (42). Since the wavelet coefficients of g., denoted below by B i, are equal to
n;,i'yjsk, the inequality (43) gives us

PEEDY B2 = TS e

kER; keR;

IN

C’Yij(S—F%—‘_%_% .

Using Property 2.4 with ¢(w) = 0 and taking j large enough, only the following constraint on +; is
necessary to guarantee that g. € Bs . (L):

;< O i E =

where C’ denotes a constant suitably chosen. Now, consider the following Lemma which will be proved
in Appendix.

Lemma 3.6. If we chose v; = n~% then there ezist A > 0 and po > 0 not depending on n such that

inf P, (An(ger,ge) > e ) >po, VkeR,.
el 9c (AnlGer, 96) > €77) > po j
itk

Putting Lemma 3.6 and Theorem 3.4 together, we obtain

-A
5 e
sup  E, (If —gellk) = —AF inf WP Py (An(ger, ge) > e N)|[Yjk]8
e Bl ) 2 S ST (a0 > el

e p 1 -
> S Il Y ik

kER;

I S )
Using the inequality (43) and the fact that n**'*°~% ~ 2/, one gets
inf sup  Ef(lf —fl}) = (o2 ETETR)
f f€Bs (L)

> InT%,
This ends the proof of Theorem 3.8. O

Remark 3.3. Let p > 2. Consider the function v, defined by (41). It clear that for N > s >0, 7 =p
and r > 1 we have R

inf sup  Ey(|[f - fI[}) <n"*"

f feBs (L)

where
s

=
1—}—25—}—0—]—9

*

So we have prove that if v does not belong to L™ ([0, 1]) for m > p then the mininax rate over usual
Besov balls under ILP risk can be slower than n~®P. In particular, Theorem 3.8 shows that this rate of
convergence can truly depend on the nature of v.

This arises a new question:

Question 3.2. Can we find function spaces over which the minimax rate under the ILP risk stay 'stable’ for
others functions v i.e which does not belong to L™ ([0,1]) 7

The answer is developed in the following section.
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4 Minimax study over weighted Besov balls

Now, we analyze the minimax properties in IL? loss over weighted Besov balls. This section is focused
on the proof of the following theorem:

Theorem 4.1. Let co > p > 1 and oo > m > p. Assume that we observe model (1). Suppose that the

function G defined by
t
1
G(t) = / d
) 0 v3(y) Y

is bijective with G(1) = 1. Assume also that

v (GTH() € A, (44)
Then for N > s > q(w) (see (8)) and oo > r > 1 we have

inf  sup  Egp(|[f - fl5) = n P,

[ feBg. (L)
4.1 Proof of Theorem 4.1: upper bound and lower bound
4.1.1 Upper bound

Here we proceed as in Theorem 3.3 by taking in account the fact that we work with the warped wavelet
basis £C.

Theorem 4.2. Let oo > p > 1 and oo > 7 > p. Assume that the condition (44) holds. Let us consider
ft the linear estimator defined by

fl(x): Z djo,k¢jo7k(G(x))

kGAjO

where

N ‘ 1
o = /0 01 (G(0) 7 Ve

Then for N > s> 0 and oo > r > 1 there exists a constant C' > 0 such that

sup  Ep(|f' = fIB) < Cn—?
feBE . (L)

S

for jo the integer depending on n such that 270 ~ niE

Proof of Theorem 4.2. Starting from the inequality (13), it suffices to consider the L™ risk of fl. Minkowski’s
inequality yields

CE;(IF = PEAIT) + 1P () = flI7)

C(Q1 + Q2). (45)

The condition (44) and the embedding A, C A, for m > p imply that Property 2.5 holds for ' = G and
w=v?(G71(.)) (see (5)). So

Es(lf' = f17)

<
<

Q2 < C2770°T, (46)

Using the definition of fl and Property 2.1, one gets

Q1 = Ep(l Y (ajor — 0§ 0)850k(GO)IT)
kEA]‘U
< CEY (] Eplajon — af yw(lir))
keA,

2’5 Q. (47)



A maxiset approach of Gaussian white noise models. (nondefinitive version) 17

Using the change of variable y = G~1(t), we obtain

1 [t 1
A G
Qjo,k — Xjo i = ﬁ/o ¢jo,k(G(t))@th

SO 1
~ N(0, -).

A G
Qi b — &
70 n

Jo,k
Applying the second point of Lemma 3.1 we obtain

Qi < Cn7F Y w(lew)
kEA]‘U

= COn"%. (48)

Combining (45), (46), (47), (48) and taking in account that 270 ~ nT5%  we deduce that

Ef(”fl - f”:) C(Q%n*% 4 2*j05ﬂ')

<
< (O'pmoar,

Using the inequality (13), it comes that

sup  E4(||f' — fIB) < Cn=P.
feBE L)

s,ﬂ,r(

This completes the proof of Theorem 4.2. O

4.1.2 Lower Bound

Theorem 4.3. Let co > p > 1. Assume that the condition (44) holds. Then there exists a constant
¢ > 0 such that for N > s > q(w), co > 7 > 1 and co > r > 1 we have

inf  sup  Egp(|[f — f[5) > en=P.
f reBg, (L)

Proof of Theorem 4.3. Let j an integer to be chosen below. Consider the functions g. defined by (24)
with
wjr=1and T=0G.

Since the warped wavelet coefficients of g., denoted below by ﬂf,:, are equal to 7y;ex, we have
DY IBF W) = 2T (Y wilie)*
kER; kER;

< ,7j2j(s+%)_

Using Property 2.4, the embedding A, C A, (which is true for 7 > p) and taking j large enough, only
the following constraint on ~; is necessary to guarantee that g. € BS, ,.(L):

v < C'9—i(s+3)
where C’ denotes a constant suitably chosen. Now, introduce the following lemma which will be proved
in Appendix.

Lemma 4.1. If we chose v; = n~2 then there ezist A > 0 and po not depending on n such that

inf P, (An(ges,gc) > e ) >po, VkeR;, neN.
Eie{lfl,_‘_l} g ( (gak ge) > € ") > po gy T
itk

Lemma 4.1 and Theorem 3.4 yield

A e
sup Eg (If —gell) = —7F inf Py, (An(ger, 9e) > e M)Iwjll?,
U I DO S esall
e 1
o (—_\P § P
> 9 pO(\/ﬁ) ||1/)J»k||w,p' (49)

kER;
(50)
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Since w = v*(G~1(.)) satisfies the A, condition, the change of variable y = G(x) gives us
sty = ([ Wss@lPuli)

1
> (S0 [ Wis@dsy

> ¥ @N =) w(Sp) [ (51)
Using Lemma 2.1, we obtain
Cy—1 1
S wlSin) = w51 o)
k‘ERj
Ci
> (1= 2Pw((0,1)
2N — 2
(1- )Pw([0,1])
= c (52)

Putting (49), (51) and (52) together and choosing n~% ~ 2-9(s+3) (i.e 2/ ~ nT72), we see that

) 2%
inf  sup  Ep([[f = flE) > c(—=)° (53)
f reBS, (L) ! P Vn
> nTvP, (54)

Finally, by combining Theorem 4.2 and Theorem 4.3 we prove Theorem 4.1.
Remark 4.1. If v is a positive constant then we obtain the usual minimaz result.

Remark 4.2. If v is bounded below, then the inequality (58) become an obvious consequence of the
inequality

Dokl = e Y il
kER; kER;
> 0'2%.

In this case, one can show that Theorem 4.1 is always true if we consider the warping function

0

v (@)

instead of G and if we assume that v™(G,!) € A,.

m

4.2 Other results and examples

The following lemma, proved in Kerkyacharian and Picard (2005), proposes another version of the
condition (44).

Lemma 4.2. Letp > 1 and q such that % + % = 1. Then v*(G™(.)) satisfies the A, condition iff there

exists a constant C > 0 such that

1 1
1] Jy v?(x)

1 1
<0 ), v ™

Q=

dzx)

for any subinterval I of [0,1].

In order to illustrate our statistical results, consider some examples.
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Example 4.1. Observe the model defined in (1) with the operator H,, where

o

- 1
vi(t) =cot72, o>--—1
p

and ¢y = (0 + 1)~ 2. It is clear that i belongs to 1L2([0,1]). Moreover

—o

G(z) = 2ot1 , Gil(:c) — 2o+ and w(z) = v%(Gil(;p)) = g+,

19

Then if o > 1 —1 we havep—1 > —531 > —1 so the function w satisfies the A, condition. Therefore,

all conditions are satisfied to apply Theorem 4.1.

Let p > 2, s > 1 and m = p. The following table summarizes the results of Example 3.2, Remark

3.3 and Example 4.1.

Model (1) where | Space A | o values inf s sup e 4 E(|f — £I3)
B (D] [ 120 2 T | = o = o

) =eot™8 | Bupr(L) | 2<0 < | =07, 0t = gty
ng,r(L) O<o =n"MP o = 1Jf25

For % < 0 < 1, remark that the minimax rate over usual Besov balls is strictly slower than the

minimax rate over weighted Besov balls.

Remark 4.3. The previous table show that if we chose G(t) = c; %t with % <o <1, then forp > 2,

r>1 and s > 1 the following inclusion

BS7P77‘ (L) g ng,r (L)

is impossible. Because if we assume the contrary then it should exist ¢ > 0 and C' > 0 such that

en™®P < inf  sup  Eg(|lf - fIB)
J 1eBapa(L)

< inf sup Ef(”f‘ f||§;)
f reBS, (L)

< Cn™ P,

This contradicts the fact that o* < ay and implies the non-embedding.

The following examples exhibit functions v which not satisfy v € L™ but satisfy the Muckenhoupt

condition.

Example 4.2. Observe the model defined in (1) with the operator H,, where

N

1
v3(t) = (gato‘fl cos(gto‘))f o <a<l.

It is easy to see that

{ hmti,o V3 (t)

— 0,
lim; 1 v3(t) = 0.

Moreover, we have

Q=

Tl in (2o ) = garcsinz
Gle) = [ iy =sin(Ga"). 67a) = Carcsina)

[\

and by definition
l—«

(arcsin(x)) =
V1—122

Since w is continuous on 10, 1[, we only need to study w at the points 0 and 1.
At the neighborhood of 0, we have

l—a

w(z) ~C'x™=
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and z* =" €A, for—1< =2 <p-1 i.ea>%.
At the neighborhood of 1 we have
1

v1—=x
and \/% € A,. Thus we conclude that w belongs to A, and that we can apply Theorem 4.1. Note that
there exists other functions of this type. See for instance

w(z) ~C"

va(t) = (gacos(gt)(sm(gt))afl)*%, Leac

which gives the weight
w(t) = vi(G7H(t) =

V1—aza .

Thus we have shown that weighted Besov balls give us stable minimax results for certain v which
does not belonging to L™ for 7 > p > 2. Starting from these results, we propose to investigate the
performance of an adaptive procedure constructed on ¢¢ over BSCfmT(L) in the case where m > p, r > 1
and N > s > q(w).

5 Hard thresholding procedure and warped wavelet bases

Among other things, we prove that the linear procedure defined by (45) are optimal over weighted
Besov balls. This procedure is not adaptive, i.e achieve substantially slower rate of convergence if the
smoothness of the function that we wish to estimate is misspecified.

In recent years, a variety of adaptive procedures have been proposed. Among them, let us quote
the wavelet thresholding methods introduced by Donoho and Johnstone which enjoy excellent statistical
results for numerous risks. See Donoho and Johnstone (1995) and Johnstone (1998).

The following section is focused on the performance of a hard thresholding procedure constructed
on £ over weighted Besov balls BY, (L).

Theorem 5.1. Let p > 1. Assume that the condition (44) holds. Let us consider the following hard
thresholding estimator:

=3 3 Bty L men an(@E) (55)
JEA* kEA;

where

1

Bik = / 031 (G(0) i Y

with A* = {j; 7 — 1 <j < j.} for j. the integer verifying

20+ <
~ In(n)

27t (56)

We have adopted the following notation:

1
ﬂA'rfl,k = &T,k = /0 (br,k(G(t))Tlt)d}/t

Then for k > 0 a large enough constant, N > s> 0,00 >r >1 and oo > 7 > p, we have

o Bl sl <0 ()

feBg, (L)

Proof of Theorem 5.1. Here we propose to exhibit the maxiset of the procedure f and to show that
B (L) is included into this maximal space. To isolate such a maxiset, five conditions must be checked.

e Two on them concern the geometrical properties of £,

e one concerns a weight inequality,
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e two of them concern the estimator 3 .

The proof rests on the article of Picard and Kerkyacharian (2000). For further details on the maxiset
theory see Cohen, Picard and Kerkyacharian (2000) and Autin (2004).

The geometrical properties of the basis are concentrated in the following lemma:
Lemma 5.1. The condition (44) implies that £¢

o satisfies Temlyakov’s property i.e there exist two positive constants ¢ and C such that for any finite
set of integer F C NU {7 — 1} x A, we have

¢ > s GOE < ICYS s GO < C D7 Ik(GE)IE,

j,keF j,keF j,kEF

e is unconditional for the LP norm i.e there exists an absolute constant C' such that if |u; k| < |v; ]
for all (4,k) e NU{r — 1} x A, then

1Y D wiatinGONE < CL D0 > wiadbiu(GO)IE.

J>T—1keA, J>T—1keA,

Proof of Lemma 5.1. The first point was shown by Garcia-Martell (1999) and the second point was
shown by Kerkyacharian and Picard (2003). O

Property 2.2 and the definition of j, (see (56)) yield

A S juacly < o 3o

keA* n
ln(n) 12:» ]»;P

A
Q

IA
Q

Thus, the weight condition holds.
Since In(n) > 1 for n > 3, Lemma 3.1 yields

o Ps(1Bn — ﬂJGk| > 5 W) < C(@)p,

o Er(|Bin — BS,%) < Oy,

We deduce that the statistical conditions are satisfied.
Combining all these results, we can apply the maxiset theorem which said that for any co > p > 1,
1 > © > 0 and « large enough, there exists a positive constant C' such that the following equivalence

holds |
MY f e M5,

E(IlF = fII?) < C(

n
where we have set
M(p,7,G) = E1 N Ey,
By={fi supu™™ 5> ) Lyjag, oy 45 GO)IE < oo}
w J>T—1keA,

and

By = {f; liu&?%pﬂ Z Z Babik(G())Ih < oo},

J>1 kEA,
The following lemma allows us to conclude:
Lemma 5.2. For N > s > % and ™ > p > 1, we have the following embedding

2s
2541

BS. (L) € M(p,

s,

,G)

One part of the proof is given in Appendix.
O

Finally, we have proved that hard thresholding procedure defined in (55) achieves the minimax rate
of convergence up to a logarithmic term over weighted Besov balls ng,r(L)-
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6 Warped Gaussian noise model

Consider the Gaussian white noise model in which we observe Gaussian processes Y,* governed by the
stochastic equation

dY; = Ky (f)(t)dt + %th, neN*, telo1], (57)

where Ky : B([0,1]) — B([0, 1]) denotes the warping operator defined by
Ku(f)(t) = fH' (1), te0,1],

G is a function measurable on [0,1] which are known, increasing, bijective and absolutely continuous
such that
H =h, H@O)=0 and H(1)=1.

W; is a standard Brownian motion on [0,1]. The function f is the unknown function of interest. The
basic assumptions are

e helLl(0,1]),
® sup,¢oq) | f(7)] < oo
Starting from the model (57), one can set two theorems very similar to Theorem 6.1 and Theorem 6.2.
Theorem 6.1. Let co > p > 1 and co > 7w > p. Assume that h satisfies the following condition:
1 s
e L™ (0,1) (58)
where 7, = max(%,1). Then for N > s >0 and oo > r > 1 we have

inf sup  Ep(|f - fl5) =0,
I f€Bsxr(L)

Theorem 6.2. Let co > p > 1. Assume that v satisfies the following condition:
I3l < (59)
— oo < 0.
h

ThenforN>s>%,ooZ7er,ooZr21ande<0wehave

In(n)

inf sup  Ef(|f - fIp) = ( )*2P
f feBs,ﬂ',T(L) n
For € =0, there exist C > 0 and ¢ > 0 satisfying
In(n . P In(n) ., p_=x
oMy <ing up By (1 - £17) < Oy )

n f feBs (L) n
Proofs of Theorem 6.1 and 6.2. For the upper bounds, it suffices to consider the estimators

y ! -1 1 * A — ! —1 1 *
¢j,k/0 ¢jk(H (t))mdn, 5j,k/0 ik (H (t))det,

to remark that .
Bik = Bk ~ N0, (0] 1)%)
with
' = </1w2 (t)——dt)*
Nk = ) ik h(t) ,

to use same procedures which appeared in Theorem 3.1, Theorem 3.2 and the same techniques of their
proofs. The lower bound is an immediate consequence of Theorem 3.4 and Property 2.1. O

Moreover, one can easily show the following theorems:
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Theorem 6.3. Let oo >p > 1 and oo > 7w > p. Assume that

1

m S Ap. (60)

Then for N > s > q(w) (see (8)) and oo > r > 1 we have

inf sup  Egp(|f - fl5) =0,
f reBE_ (L)

Theorem 6.4. Let p > 1. Assume that the condition (60) holds. Let us consider the following hard
thresholding procedure (55) with G = H and

. 1 1 1 N
Bua= [ s 0 e

Then for k > 0 a large enough constant, N > s> 0,00 >r >1 and oo > 7 > p, we have
~ In(n)\ “*P
s B - g < ¢ (22
feBH. (L) n

Remark 6.1. Note that the assumption (60) authorizes the fact that h is not bounded from above and
not bounded from above. For instance, consider

™ T 1
h(z) = Zax® ! cos (= 2%), - <a<l, x € [0,1].
(@)=" u . 0.1

7 Appendix: Proofs of technical Lemmas

Proof of Lemma 8.1. Tt is well known that if N ~ N (0, 02) then we have the following concentration
inequality:

x
P(|N| > <2 ——).
(N1 > 2) < 2exp(~ )
Thus, for k > 24/2p and n > 3, we have
Qn(l"(”)) 5

1 K
Py <|Vn| > g —n(n>> < 2exp(—= )=2n""F <2n7P.
n

Moreover, it is well known that if N ~ AN(0,0?) then for all & > 1 there exists C' > 0 such that
Ef(|Vn]®) < Cn=%. O

Proof of Lemma 3.2. Since || f|ls < oo and L belongs to L2([0,1]), one gets

1
n
E¢(exp (5 /0

Following Novikov’s condition and Girsanov’s theorem, the likelihood ratio defined by (25) can be written
as follows:

F2() menz gtz
20 1) < eGSR < oo

) — ge(1)) n /1 (92 () —gﬁ(t))dt).

_ s ® - 9) . n
Mol a) = expn [ LIy, - o

Under P,_, we see that

o Mg () = ge () — [ (9e() — 9e(1))
An(Qenge) —exp( 9 /0 UQ(t) —dt+\/_/0 ’U(t) th)

Since gex (t) — ge(t) = —27;€xt;k(t), by choosing v; = n 3 we obtain

B L2 (1) U k()
/\n(gsz,ge) = exp(2/0 UQ—(t)dtQGk/O Wth).
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Let
Ly ()

1
Y5k (t)

U'yk =-2 . dt and V'ﬁk = 726k/ :
’ o v3(t) ! 0

) dWy.

We have clearly

{An(ger,9e) > ey 2{Uj + Vi = =2} 2 {|Ujk + Vil < A}

Applying Chebychev’s inequality and remarking that E;(|W]) = \/g for W ~ N(0, 1), one obtains

—_

Py (An(gezsge) 2 €)= 1 =Py ( jk+ij|>/\)Z1*X(EgE(IUj,kI)HEgC(‘G,kI))
= (IU k| + ==/ 1Ujkl)-
Js \/— Js
Property 2.1 yields
1 , ,
2 2 . !
E \Uj x| = / ()E ¢jyk(t)dt§C||Z|\22ﬂfczﬂ (61)

kER; kER;

and

DRVALZT R \/Z Uil | Y 1<C. (62)

kER; kER; kER;

Thus, for A large enough we have

. c .
ST inf Py (Aa(gep.gd) > et > 2l — 2
veh, EiE{;i’+1} A
> 27,
This ends the proof of Lemma 3.2. O

proof of Lemma 3.3. Since ||v]|oo < 00, we have

ma % [ e < ol

Applying Lemma 3.1, the concentration inequality is obvious. Using the same lemma, one gets

3 K [J n(k)? j
Pr(1Bjk — Bikl > =1/=) < 2 - =
f(|ﬂjyk ﬂjyk| 92 n) — exp( 8”?}”20”)
< 27
for k" = /8||v||2 k. This ends the proof of Lemma 3.3. O

Proof of Lemma 3.4. Following Girsanov’s theorem, under Py, we have

An(g0sgk) = exp(—%/o %dth\/_/ 90—())th)

= exp( w?k(?dt— J\F/ % dW)

Setting

1 qp2 (t) , 11/}.7 t
’Uj2k(t) dt and Vj, = CO\/IH(TL)/O z)éct())th,

ik =
we have clearly

{Anlgo, gr) = 277} 2{U] , + V) = =N In(2)} 2 {|U] ; + V4l < A" In(2)}.



A maxiset approach of Gaussian white noise models. (nondefinitive version)

Applying Chebychev’s inequality, one obtains

1

Py, (An(g0,g8) = 279) = 1 =Py (|Uj 5+ V]4l = X In(2/)) > 1 - )\*T(Qj)( e (1T} k1)

+ By, (IV]

1
= 1*)\*T(2j)(| k|+\/—

Choosing v; = 4/ ln( ) and using the inequalities (61) and (62), we show that

> Pohulanan) 2277 2 3 (1= 5o B (Val) + —=Eau (/1074))

U &l)-

kER; keR;
y c'2 9
= C2 — MT(QJ)(CO ln(n) + Co ln(n))
. d27In(n) , 5
e S
Z c2 A\ 11’1(2-7) (CO + CO)

Using assumption (39), for ¢p small enough we see that

S Byulhnlgo ) 2 270) > el - COF
kER;
> po2’.
and this ends the proof of Lemma 3.4.
Proof of Lemma 8.5. Upper bound: We have the following splits:
271
ZP}T, Zp],k+ Z Pk + Z Py k-
kEA; k=27 —
For the first term, we have
N-1 2N -1

e < Nulzf([ T ea
k=0 0
27 (2/01%)

IN

T

= C2%.

Since t77 is decreasing and ), -, k=P < oo for B > 1, one can bound the second term as

29 _N—-1 —N—
Y. Mk < 2% Z ~N+1)"F
k=N k=N
< C27°%" .

Remark that the function z(¢) = t~°*! is concave on ]0, 1] for % <o <1 So

291 ) 1
S s < MR JRRaCCE
k=27 — =
< 025(1-(1— (2N —1)277)oth)3
< C'YF

Cauchy-Schwartz’s inequality gives us

/ V3 ()dt)™
0.(t) I
( /0 (00

T
< PIEM k-

25

)

(63)

(64)

(65)
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Hence, combining (63), (64), (65), (66) and (67) we obtain

SomEs > 02

keR; keA;

Lower bound: Since t~¢ is decreasing for % < o < 1, we have clearly

This ends the proof of Lemma 3.5.

Proof of Lemma 3.6. Following Girsanov’s theorem, under IP;,, we have

An(Ge; > ge) = exp (— 2/0 %dpm/_/ g‘%—

1

Since ge: (t) — ge(t) = _277‘;]1’7j6k1/1j7k(t), by choosing v; = n~2 we obtain

L2 (1) Lo k(t)
An(ger, ge) = o2 [ L lgr—o fl/ 2R qw,
(e = o= [ a2} [ Ly

P k(t)
o) (t) dw,

= exp(—2

Since

- 1/}jktd
27} / 0 Wy ~ N(0,4),

if we chose A = 2, we have clearly

_ 1
]P)ge(/\n(962796> >e€ )\) = 5

This ends the proof of Lemma 3.6.

Proof of Lemma 4.1. Following Girsanov’s theorem, under IP;, we obtain

(gex (1) — ge(1))?

' 9= (D) —
R e A0 s

Since gex (t) — ge(t) = —27;€ex; k(G(t)), by choosing 7v; = n~% it follows that

exp(— /w% dt72k/ %’“ th)

= exp(—2—2¢ / wj’ ))th)

An (gsz ; ge)

Since

—26k/ %’“ YirlG®) ~ N(0,4),

if we chose A = 2, we have clearly

_ 1
Pge(/\n(ges;age) > e )\) = 9

This finished the proof of Lemma 4.1.

26

(68)
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Proof of Lemma 5.2. For the following embedding

Bl n(L) CAS s swpurs 3 37 Lge, o llvia(GO)IT < oo}

J>T—1keEA;

see Kerkyacharian and Picard (2005).
Assume that f belongs to BS, (L) C BY,

Property 2.2, for any [ > 7 — 1 one gets

(L) for all s > 0. Using Minkowski’s inequality and

_ls s __
1Y Bk (GO=277 < Y1) B k(G()) <277
>l kEA; >l keh;
< CY 2R IBGw(l)) F 2
>l keA;
< LY 2mm i< oy 2t < o,
j=l i>1
So l
BE (L) C{f, sup 2775 |y " B k(G())|F < oo}
I>7—1 J>1 kA,
This completes the proof of Lemma 5.2. O
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