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Abstract

We study branching random walks in random i.i.d. environment in
Zd, d ≥ 1. For this model, the population size cannot decrease, and a
natural definition of recurrence is introduced. We prove a dichotomy
for recurrence/transience, depending only on the support of the en-
vironmental law. We give sufficient conditions for recurrence and for
transience. In the recurrent case, we study the asymptotics of the tail
of the distribution of the hitting times and prove a shape theorem for
the set of lattice sites which are visited up to a large time.
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1 Introduction and results

Branching random walks in random environment provide microscopic mod-
els for reaction-diffusion-convection phenomena in a space inhomogeneous
medium. On the other hand, many progresses have been achieved in the
last decade in the understanding of random walks in random environment on
Zd, see [28] for a recent review. It is natural to investigate such branching
walks, and to relate the results to the non-branching case. In this paper we
continue the line of research of [6, 18, 19]: each particle gives birth to at
least one descendant, according to branching and jump probabilities which
depend on the location, and are given by an independent identically dis-
tributed random field (environment). We stress here that the branching and
the transition mechanisms are not supposed to be independent, and more-
over, differently from [6, 18, 19], we do not suppose that the immediate
offsprings of a particle jump independently. For an appropriate notion of
recurrence and transience we prove that either the branching random walk
is recurrent for almost every environment or the branching random walk is
transient for almost every environment. In addition, we show that details of
the distribution of the environment does not matter, but only its support.
Though we could not give a complete (explicit) classification in the spirit of
[6, 18, 19], this is quite interesting in view of the difficulty of the correspond-
ing question for random walks in random environment. For non reversible
random walks (without branching) in random environment, only few explicit
results concerning recurrence/transience are known. In the paper [15] the
case of balanced environment (i.e., the local drift is always 0) was studied,
and it was proved that the process is recurrent for d ≤ 2 and transient for
d ≥ 3. For general random walks in random environment there are conditions
sufficient for the random walk to be ballistic (and, consequently, transient),
see [25, 26, 28]. These conditions, though, normally are not easily verifiable.
On the other hand, for the model of the present paper, we give explicit (and
easily verifiable) conditions for recurrence and transience, that, while failing
to produce a complete classification, nevertheless work well in many concrete
examples.

Also, we give a shape theorem for the set of visited sites in the recurrent
case. In terms of random walks in random environment, this case corre-
sponds to nestling walks as well as to non nestling ones with strong enough
branching, and the result is once again interesting in view of the law of
large numbers for random walks, which relies on some renewal structure and
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requires specific assumptions in the current literature.
Some interesting problems, closely related to shape theorems, arise when

studying properties of tails of the distributions of first hitting times. Here
we show that branching random walks in random environment exhibit very
different behaviors in dimensions d = 1 and d ≥ 2 from the point of view
of hitting time distribution: in the recurrent case, the annealed expectation
of hitting times is always finite in d ≥ 2, but it is not the case for the one-
dimensional model. Hitting times for random walks without branching in
random environment have motivated a number of papers. Tails of hitting
times distributions have a variety of different behaviors for random walks
in random environment in dimension d = 1, they have been extensively
studied both under the annealed law [7, 22] and the quenched law [11, 21].
Also, in higher dimensions there are results on hitting times of hyperplanes,
cf. [23, 24].

Many other interesting topics are left untouched in this paper. They
include shape theorems for the transient case, questions related to the (global
and local) size of the population, hydrodynamical equations, etc. Also, it
is a challenging problem to find the right order of decay for the tails of
hitting times in dimension d ≥ 2, in the recurrent case. Finally, since in our
model each particle has at least one descendant, we do not deal at all with
extinction, which seems to be a difficult issue in random environment.

An important ingredient in our paper is the notion of seeds, i.e., local
configurations of the environment. Some seeds can create an infinite number
of particles without help from outside, potentially enforcing recurrence. So,
as opposed to random walks without branching, the model of the present
paper is in some sense more sensible to the local changes in the environment.
Together with the fact that more particles means more averaging, this ex-
plains why the analysis is apparently easier for the random walks with the
presence of branching.

We briefly discuss different, but related, models. A multidimensional
(d ≥ 3) branching random walk for which the transition probabilities are
those of the simple random walk, and the particles can branch only in some
special sites (randomly placed, with a decreasing density) was considered
in [13], and several sufficient conditions for recurrence and transience were
obtained. Dimension d = 1 leads to more explicit results, thanks to the
order structure (see, e.g., [6]). In the case d = 1 with nearest neighbor jumps,
particles have to visit all intermediate locations, and this fact allows to obtain
some useful variational formulas [12, 3]. The case where particles move on
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the tree has a similar flavour [19]. The case of inhomogeneous jumps with
constant branching rate can be formulated as a tree-indexed random walk.
In this case, a complete classification of recurrence/transience is obtained
in [10], involving the branching rate and the spectral radius of the transition
operator. The occurrence of shape theorems in the branching random walk
literature goes back at least to [4].

We now describe the model. Fix a finite set A ⊂ Zd such that ±ei ∈ A

for all i = 1, . . . , d, where ei-s are the coordinate vectors of Zd. Define (with
Z+ = {0, 1, 2, . . .})

V =
{

v = (vx, x ∈ A) : vx ∈ Z+,
∑

x∈A

vx ≥ 1
}

,

and for v ∈ V put |v| =
∑

x∈A
vx; note that |v| ≥ 1 for all v ∈ V. Further-

more, define M to be the set of all probability measures ω on V:

M =
{

ω = (ω(v), v ∈ V) : ω(v) ≥ 0 for all v ∈ V,
∑

v∈V
ω(v) = 1

}

.

Finally, let Q be a probability measure on M. Now, for each x ∈ Zd we
choose a random element ωx ∈ M according to the measure Q, indepen-
dently. The collection ω = (ωx, x ∈ Zd) is called the environment. Given
the environment ω, the evolution of the process is described in the following
way: start with one particle at some fixed site of Zd. At each integer time the
particles branch independently using the following mechanism: for a particle
at site x ∈ Zd, a random element v = (vy, y ∈ A) is chosen with probability
ωx(v), and then the particle is substituted by vy particles in x + y for all
y ∈ A.

Note that this notion of branching random walk is more general than that
of [6, 18, 19], since here we do not suppose that the immediate descendants
of a particle jump independently (for example, we allow situations similar to
the following one [d=1]: when a particle in x generates three offsprings, then
with probability 1 two of them go to the right and the third one to the left).

We denote by P, E the probability and expectation with respect to ω (in
fact, P =

⊗

x∈Zd Qx, where Qx are copies of Q), and by P
x
ω, Ex

ω the (so-called
“quenched”) probability and expectation for the process starting from x in
the fixed environment ω. We use the notation Px[ · ] = E P

x
ω[ · ] for the

annealed law of the branching random walk in random environment, and
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Ex for the corresponding expectation. Also, sometimes we use the symbols
Pω, Eω,P,E without the corresponding superscripts when it can create no
confusion (e.g. when the starting point of the process is indicated elsewhere).

Throughout this paper, and without recalling it explicitly, we suppose
that the two conditions below are fulfilled:

Condition B.

Q{ω : there exists v ∈ V such that ω(v) > 0 and |v| ≥ 2} > 0.

Condition E.

Q
{

ω :
∑

v:ve≥1

ω(v) > 0 for any e ∈ {±e1, . . . ,±ed}
}

= 1.

Condition B ensures that the model cannot be reduced to random walk
without branching, and Condition E is a natural ellipticity condition which
ensures that the walk is really d-dimensional. In this paper, “elliptic” will
mean “strictly elliptic”. We will sometimes use the stronger uniform elliptic-
ity condition:

Condition UE. For some ε0 > 0,

Q
{

ω :
∑

v:ve≥1

ω(v) ≥ ε0 for any e ∈ {±e1, . . . ,±ed}
}

= 1.

Due to Condition B, the population size tends to infinity, and the branch-
ing random walk is always transient as a process on ZZ

d

+ . So, we intruduce
more appropriate notions of recurrence and transience.

Definition 1.1 For the particular realization of the random environment ω,
the branching random walk is called recurrent if

P
0
ω[the origin is visited infinitely often] = 1.

Otherwise, the branching random walk is called transient.

By the Markov property, the recurrence is equivalent to

P
0
ω[the origin is visited at least once] = 1.

In principle, the above definition could depend on the starting point of the
process and on the environment ω. However, a natural dichotomy takes
place:
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Proposition 1.1 We have either:

(i) For P-almost all ω, the branching random walk is recurrent, in which
case P

x
ω[the origin is visited infinitely often] = 1 for all x ∈ Zd, or:

(ii) For P-almost all ω, the branching random walk is transient, in which
case P

x
ω[the origin is visited infinitely often] < 1 for all x ∈ Zd.

The next proposition refines the item (ii) of Proposition 1.1:

Proposition 1.2 Let us assume that the branching random walk is transient.
Then for P-almost all ω we have P

x
ω[the origin is visited infinitely often] = 0

for all x ∈ Zd.

It is plain to construct (see e.g. the example after the proof of Theorem 4.3
in [6]) environments ω such that Px

ω[0 is visited infinitely often] is strictly be-
tween 0 and 1. The next example show that randomness of the environment
is essential for our statements (and also shows, incidentally, that there is no
hope to prove Proposition 1.2 by arguments of the type “recurrence should
not be sensitive to changes of the environment in finite regions”).

Example 1. Let d = 1, A = {−1, 1}, and consider two measures ω(1), ω(2):

(i) under ω(1), with probability 2/3 there is only one child which is located
one step to the left and with probability 1/3 there is only one child
which is located one step to the right;

(ii) under ω(2), with probability 1/3 there is only one child which is located
one step to the right and with probability 2/3 there are two children
one being located to the right and the other to the left.

If all sites x < 0 have the environment ω(1) (we say they are of type 1) and
all sites x ≥ 0 are of type 2, we have P

x
ω[0 is visited infinitely often] is 1 for

x ≥ 0 and is less than 1 for x < 0. Changing the site x = 0 from type 2 to type
1 turns the branching random walk from recurrent to transient. This example
also shows that, in general, the recurrence does depend on the environment
locally. Moreover, it shows that P0

ω[the origin is visited infinitely often] may
be different from 0 and 1. We will see below that, selecting randomly the
environment in an i.i.d. fashion, makes this branching random walk recurrent
(for this particular example it follows e.g. from Theorem 1.2). �
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ω(0)

ω(+)

ω(−)

v(1) v(2)

v(4)v(3)

v(5)

1/8

7/8

1 − a

a

3/8

1/4

1/8

1/4

Figure 1: The random environment in Example 2

Now, we begin stating the main results of this paper. In Section 1.1 we
formulate the results concerning transience and recurrence of the process,
in Section 1.2 we deal with questions related to (quenched and annealed)
distributions of hitting times and shape theorems.

1.1 Transience and recurrence

It is worth keeping in mind a particular example to illustrate our results.

Example 2. With d = 2 and A = {±e1,±e2}, consider the following v’s:
v(1) = δe1 , (with δ the Kronecker symbol), v(2) = δe2 , v(3) = δ−e1, v(4) = δ−e2 ,
v(5) = δe1 + 2δe2 + δ−e1 + δ−e2 , and the following ω(0), ω(+), ω(−) defined by
(0 < a < 1)

ω(0)(v(1)) =
3

8
, ω(0)(v(2)) =

1

4
, ω(0)(v(3)) =

1

8
, ω(0)(v(4)) =

1

4
,

ω(+)(v(1)) = a, ω(+)(v(5)) = 1 − a,

ω(−)(v(3)) =
1

8
, ω(−)(v(5)) =

7

8
,

see Figure 1. Note that Conditions B and UE are satisfied.
It seems clear that the branching random walk with Q = Q1 such that

Q1(ω
(0)) = α = 1 − Q1(ω

(−)) is recurrent at least for small α. In fact, it is
recurrent for all α ∈ (0, 1). It seems also clear that branching random walk
with Q = Q2 such that Q2(ω

(0)) = α = 1 − Q2(ω
(+)) may be recurrent or

transient depending on a. In fact, for a ≤ 1/2 the condition (3) is fulfilled and
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the branching random walk is recurrent, though Condition L in (6) is satisfied
for a ≥ 8/9 and the branching random walk is transient (to verify (6), use
s = e1 and λ = 1/3). But it is not so clear that the behavior does not depend
on α provided that 0 < α < 1. All these statements are direct applications
of the three theorems of this section. �

Our first result states that transience/recurrence of the process only de-
pends on the support of the measure Q, i.e., the smallest closed subset
F ⊂ M such that Q(F ) = 1. We recall that ω belongs to the support
iff Q(N ) > 0 for all neighborhood N of ω in M.

Theorem 1.1 Suppose that the branching random walk is recurrent (respec-
tively, transient) for almost all realizations of the random environment from
the distribution Q. Then for any measure Q′ with supp Q = supp Q′ the
process is recurrent (respectively, transient) for almost all realizations of the
random environment from the distribution Q′. (We recall that we assume
that Q′ satisfies Condition E.)

Unlike the corresponding results of [6, 18, 19], here we did not succeed
in writing down an explicit criterion for recurrence/transience. However,
sufficient condition for recurrence or transience can be obtained (they are
formulated in terms of the support of Q, as they should be). To this end, for
any v ∈ V and any vector r ∈ Rd, define (see Figure 2)

D(r, v) = max
x∈A:vx≥1

r · x, (1)

where a · b is the scalar product of a, b ∈ Rd. Let also ‖ · ‖ be the Euclidean
norm and Sd−1 = {a ∈ Rd : ‖a‖ = 1} be the unit sphere in Rd.

Theorem 1.2 If

sup
ω∈supp Q

∑

v∈V
ω(v)D(r, v) > 0 (2)

for all r ∈ Sd−1, then the branching random walk is recurrent. Moreover, if

sup
ω∈supp Q

∑

v∈V
ω(v)D(r, v) ≥ 0 (3)

for all r ∈ Sd−1 and Condition UE holds, then the branching random walk is
recurrent.
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0

Figure 2: The set
{

supω∈suppQ{
∑

v ω(v)D(r, v)}r; r ∈ Sd−1
}

for the branch-
ing random walk (the one defined by Q2, with a < 1/2) from Example 2 is
the solid line

Note that (3) cannot guarantee the recurrence without Condition UE. To
see this, consider the following

Example 3. Let d = 1, and Q puts positive weights on ω(n), n > 5, where
ω(n) is described in the following way. A particle is substituted by in mean

n
n−1

offsprings (for definiteness, let us say that it is substituted by 2 offsprings

with probability 1
n−1

and by 1 offspring with probability n−2
n−1

); each one of the
offsprings goes to the left with probability 1/n, to the right with probabil-
ity 4/n, and stays on its place with probability 1− 5

n
, independently. In this

case (3) holds, but we do not have Condition UE. Applying Theorem 1.3 be-
low (use λ = 1/2), one can see that this branching random walk is transient.
�

Remarks.
(i) Two rather trivial sufficient conditions for recurrence are: there is

ω ∈ supp Q such that
∑

v∈V
ω(v)|v| = +∞, (4)

or such that
∑

v∈V
ω(v)v0 > 1. (5)

The proof is given after the proof of Proposition 1.2.
(ii) A particular case of the model considered here is the usual con-

struction of the branching random walk, e.g. [6, 18, 19]: in each x, specify

the transition probabilities P̂
(x)
y , y ∈ A, and branching probabilities r̂

(x)
i ,
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i = 1, 2, 3, . . .. A particle in x is first substituted by i particles with prob-
ability r̂

(x)
i , then each of the offsprings jumps independently to x + y with

probability P̂
(x)
y . The pairs ((r̂

(x)
i )i≥1, (P̂

(x)
y )y∈A) are chosen according to some

i.i.d. field on Zd. In our notations, ωx is a mixture of multinomial distribu-
tions on A:

ωx(v) =
∑

i≥1

r̂
(x)
i Mult(i; P̂ (x)

y , x ∈ A).

Note that, in this case, D defined in (1) is trivially related to the local
drift of the walk by

∑

v∈V
ωx(v)D(r, v) ≥ r ·

∑

y∈A

yP̂ (x)
y .

The family of transition probabilities P̂
(x)
y , y ∈ A, defines a random walk in

i.i.d. random environment on Zd. The following definitions are essential in
the theory of such walks [28, 29], they are formulated here in the spirit of (1).

With Q̂ the common law of (P̂
(x)
y )y∈A), the random walk is

• nestling, if for all r ∈ Sd−1,

sup
ω∈supp Q̂

r ·
∑

y∈A

yP̂y > 0;

• non nestling, if there exists r ∈ Sd−1 such that

sup
ω∈supp Q̂

r ·
∑

y∈A

yP̂y < 0;

• marginally nestling, if

min
r∈Sd−1

sup
ω∈supp Q̂

r ·
∑

y∈A

yP̂y = 0.

Suppose now that the random walk in random environment is nestling (or,
either nestling or marginally nestling with Condition UE). Then, under Con-
dition B, Theorem 1.2 implies that the branching random walk is recurrent,
regardless of the amount of branching that is present in the model and even
though the effective drift of the random walk can be arbitrarily large. This
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extends the observation made in this case in dimension d = 1, Example 1
in Section 4 of [6], to arbitrary dimension and more general branching ran-
dom walks. The heuristic scenario to produce such effects remains the same:
due to the nestling assumption, the medium develops untypical configura-
tions which traps the particles at some distance from the origin; there, the
branching generates an exponential number of particles, which will balance
the small probability for returning to the origin. Indeed, the quenched large
deviations rate function vanishes at 0 in the nestling case, cf. [29, 27]. �

Now, we turn our attention to the conditions for transience. Define for
ω ∈ M, y ∈ A

µω
y =

∑

v∈V
vyω(v),

i.e., µω
y is the mean number of particles sent from x to x + y when the

environment at x is ω. Consider the following

Condition L. There exist s ∈ Sd−1, λ > 0 such that for all ω ∈ supp Q we
have

∑

y∈A

µω
y λy·s ≤ 1. (6)

We note that, by continuity, Condition L is satisfied if and only if (6) holds
for Q-a.e. ω.

Theorem 1.3 Condition L is sufficient for the transience of the branching
random walk in random environment. Moreover, for P-a.e. ω, with positive
P

x
ω-probability the branching random walk will not visit the half-space {y ∈

Zd : y · s0 ≤ 0} – provided that its starting point x is outside that half-space
–, where

s0 =

{

s, if λ < 1,
−s, if λ > 1.

(As we will see below, Condition L cannot be satisfied with λ = 1.) Further-
more, the number of visits of the branching random walk to the half-space is
a.s. finite.

In [6, 18, 19] it was shown that, if L0 = 1, conditions analogous to Condi-
tion L are sufficient and necessary for transience in cases when the branching
random walk in random environment lives on the one-dimensional lattice or
on a tree (in particular, by repeating the argument of [6], it is not difficult
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to prove that for the present model with L0 = 1 in dimension 1, Condition L
is necessary and sufficient for transience). On d-dimensional lattice (d ≥ 2)
or even in dimension 1 with L0 > 1 the question whether Condition L is
necessary for transience remains open.

1.2 Hitting times and asymptotic shape in the recur-

rent case

For the process starting from one particle at x, let us denote by ηx
n(y) the

number of particles in y at time n, and by Bx
n the set of all sites visited by the

process before time n. Also, denote by T (x, y) the moment of hitting y 6= x.
For the formal definition of those quantities, see Section 2.3, although here
we do not need to construct simultaneously all the branching random walks
from all the possible starting points x.

First, we are going to take a closer look at the hitting times T (0, x) for
recurrent branching random walks. It immediate to note that the recurrence
is equivalent to P[T (0, x) < ∞ for all x] = 1. So, for the recurrent case it is
natural to ask how fast the recurrence occurs, i.e., how fast (quenched and
annealed) tails of the distribution of T (0, x) decrease. For the (quenched)
asymptotics of Pω[T (0, 1) > n] in dimension 1, we have the following result:

Proposition 1.3 Suppose that d = 1 and the branching random walk in
random environment is recurrent. Then, for P-almost all environments there
exist n∗ = n∗(ω) and κ > 0 such that

Pω[T (0, 1) > n] ≤ e−nκ

(7)

for all n ≥ n∗.

This result follows from a more general fact that will be proved in the course
of the proof of Theorem 1.6, case d = 1 (see the remark just below the
formula (56)). Moreover, the following example shows that, for the class of
recurrent one-dimensional branching random walks in random environment,
the right order of decay of Pω[T (0, 1) > n] is indeed stretched exponential.

Example 4. We consider d = 1, A = {−1, 1}, and suppose that Q gives
weights 1/3 to the points ω(1), ω(2), ω(3), which are described as follows. Fix
a positive p < 1/82; there is no branching in ω(1), ω(2), and ω(1) (respectively,
ω(2)), sends the particle to the left (respectively, to the right) with probabil-
ity p and to the right (respectively, to the left) with probability 1 − p. In
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the sites with ω(3), the particle is substituted by 1 (respectively, 2) offsprings
with probability 2p (respectively, 1 − 2p); those then jump independently
to the right or to the left with equal probabilities. By Theorem 1.2, this
branching random walk is recurrent.

Abbreviate for a moment a = ln 1−p
p

; note that

P
[

ω−x = ω(1), ωx = ω(2) for x ∈ (0, a−1 ln n], ω0 = ω(1)
]

= n−2a−1 ln 3.

Clearly, p < 1/82 implies that 2a−1 ln 3 < 1/2. This means that a typical
environment ω will contain a translation of the trap considered above in the
box [−n1/2, 0], i.e., there is an interval [b − a−1 ln n, b + a−1 ln n] ⊂ [−n1/2, 0]
such that ωx = ω(1) for x ∈ [b − a−1 ln n, b] and ωx = ω(2) for x ∈ (b, b +
a−1 ln n]. For such an environment, first, the initial particle goes straight to
the trap (without creating any further particles on its way) with probability

at least pn1/2
, and then stays there with a probability bounded away from 0

(note that the depth of the trap is ln n, and this is enough to keep the particle
there until time n with a good probability). This shows that Pω[T (0, 1) >

n] ≥ Ce−n1/2 ln p−1
. �

One can construct other one-dimensional examples of this type; the im-
portant features are:

(i) there are ω-s from supp Q without branching and with drifts pointing
to both directions, so that traps are present;

(ii) all ω-s from supp Q have the following property: with a positive prob-
ability the particle does not branch, i.e., it is substituted by only one
offspring; this permits to a particle to cross a region without necessarily
creating new ones.

In dimensions d ≥ 2, finding the right order of decay of Pω[T (0, 1) > n]
is, in our opinion, a challenging problem. For now, we can only conjecture
that it should be exponential (observe that the direct attempt to generalize
the above example to d ≥ 2 fails, since creating a trap with a logarithmic
depth has higher cost). As a general fact, the annealed bound of Theorem 1.4
below is also a quenched one. This is the only rigorous result concerning the
quenched asymptotics of Pω[T (0, 1) > n] we can state in the case d ≥ 2; we
believe, however, that it is far from being precise.

Now, we turn our attention to the annealed distribution of hitting times.

13



Theorem 1.4 Let d ≥ 1. For any x0 ∈ Zd there exists θ = θ(x0, Q) such
that

P[T (0, x0) > n] ≤ exp{−θ lnd n} (8)

for all n sufficiently large.

Define G ⊂ M to be the set of ω-s without branching, i.e.,

G =
{

ω ∈ M :
∑

v∈V :|v|=1

ω(v) = 1
}

.

In other words, if at a given x the environment belongs to G, then the particles
in x only jump, without creating new particles. Also, for any ω ∈ G, define
the drift

∆ω =
∑

x∈A

xω(δx).

The following result shows that Theorem 1.4 gives in some sense the best
possible bounds for the tail of the hitting time distribution that are valid for
the class of recurrent branching random walk in random environment.

Theorem 1.5 Suppose that Q(G) > 0 and that the origin belongs to the
interior of the convex hull of {∆ω : ω ∈ G ∩ supp Q}. Then for any x0 ∈ Zd

there exists θ′ = θ′(x0, Q) such that

P[T (0, x0) > n] ≥ exp{−θ′ lnd n} (9)

for all n sufficiently large.

From Theorems 1.4 and 1.5 there is only a small distance to the following
remarkable fact: the implication

(

P[T (0, x) < ∞ for all x] = 1
)

=⇒
(

ET (0, x) < ∞ for all x
)

is true for d ≥ 2 but is false for d = 1. To see this, it is enough to know
that the constant θ′ in (9) can be less than 1 in dimension one. Consider the
following example:

Example 5. Once again, we suppose that A = {−1, 1} and supp Q consists
of three points ω(1), ω(2), ω(3), with Q(ω(1)) = α1, Q(ω(2)) = α2, Q(ω(3)) =
1 − α1 − α2. We keep the same ω(1), ω(2) from Example 4, and let ω(3)(δ1 +
δ−1) = 1. It is immediate to obtain from e.g. Theorem 1.2 that this branching
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random walk in random environment is recurrent. Abbreviate a = ln 1−p
p

and
let

H = {ωx = ω(1) for x ∈ [−2a−1 ln n,−a−1 ln n],

ωx = ω(2) for x ∈ (−a−1 ln n, 0]};

then P[H ] = (α1α2)
a−1 ln n. Now, on H there is a trap of depth ln n just

to the left of the origin, so for such environments the quenched expectation
of T (0, 1) over all paths which visit the site (−a−1 ln n) before the site 1 is
at least Cn, so we have

ET (0, 1) ≥
∫

H

EωT (0, 1)dP ≥ CnP[H ] = Cn1−a−1 ln(α1α2)−1 → ∞

when a−1 ln(α1α2)
−1 < 1 (or equivalently, p < (1 + (α1α2)

−1)−1). Here
we could use also the same branching random walk of Example 4 (with
p < 1/10); note however that in the present example we could allow sites
where particles always branch. �

Now, we pass to a subject closely related to hitting times, namely, we
will study the set of the sites visited by time n (together with some related
questions). Recall that

Bx
n = {y ∈ Zd : there exists m ≤ n such that ηx

m(y) ≥ 1}.

Also, we define B̄x
n as the set of sites that contain at least one particle at

time n, and B̃x
n as the set of sites that contain at least one particle at time n

and will always do in future:

B̄x
n = {y ∈ Zd : ηx

n(y) ≥ 1},
B̃x

n = {y ∈ Zd : ηx
m(y) ≥ 1 for all m ≥ n}.

Evidently, B̃x
n ⊂ B̄x

n ⊂ Bx
n for all x and n.

When dealing with the shape results for B̃x
n and B̄x

n, we will need the fol-
lowing “aperiodicity” condition, where we use the standard notation ‖x‖1 =
|x(1)| + · · ·+ |x(d)| for x = (x(1), . . . , x(d)) ∈ Zd:

Condition A. There exist x ∈ A, v ∈ V with ‖x‖1 even and vx ≥ 1 such
that Q{ω ∈ M : ω(v) > 0} > 0.
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For any set M ⊂ Zd we define the set F(M) by “filling the spaces” between
the points of M :

F(M) = {y + (−1/2, 1/2]d : y ∈ M} ⊂ Rd.

We only deal with the recurrent case here, leaving the more delicate,
transient case for further research.

Theorem 1.6 Suppose that the branching random walk in random environ-
ment is recurrent and Condition UE holds.

Then there exists a deterministic compact convex set B ⊂ Rd with 0
belonging to the interior of B, such that P-a.s. (i.e., for P-almost all ω and
Pω-a.s.), we have for any 0 < ε < 1

(1 − ε)B ⊂ F(B0
n)

n
⊂ (1 + ε)B

for all n large enough.
If, in addition, Condition A holds, then the same result – with the same

limiting shape B – holds for B̄0
n and B̃0

n.

It is straightforward to note that B is a subset of the convex hull of A;
also, since Bx

n
law
= B0

n+x, the same result holds for the process starting from x.
As opposed to the results of the previous section, the limiting shape B does
not only depend on the support of Q, see the example below:

Example 6. Let d = 1 and A = {−2,−1, 0, 1, 2}. Then, put v(1) = δ−1 +
δ0 + δ1, v(2) = δ−2 + δ−1 + δ0 + δ1 + δ2, ω1 = δv(1) , ω2 = δv(2) , and Q(ω1) = 1−
Q(ω2) = α. Then, it is quite elementary to obtain that B = [−(2−α), 2−α],
i.e., the asymptotic shape depends on Q itself, and not only on the support
of Q. �

Another interesting point about Theorem 1.6 is that the shape B is con-
vex, but one finds easily examples – as the one below – where it is not strictly
convex.

Example 7. With d = 2 and A = {±e1,±e2}, consider v(1) = δe1 + δe2 ,
v(2) = δe1 + δe2 + δ−e1 , v(3) = δe1 + δe2 + δ−e2 , and the following ω(1), ω(2)

defined by

ω(1)(v(1)) = ω(2)(v(1)) = ω(1)(v(2)) = ω(2)(v(3)) =
2

5
,

ω(1)(v(3)) = ω(2)(v(2)) =
1

5
,
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Figure 3: The random environment in Example 7

see Figure 3. Then, with Q(ω(1)) = 1 − Q(ω(2)) = α (with α ∈ (0, 1)), the
branching random walk is recurrent by Theorem 1.2. For arbitrary α ∈ (0, 1),
B0

n ∩ Z2
+ = {(x1, x2) : x1, x2 ∈ Z+, x1 + x2 ≤ n}, and so

B ∩ R2
+ =

{

(x1, x2) : x1, x2 ≥ 0, x1 + x2 ≤ 1
}

,

and B has a flat edge. �

2 Some definitions and preliminary facts

First, let us introduce some more basic notations: for x = (x(1), . . . , x(d)) ∈ Zd

write
‖x‖∞ = max

i=1,...,d
|x(i)|.

Define L0 to be the maximal jump length, i.e.,

L0 = max
x∈A

‖x‖∞,

and let Kn be the d-dimensional cube of size 2n + 1:

Kn = [−n, n]d = {x ∈ Zd : ‖x‖∞ ≤ n}.

For ω ∈ M and V ⊂ V, sometimes we will use notations like ω(v ∈ V )
or even ω(V ) for

∑

v∈V ω(v).
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2.1 Induced random walks

It is most natural to connect the branching random walk in random environ-
ment with random walks in random environment. Defining

Ṽ =
{

(v, κ) : v ∈ V, κ probability measure on {y : v(y) ≥ 1}
}

,

we consider some probability measure Q̃ on Ṽ with marginal Q on V. An
i.i.d. sequence ω̃ = ((ωx, κx), x ∈ Zd) with distribution Q̃ defines our branch-
ing random walk as above, coupled with a random walk in random (i.i.d.)
environment with transition probability

px(y) =
∑

v∈V
ωx(v)κx(y)

from x to x + y. In words, we pick randomly one of the children in the
branching random walk. We call this walk, the Q̃-induced random walk in
random environment. Here are some natural choices (in the examples below κ
does not depend on ω):

(i) uniform: κ is uniform on the locations {x ∈ A : vx ≥ 1};

(ii) particle-uniform: κ(y) is proportional to the number of particles sent
by v to y;

(iii) r-extremal, r ∈ Sd−1: κ is supported on the set of x’s maximizing r · x
with x ∈ A, vx ≥ 1.

The following proposition is a direct consequence of Theorem 1.2:

Proposition 2.1 If the branching random walk in random environment is
transient, then any induced random walk is either non nestling or marginally
nestling. Moreover, if Condition UE holds, then any induced random walk is
non nestling.

Note, however, that one can easily construct examples of recurrent branching
random walks such that any induced random walk is non nestling, i.e., the
converse for Proposition 2.1 does not hold. For completeness we give the
following

Example 8. Let d = 1 and Q = δω, where ω sends 1 particle to the left
with probability 1/3, and 5 particles to the right with probability 2/3. Then,
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clearly, any induced random walk is non nestling. To see that this branching
random walk is recurrent it is enough to obtain by a simple computation that
a mean number of grandchildren that a particle sends to the same site in 2
steps is strictly greater than 1. �

See also Example 2 of [6].

2.2 Seeds

In the next definition we introduce the notion of (A, H)-seed, which will be
frequently used throughout the paper.

Definition 2.1 Fix a finite set A ⊂ Zd containing 0, and Hx ⊂ M with
Q(Hx) > 0 for all x ∈ A. With H = (Hx, x ∈ A), the couple (A, H) is called
a seed. We say that ω has a (A, H)-seed at z ∈ Zd if

ωz+x ∈ Hx for all x ∈ A,

and that ω has a (A, H)-seed in the case z = 0. We call z the center of the
seed.

Lemma 2.1 With probability 1 the branching random walk visits infinitely
many distinct (A, H)-seeds (to visit the seed means to visit the site where the
seed is centered).

Proof. By the ellipticity Condition E, the uniform induced random walk is
elliptic, so for every environment it cannot stay forever in a finite subset.
Take n such that A ⊂ Kn, and partition the lattice Zd into translates of
Kn. Since the environment is i.i.d., we can construct the induced random
walk by choosing randomly the environment in a translate of Kn at the first
moment when the walk enters this set. If Q(Hx) > 0 for all x ∈ A, then by
Borel-Cantelli lemma, infinitely many of those translates contain the desired
seed, and by using Condition E, it is elementary to show that infinitely many
seed centers will be visited. �

For a particular realization of the random environment ω, we define the
branching random walk restricted on set M ⊂ Zd simply by discarding all
particles that step outside M , and write Pω|M , Eω|M for corresponding prob-
ability and expectation.
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Definition 2.2 Let U, W be two finite subsets of Zd with 0 ∈ W ⊂ U . Let
p be a probability distribution on Z+ with mean larger than 1, i.e., p =
(p0, p1, p2, . . .) with pi ≥ 0,

∑

pi = 1,
∑

ipi > 1. An (U, H)-seed is called
(p, W )-recurrent if for any ω such that ωx ∈ Hx, x ∈ U , we have

P
y
ω|U [W will be visited by at least i “free” particles] ≥

∞
∑

j=i

pj

for all i ≥ 1 and all y ∈ W . By “free” particles we mean that none is the
descendant of another one. To shorten the notations, in the case W = {0}
we simply say that the seed is p-recurrent.

Note that, by definition of the restricted branching random walk, the above
probability depends on the environment inside U only.

The next lemma shows the relevance of p-recurrent seeds.

Lemma 2.2 Suppose that there exists an (U, H)-seed that is (p, W )-recur-
rent. Then this implies the recurrence of the branching random walk for a.e.
environment ω.

Proof. We first prove this lemma when W = {0}. It is not difficult to
see that each p-recurrent seed gives rise to a super-critical Galton-Watson
branching process. More precisely, by assumption, for all ω in a set of positive
P-probability, the branching random walk starting at 0 generates i “free”
particles with P

0
ω-probability larger or equal to pi, and the particles will visit

0 before exiting U . Since they are “free”, they are themselves walkers starting
from the site 0, each one will generate independently new visits at 0 which
number is stochastically larger than p. Hence the number of such visits at 0
dominates a super-critical Galton-Watson branching process with offspring
distribution p, in the sense that when the Galton-Watson process survives
forever, then in the original process 0 is visited infinitely often. On the other
hand, by Lemma 2.1, an infinite number of such seeds will be visited. By
construction, the Galton-Watson processes mentioned above are independent
for nonoverlapping seeds, so almost surely at least one of them will generate
an infinite number of visits to the center of its seed, thus sending also an
infinite number of particles to 0, which proves the recurrence for all ω’s
under consideration.

The proof is easily extended to the case of a general W . �
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Proof of Proposition 1.1.
Assume that the event {P0

ω[the origin is visited infinitely often] = 1} has
positive P-probability. Then, by Condition B, this event intersected with
{there exists x ∈ Zd : ωx(v : |v| ≥ 2) > 0} has also positive P-probability.
Fix ω in the intersection, and also in the support of P. By Condition E, the
following happens with positive P

0
ω-probability: one particle (at least) of the

branching random walk reaches this branching site x, and is then substituted
by 2 particles (at least), each of them eventually hitting the origin. Since the
number of visits to 0 is infinite, we get by Borel-Cantelli lemma that

P
0
ω[the origin is visited by (at least) two free particles] = 1

(recall that by “free” particles, we mean that none is the descendant of the
other; we do not require that they visit 0 at the same moment). Then, we
can take t large enough so that

P
0
ω[the origin is visited by (at least) two free particles before time t] > 3/4.

Since the jumps are bounded, this probability is equal to

P
0
ω|KtL0

[the origin is visited by (at least) two free particles before time t],

which depends only on ωx, x ∈ U := KtL0 . By continuity, we can choose now
small neighborhoods Hx of ωx, x ∈ U , such that

P
0
ω′|KtL0

[the origin is visited by (at least) two free

particles before time t] > 3/4

for all ω′ with ω′
x ∈ Hx, x ∈ U . By the support condition it holds that

Q(Hx) > 0, and we see that the (U, H)-seed is p-recurrent, with p =
(1/4, 0, 3/4, 0, 0, . . .). From Lemma 2.2, we conclude that the branching ran-
dom walk is recurrent for Q-a.e. environment. Therefore the set of recurrent
ω has probability 0 or 1.

On the other hand, it is clear by ellipticity that

ω recurrent ⇐⇒ P
0
ω[x is visited infinitely often] = 1,

for all x ∈ Zd. Since the set of ω’s such that Px
ω[0 is visited infinitely often] =

1 is a shift of the previous one, it has the same probability. �
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Proof of Proposition 1.2. Assume that with positive P-probability,

P
x
ω[the origin is visited infinitely often] > 0

for some x ∈ Zd, and fix such an ω in the support of P. Then, by Condition E,
the inequality holds for all x ∈ Zd, and in view of Condition B, we can assume
without loss of generality that

ωx(v : |v| ≥ 2) > 0. (10)

By Condition E, x is visited infinitely often a.s. on the event E :={0 is
visited infinitely often a.s.}. Together with (10) this implies that x is visited
by infinitely many free particles a.s. on the event E. With β = P

x
ω[E] > 0,

fix some integers K, t such that Kβ/2 > 1 and

P
x
ω[at least K free particles visit x before time t] >

β

2
.

We note that this probability depends only on ω inside U := x + KtL0 ,
hence it is equal to the Px

ω|U -probability of the event under consideration. By
continuity, we can choose small neighborhoods Hy of ωy, y ∈ U , such that

Pω′|U [at least K free particles visit x before time t] >
β

2

for all ω
′ with ω′

y ∈ Hy, y ∈ U . We see that the (U, H)-seed is (p, {x})-
recurrent with pK = β/2 = 1 − p0, and has a positive P-probability since ω

is in the support of this measure. From Lemma 2.2, we conclude that the
branching random walk is recurrent, which completes the proof. �

We conclude this section by proving the sufficiency (for the recurrence)
of the conditions (4) and (5). In the latter case, we define U = W = {0}
and p by

∞
∑

j=i

pj = inf(ω′{v : v0 ≥ i}; ω′ ∈ N ), i ∈ Z+,

where N is a neighborhood of ω. As N ց {ω}, the mean of p increases by
continuity to

∑

v ω(v)|v| > 1 in view of (5). Choosing N small enough so
that the mean of p is larger than 1, the seed ({0},N ) is p-recurrent.

In the former case, we let U = A, W = {0}, and for x ∈ A \ {0},

Hx =
{

ω′ :
∑

v:ve≥1

ω′(v) ≥ ε for all e ∈ {±e1, . . . ,±ed}
}

,
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where we fix ε > 0 small enough so that Q(Hx) > 0. Fix a > ε−dL0−1, and
a distribution q on Z+ which is stochastically smaller than the distribution
of |v| under ω and has mean at least a. By continuity again, and in view of
(4), the set

H0 = {ω′ : distribution of |v| under ω′ is stochastically larger than q}

is a neighborhood of ω. Now, if ω has a (U, H)-seed in 0, a walker starting
at 0 has a number N of offsprings stochastically larger than q, each of which
being able to walk back to 0 simply by ellipticity. So, we see that given N the
number of free visits to 0 without exiting U dominates a binomial distribution
B(N, εdL0+1), and that, unconditionally, it dominates the mixture p of such
binomials for N ∼ q. Since p has mean larger than 1, the seed (U, H) is
p-recurrent, and it has positive P-probability. This ends the proof. �

2.3 Formal construction of the process and subaddi-
tivity

Recall that, for the process starting from one particle at x0, the variable
ηx0

n (x) is the number of particles in x at time n. Given ω, for all x ∈ Zd,
consider an i.i.d. family vx,i(n), i = 1, 2, 3, . . ., n = 0, 1, 2, . . ., of random
elements of V, with Pω[vx,i(n) = v] = ωx(v) (with a slight abuse of notations,
we will still write P

x
ω for the forthcoming construction for a fixed ω, and

Px[ · ] = E P
x
ω[ · ]). Now, the idea is to construct the collection of branching

random walks indexed by the position of the initial particle, using the same
realization of (vx,i(n), x ∈ Zd, i = 1, 2, 3, . . . , n = 0, 1, 2, . . .).

To this end, consider first the process beginning at the origin, and put
η0

0(0) = 1, η0
0(y) = 0 for y 6= 0. Inductively, define for y ∈ Zd and n ≥ 0:

η0
n+1(y) =

∑

x:y∈A+x

η0
n(x)
∑

i=1

vx,i
y−x(n). (11)

Define T (0, y) to be the first moment when a particle enters y, provided
that the process started from 0, i.e.,

T (0, y) = inf{n ≥ 0 : η0
n(y) ≥ 1},

and T (0, y) = +∞ if there exists no such n. Now, the goal is to define ηz
n for

z 6= 0. We distinguish two cases.
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If T (0, z) = +∞, we proceed as before, i.e., put ηz
0(z) = 1, ηz

0(y) = 0 for
y 6= z, and

ηz
n+1(y) =

∑

x:y∈A+x

ηz
n(x)
∑

i=1

vx,i
y−x(n). (12)

When m0 := T (0, z) < ∞, we put ηz
0(z) = 1, ηz

0(y) = 0 for y 6= z, and

ηz
n+1(y) =

∑

x:y∈A+x

ηz
n(x)
∑

i=1

vx,i
y−x(n + m0). (13)

Define also
T (z, y) = inf{n ≥ 0 : ηz

n(y) ≥ 1}.
Note that the set Bx

n can now be defined by Bx
n = {y : T (x, y) ≤ n}.

The following lemma will be very important in the course of the proof of
Theorem 1.6:

Lemma 2.3 For any y, z ∈ Zd and for all realizations of (vu,i(n), u ∈ Zd, i =
1, 2, 3, . . . , n = 0, 1, 2, . . .) it holds that

T (0, z) + T (z, y) ≥ T (0, y). (14)

Proof. The inequality (14) is obvious when T (0, z) = +∞, so we concentrate
on the case m0 := T (0, z) < ∞. In this case, by induction, it is immediate
to prove that ηz

n(x) ≤ η0
n+m0

(x) for all x ∈ Zd and all n ≥ 0, which, in turn,
shows (14). �

Remark. For the present model we failed to construct a coupling such that
T (x, y) + T (y, z) ≥ T (x, z) holds for all x, y, z ∈ Zd. In absence of such
a coupling we need to use a stronger version of the Subadditive Ergodic
Theorem, a variant of Theorem 5.1 below. An example of “branching-type”
model for which such a coupling does exist can be found in [1].

3 Proofs: Recurrence/transience

3.1 Proof of Theorem 1.1

We need some preparations. The following lemma complements Lemma 2.2.
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Lemma 3.1 Suppose that the branching random walk in random environ-
ment from Q is recurrent. Then there exist p, m ≥ 1, and a collection
H = (Hz ⊂ M, z ∈ KmL0) such that Q(Hz) > 0 for all z ∈ KmL0, and such
that the (KmL0 , H)-seed is p-recurrent.

In fact, the reader probably has noticed that a similar result was already
proved in the course of the proof of Proposition 1.1. However, for later
purposes, we will construct this seed in a more explicit way (see Definition 3.1
below).

Proof of Lemma 3.1. By Condition B, for some ε > 0 the set

H0 = {ω : ω(v : |v| ≥ 2) ≥ ε} ∩ supp Q

has positive Q-probability. By the recurrence assumption, the set of ω such
that ω0 ∈ H0 and such that

P
y
ω[at least one particle hits 0] = 1

for any y ∈ A has positive P-probability. We fix ω
′ in this set and also in

the support of P. Then, for any ρ < 1 it is possible to choose m in such a
way that

min
y∈A

P
y
ω′ [at least one particle hits 0 before time m] > ρ.

The probability in the above display depends only on the environment inside
the cube KmL0 . By continuity we can choose neighborhoods Hz ⊂ supp Q of
ω′

z, z ∈ KmL0 , with Q(Hz) > 0,

inf
ω

min
y∈A

P
y
ω[at least one particle hits 0 before time m] > ρ,

where the infimum is taken over all possible environments ω such that ωz ∈
Hz for all z ∈ KmL0 . Due to the boundedness of jumps, for any ω ∈ MZd

and any y ∈ A

P
y
ω[at least one particle hits 0 before time m]

≤ P
y
ω|KmL0

[at least one particle hits 0].

Hence, under P
0
ω, with probability ε two particles will be present at time 1

in A and otherwise at least one particle, each of them having independent
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evolution and probability at least ρ to come back to 0 before exiting KmL0 .
By an elementary computation, we see that

P
0
ω|KmL0

[0 will be visited by at least i free particles] ≥
2

∑

j=i

pj

with
p1 = (1 − ε)ρ + 2ερ(1 − ρ), p2 = ερ2, p3 = p4 = . . . = 0. (15)

It remains only to choose m large enough to assure that ρ becomes sufficiently
close to 1 to guarantee that the mean (1−ε)ρ+2ερ(1−ρ)+2ερ2 of p defined
above is strictly larger than 1. Then, the (KmL0 , H)-seed constructed in this
way is p-recurrent, and it has a positive P-probability. �

For later purposes, it is useful to emphasize the kind of seed we con-
structed above.

Definition 3.1 Let U, W be two finite subsets of Zd such that 0 ∈ W , A +
W ⊂ U , and let ε, ρ ∈ (0, 1). An (U, H)-seed is called (ε, ρ, W )-good, if

(i) for any ω ∈ Hz we have ω(v : |v| ≥ 2) > ε for all z ∈ W ;

(ii) for any ω such that ωx ∈ Hx, x ∈ U , we have

P
y
ω|U

[

at least one particle hits W
]

> ρ

for any y ∈ A + W ;

(iii) we have (1 − ε)ρ + 2ερ(1 − ρ) + 2ερ2 > 1.

In the case W = {0} we say that the seed is (ε, ρ)-good.

At the end of last proof, we just showed that such a seed is p-recurrent,
in the case W = {0}. It is a simple exercise to extend the proof to the case
of a general W . We state now this useful fact.

Lemma 3.2 Any (U, H)-seed which is (ε, ρ, W )-good is also (p, W )-recur-
rent with p defined by (15).

Now we finish the proof of Theorem 1.1. Observe that if a p-recurrent seed
has positive probability under Q, then it has positive probability under Q′ for
any Q′ such that supp Q = supp Q′. (One may invoke the stronger condition
of Q being equivalent to Q′, but due to the particular form of the seed
we consider here, the weaker condition of equal support is sufficient.) An
application of Lemmas 2.2 and 3.1 concludes the proof. �
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3.2 Proof of Theorem 1.2

1. We start with the first statement, assuming Condition E only. For any
s ∈ Sd−1 define

ϕQ(s) = sup
ω∈supp Q

∑

v∈V
ω(v)D(s, v),

with D defined in (1). Since ϕQ(s) is a continuous function of s and Sd−1 is
compact, (2) implies that

a0 := inf
s∈Sd−1

ϕQ(s) > 0.

Since supp Q is closed, for any s there exists ω(s) such that

ϕQ(s) =
∑

v∈V
ω(s)(v)D(s, v).

Moreover, by continuity for any s we can find δs > 0 and an open set Γs ⊂ M
with ω(s) ∈ Γs and Q(Γs) > 0 such that

inf
s′∈S

d−1:
‖s−s′‖<δs

inf
ω∈Γs

∑

v∈V
ω(v)D(s′, v) >

a0

2
, (16)

where ‖ · ‖ stands for the Euclidean norm.
Since Sd−1 is compact, we can choose s1, . . . , sm ∈ Sd−1 that generate a

finite subcovering of Sd−1 by the sets {s′ ∈ Sd−1 : ‖sn − s′‖ < δsn}, n =
1, . . . , m. For each n = 1, . . . , m, it is possible to choose a set Un ⊂ {s′ ∈
Sd−1 : ‖sn − s′‖ < δsn} in such a way that Ui ∩ Uj = ∅ for i 6= j and
⋃m

i=1 Ui = Sd−1.
To prove recurrence, we construct a (ε, ρ, W )-good (A, H)-seed with a

supercritical branching inside W and, in A \ W , the drift pointing towards
W (and so this seed is a trap).

(i) similarly to the proof of Theorem 1.1, we argue that there exist ε > 0
and H̃ ⊂ supp Q such that Q(H̃) > 0 and ω(v : |v| ≥ 2) ≥ ε for any
ω ∈ H̃;

(ii) take W = {y ∈ Zd : ‖y‖ ≤ L2
0/a0}, and put Hz = H̃ for all z ∈ W ;

(iii) choose ρ > 0 in such a way that the condition (iii) of Definition 3.1
holds;

27



0

: branching

Figure 4: Construction of an (ε, ρ)-good seed for the branching random walk
(defined by Q2, with a < 1/2) of Example 2

(iv) choose large enough r2 in order to guarantee that ρ ≤ r2−r1−L0

√
d

r2−r1+L0

√
d
, where

r1 := L2
0/a0;

(v) to complete the definition of the seed, take A = {y ∈ Zd : ‖y‖ ≤ r2}; it
remains to define the environment in A\W . It is done in the following
way: if z ∈ A \ W , let n0 be such that (−z/‖z‖) ∈ Un0 ; then put
Hz = Γsn0

, see Figure 4.

To prove that the seed constructed above is indeed (ε, ρ, W )-good, we
construct a random walk ξn that is similar to the example (iii) of r-extremal
induced random walks. Specifically, suppose that at some moment the ran-
dom walk ξn is in site z 6= 0 (this does not complicate anything, since we really
need the random walk to be defined only inside A\W and 0 /∈ A\W ). Gener-
ate the offsprings of that particle from z according to the rules of the branch-
ing random walk; suppose that those offsprings went to z + w1, . . . , z + wk.

28



Let k0 be the number which maximizes the quantity (−z/‖z‖) ·wk; then take
ξn+1 = z + wk0. Clearly, for the random walk constructed in this way,

Eω

(

(ξn+1 − ξn) · (−z/‖z‖) | ξn = z
)

=
∑

v∈V
ωz(v)D(−z/‖z‖, v). (17)

Now, we have to bound from below the probability that the random
walk ξn starting somewhere from W +A hits W before stepping out from A.
We use ideas which are classical in Lyapunov functions approach [9]. To do
that, we first recall the following elementary inequality: for any x ≥ −1,

√
1 + x ≤ 1 +

x

2
. (18)

Let px,y be the transition probabilities of the random walk ξn. Using (18),
(17), and (16), we obtain

Eω(‖ξn+1‖ − ‖ξn‖ | ξn = z) =
∑

y∈A

pz,z+y(‖z + y‖ − ‖z‖)

= ‖z‖
∑

y∈A

pz,z+y

(

√

1 +
2z · y
‖z‖2

+
‖y‖2

‖z‖2
− 1

)

≤
∑

y∈A

pz,z+y
z

‖z‖ · y +
L2

0

2‖z‖ (19)

≤ −a0

2
+

L2
0

2‖z‖ ≤ 0 (20)

for all z ∈ A \ W . Let τ be the first moment when ξn leaves the set A \ W ;
the calculation (20) shows that the process ‖ξn∧τ‖ is a (bounded) super-
martingale. Denoting by p̃ the probability that ξn hits W before stepping
out from A and starting the walk inside W +A, we obtain from the Optional
Stopping Theorem that

r1 + L0

√
d ≥ Eωξo ≥ Eωξτ ≥ p̃(r1 − L0

√
d) + (1 − p̃)r2.

So,

p̃ ≥ r2 − r1 − L0

√
d

r2 − r1 + L0

√
d
≥ ρ,

which shows that the (A, H)-seed constructed above is (ε, ρ, W )-good. With
an application of Lemma 3.2 and of Lemma 2.2 we conclude the proof of the
first part of Theorem 1.2.
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2. Now, we prove that (3) together with Condition UE imply recurrence.
The basic idea is the same: we would like to construct a (A, H)-seed that is
(ε, ρ, W )-good, where W = {y ∈ Zd : ‖y‖ ≤ r1}, A = {y ∈ Zd : ‖y‖ ≤ r2},
for some r1, r2 (to be chosen later). As above, we choose ε > 0 in such a way
that there exists H̃ ⊂ supp Q such that Q(H̃) > 0 and ω(v : |v| ≥ 2) ≥ ε
for any ω ∈ H̃ . Then, choose ρ > 0 in such a way that the condition (iii)
of Definition 3.1 holds. To define the seed inside W , put Hz = H̃ for all
z ∈ W . Now, it remains to specify r1, r2 and to define the seed in A \ W .
To do that, we need some preparations. For any possible environment inside
A \ W (i.e., for any ω such that ωz ∈ supp Q for all z ∈ A \ W ) we keep the
same definition of the random walk ξn; by Condition UE, there exists γ > 0
such that for all x 6= 0

Eω

(

(‖ξn+1‖ − ‖ξn‖)21{‖ξn+1‖≤‖ξn‖} | ξn = x
)

≥ γ. (21)

With that γ, we successively choose α > 0 such that

γ(α + 1) > L2
0, (22)

then r2 > r1 > L0 with

(r1 + L0)
−α − r−α

2

(r1 − L0)−α − r−α
2

> ρ, (23)

and finally, ε′ > 0 such that

ε′ <
γ(α + 1) − L2

0

2r2
. (24)

Now we define the seed on the set A\W in the following way. When (3) holds,
analogously to the first part of the proof of this theorem, for any s ∈ Sd−1

we can find δ′s > 0 and an open set Γ′
s ⊂ M with ω(s) ∈ Γ′

s and Q(Γ′
s) > 0

such that
inf

s′∈S
d−1:

‖s−s′‖<δ′s

inf
ω∈Γ′

s

∑

v∈V
ω(v)D(s′, v) > −ε′. (25)

Similarly to what has been done before, we choose s′1, . . . , s
′
m ∈ Sd−1 that

generate a finite subcovering of Sd−1 by the sets {s ∈ Sd−1 : ‖s′n − s‖ < δs′n},
n = 1, . . . , m. For each n = 1, . . . , m, we choose a set U ′

n ⊂ {s ∈ Sd−1 :
‖s′n − s‖ < δs′n} in such a way that U ′

i ∩U ′
j = ∅ for i 6= j and

⋃m
i=1 U ′

i = Sd−1.
Now, if z ∈ A \W , let n1 be such that (−z/‖z‖) ∈ U ′

n1
; then put Hz = Γs′n1

.
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To prove that the (A, H)-seed is indeed (ε, ρ, W )-good, we have to ver-
ify the condition (ii) of Definition 3.1. First, it elementary to see that the
following inequality holds: for any x ≥ −1, α > 0

(1 + x)−α ≥ 1 − αx +
α(α + 1)

2
x21{x≤0}. (26)

Keeping the notation τ from the proof of the first part of the theorem, we
are aiming to prove that ‖ξn∧τ‖−α is a submartingale. Indeed, using (26),
(19), (21) and (24), we obtain for z ∈ A \ W

Eω(‖ξn+1‖−α − ‖ξn‖−α | ξn = z)

= ‖z‖−α
Eω

((

1 +
‖ξn+1‖ − ‖ξn‖

‖ξn‖
)−α

− 1
∣

∣

∣
ξn = z

)

≥ −α‖z‖−α−1
Eω(‖ξn+1‖ − ‖ξn‖ | ξn = z)

+
α(α + 1)

2
‖z‖−α−2

Eω((‖ξn+1‖ − ‖ξn‖)21{‖ξn+1‖≤‖ξn‖} | ξn = z)

≥ α‖z‖−α−1
(

− ε′ − L2
0

2‖z‖ +
(α + 1)γ

2‖z‖
)

> 0.

Then, by using the Optional Stopping Theorem again, we obtain that the
probability that ξn hits W before stepping out from A and supposing that
its starting point belongs to W + A is at least

(r1 + L0)
−α − r−α

2

(r1 − L0)−α − r−α
2

,

so, recalling (23), we see that the condition (ii) of Definition 3.1 holds. We
finish the proof of the second part of Theorem 1.2 by applying Lemma 3.2.
�

3.3 Proof of Theorem 1.3

Due to Condition B, there exists ω ∈ supp Q such that
∑

y∈A
µω

y > 1. Hence,
Condition L cannot be satisfied with λ = 1. Moreover, if Condition L holds
for λ and s, it holds also for λ−1 and (−s). So, we can suppose that λ ∈ (0, 1)
without loss of generality.
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Denote the half-space Ys = {y ∈ Zd : y · s ≤ 0}. Take an arbitrary
starting point z /∈ Ys and define

F z
n =

∑

y∈Zd

ηz
n(y)λy·s.

1. Let us also modify the environment in such a way that any particle which
enters Ys neither moves nor branches anymore. By (6) it is straightforward
to obtain that the process (F z

n , n = 0, 1, 2, . . .) is a supermartingale:

E
z
ω

(

F z
n+1|ηz

1(·), . . . , ηz
n(·)

)

=
∑

x∈Ys

ηz
n(x)λx·s +

∑

x/∈Ys

ηz
n(x)λx·s ×

∑

y∈A

µωx
y λy·s

≤ F z
n .

Since it is also nonnegative, it converges a.s. as n → ∞ to some random
variable F∞. By Fatou’s lemma,

E
z
ωF∞ ≤ E

z
ωF0 = λz·s < 1,

for z /∈ Ys. On the other hand, any particle stuck in Ys contributes at least one
unit to F . That shows that with positive probability the branching random
walk will not enter to Ys, so the proof of the first part of Theorem 1.3 is
finished.

2. We no longer make Ys absorbing. Note that F z
n is still a supermartingale,

and has an a.s. limit (for all ω). Let k ≥ 1. First of all, let us show how
to prove the result when Condition UE holds. Under Condition UE, each
time a particle enters the half-space Ys it has Pω-probability larger than εdk

0

to enter Y
(k)
s = {y ∈ Zd : y · s ≤ −k}. By the strong Markov property, an

infinite number of particles will hit Y
(k)
s a.s. on the set where the number of

visit of the branching random walk to Ys is infinite. We will then have, on
this set, lim supn F z

n ≥ λ−k for all k (recall that λ < 1). Since F z
n has a finite

limit, this shows that the number of visits to Ys is finite.
Now, we explain what to do when only Condition E holds. By the previous

argument, it would be enough to prove that, on the event that Ys is visited
infinitely often, for any k, the set Y

(k)
s is visited infinitely many times P

z
ω-

a.s. Define H
(k)
s = Ys \ Y

(k)
s . Suppose, without restriction of generality, that

‖s‖1 = 1. For any z ∈ H
(k)
s define

g(k)
z (ω) = P

z
ω[at time k there is at least one particle in Y

(k)
s ].

It is elementary to obtain that
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(i) g
(k)
u (ω) and g

(k)
v (ω) are independent if ‖u − v‖∞ > 2kL0, and

(ii) there exists hk > 0 such that P[g
(k)
z (ω) > hk] ≥ 1/2, uniformly in

z ∈ H
(k)
s .

Now, suppose that Ys was visited an infinite number of times, and suppose
also that the number of visits to H

(k)
s is also infinite (because otherwise,

automatically, Y
(k)
s is visited infinitely many times). Let z1, z2, z3, . . . be

the locations of those visits. Using (i) and (ii), we can extract an infinite

subsequence i1 < i2 < i3 < . . . such that g
(k)
zij

(ω) > hk, for all j. Similarly

to the previous argument, we obtain that in this case Y
(k)
s will be visited

infinitely often, which leads to a contradiction with the existence of a finite
limit for F z

n . �

4 Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Roughly, the idea is as follows: by recurrence we
know that there are p-recurrent (in fact, even (ε, ρ)-good) seeds, each of
them supporting a supercritical Galton-Watson process. To prove (8) it
suffices essentially to control the time to reach a large enough quantity of
these seeds.

By Lemma 3.1, there exist n0, ε, ρ > 0 and a collection H = (Hz ⊂
M, z ∈ Kn0) having positive P-probability, such that the (Kn0 , H)-seed is
(ε, ρ)-good (in the proof of Lemma 3.1, we indeed constructed such a seed).
Moreover, it is straightforward to see that there exists t0 such that

P

[

the (Kn0 , H)-seed is (ε, ρ)-good and for any y ∈ A

P
y
ω|Kn0

[at least one particle hits 0 before time t0] > ρ
]

> 0. (27)

For any ω, define the random subset Sω of the lattice with spacing 2n0 + 1

Sω = {z ∈ (2n0 + 1)Zd : z is the center of (Kn0 , H)-seed

which is (ε, ρ)-good and satisfies (27)}.

We need to consider two cases separately, d ≥ 2 and d = 1.
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Case d ≥ 2. Consider the event

Mn = {∀y ∈ KL0n ln−1 n∃z ∈ Sω : ‖y − z‖∞ ≤ α ln n},

the (small enough) constant α will be chosen later. We will use the bound

P[T (0, x0) > n] ≤ sup
ω∈Mn

P
0
ω[T (0, x0) > n] + P[M c

n]. (28)

Let us begin by estimating the second term in the right-hand side of (28).
We have

P[M c
n] = P[∃y ∈ KL0n ln−1 n : (y + Kα lnn) ∩ Sω = ∅]

≤ |KL0n ln−1 n|P[Kα ln n ∩ Sω = ∅]. (29)

The point is that the events {x ∈ Sω} and {y ∈ Sω} are independent for
any x, y ∈ (2n0 + 1)Zd, x 6= y. Denoting the left-hand side of (27) by
p0 = P[0 ∈ Sω] > 0, we obtain

P[Kα lnn ∩ Sω = ∅] ≤ (1 − p0)
αd lnd n

(2n0+1)d ,

so, from (29),

P[M c
n] ≤ Ld

0n
d ln−d n exp

{

− αd ln(1 − p0)
−1

(2n0 + 1)d
lnd n

}

≤ exp{−C1 lnd n} (30)

for some C1 > 0 and for all n large enough.
Now, we estimate the first term in the right-hand side of (28). Let ξn be

the uniform induced random walk in random environment, cf. example (i) in
Section 2.1. By Condition UE, this random walk will be uniformly elliptic
as well, in the sense that for any x ∈ Zd and any ω ∈ supp Q

P
x
ω[ξ1 = x + e] ≥ ε1 > 0 (31)

for all e ∈ {±ei, i = 1, . . . , d} with a new constant ε1 = ε0(2L0 + 1)−1.
By (31), we have that for arbitrary ω ∈ Mn and any m with 0 ≤ m ≤
n ln−1 n − dα ln n,

P
0
ω

[

{ξm, . . . , ξm+dα ln n} ∩ Sω 6= ∅ | ξ0, . . . , ξm−1

]

≥ εdα lnn
1 . (32)
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Define

τ = inf
{

m :
m

∑

i=0

1{ξi∈Sω} ≥ lnd n
}

, (33)

i.e., τ is the moment when the random walk ξ hits the set Sω for the ⌈lnd n⌉-th
time. Also, let us recall the Chernoff’s bound for the binomial distribution: if
Sk is a binomial B(n, p) random variable, for any k and a with 0 < a < p < 1,
we have

P
[Sk

k
≤ a

]

≤ exp{−kU(a, p)}, (34)

where

U(a, p) = a ln
a

p
+ (1 − a) ln

1 − a

1 − p
> 0.

Now, divide the time interval [0, n ln−1 n] into (dα)−1n ln−d n subintervals of
length dα ln n. Fix the constant α in such a way that dα ln ε−1

1 < 1/2. Use
Markov property for ξ under P0

ω, the inequality (32), and (34) with p = εdα ln n
1 ,

k = (dα)−1n ln−d n, a = dαn−1 ln2d n (and an elementary computation shows

that U(a, p) is of order n−dα ln ε−1
1 ) to obtain that for some C2, C3 > 0

P
0
ω[τ ≤ n/3] ≥ P

0
ω[τ ≤ n ln−1 n]

≥ P
0
ω

[

k
∑

i=1

1{ξj ;(i−1)dα lnn<j≤iαd lnn}⋂

Sω 6=∅ ≥ ka
]

≥ 1 − exp
{

− C2(dα)−1n1−dα ln ε−1
1 ln−d n

}

≥ 1 − exp{−C3n
1/2} (35)

for any ω ∈ Mn (supposing that n is large enough so that a < p).
Now, we show that each time the random walk ξ passes through the points

of Sω it gives rise to a supercritical Galton-Watson process, and that on the
set {τ ≤ n/3}, about lnd n such independent Galton-Watson processes will
be started before time n/3. Indeed, analogously to the proof of Lemma 3.2,
if we have a particle in the center of the seed, its direct offsprings in this
Galton-Watson process are those descendants (in the branching random walk
restricted on the seed) that pass through the center not later than t0. (Ac-
tually, we must take this Galton-Watson process independent of the random
walk ξ, so when ξ passes through the seed, we cannot use the corresponding
particle in the Galton-Watson process. This, however, does not spoil any-
thing, because with uniformly positive probability another particle will be
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generated somewhere in the set x + A –with x the center– at that moment,
so it can be used to start the Galton-Watson process.) By construction, this
Galton-Watson process is “uniformly” supercritical, so there exists p1 > 0
such that with probability at least p1 in the [n/3t0]-th generation of the pro-
cess the number of particles will be at least C4α

n
1 , for some C4 > 0, α1 > 1.

So, since the real time between the generations is at most t0, this means that
for any x ∈ Sω

P
x
ω[the seed in x generates at least C4α

n
1 free particles

before time n/3] > p1. (36)

Now, by (36) we have

P
0
ω

[

at least one seed generates at least C4α
n
1 free particles

before time (2n/3) | τ < n/3
]

≥ 1 − (1 − p1)
lnd n. (37)

Consider those C4α
n
1 free particles. By Condition UE, any descendants of

each one will hit x0 by the time 2L0dn ln−1 n < n/3 with probability at least

ε2L0dn ln−1 n
0 , so at least one particle will hit x0 with probability at least

1− (1− ε2L0dn ln−1 n
0 )C4αn

1 ≥ 1− exp
{

−C4 exp{n[ln α1 −2L0d ln ε−1
0 ln−1 n]}

}

where the square parentheses is positive for large enough n. Taking into
account (35) and (37), we then obtain that for any ω ∈ Mn

P
0
ω[T (0, x0) > n] ≤ e−C5 lnd n (38)

for some C5 > 0 and all n large enough. We plug now (30) and (38) into (28)
to conclude the proof of Theorem 1.4 in the case d ≥ 2.

Case d = 1. Now, we prove Theorem 1.4 in dimension 1. For d = 1 the
above approach fails, because if α is small, then (30) will not work, if α is
large, then we would have problems with (35), and it is not always possible
to find a value of α such that both inequalities would work.

First, we do the proof assuming that L0 = 1, i.e., A is either {−1, 1} or
{−1, 0, 1}. Analogously to the proof for higher dimensions, if we prove that,
on the set of environments of P-probability at least 1 − e−C1 lnn, the initial
particle hits a quantity of logarithmic order of good seeds from Sω, we are
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done. To this end, note that, on the time interval of length lnn
2 ln ε−1

0

a single

particle (even if it does not generate any offsprings) covers a space interval
of the same length with probability at least

ε

lnn

2 ln ε−1
0

0 = n−1/2.

So, by time n ln−1 n, with large (of at least stretched exponential order)
probability there is an interval of length ln n

2 ln ε−1
0

containing 0 such that all

sites from there are visited.
Analogously to the proof for higher dimensions, consider the set

M (1)
n = {the number of good seeds from Sω in all the intervals

of length lnn
2 ln ε−1

0

containing 0 is at least C2 ln n},

which corresponds to the set of “good” environments. Since Sω has a positive
density, we can choose small enough C2 in such a way that

P[(M (1)
n )c] ≤ e−C3 ln n

for some C3. Now, on M
(1)
n , with probability at least 1 − e−C4nC5 by time

n ln−1 n at least C2 ln n good seeds from Sω will be visited. The rest of the
proof is completely analogous to the proof for d ≥ 2.

Let us explain how to proceed in the case of a general L0. In the above
argument the fact L0 = 1 was used only for the following purpose: if we
know that a particle crossed a (space) interval, then we are sure that all the
good seeds that might be there were visited. For a general L0, instead of
(ε, ρ)-good seeds of Sω, use (ε, ρ, W )-good seeds with W = {0, 1, . . . , L0−1},
so that particles cannot jump over the translates of this W . Indeed, it is
clear that a recurrent branching random walk generates (ε, ρ, W )-good seeds
for any finite W ). So, proof of Theorem 1.4 is concluded. �

Proof of Theorem 1.5. The method of the proof is very similar to the con-
struction of Example 5. Roughly speaking, for given n and x, we create a
(rather improbable) environment that has a trap near the origin; for such an
environment with a good probability the event {T (0, x) > n} occurs.

Now, let us work out the details. Rather than doing the proof for T (0, x)
with a general x ∈ Zd, we use x = e1, the general case being completely
analogous. Suppose that the origin belongs to the interior of the convex hull
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of {∆ω : ω ∈ G∩supp Q}. Then, analogously to the proof of Theorem 1.2 (see
Section 3.2), one can split the sphere Sd−1 into a finite number (say, m0) of
non-intersecting subsets Û1, . . . , Ûm0 and find a finite collection Γ̂1, . . . , Γ̂m0 ⊂
G having the following properties:

(i) there exists p1 > 0 such that Q(Γ̂i) > p1,

(ii) there exists a1 > 0 such that for any z ∈ Ûi and any ω ∈ Γ̂i we have
z · ∆ω < −a1,

for all i = 1, . . . , m0.
Take A = {y ∈ Zd : ‖y‖ ≤ u lnn}, where u is a (large) constant to be

chosen later. Consider the (A, H)-seed with Hx, x ∈ A defined as follows.
First, put H0 = G; for x 6= 0, let i0 be such that x

‖x‖ ∈ Ûi0 (note that i0 is

uniquely defined), then put Hx = Γ̂i0 . Clearly

P[there is (A, H)-seed in y] ≥ p
(2u)d lnd n
1 . (39)

Note that for any possible environment inside the (A, H)-seed there is no
branching. This means that the process restricted on A is a random walk
(without branching), which will be denoted by ξn.

Analogously to (20), we can prove that there exist a2 > 0, C1 ≥ 0 such
that

Eω(‖ξn+1‖ − ‖ξn‖ | ξn = z) < −a2 (40)

for all z ∈ A \ {y : ‖y‖ ≤ C1}, provided there is an (A, H)-seed in 0. Let τ̃
be the hitting time of the set (Zd \A)∪{y : ‖y‖ ≤ C1} by ξn. Next, we prove
that, when a3 > 0 is small enough, the process ea3‖ξn∧τ̃‖ is a supermartingale.
Indeed, first, note that there exist C2, C3 > 0 such that

ex < 1 + x + C2x
2 (41)

when |x| < C3. We can choose a3 small enough so that
∣

∣‖ξn+1‖ − ‖ξn‖
∣

∣ <
C3/a3 a.s. From (41) we obtain

Eω(ea3‖ξn+1‖ − ea3‖ξn‖ | ξn = z) = ea3‖z‖
Eω(ea3(‖ξn+1‖−‖ξn‖) − 1 | ξn = z)

≤ ea3‖z‖(−a3a2 + C2a
2
3L

2
0)

< 0

if a3 is small enough, so ea3‖ξn∧τ̃‖ is indeed a supermartingale.
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0
e1

(−u ln n)e1

Figure 5: Construction of a trap

Now, we need to make two observations concerning the exit probabilities.
First, consider any y such that C1 +1 ≤ ‖y‖ < C1 +2. If p̂1 is the probability
that, starting from y, the random walk ξn hits the set Zd \ A before the
set {y : ‖y‖ ≤ C1}, then it is straightforward to obtain from the Optional
Stopping Theorem that

p̂1 ≤
ea3(C1+2)

na3u
. (42)

Secondly, suppose now that the random walk ξn starts from a point y
with ‖y‖ = u lnn (i.e., on the boundary of A). Analogously, using the
Optional Stopping Theorem, one can show that, with probability bounded
away from 0, the random walk hits the set {y : ‖y‖ ≤ C1} before stepping out
of A. Now, suppose that u > a−1

3 , and that there is an (A, H)-seed centered
at (−u lnn)e1 (i.e., touching the origin, cf. Figure 5). Using the previous ob-
servation together with (42), one can obtain that, with probability bounded
away from 0, the particle will go to the set (−u lnn)e1 + A and will stay
there until time n (without generating any other particles, since there is no
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branching in the sites of (A, H)-seed). So, by (39),

P[T (0, e1) > n] ≥ e−C4 lnd n,

thus completing the proof of Theorem 1.5. �

5 Proof of Theorem 1.6

We prove this theorem separately for two cases: d ≥ 2 and d = 1. There are,
essentially, two reasons for splitting the proof into these two cases. First, as
usual, in dimension 1 we have to care about only one (well, in fact, two) direc-
tions of growth, while for d ≥ 2 there are infinitely many possible directions.
So, one may think that the proof for d = 1 should be easy when compared to
the proof for d ≥ 2. For the majority of growth models this is indeed true,
but not for the model of the present paper. This comes from Theorems 1.4,
1.5, and Example 5: recurrence implies that the annealed expectation of the
hitting time is finite only for d ≥ 2, but not for d = 1.

5.1 Case d ≥ 2

First, we need to show that the sets of interest grow at least linearly.

Lemma 5.1 Suppose that d ≥ 2 and the branching random walk in random
environment is recurrent and Condition UE holds. Then

(i) There exist δ0, θ0 > 0 such that

P[Kδ0n ⊂ B0
n] ≥ 1 − exp{−θ0 lnd n} (43)

for all n sufficiently large.

(ii) Suppose, in addition, that Condition A holds. Then there exist δ1, θ1 >
0 such that

P[Kδ1n ⊂ B̃0
n] ≥ 1 − exp{−θ1 lnd n} (44)

for all n sufficiently large.

Proof of Lemma 5.1. We will use the notations from the proof of Theorem 1.4.

Step 1. Let us prove part (ii) first. To do that, we need to examine in more
detail the supercritical Galton-Watson process arising in seeds centered in
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the points of Sω. Specifically, we need more information about how (con-
ditioned on survival) the particles of that process are distributed in time.
As we have seen before, in that Galton-Watson process a particle has 1 off-
spring with probability (1 − ε)ρ + 2ερ(1 − ρ), 2 offsprings with probability
ερ2 and 0 offsprings with the remaining probability, and the parameters ε, ρ
are such that (1 − ε)ρ + 2ερ(1 − ρ) + 2ερ2 > 1, so the process is uniformly
supercritical. Moreover, the real time interval between the particle and its
offspring(s) is not larger than t0; the exact distribution of that time interval,
is, however, unknown. So, let us suppose that if a particle has 1 offspring,
than it reappears in the center of the seed after k time units with probabil-
ity qk, k = 1, . . . , t0, and if a particle has 2 offsprings, then they reenter the
center after i and j time units with probability qi,j , i, j = 1, . . . , t0, i ≤ j (we
have

∑

k qk = 1, and
∑

i,j qi,j = 1).
Supposing for a moment that the Galton-Watson process starts from one

particle at time 0, denote by ζ(n) the number of particles of that process at

time n. We are going to prove that, conditioned on survival,
∑(n+1)t0

i=nt0
ζ(i)

grows rapidly in n. For that, we construct two processes Z i
n, Ẑ i

n, n =
0, 1, 2, . . ., i = 0, . . . , t0 − 1. We start by defining Ẑ i

0 = 0 for all i, Z i
0 = 0 for

i = 1, . . . , t0 − 1, and Z0
0 = 1. Inductively, suppose that the processes Z, Ẑ

are constructed up to n. Suppose for example that Z i0
n = a > 0; this means

that there are a particles of Z in the center of the seed at time i0 + nt0. For
each of those a particles, do the following:

• let it generate its offsprings according to the rules of the Galton-Watson
process; those offsprings reenter the center either during the time in-
terval [nt0, (n + 1)t0), or during [(n + 1)t0, (n + 2)t0);

• for those offsprings that appeared in the center of the seed during the
interval [nt0, (n + 1)t0), repeat the above step.

Doing that, we obtain a cloud of free particles (again, in the sense that
one cannot be descendant of another) in the interval [(n + 1)t0, (n + 2)t0).
Fix a parameter h > 0 and declare each of those particles to be of type 1
with probability 1−h and to be of type 2 with probability h, independently.
Repeat the same procedure for all i0 ∈ {0, . . . , t0−1} (note that the particles
from Ẑ are not used in this construction). Then, define Z i

n+1 to be the number

of type 1 particles at the moment i + (n + 1)t0, and Ẑ i
n+1 to be the number

of type 2 particles at the same moment, i = 0, . . . , t0 − 1. Then, Zn =
(Z0

n, . . . , Z
t0−1
n ) is a multitype branching process with t0 types. Furthermore,

41



it is straightforward to see that if h is small enough, then the mean number
of particles (of all types) generated by a particle from Zn is greater than 1, so
that process is supercritical (this follows from, e.g., Theorem 2 of Section 3
of Chapter V of [2], noting also that if, for a nonnegative matrix, the sum of
entries is strictly greater than 1 for each row, then the maximum eigenvalue
of that matrix is strictly greater than 1). That is, with positive probability
the size of n-th generation of Z grows exponentially in n. From that it is
quite elementary to obtain that there exist constants γ2, p2 > 0, α2 > 1
(depending on qi-s and qi,j-s) such that |Ẑn| > γ2α

n
2 for all n with probability

at least p2, where |Ẑn| = Ẑ0
n + · · ·+ Ẑt0−1

n . In fact, we think that with some
more effort one should be able to prove that these constants can be chosen
uniformly in qi-s and qi,j-s; however, it is easier to proceed as follows. Clearly,
there are γ3, p3 > 0, α3 > 1 (not depending on qi-s and qi,j-s) such that

P

[

P
0
ω[|Ẑn| > γ3α

n
3 ] ≥ p3, for all n

∣

∣

∣
0 ∈ Sω

]

≥ 1

2
. (45)

Now, we recall the aperiodicity Condition A. Essentially, it says that the
density of the aperiodic sites is positive, where by “aperiodic site” we mean
the following: for a given ω, x ∈ Zd is an aperiodic site if there exists y such
that ‖x − y‖1 is even, and a particle in x sends at least one offspring to y
with a positive Pω-probability.

For any z ∈ Sω and Ẑ the process defined above starting from z, define
the event

Ez = {|Ẑn| > γ3α
n
3 , for all n}.

Define

M ′
n = {∀y ∈ KL0n ln−1 n∃z ∈ Sω : Pz

ω[Ez] ≥ p3, ‖y − z‖∞ ≤ α ln n,

and there is an aperiodic site x1 such that x1 + A ⊂ KL0n ln−1 n}.
Due to (45), for P[(M ′

n)c] we have an estimate similar to (30). Analogously
to the proof of part (i) of the lemma, one can prove that with overwhelming
probability before time n ln−1 n the random walk ξn will meet a seed (cen-
tered, say, in z0) where an “explosion” (i.e., the event Ez0) happens. Suppose
that t1 is the moment when the Galton-Watson process in z0 starts; we have
t1 ≤ n ln−1 n.

Now, take an arbitrary m ≥ n and suppose that ω ∈ M ′
n. Supposing

that n is large enough and δ1 is small enough, there exists k0 such that

[t1 + k0t0, t1 + (k0 + 1)t0) ⊂ [m − 4δ1n, m − 3δ1n]
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and k0 ≥ m
2t0

. Then, since the event Ez0 occurs, there exists t2 ∈ {0, . . . , t0−1}
such that Ẑt2

k0
≥ γ3α

k0
3 /t0; i.e., there are at least γ3α

k0
3 /t0 “unused particles”

(they were not used in construction of the branching processes, so we do not
have any information about their future) at z0 at the moment t1 + k0t0 + t2.
Take any x0 ∈ Kδ1n and suppose, for definiteness, that ‖x0 − z0‖1 is odd.
Denote t̂ = m − (t1 + k0t0 + t2) (notice that 3δ1n ≤ t̂ ≤ 4δ1n) and consider
two cases:

Case 1: t̂ is odd.
Then, by Condition UE, any particle in z0 will send a descendant to x0 in
time exactly t̂ with probability at least εt̂

0.

Case 2: t̂ is even.
Here we will have to use the fact that on M ′

n there exists an aperiodic site
somewhere in KL0n ln−1 n. That is, when going from z0 to x0 in time t̂, on the
way we pass through the aperiodic site, and this happens with probability
at least C6ε

t̂−ℓ
0 .

So, in both cases we see that a particle in z0 will send a descendant to x0

in time t̂ with probability at least C7ε
t̂
0 for some C7 > 0. Recall that we

dispose of at least γ3α
k0
3 /t0 independent particles in z0, so the probability

that at least one particle will be in x0 at time m is at least

1 − (1 − C7ε
t̂
0)

γ3α
k0
3 /t0 ≥ 1 − (1 − C7ε

4δ1n
0 )γ3t−1

0 α
m/(2t0)
3

≥ 1 − exp
{

− C8γ3

t0
exp

[ ln α3

2t0
m − 4δ1n ln ε−1

0

]}

.

Choosing δ1 small enough, it is straightforward to complete the proof of the
part (ii).

Step 2. As for the part (i), it can be proved analogously to the part (ii), by
writing

{T (0, x) ≤ n} ⊃ ({T (0, x) = n} ∪ {T (0, x) = n − 1})

and noting that for handling of one of the events in the right-hand side of
the above display the Condition A is unnecessary. The proof of Lemma 5.1
is completed. �

Consider any x0 ∈ Zd \ {0}, and define a family of random variables

Y x0(m, n) = T (mx0, nx0), 0 ≤ m < n.
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Let us point out that the sequence of random variables (Y x0(n − 1, n), n =
1, 2, 3, . . .) is in general not stationary (although they are of course identically
distributed). To see this, note that, conditioned on ω, the random variables
T (0, x0) and T (x0, 2x0) are independent (because, recall the construction of
Section 2.3, given T (0, x0) = r, the random variable T (x0, 2x0) depends on
vx,i(n) for n ≥ r), while T (x0, 2x0) and T (2x0, 3x0) need not be so. Nev-
ertheless, we will prove that the above sequence satisfies the Strong Law of
Large Numbers:

Lemma 5.2 Denote βx0 = EY x0(0, 1). Then for any ε > 0 there exists
θ2 = θ2(ε) such that

P
[
∣

∣

∣

1

n

n
∑

i=1

Y x0(i − 1, i) − βx0

∣

∣

∣
> ε

]

≤ exp{−θ2 lnd n}. (46)

for all n. In particular,

1

n

n
∑

i=1

Y x0(i − 1, i) −→ βx0 P-a.s. and in Lp, p ≥ 1. (47)

Proof. Abbreviate Yi := Y x0(i − 1, i) and introduce the events Gi = {Yi <√
n/(2L0)}, i = 1, . . . , n. Suppose for simplicity that

√
n is integer, the

general case can be treated analogously. Define the events

F =
{
∣

∣

∣

1

n

n
∑

i=1

Yi − βx0

∣

∣

∣
> ε

}

,

Fi =
{
∣

∣

∣

1√
n

√
n

∑

j=1

Yi+(j−1)
√

n − βx0

∣

∣

∣
> ε

}

,

i = 1, . . . ,
√

n; since

1

n

n
∑

i=1

Yi =
1√
n

√
n

∑

i=1

√
n

∑

j=1

Yi+(j−1)
√

n,

we can write

F ⊂
√

n
⋃

i=1

Fi. (48)
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Now, to bound from above the probability of a single event Fi, we write

P[Fi] ≤ P
[
∣

∣

∣

1√
n

√
n

∑

j=1

Yi+(j−1)
√

n1Gi+(j−1)
√

n
− βx0

∣

∣

∣
> ε

]

+ P[there exists j ≤ √
n such that Gc

i+(j−1)
√

n occurs]

=: I1 + I2.

By Theorem 1.4, with some C9 > 0

I2 ≤
√

nP[Gc
1] ≤

√
n exp{−C9 lnd n}. (49)

To bound the term I1, we note first that it is elementary to obtain from
Theorem 1.4 that, for some C10,

βx0 − EY11G1 ≤ exp{−C10 lnd n}. (50)

The key point here is that the random variables Yi+(j1−1)
√

n1Gi+(j1−1)
√

n
and

Yi+(j2−1)
√

n1Gi+(j2−1)
√

n
are independent when j1 6= j2. Indeed, on the event

{

max{T ((n1 − 1)x0, n1x0), T ((n2 − 1)x0, n2x0)} <
|n2 − n1|

2L0

}

,

the random variables T ((n1−1)x0, n1x0) and T ((n2−1)x0, n2x0) are functions
of vx,i(n)-s where the superscript x belongs to nonintersecting subsets of Zd).
Therefore, having in mind (50) and Theorem 1.4, to bound the term I1 from
above we can use some Large Deviation result for the sums of i.i.d. random
variables without exponential moments (see e.g. Corollary 1.11 from [20]) to
obtain that

I1 < exp{−C11 lnd n}. (51)

Using (49), (51) and (48), we conclude the proof of (46). Since (47) follows
from (46) immediately for p = 1, the proof of Lemma 5.2 is finished in this
case. To extend it to a general p, it suffices to note that for all p′ ≥ 1,

(1

n

n
∑

i=1

Y x0(i − 1, i)
)p′

≤ 1

n

n
∑

i=1

(Y x0(i − 1, i))p′,

which has a finite expectation. �

To proceed with the proof of Theorem 1.6, we state the result of [16],
which is an improved version of Kingman’s subadditive ergodic theorem [14].
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Theorem 5.1 Suppose that {Y (m, n)} is a collection of positive random
variables indexed by integers satisfying 0 ≤ m < n such that

(i) Y (0, n) ≤ Y (0, m) + Y (m, n) for all 0 ≤ m < n (subadditivity);

(ii) the joint distribution of {Y (m + 1, m + k + 1), k ≥ 1} is the same as
that of {Y (m, m + k), k ≥ 1} for each m ≥ 0;

(iii) for each k ≥ 1 the sequence of random variables {Y (nk, (n + 1)k), n ≥
0} is a stationary ergodic process;

(iv) The expectation of Y (0, 1) is finite.

Then

lim
n→∞

Y (0, n)

n
→ γ a.s.,

where

γ = inf
n≥0

EY (0, n)

n
.

Similarly to the proof of a number of other shape results, our original
intention was to apply Theorem 5.1 to the family (Y x0(m, n), 0 ≤ m < n).
Indeed, the assumption (i) of Theorem 5.1 holds due to Lemma 2.3, from
the construction of the random variables T (·, ·) is is elementary to observe
that the assumption (ii) holds as well, and the assumption (iv) follows from
Theorem 1.4. However, as we observed just before Lemma 5.2, the sequence
of random variables in (iii) need not be stationary (even though it has good
mixing properties and the random variables there are equally distributed).
So, we take a slightly different route: consider the proof of Theorem 5.1 (here
we use the proof of Theorem 2.6 of Chapter VI of [17]), and follow its steps
carefully. One sees that the assumption (iii) (which is the assumption (b)
in Theorem 2.6 of Chapter VI of [17]) is used only in (2.11) and between
the displays (2.14) and (2.15) of Chapter VI of [17] to prove that a certain
sequence converges a.s. and in L1 to its mean; in our situation, Lemma 5.2
takes care of that.

From the above argument we conclude that for any x ∈ Zd \ {0} there
exists a number µ(x) (depending also on Q) such that

T (0, nx)

n
−→ µ(x) P-a.s., n → ∞. (52)
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From this point on, the proof of the shape result for B0
n becomes com-

pletely standard, so we only briefly outline the main steps and refer to
e.g. [1, 5, 8] for details:

• it is easy to obtain that for any x ∈ Zd, a ∈ Z+, we have µ(ax) = aµ(x);

• using that, µ(x) is first extended on x ∈ Rd with rational coordinates

(if x ∈ Qd and ax ∈ Zd, with a ∈ Z+, then µ(x) := µ(ax)
a

), and then,
using the subadditivity and the part (i) of Lemma 5.1, to the whole Rd;

• the limiting shape B is then identified by B = {x ∈ Rd : µ(x) ≤ 1}
(note that B is convex since the subadditivity property µ(x + y) ≤
µ(x) + µ(y) is preserved; however, B need not be symmetric, since
generally µ(x) need not be equal to µ(−x));

• to complete the proof (for B0
n), cover B and a sufficiently large annulus

of B by balls of radius δ′, where δ′ is sufficiently small, and then use
the part (i) of Lemma 5.1.

To complete the proof of Theorem 1.6 (for dimension d ≥ 2), we recall
the relation B̃x

n ⊂ B̄x
n ⊂ Bx

n, so all we need to prove is that for any ε > 0,
(1−ε)B ⊂ F(B̃0

n) for all n large enough. This follows easily from the part (ii)
of Lemma 5.1 and the corresponding shape result for B0

n. �

5.2 Case d = 1

As noticed in the beginning of Section 5, here we cannot guarantee that
ET (0, 1) < ∞ (although it may be so), so we need to develop a different
approach. On the other hand, still a number of the steps of the proof for d = 1
will be quite analogous to the corresponding steps of the proof for d ≥ 2; in
such cases we will prefer to refer to the case d ≥ 2 rather than writing down
a similar argument once again.

The main idea of the proof of Theorem 1.6 in the case d = 1 is the
following. From the proofs of Theorems 1.4 and 1.5 we saw that, while
usually Pω[T (0, 1) > n] is well behaved (and, in particular, EωT (0, 1) < ∞),
there are some “exceptional” environments that may cause ET (0, 1) = ∞ in
dimension 1 (see Example 5). So, if the environment is “untypical”, instead
of starting with one particle, we start with a number of particles depending
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on the environment (and the more untypical is the environment, the larger
is that number).

For the sake of simplicity, we suppose now that the maximal jump L0 is
equal to 1; afterwords we explain how to deal with general L0.

Keeping the notation Sω from the proof of Theorem 1.4, we note that
the set Sω has positive density in Z, so there exists (small enough) γ1 such
that an interval of length k contains at least γ1k good seeds from Sω with
P-probability at least 1−e−C1k. Let us say that an interval is nice, if (being k
its length) it contains at least γ1k good seeds from Sω.

Fix r < C1 (e.g., r := C1/2) and define

hx(ω) = min{m: all the intervals of length k ≥ m

intersecting with x + [−erk, erk] are nice},

with this choice of r it is elementary to obtain that there exists C2 > 0 such
that

P[h0(ω) = n] ≤ e−C2n. (53)

Now, suppose that, instead of starting with one particle, the process starts
with eKh0(ω) particles in 0, where K is a (large) constant to be chosen later.
For ℓ ≥ 1, define

T̃ (0, ℓ) = min{n ≥ 0 : η0
n(ℓ) ≥ eKhℓ(ω)},

i.e., T̃ (0, ℓ) is the first moment when we have at least eKhℓ(ω) particles in ℓ.
Now, our goal is to prove that if K is large enough, then ET̃ (0, 1) < ∞.
Denote Z = h0(ω) ∨ h1(ω), and write

ET̃ (0, 1) = EEωT̃ (0, 1)

≤
∞

∑

m=1

(

sup
ω:Z=m

EωT̃ (0, 1)
)

P[Z = m]. (54)

Let us obtain an upper bound on the supremum in the right-hand side
of (54). Fix m ≥ 1 and let us consider an environment ω such that Z = m (so
that h0(ω) ≤ m). First, we prove the estimate (55) below, in the following
way:

(i) Consider the time interval [0, θ0m], where θ0 = K
2 ln ε−1

0

. Each parti-

cle that is initially in the origin (even if it does not generate new
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offsprings) will cover the box [0, θ0m] ⊂ Z by time θ0m (simply by
going always one unit to the right), with probability at least εθ0m

0 (ε0 is
from Condition UE). Recall that initially we had eKh0(ω) particles in 0;
since K > θ0 ln ε−1

0 , there exists C3 such that, with probability at least
1 − e−C3m all the sites of the box [0, θ0m] will be visited by time θ0m.

(ii) By definition of the quantity h0(ω), the box [0, θ0m] contains at least
θ0γ1m good seeds from Sω (here we suppose that θ0 > 1, i.e., K >
2 ln ε−1

0 ). Since all of them were visited, there will be an explosion in
at least one of these seeds with probability at least 1 − e−C4θ0m.

(iii) Now, we only have to wait C5m (where C5 is a [large] constant depend-
ing on K) time units more to be able to guarantee that at least eKh1(ω)

particles will simultaneously be in the site 1 at some moment from the
time interval [θ0m, θ0m + C5m] (to see that, use an argument of the
type “if the number of visits to the site 1 during the time interval of
length n1 was at least n2, then at some moment at least n2/n1 particles
were simultaneously in that site”). So, finally one can obtain that there
exist C6, θ1 (depending on K) such that

Pω[T̃ (0, 1) > C6m] < e−θ1m, (55)

and the crucial point is that θ1 can be made arbitrarily large by en-
larging K. So, choose K in such a way that θ1 > 5 ln ε−1

0 .

Next, the goal is to obtain an upper estimate on Pω[T̃ (0, 1) > n] which
does not depend on K. Specifically, we are going to prove that, for some
positive constants C7, C8, we have, on {ω : h0(ω)∨h1(ω) = m} and for large
enough m

Pω[T̃ (0, 1) > n] ≤ e−C7nC8 (56)

for all n ≥ e5m ln ε−1
0 .

Remark. To obtain the estimate (56), we will use only one initial particle
in 0; so, the same estimate will be valid for T (0, 1), thus giving us the proof
of Proposition 1.3. �

Now, to prove (56), we proceed in the following way.

(i) Consider one particle starting from the origin. During any time interval
of length ln n

5 ln ε−1
0

it will cover a space interval of the same length (by
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going to the right on each step) with probability at least

ε

ln n

5 ln ε−1
0

0 = n−1/5

(note that there is a similar argument in the proof of Theorem 1.4 for
the case d = 1). So, in time n1/4 a single particle will cover an interval

of that length with probability at least 1 − e−C9n1/20
(note that these

estimates do not depend on ω).

(ii) Abbreviate r′ = r
5 ln ε−1

0

(r is from the definition of hx(ω)). If n ≥
e5m ln ε−1

0 , then all the intervals of length ln n
5 ln ε−1

0

intersecting with the

interval [−nr′ , nr′] are nice (so, in particular, they contain at least one
good seed from Sω) on {ω : h0(ω) ∨ h1(ω) = m}.

(iii) Consider the time interval [0, n1/2]. One of the following two alterna-
tives will happen:

(iii.a) Either some of the particles from the cloud of the offsprings of the
initial particle will go out of the interval [−nr′ , nr′], or

(iii.b) all the offsprings of the initial particle will stay in the interval
[−nr′ , nr′ ] up to time n1/2.

In the case (iii.a), at least γ1n
r′ good seeds from Sω will be visited.

In the case (iii.b), argue as follows: we have n1/4 time subintervals of
length n1/4; during each one a good seed will be visited with overwhelm-
ing probability. So, with probability greater than 1− n1/4e−C9n1/20

the
number of visits to good seeds will be at least n1/4 (and all of these
good seeds are in the interval [−n1/2, n1/2]).

(iv) Thus, in any case, by time n1/2 there will be a polynomial number of
visits to good seeds. So, with overwhelming probability one of them
will explode and produce enough particles to guarantee that there are
at least eC10n particles which were created at distance no more than n1/2

from 0 before time n/2. Then, it is elementary to obtain that, with
overwhelming probability, we will have at least eC11n particles in site 1,
for some C11 > 0. Since n ≥ e5m ln ε−1

0 , this will be enough to to make
the event {T̃ (0, 1) ≤ n} occur when C11e

5m ln ε−1
0 > Km, and the last

inequality holds for all, except possibly finitely many, values of m.
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Now, we finish the proof of the fact that ET̃ (0, 1) < ∞. Write

EωT̃ (0, 1) =

∞
∑

n=0

Pω[T̃ (0, 1) > n],

and use (56) to bound Pω[T̃ (0, 1) > n] for n ≥ e5m ln ε−1
0 , and (55) for n ∈

[C6m, e5m ln ε−1
0 ). Since θ1 > 5 ln ε−1

0 , we obtain that EωT̃ (0, 1) < C12m + C13

on {ω : h0(ω) ∨ h1(ω) = m} for m large enough, so using (54) and (53), we
conclude the proof of the fact that ET̃ (0, 1) < ∞.

The rest of the proof (for L0 = 1) is straightforward. First, we define
variables T̃ (k, m), 1 ≤ k < m, repeating the construction of Section 2.3, with
the following modifications: the process initiating in k starts from eKhk(ω)

particles, at the moment (with respect to vx,i(n)) T̃ (0, k) (instead of T (0, k)).
Then, it is elementary to see that we still have the subadditivity relation
T̃ (0, m) ≤ T̃ (0, k) + T̃ (k, m). There is again a problem with the absence of
the stationarity for the sequence T̃ (0, 1), T̃ (1, 2), T̃ (2, 3) . . .; this problem can
be dealt with in exactly the same way as in Section 5.1.

So, the above arguments show that T̃ (0,n)
n

converges to a limit as n → ∞,
which immediately implies the shape theorem in dimension 1 (we do not
need the analogue of Lemma 5.1 here) for the model starting with eKh0(ω)

particles from 0.
We now complete the proof of Theorem 1.6 in the case d = 1 (and, for

now, L0 = 1): it is elementary to obtain that, for a recurrent branching
random walk in random environment starting with 1 particle, for P-almost
all ω-s, at some (random) time we will have at least eKh0(ω) particles in the
origin. Now, it remains only to erase all other particles and apply the above
reasoning.

To treat the case of a general L0 ≥ 1, we apply the same reasoning as in
the proof of Theorem 1.4 for d = 1 (namely, instead of (ε, ρ)-good seeds, we
consider (ε, ρ, W )-good seeds with W = {0, 1, . . . , L0 − 1}, so that a particle
cannot overjump W ). �
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