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Summary

Ras proteins mediate biological responses through various effectors and play a key role in

relaying the Fibroblast Growth Factor (FGF) mesoderm induction signal during

embryogenesis of the frog, Xenopus laevis. One Ras effector pathway involves the activation

of the small G protein Ral. In the present study, we have investigated the role of key

components in the RalB branch of FGF and Ras signalling during early Xenopus

development. Treatment of animal caps with bFGF, which converts prospective ectoderm  to

mesoderm, activates XralB. The Ras 12V37G mutant, which can bind to Ral-GDS but not

Raf, also activates XralB as well as causing developmental defects and cortical F-actin

disassembly.  A similar phenotype is induced by Ral-GDS itself.  FGF induced expression of

several signature mesodermal genes, by contrast, is independent of XralB signalling.  This

and other data suggest that the RalB branch of Ras and FGF signalling regulates the actin

cytoskeleton and morphogenesis in a transcriptionally-independent manner. We also find

XralB to be specifically activated in the marginal zone of Xenopus embryos, and find that

disruption of the RalB pathway in this region causes gastrulation defects. We conclude that

RalB signalling is autonomously required by mesodermal cells to effect essential

morphogenetic changes during Xenopus gastrulation.

Keywords:  FGF; Ras pathway; RalB; Actin cytoskeleton; gastrulation; Xenopus



3

Introduction

Mesoderm induction depends on multiple diffusible extracellular factors that induce

specific programs of gene expression and morphogenesis. Prior to overt gastrulation, a

number of mesoderm-specific transcription factors are transcribed in induced mesoderm (for

reviews (Stennard et al., 1997) and (Chan and Etkin, 2001)). Shortly thereafter, mesodermal

cells participate in stereotyped  gastrulation movements  (for review (Gerhart and Keller,

1986)) that are achieved via coordinated changes in the cytoskeleton of individual cells

(Selchow and Winklbauer, 1997; Wacker et al., 1998). Despite intensive study, the

intracellular signalling pathways connecting mesoderm induction to the direct modification of

the cytoskeleton by effector molecules remain unclear.

FGFs can induce the expression of many mesodermal markers (Kimelman and

Kirschner, 1987), (Green et al., 1992), (Whitman and Melton, 1992) (LaBonne and Whitman,

1994), (Amaya et al., 1991), and expression of a dominant negative FGF receptor

dramatically perturbs gastrulation (Amaya et al., 1991). Mesodermal gene induction by FGFs

has been shown to be achieved via the Ras protein, acting through both the MAPK and PI3K

pathways (Whitman and Melton, 1992), (LaBonne and Whitman, 1994), (Umbhauer et al.,

1995), (Carballada et al., 2001). Ras is also known to modulate the formation of the actin

cytoskeleton in a variety of cell types, but the specific Ras pathway involved is unknown

(Bar-Sagi and Feramisco, 1986). A role for FGF signalling in Drosophila embryonic cell

motility has been found, seen in the requirement  for the FGF receptor heartless molecules for

mesodermal cell migration (Gisselbrecht et al., 1996), (Beiman et al., 1996). More recently,

FGF4 and FGF8 have been shown to control directional movement of streak cells in the chick

(Yang et al., 2002). These data demonstrate that  FGFs are able to control both gene

expression and cellular behavior  (for reviews see (Manske and Bade, 1994), (Montell, 1999),

(Boilly et al., 2000)) and they raise the possibility that during mesoderm development, Ras
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not only mediates the induction of gene expression by FGF signalling, but also controles the

cellular behaviour.

As indicated above, the Ras protein initiates several cellular processes including

proliferation, differentiation and modulation of the cytoskeleton (Reuter and Der, 2000).

Although the Raf serine/threonine kinase is the best-studied Ras effector protein, at least two

other effectors, PI3K (Rodriguez-Viciana et al., 1997) and Ral-GDS (Kikuchi et al.,

1994), are known to mediate Ras signalling. Moreover, a Ras mutant with an inactive effector

domain can be complement by another distinct Ras effector-domain mutant (White et al.,

1995), demonstrating that different Ras effectors can cooperate to transform cells (Urano et

al., 1996).  Recently PI3K was shown to synergize with the extracellular signal regulated

kinase (ERK) pathway in the induction of Xenopus mesoderm (Carballada et al., 2001).

More recently, oncogenic activity was demonstrated for the Ras 12V37G mutant, which binds

and activates Ral-GDS, but not Raf (Hamad et al., 2002).  Much remains to be learned about

the roles of Ras and its various effectors during early development . Of particular interest is

whether or not Ras directly influences cellular morphology via modulation of the

cytoskeleton.

In previous studies, we have characterised XralB, a small G protein of the Ras family,

isolated by differential screening of a subtractive cDNA library (Moreau et al., 1999). This

protein cycles between an inactive GDP-bound and an active GTP-bound conformation. Ral

proteins are activated by the Ras effector, Ral-GDS (Kikuchi et al., 1994)(Wolthuis et al.,

1998b) and have been directly implicated in various cellular mechanisms, such as endocytosis

(Nakashima et al., 1999) and regulation of the actin cytoskeleton (Ohta et al., 1999). By

microinjecting different mutant forms of XralB into Xenopus embryos, we have shown that

expression of an inactivate form of XralB, XralB S28N, blocks gastrulation movements,

whereas a constitutively active form, XralB G23V, causes disruption of the actin cytoskeleton

(Moreau et al., 1999).
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In this paper, we delineate a cascade linking FGF signalling to embryonic

morphogenesis.  We show that exposure of animal caps to bFGF causes activation of XralB,

and that overexpression of an activated  form of XralB causes cortical F-actin disassembly.

We also show that early developmental arrest are caused by ectopic expression of a mutant

form of Ras able to bind  Ral-GDS, but not Raf, or by ectopic expression of Ral-GDS itself.

By contrast, we find that FGF-induced expression of a number of signature mesodermal genes

requires signal transduction by Raf, but not XralB. Finally, we find that XralB is

preferentially activated in the marginal zone of Xenopus embryos, and that disruption of the

XralB pathway is most effective when targeted to this region.
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Materials and Methods

Protein extraction, electrophoretic analysis, immunoblotting and pull-down

To monitor the expression of injected mRNA, proteins were extracted from embryos and

analysed as previously described (Gusse et al., 1989). Protein extracts were separated by

SDS–PAGE on a 15% acrylamide gel and transferred to a Hybond P membrane (Amersham).

The membrane was probed overnight at 4°C with anti–rat RalB goat antibodies (Sc1531,

Santa Cruz) diluted 1/125 in 1X PBS – 1% BSA (wt/vol).  The secondary antibody,

peroxidase-linked rabbit anti-goat Ig was diluted 1/1250 (Chemicon). Signals were detected

by chemiluminescence (ECL+, Amersham).

To analyse Ral-GTP levels, protein extracts from embryos were incubated with RalBP1

agarose (Upstate Biotechnology, ref. 14-415) for 30 min. at 4° C. Immunoprecipitates were

separated on a 15% acrylamide gel and transferred to a P Hybond membrane (Amersham).

Precipitated endogenous Ral was probed with an anti-RalA antibody (Upstate Biotechnology,

ref. 20-189) diluted 1/750 in 1X PBS – 0.05% Tween -20 and 5% milk powder (wt/vol).

Signals were detected by chemiluminescence (ECL, Amersham) and quantified by

ImageQuant (Molecular Dynamics).

Embryos and microinjections

Xenopus frogs were imported from South Africa (South Africa Farms, Fish Hoek) or from the

CNRS frog colony (Rennes). Animals were housed and fed as described (Gurdon et al 1984).

Embryos were fertilized in vitro and chemically dejellied with 2% (wt/vol) cysteine-HCl, pH

7.8/7.9, then maintained in 1 X MBS (Modified Barth’s solution pH (7.6) (Gurdon and

Wickens, 1983) until microinjection. Microinjection was performed in a solution of 1 X MBS

and 3% Ficoll (wt/vol), followed by overnight incubation at 16°C in 0.1 X MBS and 3%

Ficoll, then at 15-22°C until they reached appropriate stages. Embryonic stages were
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determined according to Nieuwkoop and Faber (Nieuwkoop and Faber, 1956). In vitro

transcribed RNA (4.6 nl) was microinjected into 2-cell stage embryos in the animal

hemisphere or into 4-cell stage embryos in the marginal zone, animal pole or vegetal pole.

cDNA cloning and in vitro transcription of RNA for injection

pSP64-Ras 12V35S and 12V37G were obtained by cloning the SalI-BamHI insert

from pDCR-12V35S and 12V37G (White et al., 1996) into the SalI-BamHI sites of the pSP64

vector (Promega). pSP64-Ral-GDS was obtained by subcloning of the BamHI insert from

pCEP4-Ral-GDS (White et al., 1996). pRN3-RalBD-GST was obtained by subcloning of the

HindIII-SalI insert from pGEXT4T3-GST-RalBD (Wolthuis et al., 1998b). The 3’untranslated

regions of the pRN3 RalB clones S28N, G23V were deleted by removal of BamHI/NotI,

followed by end-filling and religation. mRNAs were transcribed from pSP64T (Promega) or

pRN3 (Lemaire et al., 1995) vectors using the SP6 or T3 mMessage mMachine (Ambion).

Confocal microscopy

Animal caps were observed using a Leica TCS-4D confocal imaging system (Leica

Instruments, Heidelberg, Germany) fitted with a 63X objective (NA 1.4). For FITC and

TRITC, an argon–krypton ion laser was used set to 488 and 568 nm, respectively. For each

optical section, double fluorescence images were acquired sequentially to avoid potential

signal contamination by linkage-specific fluorescence emission “cross-talk.” Signal noise was

reduced by line averaging of four frames. A focal series was collected for each specimen. The

focus step between sections was 1µm.

Fixation and staining of embryos with QE5 antibody and rhodamine-phalloidin
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Embryos were prepared for confocal microscopy analysis as described previously (Moreau et

al., 1999).

Animal cap assay

Animal caps were manually dissected from MBT-stage embryos. These explants were

incubated with or without FGF (100 ng/ml) in 1X MMR, 1% BSA for 4 hours at 16°C.

RNA isolation and reverse transcriptase -PCR assay

Total RNA extraction was carried out as previously described (Moreau et al 1999), except

that extracts were treated with 1 U of DNase I RQ1 (Promega)  for 30 minutes at 37° C after

the LiCl precipitation step. First strand cDNA was prepared from total RNA using the reverse

transcriptase M-MLV (Gibco-BRL, ref. 28025-013) and Oligo dT primer (Pharmacia). PCR

and analysis of cDNA was performed in 50 µl of solution containing 5µl of cDNA, 1X Taq

buffer, 3 mM MgCl2, 0.1mM (each) dNTPs, 200 ng of each specific primer, and 1 U of Taq

polymerase (Invitrogene), using the following PCR conditions: 93° C for 3 min, followed by a

variable number of cycles at 93° C for 45 s, 52° C for 50 s. and 72° C for 1 min. Ornithine

decarboxylase (ODC), Xbra, Xwnt11, Xnot, Xty2 PCR amplification was carried out for a

total of 27 cycles, and Xwnt8, Xsnail and Xcad3 amplification was for a total of 35 cycles.

The pr imer sequences were as fo l lows: ODC forward 5’  –

GTCAATGATGGAGTGTATGGATC-3’, reverse 5’- TCCATTCCGCTCTCCTGAGCAC-

3’; Xbra forward 5’ – GTGTAGTCTGTAGCAGCA-3’, reverse 5’-

GGATCGTTATCACCTCTG- 3’; Xwnt 11 forward 5’ – GTGAGAGAGGTCTGAGCTGG-

3’, reverse 5’- ACATGACATAGCAGCACC- 3’; Xnot forward 5’ –

CAGAGCAGCTGGAGAAGCTG-3’, reverse 5’- CAGTGTGATCTGAGCTGTTC- 3’; Xty2

forward 5’ – ATCTGCTCCACGACGGAC-3’, reverse 5’- GAAGAACTGCTACTTGTCC-

3’; Xcad3 forward 5’ –CAGCGCAGAACTACGTCTCC-3’, reverse 5’-
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CCCAGTCCCAGATGGATGTG- 3’; Xwnt8  forward 5’ –AGATGACGGCATTCCAGA-3’,

r e v e r s e  5 ’ -  T C T C C C G A T A T C T C A G G A -  3 ’ .
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Results

XralB is activated by FGF

Activation of Ral proteins by growth factors, including those signalling through

receptor tyrosine kinases (EGF, FGF, etc.), has been documented in a variety of contexts

(Wolthuis et al., 1998a), (Suzuki et al., 2000) (Nakashima et al., 1999). Considering the role

of FGFs in mesoderm induction, and our previous observations that XralB function is

required for gastrulation, we wished to determine whether the FGF pathway regulates XralB.

Animal cap explants were dissected at the blastula stage and cultured for 4 hours in the

presence or absence of bFGF (Fig. 1A). After incubation, mRNA was extracted to verify the

activation of the pan-mesodermal gene marker Xbra by bFGF (Fig. 1B). To determine the

relative abundance of endogenous GTP-bound XralB, protein was also extracted and analysed

by affinity purification (pull-down) using GST fused to the Ral binding domain of RalBP1

(GST-RalBP1) (Fig. 1C).  Animal caps incubated in the presence of bFGF became elongated

(Fig. 1A), and displayed an increase in Xbra transcript levels  (Fig. 1B) and GTP-bound

XralB (Fig. 1C). Thus, the Ral pathway can be activated by FGF signalling during early

Xenopus development.

Ras activates the XralB protein via Ral-GDS binding

 Ras stimulates multiple, distinct signalling cascades. Indeed, White et al (White et al.,

1995) have shown that a mutant form of Ras, Ras 12V37G, does not transform cells, but can

be complemented for transformation by another Ras mutant, Ras 12V35S. Ras 12V35S binds

specifically to Raf kinase but not to Ral-GDS, whereas Ras 12V37G only binds to Ral-GDS

(White et al., 1996).  We utilized these Ras mutants to assess the relative roles of Ras

signalling via Raf and Ral-GDS in the activation of XralB in Xenopus embryos.

Whole embryos were injected with Ras 12V35S (0.5 ng/blastomere), or Ras

12V37G (0.5 ng/blastomere) RNA at the two-cell stage, grown until the 128/256-cell stage

and protein was extracted and analysed by Ral-GTP pull-down. We found the level of
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activated XralB to be specifically increased in embryos injected with Ras 12V37G (Fig. 2).

Xral-GTP levels in embryos injected with Ras 12V35S were similar to the basal levels

observed in uninjected embryos. To confirm the specificity of XralB activation by Ras

12V37G, we asked whether a dominant-negative form of RalB, XralB S28N, can interfere

with XralB activation when co-injected with Ras 12V37G.  In such embryos, levels of XralB-

GTP are similar to those of control embryos (Fig. 2). These results indicate that Ras can

activate XralB independently of Raf kinase.

Ras can activate two independent targets

We also examined the effect of the Ras 12V35S and 12V37G mutants on development

and morphogenesis. All  embryos injected with Ras 12V35S (Fig. 3A and Table 1) appeared

normal through the end of gastrulation and 37% survived to stage 32, though many displayed

developmental defects such as a shorter axis or open neural folds. Embryos injected with Ras

12V37G displayed earlier defects. Development was normal through the midblastula

transition (MBT), but then blastomeres near the injection area became necrotic, characterised

by large bleached cells (Fig. 3A), and 30.6% of embryos (n = 186) underwent developmental

arrest prior to gastrulation (stage 10.5) (Fig. 3A). More than 96.6% of Ras 12V37G-injected

embryos failed to survive beyond neurulation (Table 1) and only 1.1% reached the tadpole

stage. To investigate if Ras 12V37G had the same target as XralB, we examined whether the

expression of this Ras mutant disrupted the integrity of the actin cytoskeleton, as does the

constitutively active form of XralB, XralB G23V (Moreau et al., 1999), and we compared the

effects of Ras 12V37G on the actin cytoskeleton with those of Ras 12V35S. Apical

blastomeres from the animal hemisphere, before and after stage 8, were observed by confocal

microscopy following F-actin staining with Rhodamin-Phalloidin. Actin cytoskeleton analysis

in embryos injected with Ras 12V37G was carried out on embryos that did not display cell

necrosis.
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As expected, embryos injected with Ras 12V37G had severely disrupted cortical and

nuclear actin cytoskeletons (Fig. 3B), whereas blastomeres of embryos injected with Ras

12V35S were similar to uninjected controls. To better characterise the timing of F-actin

disruption, we performed a kinetic study (Fig. 4). We found that F-actin is intact until the

2000-cell stage (Fig. 4D) and becomes damaged near MBT (Fig. 4 F).  This timing of Ras

12V37G-induced disruption differs from that of constitutively active XralB G23V, which

induces disruptions as early as the 256-cell stage (corresponding to the technical limit of

analysis).  Nevertheless, the ability of either Ras 12V37G or XralB G23V to disrupt the actin

cytoskeleton, together with the ability of Ras 12V37G to induce activation of XralB, suggests

that Ras 12V37G  induced disruption of the cytoskeleton is mediated by XralB.  To confirm

this apparent specificity, we co-injected the dominant-negative XralB S28N mutant with Ras

12V37S at a ratio of six mRNA molecules to one. Co-injection of XralB S28N rescued early

morphological defects, as embryos had no necrotic cells (Fig. 3A) and survived longer. The

development of these embryos was blocked during gastrulation, but this was expected, as

gastrulation arrest results from injection of XralB S28N alone. We also observed partial

rescue of the cortical actin array when XralB S28N was co-injected with Ras 12V37G (Fig.

3B). We conclude that Ras signalling via XralB and independent of Raf can cause alterations

in the actin cytoskeleton as well as cell necrosis and early embryonic death.  As Raf is known

to be an essential mediator in the activation of several Xenopus mesodermal genes by Ras

(McNicol et al., 1993), our results indicate that Ras/Raf/MAPK and Ras/XralB signalling can

act on independent targets during early Xenopus.

Ral-GDS is a putative embryonic exchange factor of Xral

Having established that Ras can affect early Xenopus morphogenesis via XralB

activation, we wished to determine which molecule mediates this event.  A good candidate for

this function is Ral-GDS, a Ral-GEF-related molecule, which specifically binds to Ras GTP

and activates Ral in a Ras-dependent manner (reviewed in (Wolthuis and Bos, 1999)).  To
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evaluate the role of Ral-GDS during Xenopus embryonic development, we injected murine

Ral-GDS mRNA (1.5 ng) into each blastomere of two-cell stage embryos.  From the 64-cell

stage, depigmentation of the animal hemisphere was observed in these embryos and during

blastula stages ectodermal lesions arise, leading to arrested development at the end of blastula

stage (Fig. 5A). A lower amount of Ral-GDS mRNA (750 pg) induces hyperpigmented cells.

The same spectrum of phenotypes, including opposing effects on cell pigmentation, are seen

in response to high and low doses of the constitutively active XralB G23V (Moreau et al.,

1999). As described for XralB G23V, in embryos injected with low doses of Ral-GDS,

patches of hyperpigmentation are maintained throughout development until the tadpole stage.

At hatching, some hyperpigmented cells are often lost with the vitelline membrane. Thus, the

phenotypic consequences of either Ral-GDS or XralB G23V misexpression are

indistinguishable.

We went on to address whether, like Ras 12V37G or XralB G23V, Ral-GDS

misexpression causes disruptions to the actin cytoskeleton.  Animal blastomeres of embryos

injected with 1.5 ng of Ral-GDS indeed lose their cortical F-actin cytoskeleton (Fig. 5B). In

contrast to Ras 12V37G, Ral-GDS-induced damage is already apparent at cleavage stages, as

is also seen in XralB G23V-injected embryos (Moreau et al., 1999). To confirm that this Ral-

GDS-induced phenotype was dependent on the XralB protein, we asked whether it could be

rescued by co-injection of XralB S28N RNA. Embryos co-injected with XralB S28N and Ral-

GDS, at a ratio of seven mRNA molecules to one, displayed a fainter depigmented phenotype

(Fig. 5A). As expected, the high quantity of XralB S28N also blocked embryonic

development beyond the gastrula stage (Fig. 5A), however no early ectodermal lesions

appeared in rescued embryos and survival up to the time of the XralB S28N-induced block

was significantly enhanced. Co-injection of XralB S28N with Ral-GDS also protected

embryos against F-actin cortical disruption (Fig. 5B). In addition, coinjection of XralB S28N

rescues the hyperpigmentation phenotype arising from lower doses of injected Ral-GDS (data

not shown).  Finally, we examined the activation of the XralB by Ral-GDS, using the pull-
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down assay to precipitate GTP-bound Xral from embryonic lysates. Embryos injected with

750 pg and 1.5 ng of Ral-GDS RNA, respectively, displayed 1.47-fold and 2.8-fold increases

in Ral-GTP levels relative to uninjected embryos (Fig. 5C). These data demonstrate that

disruption of the actin cytoskeleton and cellular depigmentation are induced by Ral-GDS, that

these events require functional XralB signalling, and that the XralB protein is activated by

Ral-GDS. The Ras pathway is therefore able to achieve morphogenetic changes during early

development through the activation of XralB via Ral-GDS.

XralB is activated in the mesodermal marginal zone during gastrulation

In Xenopus, all mesoderm and some endoderm arises from equatorially situated cells

of cleavage-stage embryos, a region known as the marginal zone.  Furthermore, large

molecules residing in- or delivered to the marginal zone cytoplasm of early-stage blastomeres

are inherited by this cell lineage. Consistent with this, mesoderm-specific gene products and

activities are often concentrated in the marginal zone.  Because the mesoderm inducer bFGF

activates XralB, and because the Ras/Raf effector, MAPK is specifically activated in the

marginal zone, we wished to assess the relative activity of XralB in this region. We divided

stage 10.5 embryos into three parts, corresponding to the animal hemisphere, marginal zone

and vegetal hemisphere (Fig. 6A). Protein was extracted from pools of 30 such explants, and

Xral-GTP levels were assessed in pull-down assays. Levels of endogenous Xral-GTP were

clearly highest in medial zone explants (Fig. 6B). To confirm this, we increased the level of

XralB in targetted zones by direct microinjection of XralB mRNA (Fig. 6C). RNA encoding

wild-type XralB (500pg/embryo) was injected into the animal hemisphere, marginal zone or

vegetal hemisphere of four cell-stage embryos.  Protein from whole embryos (n=10) at stage

10.5 was extracted and analysed in pull-down assays. The pull-down results clearly show that

the highest levels of XralB-GTP are obtained from embryos injected in the marginal zone.

This indicates that, like MAPK activation,  XralB activation is most concentrated in the

mesodermal region of Xenopus embryos.
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Loss of XralB function in presumptive mesoderm causes arrest of gastrulation

We previously reported that microinjection of XralB S28N mRNA in Xenopus

embryos causes abnormal embryonic development (Moreau et al., 1999). Developmental

alterations caused by XralB S28N were seen to vary with the XralB S28N RNA concentration

injected, and a diversity of phenotypes was even observed to arise from a fixed quantity of

microinjected RNA. In more severely affected embryos, the blastopore failed to close during

gastrulation. The least affected embryos either had incompletely closed neural tubes or were

bent dorsally at the tailbud stage.  In light of our finding that endogenous XralB activation is

concentrated in the embryonic marginal zone, we decided to assess the relative effects of

disrupting XralB signalling with ectopic XralB S28N that was targetted to different

embryonic regions.  Four-cell embryos were injected with 750 pg of XralB S28N in each

blastomere at the apical animal hemisphere, the marginal zone or the bottom of the vegetal

hemisphere.  We confirmed the location of XralB S28N using ß-galactosidase mRNA as a co-

injected tracer.  When RNA encoding XralB S28N was microinjected into animal (Fig. 7A) or

vegetal hemispheres (Fig. 7C), the majority of embryos survived gastrulation and beyond.

Respectively, only 38.1% (n = 79) and 25% (n = 45) of such embryos failed to develop

normally through the neurula stage. However, when XralB S28N was microinjected in the

marginal zone, most embryos (81%; n =153) exhibited incomplete blastopore closure (Fig.

7B) and developmental arrest between stages 10.5 and 11.5.  Histological sections of

marginal-zone-injected embryos reveal that the coinjected ß-galactosidase is expressed in

mesoderm and that arrest occurs when these labelled cells are undergoing invagination (data

not shown).  These observations support the idea that the most severe gastrulation defects

arise when XralB S28N is targetted to prospective mesoderm and further suggest that XralB

function is specifically required by mesodermal cells to achieve the morphological changes

associated with invagination.  To verify that the effect of XralB S28N during gastrulation was

not due to a specific toxicity of XralB protein in the marginal zone, wild type XralB (4 x 750
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pg) was injected.  No developmental disturbances were observed in these control embryos

(Fig. 7E) and over 90% (n=35) developed normally to the tadpole stage.

As an independent test for an essential role of XralB activity in the marginal zone, we

examined the effect of another protein capable of disrupting Ral signalling. The Ral binding

domain (RalBD) region of the effector protein RLIP, corresponding to the amino acids 397 to

518 of RLIP76 (Wolthuis et al., 1998a), has been shown to be sufficient for direct binding to

GTP-bound Ral in vitro. This RLIP peptide fused to either the glutathion-S-transferase (GST)

protein or the myc peptide was used in injection experiments. As a control, we coinjected

embryos at the four-cell stage with either 4 x 500 pg of GST-RalBD or 4 x 300 pg of myc-

RalBD mRNAs, together with ß-galactosidase, in the apical animal hemisphere, in the vegetal

hemisphere and in the marginal zone. Whole embryos injected with ß-galactosidase, GST, or

myc-tag mRNA alone did not show any morphological changes (data not shown). However,

as observed with XralB S28N, RalBD injected in the marginal zone caused an arrest of

gastrulation (Fig. 7D) between stages 10.5 and 11.5.  In summary, these data demonstrate a

region-specific effect of titrating XralB targets (with constitutively inactivated XralB S28N)

or XralB effector sites (with RalBD). When expressed in the marginal zone, these proteins

disrupt development at the time of mesodermal cell migration, whereas expression in other

regions has much milder consequences.

XralB  signalling is not required for the induction of signature mesoderm genes

In Xenopus, FGF is able to induce the conversion of prospective animal cap ectoderm

into mesoderm (Slack et al., 1987), (Kimelman and Kirschner, 1987) and FGF signalling

through the Ras pathway is required for formation of most mesoderm (Amaya et al., 1991),

(LaBonne and Whitman, 1994), (Kroll and Amaya, 1996). Induction of the expression of a

number of mesodermal genes by FGFs or Ras has been shown to depend on the MAPK and

PI3K  pathways (Whitman and Melton, 1992), (LaBonne and Whitman, 1994), (Umbhauer et

al., 1995) (Carballada et al., 2001).  We wished to assess whether or not XralB signalling is
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similarly required for the activation of these signature mesodermal genes.  Four cell-stage

embryos were injected in the animal hemisphere with mRNA encoding either XralB S28N or

Raf KD, dominant-negative constructs to disrupt Ras/XralB signalling or Ras/Raf signalling

respectively (Fabian et al., 1993). When embryos reached stage 8, animal caps were excised

and explants were cultured for 4 hours in the presence or absence of bFGF. Expression levels

of several mesodermal genes including the pan-mesodermal marker Xbra (Smith et al., 1991),

Xcad3 (Northrop and Kimelman, 1994), Xsnail (Sargent and Bennett, 1990), Xty2 (Nutt et

al., 2001) Xnot (Dassow et al., 1993), Xwnt 8 (Christian et al., 1991) and 11 (Saka et al.,

2000) were assessed by RT-PCR. Whereas the dominant-negative form of Raf inhibited

expression of all markers tested, excepted expression of Xcad3 (Fig. 8), their expression was

not significantly diminished by overexpression of XralB S28N (Fig. 8). Thus, Raf signalling,

but not XralB signalling, is essential for the induction of several key mesodermal genes by

bFGF. Considering our other data implicating XralB signalling in the control of

morphogenesis, these results suggest that mesoderm patterning and mesoderm morphogenesis

are controlled to a degree by independent pathways.
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Discussion

Ras is the upstream element of the RalB pathway

The Ral-GDS factor interacts with Ras (Hofer et al., 1994) and has been shown to be

the guanine nucleotide dissociation stimulator protein for Ral in COS cells (Urano et al.,

1996), (Kishida et al., 1997) and fibroblasts (Matsubara et al., 1999). Another small G

protein, Rap1, contains the same effector domain as Ras (Spaargaren and Bischoff, 1994).

The study of the activation of Ral in human platelets suggested that Ral-GDS could be the

effector protein of Rap1 rather than Ras (Wolthuis et al., 1998a). The potential interaction of

Ral-GDS with either activated Ras or Rap1 suggests that Ral can be activated by at least two

pathways.  However, although Rap1/Ral-GDS interaction has been seen in the two-hybrid

system and in vitro, Rap1 fails to co-immunoprecipitate with Ral-GDS in co-transfected cells,

so compartmentalization of the proteins was suggested (Nancy et al., 1999). Here we have

demonstrated that Ras activates Ral through the Ral-GDS effector in Xenopus embryos. It has

been reported that Ras recruits Ral-GDS to the plasma membrane, which can then induce the

activation of Ral in COS cells (Matsubara et al., 1999). Constitutive binding of Ral-GDS to

membranes has also been reported (Vojtek and Der, 1998).  We have confirmed these latter

data with the observation that mutation of the RalB membrane targeting sequence inhibits the

depigmentation activity of RalB G23V (data not show). It is therefore conceivable that

phenotypes arising from overexpression of wild type Ral-GDS via titration of factors

necessary for the membrane localization of endogenous Ral-GDS.

The XralB effector acts downstream of bFGF, Ras and Ral-GDS

We demonstrate that bFGF, Ras and Ral-GDS can all activate XralB.  Furthermore,

misexpression of Ral-GDS or the constitutively-active RalB G23V causes the same

phenotype.  This phenotypic identity suggests that in early Xenopus embryos, XralB is the key
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target of Ral-GDS. The phenotypes arising from Ras 12V37G misexpression, by contrast,

differ from one another as well as from the Ral-GDS/RalB G23V phenotype. The complete

mesoderm induction by bFGF is likely achieved through its activation of multiple parallel

pathways.  In addition to activating XralB, bFGF activates Raf/MAPK and PI3K via Ras. The

Ras 12V37G misexpression phenotype is qualitatively similar to the Ral-GDS/RalB G23V

phenotype, but its onset is later. This could reflect a regulatory mechanism that normally

delays Ral-GDS activity, such as late regulation of maternal Ral-GDS mRNA translation or a

derepression of its activity by a post-translational modification of the Ral-GDS protein.

Indeed, a negative regulation of Ral-GDS has been demonstrated to occur through the

phosphorylation of its catalytic domain (Rusanescu et al. 2001), and positive regulation of

Ral-GDS occurs via formation of a complex with the N-terminus of PI3-K-dependent kinase

1 (Tian et al., 2002).

Ras 12V37G and Ras 12V35S have distinct effects on development (Fig. 3 and Table

1). Ras 12V37G induces large necrotic blastomeres in the injected area and embryos undergo

developmental arrest by the end of the blastula stage, whereas embryos injected with Ras

12V35S have normal blastomeres and survive until the neurula stage. Hence, two distinct

signalling pathways are controlled by Ras. One, corresponding to Ras 12V35S, activates

mesoderm induction by the classic MAP kinase pathway and causes post-gastrulation

phenotypes. The other, corresponding to Ras 12V37G, destabilizes the actin cytoskeleton

from the MBT stage onward, followed by cell necrosis and early arrest. Consistent with this, a

Raf/MAPK-independent target of Ras has been described to induce membrane ruffling

(Joneson et al., 1996) for a review see (Ridley, 1994).

  The RalB pathway is required for early embryogenesis.

It is now clear that Ras controls several cellular functions by acting on various

downstream  pathways.  However, only the Raf/MAP kinase cascade and more recently
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Ras/PI3K signalling (Carballada et al., 2001) have been investigated in early development.

Previously, we demonstrated the involvement of the Ral protein during embryogenesis. Our

current data strongly suggests a requirement for the RalB cascade during gastrulation. We

show that expression in the marginal zone of either of two distinct inhibitors of RalB

signalling causes arrest during gastrulation. The cellular mechanisms through which the RalB

pathway participates in early development are not yet understood but our results clearly

suggest that the RalB pathway affects cell behaviour by controlling actin cytoskeleton

integrity.  The presence of a distinct blastopore groove in embryos injected with XralB S28N

indicates that gastrulation is succesfully initiated in the absence of RalB signalling.

Gastrulation defects arise later, and only when RalB signalling is disrupted in presumptive

mesoderm. Cells expressing injected RalB S28N are found in the region of involuting

mesoderm of such embryos. These blocked embryos also frequently acquire ectodermal folds

in their animal hemispheres. This could be a secondary consequence of blocked invagination.

If invagination were reduced, an excess of surface tissue that would normally invaginate or

replace invaginated tissue might be expected to arise, and constraint of this excess tissue

within a limited surface would inevitably lead to folding or lesion formation. We therefore

conclude that RalB signalling is essential for the involution of mesoderm at the blastopore lip,

in an autonomous fashion. Considering that RalB signalling can induce actin cytoskeleton

disassembly, we further propose that RalB is required to effect cytoskeletal changes that drive

or enable the cellular shape changes required for involution.

RalB and its partners, Ral-GDS and the putative effector RLIP, are not present in the

Saccharomyces cerivisae genome or in other unicellular eukaryotes (Bauer et al., 1999). This

pathway, therefore, may have a general role in the regulation of multicellular behaviour, as we

have seen for Xenopus gastrulation. Indeed, in Drosophila development, RalB has also been

implicated in the control of cell shape via regulation of the actin cytoskeleton (Sawamoto et

al., 1999a) (Sawamoto et al., 1999b) and is also required for the initiation of border cell

migration during Drosophila oogenesis (Lee et al., 1996).
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In conclusion, we propose that the RalB pathway is activated  in the marginal zone

during gastrulation and participates in the control of the dynamic equilibrium between F- and

G-actin and we further propose that this function is essential for mesoderm involution during

gastrulation. It appears, therefore, that at least three Ras-dependent pathways are required

during development including the cascade of interactions between Ras/Ral-GDS/RalB, the

Ras/Raf cascade and the Ras/PI3K cascade (Fig. 9). Whereas the Ras/Raf and Ras/PI3K

pathways regulate mesodermal gene expression, the Ras/Ral pathway are likely to act directly

on F-actin, independent of gene transcription. This last point is strongly supported by the facts

that the constitutively active RalB G23V perturbs the organisation of F-actin at cleavage

stages, well before the onset of zygotic gene transcription, and that the dominant negative

form of RalB S28N fails to inhibit expression of most mesodermal genes tested.

The idea that distinct pathways control cell behaviour and gene expression is

supported by a variety of data.  In mouse fibroblasts migration and cellular morphogenesis in

response to FGF signalling occurs independently of Ras/Raf/MAP kinase (Liu et al., 1999).

Also, cell migration during tracheal morphogenesis (Skaer, 1997) and (Ribeiro et al., 2002) or

directional migration of mesodermal cells (Gisselbrecht et al., 1996) can occur in the absence

of gene activation. We propose that the actin cytoskeleton dynamics controlling these

morphogenetic changes depends in part on RalB signalling in response to FGFs, without gene

activation.  Understanding the molecular events connecting RalB activation to modification of

the actin cytoskeleton is a key area for future research. A key player will likely be RLIP, a

putative effector of Ral, which is a modular protein containing a Rac/CDC42-GAP domain.

Activated Ral protein might recruit RLIP to the membrane where it interacts with the

Rac/CDC42 protein. Rac/CDC42 is known to control rearragments of F-actin to induce

filopodia and lamellipodia (Nodes and Hall, 1995; Tapon and Hall, 1997).  Thus activated Ral

may cause localized alterations to the actin cytoskeleton via membrane localization, and

activation of an RLIP/Rac/CDC42 cascade culminating in the conversion of F-actin to G-

actin.  In this way, Ral signalling downstream of FGF, Ras and Ral-GDS may regulate



22

morphogenesis at the cellular, and ultimately multicellular, level, in a transcriptionally

independent manner.
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Figure legends

Figure 1

FGF activates the XralB protein. Animal caps explanted from post-MBT embryos were

cultured for 4 h in the presence (+) or absence (-) of 100 ng/ml bFGF (A) and analysed by

RT-PCR for Xbra expression (B) or by immunoblotting to detect the GTP form of Xral (C).

Active Ral-GTP was affinity purified from lysates of 15 animal caps (C) using the Ral-

binding domain of RalBP1, and detected with anti-Ral antibodies. The result is representative

from two separate experiments.

Figure 2

Activation of endogenous XralB by Ras 12V37G. Protein from embryos injected with 2 x

500 pg of Ras 12V35S, Ras 12V37G or Ras 12V37G in combination with 3 ng of XralB

S28N, were extracted, the Ral-GTP was immunoprecipitated with RalBD-conjugated

glutathion-sepharose, and total Ral protein in whole-embryo lysates were detected subsequent

to SDS-PAGE by immunoblotting with specific antibodies, as described in the Materials and

Methods. The signal from each Ral-GTP band from experiments was quantified by

densitometry and analysed by Image-Quant. The values express the ratio of the

immunoprecipitated Ral-GTP signal / total Ral protein signal.

Figure 3

Morphogenetic pertubations induced by the Ral-GDS binding, Raf non-binding, Ras

12V37G. Shown are phenotypic effects at the blastula (stage 8) and neural plate stages (stage

14) resulting from Ras mutant mRNA injections. A - mRNAs encoding Ras 12V35S and

12V37G (500 pg/blastomere) were injected into the animal pole of each blastomere in two-

cell embryos. The white arrow indicates patches of abnormal cells in embryos injected with
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Ras 12V37G. Embryos co-injected with Ras 12V37G and XralB S28N were developmentally

arrested during gastrulation but did not display necrotic cells. B - Analysis of the cortical actin

cytoskeleton in embryos injected with either 12V35S or 12V37G, and rescue effect of XralB

S28N on Ras 12V37G. Embryos were injected with Ras 12V35S or Ras 12V37G mRNA (500

pg/blastomere), or co-injected with Ras 12V37G (500 pg/blastomere) and XralB S28N (3

ng/blastomere), respectively. The white arrow shows the reconstituted cortical actin

cytoskeleton in embryos co-injected with Ras 12V37G and RalB S28N mRNAs. The actin

cytoskeleton of animal caps was analysed at the MBT stage. Scale bars represent 50 µm;

confocal optical sections are 1 µm.

Figure 4

Onset of Ras 12V37G induced actin disruption after the mid-blastula transition.

Embryos were injected in the animal hemisphere with Ras 12V37G mRNA (500

pg/blastomere) (B, D and F) and compared to uninjected embryos (A, C and E). Cortical actin

was analysed at the 500-cell stage (A-B), the 2000-cell stage (C-D), and the MBT (E-F).

Figure 5

Morphogenetic pertubations and XralB activation induced by Ral-GDS.

A – Phenotypic effects of Ral-GDS mRNA and rescue by the XralB S28N mutant.  Embryos

either injected with either Ral-GDS mRNA (1.5 ng/blastomere) or co-injected with XralB

S28N mRNA (4 ng/blastomere) in the animal pole of each blastomere of two-cell stage

embryos. In embryos coinjected with XralB S28N, the white arrow shows ectodermal roll

corresponding to the incomplete closure of the blastopore at the neurula stage. B –Analysis of

cortical actin cytoskeleton of embryos injected with Ral-GDS and rescue effect of XralB

S28N. Embryos were injected with Ral-GDS mRNA (1.5 ng/blastomere) alone or in

combination with XralB S28N (4 ng/blastomere each) mRNAs. The animal cap actin
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cytoskeleton was analysed after the MBT stage. The white arrow shows the reconstituted

cortical actin cytoskeleton in embryos co-injected with Ral-GDS and RalB S28N mRNAs.

Scale bars represent 50 µm and confocal optical sections are 1 µm.  C – Xral activation was

analysed by pull-down as described in the Material and Methods and Figure 2. Precipitated

Ral-GTP and total Ral protein from whole-embryo lysate were detected after immunoblotting

with specific antibodies.

Figure 6

Activation of XralB in the marginal zone of Xenopus embryos.  A and C  - Experimental

scheme showing animal cap (AN), marginal zone (MZ), endoderm (EN) and vegetative pole

(VG) domains that were dissected (A) or injected (C).  Protein from explants (B) or whole,

injected embryos (D) were extracted and analysed for RalB-GTP content by pull-down, as

described in the Material and Methods and in Figure 1.

Figure 7

Targeted disruption of RalB signalling in prospective mesoderm causes gastrulation

defects.  A - Effect of XralB S28N on early development. Embryos were coinjected  in each

blastomere of 4-cell stage embryos with XralB S28N (500 pg/blastomere), and ß-

Galactosidase (500 pg/blastomere) RNAs, in the animal apical hemisphere (A), in the

marginal zone (B) or in the bottom of the vegetal hemisphere (C). D – Effect of the Ral

binding domain of RLIP on early development. Embryos at the 4-cell stage were injected in

the marginal zone with 500 pg/blastomere of mRNA encoding the Ral binding domain of

RLIP (RalBD). These embryos remained blocked during gastrulation, even when control

embryos had reached stage 22. E – Embryos injected in the marginal zone with mRNA

encoding wild-type XralB (4 x 750 pg). The site of RNA expression was monitored by

detection of co-injected ß-Galactosidase expression. B and D show embryos corresponding to

sibling controls at stage 17. Embryos had X-gal-stained cells in the marginal zone.
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Figure 8

bFGF-induced expression of key mesoderm genes is independent of RalB signalling. RT-

PCR analysis of mRNA extracted from animal caps cultured until end of gastrulation.

Embryos at the four-cell stage were injected into the animal hemisphere of each blastomere

with either 4 x 750 pg of XralB S28N or Raf KD RNAs. Animal caps were dissected at the

midblastula stage and cultured, with bFGF (+) (100ng/ml) or without (-) bFGF, until the

siblings embryos reached the gastrulation (stage 12).

Figure 9

Ras signalling is mediated by three independent effector proteins during Xenopus

mesoderm induction and gastrulation. Ras activation leads to signalling through the

Raf/MAP kinase and PI3K pathways to activate gene expression and through the Ral-

GDS/Ral/RLIP pathway to regulate assembly and disassembly of the actin cytoskeleton in

marginal-zone-derived cells during gastrulation.



32

Table I - Comparison of effects on development of both

constitutively activated form of Ras specific to Raf (Ras 12V35S) and

specific to RalGDS (Ras 12V37G).

Arrest of Development

Before

10 .5

between

10.5 to 12

between

12 to 17

between

17 to 30

Survival

After 30

Ras 12V37G 57

(30.6%)

5

(2.7%)

82

(44.1%)

40

(2.2%)

2

(1.1%)

Ras 12V35S 0 0 40

(40%)

23

(23%)

37

(37%)

Note. Each blastomere of two-cell embryos was injected with 500 pg

of mRNA.
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