
Note on winning positions on pushdown games with

omega-regular winning conditions

Olivier Serre

To cite this version:

Olivier Serre. Note on winning positions on pushdown games with omega-regular winning
conditions. Information Processing Letters, Elsevier, 2003, 85, pp.285-291. <10.1016/S0020-
0190(02)00445-3>. <hal-00009319>

HAL Id: hal-00009319

https://hal.archives-ouvertes.fr/hal-00009319

Submitted on 3 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00009319

Note on Winning Positions on Pushdown

Games with ω-Regular Conditions

Olivier Serre 1

LIAFA, Université Paris VII
2, place Jussieu, case 7014
F-75251 Paris Cedex 05

Abstract

We consider infinite two-player games on pushdown graphs. For parity winning
conditions, we show that the set of winning positions of each player is regular and
we give an effective construction of an alternating automaton recognizing it. This
provides a DEXPTIME procedure to decide whether a position is winning for a
given player. Finally, using the same methods, we show, for any ω-regular winning
condition, that the set of winning positions for a given player is regular and effective.

Keywords: Automata, Games, Infinite Graphs, Pushdown Processes.

1 Introduction

Two-player games on finite and infinite graphs are being studied for several
years and one of the central questions is to decide the winner in such a game.
This problem closely depends on the winning condition that is considered. For
reachability and Büchi winning conditions there are beautiful methods based
on fix-points to compute the winning positions [10]. For parity conditions more
complicated methods are also known [7,12]. Parity conditions are specially in-
teresting as deciding the winner in such game is equivalent to the mu-calculus
model checking problem [4]. On the other hand, pushdown systems define an
interesting class of infinite graphs enjoying several nice characterizations [9]
and they provide a natural model for infinite systems. All these reasons moti-
vate the study of games on pushdown graphs.

1 This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (GAMES),
(contract HPRN-CT-2002-00283), see www.games.rwth-aachen.de.

Preprint submitted to Elsevier Science 5 December 2002

Walukiewicz provided in [11] a DEXPTIME algorithm to decide the winner
in a pushdown game, and he showed also a DEXPTIME lower bound for this
problem. As his construction is not uniform (a different finite game has to
be considered for any configuration), Cachat recently proposed in [2] a uni-
form construction for reachability and Büchi conditions, by showing that the
set of winning positions is regular. More precisely, he proposed an effective
construction of an alternating automaton recognizing precisely the winning
configurations. Cachat also states in [1] that the set of winning positions for
parity games is regular. The proof of [1] is only sketched and the cmoplexity
of the computation is not clear. Note that the results of this paper were found
independently of [1].
In this paper we extend Cachat’s results, proving that the set of winning po-
sitions is regular for any ω-regular winning condition. We provide an effective
and efficient construction for these conditions, that leads in the special case
of parity conditions to a uniform DEXPTIME algorithm to decide whether
a configuration is winning. For this we use slightly different methods from
Cachat’s techniques, which were essentially based on a fix-point approach that
cannot be extended to parity games. The main idea is to consider conditional
games and Walukiewicz’s decidability results for parity games on pushdown
processes. This yields a very general method for showing the regularity and
the decidability of ω-regular games played on pushdown graphs.
Note that another interesting method was given by Kupferman and Vardi in
[6]. They noted that two-way alternating automata on trees allow a simpler
and more natural approach to parity games on pushdown graphs. They use the
decidability of the emptiness problem for alternating two-way tree automata.

2 Notations and Definitions

2.1 Pushdown Processes

Throughout the paper, Γ represents a finite alphabet and Γ∗ stands for the
set of finite words over Γ. The empty word is denoted by ε. Finally, we set
Γ+ = ΓΓ∗ and we denote by Γ∞ the set of finite and infinite words over Γ.

Definition 1 (Pushdown Process) A pushdown process is a tuple A =
(Q, Γ,⊥, ↪→) where Q is the finite set of states, Γ is the finite set of stack
symbols, ⊥ ∈ Γ is a special stack symbol (bottom) and ↪→ is the transition
relation. A configuration of A is a pair (q, u) with q ∈ Q and u ∈ (Γ \ {⊥})∗⊥
(the top stack symbol is the leftmost symbol of u). The bottom stack symbol
⊥ is never put nor removed from the stack. The rewriting rules that can be
applied to the set of configurations of A are of the following form:

2

• Push: (p, a) ↪→ (q, ba), where p, q ∈ Q, a ∈ Γ and b ∈ (Γ \ {⊥}).
• Pop: (p, a) ↪→ (q, ε), where p, q ∈ Q and a ∈ (Γ \ {⊥}).

By (p, v) → (q, w) we mean that from the configuration (p, v) the pushdown
process can go in one step to (q, w). Note that the emptiness test of the stack
corresponds to a push rule with a = ⊥. This naturally leads to associate with
any pushdown process an infinite graph as follows:

Definition 2 (Pushdown Graph) With any pushdown process A one can
associate a pushdown graph defined as a directed graph having the set of con-
figurations of A as nodes and the edges of which are given by the relation
→.

2.2 Playing on a Pushdown Graph

To define a two-player game on a pushdown graph G = (V,→) associated with
a pushdown process A, we need a partition QI t QII of the set of states Q.
From this partition follows a partition VI tVII of the nodes V of G among the
two-player: the nodes of player I are those whose control state belongs to QI

and the others are player II’s nodes. A play from a node v proceeds as follow:
if v ∈ VI , player I chooses a successor v′ such that v → v′ in G. Otherwise
it is player II’s turn to choose such a successor. If there exists no such v′ the
play ends, otherwise the play goes on from v′. Therefore a play can be either
finite or infinite and is represented by a (finite or infinite) word on V .
All the winning conditions considered in this paper depend on a coloring
function. We consider a finite set C of positive integers that we call colors
and we define a coloring function c as a function assigning to any state in Q a
color in C. This function is naturally extended into a coloring function on V ,
also noted c, by setting c(q, v) = c(q). Therefore with any play v1v2 . . . we can
associate a word γ ∈ C∞: γ = c(v1)c(v2) The winner of a play v1v2 . . .
is determined by a condition on γ, for instance by a reachability condition
(Does a given color eventually appear?), a Büchi condition (Does a given color
appear infinitely often?), a parity condition (Is the parity of the smallest color
appearing infinitely often even?) or more generally an ω-regular condition (see
Section 4). In the special case of finite plays, the winner can be determined
considering the last state reached or another condition (for instance player I
wins whenever a node with no successor is reached). In the following we will
assume that all plays are infinite as, adding loops allows us to transform any
finite play into a looping infinite play (and coloring in accordance with the
conditions on finite plays does not change the winner).

3

2.3 Strategies and Determinacy

A strategy ϕ for player X (X = I or II) is a partial function ϕ : V ∗VX → V
such that for any word α ∈ V ∗, and any node v ∈ VX having a successor in G
we have, v → ϕ(α · v). In other words a strategy is a function that, with the
beginning of a play, associates a valid successor (if it exists). A player plays
according to a strategy ϕ if whenever it is his turn to choose a move he chooses
ϕ(α), where α is the current prefix of the actual play.
A strategy ϕ is a winning strategy from a node v for a player if, in a play
starting from v, whatever his adversary plays, playing according to ϕ is always
possible (that is ϕ is defined) and insures the victory. Finally, a position v ∈ V
is a winning position for a player, if he has a winning strategy in the game
starting from v. We denote by WI and WII the respective sets of winning
positions of players I and II.
An important question is the determinacy of a game, that is to decide if one
of the players has a winning strategy. If this holds, the game is determined. In
the special case of parity games (that is, games where player I wins if and only
if the smallest color infinitely repeated is even) on arbitrary infinite graphs we
have the following result [12]:

Theorem 1 Parity games are determined. Moreover, for any winning posi-
tion for player X, there exists a memoryless strategy, that is a winning strategy
ϕ : VX → V that only depends on the current position.

2.4 P-Alternating Automata

In the following we are interested in recognizing with a finite automaton win-
ning positions on a game graph generated by a pushdown process, that is we
want to recognize pairs of the form (q, u) where q ∈ Q and u ∈ Γ∗. For this
we use the notion of P-automaton [5]. A P-automaton works exactly as a
finite automaton except that it does not have initial states: it accepts a pair
(q, u) ∈ Q × Γ∗ if there exists, from q, an accepting run on the word u.
For convenience, we will use alternating P-automata. An alternating P-automaton
is a tuple B = (Q, Γ, δ, F), where Q is a finite set of states, F is the set of final
states and δ : Q × Γ → B+(Q) is the transition function, where B+(Q) is the
set of all negation-free boolean formulas over Q.
A run of an alternating automaton is a finite tree whose nodes are labeled with
states of Q. The level of a node is the length of the word labeling the path from
the root to this node. A run associated with a configuration (q, u = a1a2 · · ·an)
is defined by induction:

(1) The root is labeled by q.

4

(2) The nodes of level n are leaves (i.e. they have no sons). Leaves labeled
by a final state are marked as accepting (otherwise, they are marked as
rejecting).

(3) If q labels a node v of level i−1 < n and δ(q, ai) = C1∨C2∨· · ·∨Cm with
Cj = qj,1∧qj,2∧· · ·∧qj,nj

then v has nj sons for some j, 1 ≤ j ≤ m, labeled
by qj,1, . . . , qj,nj

. That is, v must have as sons all the states appearing in
one of the conjunctions Cj . In the special case where δ(q, ai) = tt (tt
is the true formula), v is a leaf marked as accepting. Symmetrically if
δ(q, ai) = ff (ff is the false formula), v is a leaf marked as rejecting.

A pair (q, u) is accepted by B if there exists a run r associated with (q, u) such
that all leaves are marked as accepting.

3 Games on Pushdown Graphs

In this section our aim is to extend to parity games the following result stated
by T. Cachat in [2] which generalizes the construction proposed by Esparza
et al. for reachability for 1-player games on pushdown graphs [5]:

Theorem 2 For any two-player game on a pushdown graph constructed from
a pushdown process A = (Q, Γ,⊥, ↪→) with a reachability or Büchi winning
condition one can construct a P-alternating automaton recognizing the set of
winning configurations for player I. Moreover the automaton is of exponential
size and can be constructed in time O(|A|2c|Q|2), where c is a constant.

We therefore consider a parity game played on a pushdown graph G con-
structed from a pushdown process A = (Q, Γ,⊥ ↪→). To construct a P-
alternating automaton recognizing WI we first need some preliminary work.

3.1 Conditional Games and Preliminary Results

First we introduce some conditional games: for any subset R ⊆ Q we consider
the parity game played on the graph G(R) defined by the pushdown process
A(R) obtained from A as follows:

• We add two states, w and l of respective colors 0 et 1 (they may belong to
any of the two players). w stands for winning and l stands for loosing

• We suppress all rules (p,⊥) ↪→ (q, a⊥).
• We add a rule (r,⊥) ↪→ (w,⊥) for any r ∈ R.
• We add a rule (t,⊥) ↪→ (l,⊥) for any t /∈ R.
• Finally we add the loops (w,⊥) ↪→ (w,⊥) and (l,⊥) ↪→ (l,⊥).

5

By construction the game G(R) has the same winning condition as the initial
game G for plays where the stack is never emptied (that is where a config-
uration (q,⊥) is never reached). In the case where the stack is emptied, the
first player wins if and only if the control state belongs to R. In this game
we denote by WI(R) and WII(R) the respective sets of winning positions for
player I and player II. Note that the game G(R) is determined.
We have the following result:

Proposition 1 For any state p and any letter a ∈ Γ, we have:

(1) If (p, a⊥) ∈ WI(∅) then for all words u ∈ Γ∗, (p, au⊥) ∈ WI .
(2) If (p, a⊥) ∈ WII(Q) then for all words u ∈ Γ∗, (p, au⊥) ∈ WII .

Proof: We just prove (1) as (2) follows from symmetry. Let (p, a⊥) ∈ WI(∅)
and let u ∈ Γ∗. As (p, a⊥) ∈ WI(∅), player I has a winning strategy in G(∅)
from (p, a⊥). This strategy ensures that starting from (p, a⊥), the stack will
never be emptied, whatever player II plays. Thus, we obtain a corresponding
winning strategy in G from (p, au⊥): player I forgets u and plays the same
way as in G(∅) from (p, a⊥). This leads to a winning play where au will never
be removed from the stack. �

Note that taking u = ε in the preceding proposition directly implies that
WI(∅) ∩ WII(Q) = ∅. The last case to consider is the one of configurations
(p, a⊥) /∈ WI(∅) ∪ WII(Q), that is configurations (p, a⊥) ∈ WI(Q) ∩ WII(∅).
In this case, we must specify which states player I can impose to reach when
popping a. We need for generalizing Proposition 1 the following set of goals:

R(p, a) = {R ⊆ Q | (p, a⊥) ∈ WI(R) and (p, a⊥) /∈ WI(R
′) for any R′ (R}

Note that R(p, a) = {∅} if and only if (p, a⊥) ∈ WI(∅) and R(p, a) = ∅ if and
only if (p, a⊥) /∈ WI(Q) that is (p, a⊥) ∈ WII(Q).

Proposition 2 Let u ∈ Γ∗, p ∈ Q, a ∈ Γ. Then we have (p, au⊥) ∈ WI if and
only if there exists some R ∈ R(p, a) such that (q, u⊥) ∈ WI for all q ∈ R.

Proof: Let (p, au⊥) ∈ WI and let ϕ be the associated winning strategy of
player I in G. In any play where I plays according to ϕ consider the state q
(if it exists) such that (q, u⊥) is the configuration reached when a is popped
for the first time. Let R be the set of such states q. We can always choose ϕ
such that this set R is minimal among the sets constructed from all winning
strategies. First note that (p, a⊥) ∈ WI(R). In order to win from (p, a⊥) in
G(R), player I plays as in G from (p, au⊥): either he wins without a being
popped, or a is popped and then the play goes to a state (r,⊥) with r ∈ R and
then loops in (w,⊥). Finally, for any q ∈ R, there exists, by definition of R, a
play where player I plays according to ϕ such that the configuration (q, u⊥)

6

is reached. Therefore, the strategy ϕ is also a winning strategy for player I
from (q, u⊥) in game G and thus (q, u⊥) ∈ WI .

Conversely, assume that there exists R ∈ R(p, a) such that for any q ∈ R,
(q, u⊥) ∈ WI . If R is empty this implies that (p, a⊥) ∈ WI(∅) and then
(p, au⊥) ∈ WI by Proposition 1. Otherwise, as (p, a⊥) ∈ WI(R) player I
has a winning strategy in G(R) from (p, a⊥). herefore, in order to win from
(p, au⊥) in G player I forgets u and plays as in G(R) from (p, a⊥). Either a is
never popped and then player I wins, or a is popped and then a configuration
(r, u⊥) is reached with r ∈ R and then player I has a winning strategy by
hypothesis. �

We define now a P-alternating automaton B = (Q, Γ, δ, F) recognizing the
winning configurations in a parity game on a pushdown graph defined by
A = (Q, Γ,⊥, ↪→):

• δ(p, a) =
∨

R∈R(p,a)

∧

q∈R

q, for every p ∈ Q, a ∈ Γ and δ(p,⊥) = p.

Note the following special cases:
· If R(p, a) = {∅}, then the above definition corresponds to δ(p, a) = tt.

As in this case we have (p, a⊥) ∈ WI(∅), the definition is consistent with
Proposition 1.

· If R(p, a) = ∅, then the above definition corresponds to δ(p, a) = ff . As
in this case we have (p, a⊥) ∈ WII(Q), the definition is consistent with
Proposition 1.

• F = {f ∈ Q | (f,⊥) ∈ WI}.

The algorith proposed in [11] by Walukiewicz can be used to compute the sets
R(p, a). Therefore we have:

Theorem 3 For any two-player game on a pushdown graph with a parity
winning condition one can construct a P-alternating automaton B that rec-
ognizes the set WI of winning positions for player I. Moreover, B gives an
exponential-time procedure to decide whether a configuration is winning for
player I.

Proof: The automaton B is the one described above. We reason by induction
on the length l of the stack to prove that the set of pairs (p, u⊥) where |u| = l
recognized by B is exactly the set of configurations in WI of stack’s height l.

• The case l = 0 follows from the definition of F .
• Let l ≥ 0 such that the result holds. Let us prove that it is also true for

l + 1. Let (p, au⊥) be accepted by B such that |u| = l. As (p, au⊥) is
recognized, there exists R ∈ R(p, a) such that for any q ∈ R, (q, u⊥) is
recognized by B and then, by induction hypothesis, (q, u⊥) ∈ WI . Conse-
quently, (p, au⊥) ∈ WI by Proposition 2.

7

Conversely, let (p, au⊥) be in WI such that |u| = l. Using Proposition
2, there exists R ∈ R(p, a) such that ∀q ∈ R, (q, u⊥) ∈ WI . If R = ∅,
then δ(p, a) = tt and (p, au⊥) is recognized by B. Otherwise for all q ∈ R,
(q, u⊥) ∈ WI and then (q, u) is recognized by B by induction hypothesis.
Therefore, we have an accepting run in B for (p, au⊥): we choose for suc-
cessors of p the states of R and then we have an accepting run for each of
them while reading u. Thus (p, au⊥) is recognized by B.

Once B is constructed we can decide in time O(|B| + |u|) whether a config-
uration (p, u) is accepted by B [3]. Note that the number of states of B is
linear, however the number of transitions can be exponential. Moreover based
on Walukiewicz’s algorithm [11] B can be constructed in time O(kn2cmn2

) ,
where k = |Γ|, c is a constant, m = |Q| and n = |C|. Effectively, there are
O(mk2m) problems of the form Does R belong to R(p, a)? or of the form Does
(f,⊥) belong to WI? and all these problems reduce to a unique problem on
parity game on a finite graph that is solved in time O(kn2cmn2

) [11]. This gives
us a DEXPTIME procedure to decide if a configuration is winning. �

4 Regularity of Winning Set for ω-Regular Conditions

To generalize Theorem 3 we introduce a more general winning condition:

Definition 3 (ω-Regular Conditions) An ω-regular condition L is an ω-
regular language on the alphabet of colors C. A play v1v2 . . . is won by player
I under condition L if and only if γ = c(v1)c(v2) . . . belongs to L.

Theorem 4 Let G be a pushdown graph constructed from a pushdown process
A and let L be a regular condition. The set WI of winning positions for player
I in the game played on G with the winning condition L is regular and can be
effectively constructed. Moreover each player has a winning strategy realized
by a pushdown automaton.

Proof: Let set A = (Q, Γ,⊥, ↪→). As L is regular, it is recognized by a finite
deterministic parity automaton [8] B = (Q′, C, q0, ·, c

′, C ′) with alphabet C
(the set of colors of A) and where Q′ is the set of states of B, q0 is the
initial state, · is the transition function, C ′ ⊂ N is a finite set of colors and
c′ : Q′ → C ′ is the coloring function of B. The automaton B accepts an infinite
word α ∈ C∞ if and only if the smallest color appearing infinitely often while
reading α is even.
The main idea is to define a new pushdown game by composing B with A in
order to compute on-the-fly the behavior of B on γ while playing the game and
therefore to express the acceptance condition of B on γ as a parity winning
condition on this new game. We thus define a new pushdown process Ã =

8

(Q×, Q′,⊥, ↪→↪→) where ↪→↪→ is defined by: ((p, p′), a) ↪→↪→ ((q, q′), u) if and only
if (p, a) ↪→ (q, u) and p′ · c(p) = q′. We finally consider the parity game G̃
defined by Ã with the coloring function c̃((p, p′)) = c′(p′). The result follows
from the fact that a configuration (p, u) is winning in G for player I if and
only if the configuration ((p, q0), u) is winning in G̃ for player I.
Consider a winning position (p, u) for player I in G. Therefore, ((p, q0), u) is a
winning position in G̃ and, as G̃ is a parity game played on a pushdown graph,
it follows from [11] that there is a winning strategy realized by a pushdown
automaton. But, with a winning strategy in G̃ from ((p, q0), u), it is not difficult
to associate a winning strategy in G from (p, u) by constructing on-the-fly the
associated play in G̃ and then by playing in accordance with the corresponding
winning strategy in G̃. Thus it follows that the winning strategy in G can be
given by a pushdown automaton. �

5 Conclusion

We have shown how to construct, for any pushdown game with an ω-regular
winning condition, an alternating automaton recognizing the winning posi-
tions of a given player. Unfortunately some costly and complicated precom-
puting steps are needed. Future work aims at simplifying these steps as they
concern similar instances of the same problem and as the algorithm used to
solve them was designed for a more general problem. However, the global com-
plexity of deciding the winner will not be improved, as Walukiewicz proved the
DEXPTIME completeness of deciding the winner even with the weak winning
condition of reachability.

In fact, Proposition 2 is still true for any Borel condition specified by a lan-
guage L ⊆ Cω such that any suffix of a word in L is in L and any word obtained
by adding a finite prefix to a word in L is in L. Therefore, it follows directly
that under such condition, the set of winning positions is regular (without be-
ing necessarily computable). Consequently, another interesting investigation
would be to look at more general Borel conditions than regular conditions.

I gratefully acknowledge the many helpful suggestions of Anca Muscholl during
the preparation of the paper. I also wish to express my thanks to Marcin
Jurdzinski, Marc Zeitoun and Wieslaw Zielonka for their remarks on the paper,
and to the anonymous referees.

9

References

[1] T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. To
appear in ENTCS. www-i7.informatik.rwth-aachen.de/ cachat.

[2] T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In
Proceedings of ICALP’02, volume 2380 of Lecture Notes in Computer Science,
pages 704–715. Springer, 2002.

[3] K. Chandra, D. Kozen, and J. Stockmeyer. Alternation. Journal of the
Association of Computing Machinery, 28(1):114–133, 1981.

[4] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In FOCS: IEEE Symposium on Foundations of Computer
Science (FOCS), pages 368–377, 1991.

[5] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proceedings of CAV’00, volume 1855 of
Lecture Notes in Computer Science, pages 232–247. Springer, 2000.

[6] O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning
about infinite-state systems. In Proceedings of CAV’00, volume 1855 of Lecture
Notes in Computer Science, pages 36–52. Springer-Verlag, 2000.

[7] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and
Applied Logic, 65:149–184, 1993.

[8] A.W. Mostowski. Regular expressions for infinite trees and a standard form for
automata. In Computation theory, volume 208 of Lecture Notes in Computer
Science, pages 157–168. Springer, Berlin, 1984.

[9] D. Muller and P. Schupp. The theory of ends, pushdown automata, and second-
order logic. Theoretical Computer Science, 37:51–75, 1985.

[10] W. Thomas. On the synthesis of strategies in infinite games. In Proceedings
of STACS ’95, volume 900 of Lecture Notes in Computer Science, pages 1–13.
Springer, 1995.

[11] I. Walukiewicz. Pushdown processes: games and model checking. Information
and Computation, 157:234–263, 2000.

[12] W. Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200(1-2):135–183,
1998.

10

