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October 26, 2005
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Abstract. Let (Bt; t ≥ 0) be a one- dimensional Brownian motion, with local time process (Lxt ; t ≥
0, x ∈ R). We determine the rate of decay of ZVt (x) := Ex

[

exp
{

− 1

2

∫

R

Lyt V (dy)
}]

, t ≥ 0, x ∈ R as

t goes to infinity, where V (dy) is a positive Radon measure on R. If

∫

R

(1 + |y|)V (dy) <∞, we prove

that ZVt (x) ∼
t→∞ϕV (x)t−1/2, where the function ϕV solves the Sturm-Liouville equation (ϕV )”(dx) =

ϕV (x)V (dx), with some boundary conditions. If

∫ 0

−∞
(1 + |y|)V (dy) <∞ and V (dy) is ”large” at

+∞, the asymptotics of ZVt (x) is the same as previously. When V (dy) is ”large” at ±∞, ZVt (x) is
equivalent to ke−γ0t, t → ∞. If V (dy) = [λ/(θ + y2)]dy, λ, θ > 0, the rate of decay is polynomial :
ZVt (x) ∼

t→∞kϕV (x/
√
θ)t−n, with n = (1 +

√
1 + 4λ)/4. Taking V (dy) = [1/(1 + |y|α)]dy, 0 < α < 2 we

only obtain a logarithmic equivalent : ln(ZVt (x)) ∼
t→∞ − kt−

α−2
α+2 .

Let Qx,t be the probability measure defined on the canonical space Ω = C([0,+∞[), by :

Qx,t =
1

ZVt (x)
exp

{

− 1

2

∫

R

LytV (dy)
}

Wx,

where Wx denotes the Wiener measure. We prove that Qx,t converges as t→ ∞ to Qx and Qx is the
law of the diffusion process Xx

t , solution of the stochastic differential equation :

Xt = x+Bt +

∫ t

0

ϕ′
V

ϕV
(Xs)ds; t ≥ 0.

Key words and phrases : Normalized exponential weights, penalization, Sturm-Liouville equation,
Ray-Knight’s theorems, rate of convergence, Bessel processes.
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1 Foreword and perspectives

This paper is the first in a series of four related papers, numbered I to IV, a sketchy description of
which may be of interest to the reader.
Stimulated by the results obtained in I (see the above abstract), we consided, in II, some asymptotic
problems obtained from weighting the Wiener measure with a function of the maximum, or minimum,
or local time up to time t, and letting t→ ∞. The limit laws exist in some generality; they are not the
distribution of a Markov process (Xt), but rather the two dimensional process

(

Xt, St := sup
0≤s≤t

Xs; t ≥

0
)

are Markovian. We then say that (Xt) is max-Markovian.
In III, we study the existence and characterization of the limit laws for Brownian bridges, on the time
interval [0, t], as t→ ∞; weighted again by a function of the maximum, or minimum, or local time up
to time t.
In IV, we study the variants of the Pitman and Ray-Knight theorems for the max-Markovian process
obtained in the previous papers.

2 Introduction

1.1 Consider a general nice Markov process ((Xt)t≥0, (Ft)t≥0, (Px)x∈E) taking values in (E, E), with

extended generator L, i.e. : ϕ ∈ D(L) iff : Mϕ
t := ϕ(Xt)−ϕ(X0)−

∫ t

0 Lϕ(Xs)ds, t ≥ 0, is a martingale,
for some function Lϕ, and its operator ”carré du champ” Γ(ϕ, ψ), defined via :

d < Mϕ,Mψ >t
dt

= Γ(ϕ, ψ)(Xt). (ϕ, ψ ∈ D(L)). (2.1)

Indeed, by ”nice Markov process”, we mean in particular that D(L) is an algebra; hence (cf [8]) it
follows that :

Γ(ϕ, ψ) = L(ϕψ) − ϕLψ − ψLϕ, ϕ, ψ ∈ D(L). (2.2)

1.2 Associated with the family (Px)x∈E , we shall consider two other families of probabilities
constructed from the (Px)x∈E.
a) The first family(QVx,t). For a potential function V : E 7→ R, such that :

ZVt (x) := Ex[exp{−1

2

∫ t

0

V (Xs)ds}] <∞, for every x ∈ E, (2.3)

we define the family of (normalized) probabilities :

QVx,t =
exp{− 1

2

∫ t

0
V (Xs)ds}

ZVt (x)
Px|Ft

. (2.4)

Note that, in general, these laws are not coherent, i.e. for s < t,

QVx,t|Fs
6= QVx,s. (2.5)
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b) The second family(Pϕx ). Let ϕ > 0 be an element of D(L), then it is well-known that :

ϕ(Xt)

ϕ(x)
exp{−

∫ t

0

Lϕ

ϕ
(Xs)ds} is a (Ft)-local martingale w.r. to any Px, for x ∈ E. (2.6)

We suppose that it is a martingale, so that we can define a second (Markov) family of probabilities :

Pϕx|Ft
:=

ϕ(Xt)

ϕ(x)
exp{−

∫ t

0

Lϕ

ϕ
(Xs)ds} Px|Ft

. (2.7)

As a converse to (2.6), if ϕ ∈ D(L), and there exists g such that
(

ϕ(Xt) exp{−
∫ t

0

g(Xu)du}; t ≥ 0
)

is a ((Px), (Ft)) local martingale, then Lϕ = gϕ.
c) Let Vϕ be the potential function associated with ϕ ∈ D(L), ϕ > 0 :

1

2
Vϕ =

Lϕ

ϕ
. (2.8)

It is clear that the following identities hold :

Vcϕ = Vϕ, QV+c
x,t = QVx,t, for any c > 0, (2.9)

and that the two probabilities introduced in a) and b) are related via :

Pϕx|Ft
:=

Z
Vϕ

t (x)

ϕ(x)
ϕ(Xt)Q

Vϕ

x,t. (2.10)

It goes back to [19] that, under (Pϕx ), (Xt) is a Markov process with extended infinitesimal generator

Lϕ = L+
1

ϕ
Γ(ϕ, ·). (2.11)

There exists a simple relation between the Markovian laws (Pϕx ) (or, rather the associated semi-group
(Tϕt )) and ZVϕ , namely :

ϕ(x)Tϕt (
1

ϕ
)(x) = Z

Vϕ

t (x) = Ex[exp{−1

2

∫ t

0

Vϕ(Xs)ds}], (2.12)

which follows from (2.7).
1.3 We are interested in finding some conditions on V which ensure the weak convergence, as

t→ ∞, of QVx,t. We have two possibilities :
- to a given ϕ > 0 in D(L), we may associate the potential function Vϕ defined by (2.8).
- conversely, starting from a potential function V , we may look for the solutions ϕ of the Poisson

equation (which is the Sturm-Liouville equation in the Brownian case) :

Lϕ

ϕ
=

1

2
V. (2.13)

We shall see later that a particular function ϕV plays a central role in our discussion of the convergence.
1.4 A meta-theorem and its ”proof”.

The following statement shall be rigorously proved under various hypotheses all throughout our paper.
It may be used as a guideline for the reader, and shall be refered to as the generic theorem.
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Theorem 2.1 Assume that, for some k ≥ 0, one has :

lim
t→∞

(

tkZVt (x)
)

= lim
t→∞

(

tkEx[exp{−1

2

∫ t

0

V (Xs)ds}]
)

= ϕV (x). (2.14)

Then, ϕV is a solution of (2.13),
{ϕV (Xt)

ϕV (x)
exp{−1

2

∫ t

0

V (Xu)du}; t ≥ 0
}

is a ((Px), (Ft)) martingale,

and for any Λs ∈ Fs,

lim
t→∞

QVx,t(Λs) = PϕV
x (Λs). (2.15)

Proof of Theorem 2.1. Let s > 0 be fixed, Λs ∈ Fs and t > s. We start from (2.4), and we write
:

QVx,t(Λs) =
Ex

[

1Λs
exp{− 1

2

∫ s

0
V (Xu)du}EXs

[

exp{− 1
2

∫ t−s
0

V (Xh)dh}
]]

Ex[exp{− 1
2

∫ t

0 V (Xu)du}]
, (2.16)

and we multiply both the numerator and denominator by tk. The result will follow after some justifi-
cation for the passage to the limit inside the expectation (for the numerator).

The ”proof” shows that the normalization function t 7→ tk in (2.14) may be replaced by any positive

and non-decreasing function λ such that lim
t→∞

(λ(t+ s)

λ(t)

)

= 1, and also admits some simple extension

for λ(u) = ceau, say.
1.5 Back to the Brownian framework.

Here, E = R, L = 1
2
d2

dx2 ,Γ(f, g)(x) = f ′(x)g′(x), Px = Wx is the Wiener measure, and we write Bt
instead of Xt since, in this case,

(

(Bt; t ≥ 0); (Px;x ∈ R)
)

is a one-dimensional Brownian motion.
Hence, we are interested in the Sturm-Liouville equation :

ϕ” = V ϕ, (2.17)

and we have Lϕ =
1

2

d2

dx2
+

( d

dx
(logϕ)

) d

dx
, µ(dx) = ϕ2(x)dx is invariant under (Tϕt ), the semigroup

associated with (Pϕx ), and :
< Tϕt f, g >µ=< f, Tϕt g >µ,

< Lϕf, g >µ=< f,Lϕg >µ= −1

2
< f ′, g′ >µ .

Since Brownian motion admits a (bi-continuous) family of local times (Lxt ; t ≥ 0, x ∈ R), we may
define the normalization factor ZVt (x) (cf (2.3)) when V is a non-negative Radon measure on R, in
the following way :

ZVt (x) = Ex

[

exp
{

− 1

2

∫

R

Lyt V (dy)
}]

. (2.18)

Abusing notation, we use the same letter V , whenever V stands for a function or a Radon measure.
1) We investigate the integrable case, i.e. when V (dx) satisfies :

∫

R

(1 + |x|)V (dx) <∞. (2.19)

In Theorem 4.1, we prove that
√
tZVt (x) converges as t → ∞ to a real number denoted ϕV (x).

Moreover ϕV is a convex function which takes its values in ]0,∞[ and is the unique solution to the
Sturm-Liouville equation (2.17), with boundary conditions :

lim
x→+∞

ϕ′
V (x) = − lim

x→−∞
ϕ′
V (x) =

√

2

π
. (2.20)
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This leads us to relax the assumption (2.19). We shall discuss whether V (dx) is ”large” at infinity or
not.

2) Let us examine the first case. Suppose for simplicity that V is a function.
We begin with an intermediate case. We say that V is asymmetric if :

∫ 0

−∞
(1 + |x|)V (x)dx <∞, (2.21)

and

lim inf
x→∞

(

x2αV (x)
)

> 0, for some α < 1. (2.22)

Then (cf Theorem 5.1), the rate of decay of ZVt (x) is unchanged :
√
tZVt (x) converges, as t → ∞, to

ϕV (x) : roughly speaking, (2.21) ”dominates” (2.22). Again the function ϕV solves the Sturm-Liouville
equation (2.17), but with the new boundary conditions :

lim
x→−∞

ϕ′
V (x) = −

√

2

π
; lim

x→+∞
ϕV (x) = 0. (2.23)

3) Let us now investigate the case where V (dx) is small at infinity but does not satisfy (2.19).
We restrict ourselves to two examples:

V (x) =
λ

θ + x2
, where λ > 0, θ ≥ 0. (2.24)

and

V (x) =
λ

1 + |x|α , where λ > 0, 0 < α < 2. (2.25)

Suppose V is given by (2.24). If θ = 0 then (cf Theorem 7.1) :

lim
t→∞

(

tnEx

[

exp
{

− λ

2

∫ t

0

ds

B2
s

}])

= x2n 1

2n
Γ(n+ 1

2 )

Γ(2n+ 1
2 )
, (2.26)

where n =
1 +

√
1 + 4λ

4
.

When θ > 0 the result looks like the previous one. Let ϕV be the unique smooth function defined on

[0,+∞[, solution of ϕ”(x) = λ
1

1 + x2
ϕ(x); x > 0, such that: ϕV (x) ∼ x2n, x → +∞. In Theorem

7.3 we give the explicit form of ϕV and we prove :

lim
t→∞

(

tnEx

[

exp
{

− λ

2

∫ t

0

ds

θ +B2
s

}])

= θnϕV (x/
√
θ)

1

2n
Γ(µ+ n+ 1)

Γ(µ+ 2n+ 1)
, (2.27)

where µ = −1/2.
We observe that if formally we take the limit θ → 0 in (2.27)we recover (2.26).
Note that (B2

s ; s ≥ 0) is a squared Bessel process with dimension 1, which led us to generalize the
asymptotic results (2.26) and (2.27) to Bessel processes with any positive dimension (see Theorem 7.1
for θ = 0 and Theorem 7.3 when θ > 0 and 0 < λ < 8µ2 + 6µ+ 1).
Let us deal with the second case : V is given by (2.25). We only obtain in Theorem 8.1, a logarithmic
equivalent for ZVt (x) :

lim
t→∞

(

t
α−2
α+2 ln

(

ZVt (x)
)

)

= −1

2
Θ0(λ), (2.28)

where

Θ0(λ) = inf
ψ∈C0

{

∫ 1

0

ψ̇2(s)ds+ λ

∫ 1

0

ds

|ψ(s)|α
}

, (2.29)

5



belongs to ]0,+∞[, and C0 is the set of continuous functions f : [0, 1] → R vanishing at 0.
4) If V (dx) is large at ±∞, the asymptotic behaviour of ZVx (t) is drastically different. This case

was actually considered by Kac [16] and Titchmarsh [30]. More precisely suppose that V is an even
function, non-decreasing on [0,+∞[ and converging to a finite limit at infinity. Then we prove in
Theorem 6.1 that there exists γ0 > 0 such that

lim
x→∞

(

eγ0t/2ZVt (x)
)

= κψV (x), (2.30)

where κ > 0 and ψV is the positive solution to ψ”(x) = ψ(x)(V (x) − γ0), converging to 0 at infinity
and such that ψ′

V (0) = 0.
5) Theorem 2.1 tells us that as soon as we obtain an explicit behaviour of ZVt (x) as t runs to

infinity, we may proceed further to define new probability measures.
In the Brownian setting, the probability QVx,t is defined on Ft by :

Qx,t(Λt) =
Ex

[

1Λt
exp

{

− 1
2

∫ t

0 V (Bv)dv
}]

Ex

[

exp
{

− 1
2

∫ t

0
V (Bv)dv

}] , t > 0,Λt ∈ Ft, (2.31)

if V is a function. In the case where V (dy) is a Radon measure, we have :

Qx,t(Λt) =
Ex

[

1Λt
exp

{

− 1
2

∫

R
LytV (dy)

}]

Ex

[

exp
{

− 1
2

∫

R
LytV (dy)

}] , t > 0,Λt ∈ Ft. (2.32)

To describe the probability measure PϕV
x , we introduce (Xx

t ; t ≥ 0), the solution of the stochastic
differential equation :

Xt = x+Bt +

∫ t

0

ϕ′
V

ϕV
(Xs)ds, t ≥ 0 (2.33)

The law of (Xx
t ; t ≥ 0) is PϕV

x .
6) Let us briefly detail the organization of the paper. Section 3 presents some preliminaries.

In section 4 we start with a function ϕ which is locally the difference of two convex functions, hence
ϕ” is a Radon measure. We take : Vϕ := ϕ”/ϕ. Notice that the sign of Vϕ is not constant. With some

additional assumptions on ϕ such as : ϕ ”small at infinity” we prove in Theorem 4.1 that Z
Vϕ

t (x)
converges, as t→ ∞ to Cϕ(x), where C is a suitable constant.
Section 5 is devoted to the proof of the generic Theorem in the integrable case, namely when V (dy) sat-

isfies

∫

R

(1 + |y|)V (dy) <∞. We develop an analytic approach, and two other ones based respectively

on the Ray-Knight theorem and excursions.
The asymmetric case (i.e. when V (x) satisfies (2.21) and (2.22)) is discussed in section 6.
We investigate two critical cases (i.e. V satisfying (2.24, 2.25)) in section 7.
In section 8, using the technique of large deviations we deal with V fullfills (2.25).
We end this paper by considering the case where V is large at ±∞ in section 9.
The results of this paper were announced without proofs in [27].
7) In a subsequent study [28], we consider a similar problem, replacing the exponential weight

exp
{

− 1

2

∫ t

0

V (Bv)dv
}

by ϕ(At), where (At) may be equal either to the one-sided maximum :

sup
0≤u≤t

Bu, or to the one-sided minimum, or to the local time at 0, or to the number of down-crossings

from level b to level a.
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3 Preliminaries

2.1 Let ϕ : R →]0,+∞[ be a function of class C2 and µ the measure on R with density ϕ2(x) with
respect to the Lebesgue measure:

µ(dx) = ϕ2(x)dx. (3.1)

We denote by Lϕ the differential operator:

Lϕf(x) =
1

2
f”(x) +

ϕ′(x)

ϕ(x)
f ′(x), (3.2)

defined for every function f of class C2.
If f and g are two functions of class C2, with compact support, then by integration by parts we obtain:

< Lϕf, g >µ=< f,Lϕg >µ= −1

2
< f ′, g′ >µ= −1

2

∫

R

f ′(x)g′(x)dµ(x), (3.3)

where < h, k >µ=

∫

R

h(x)k(x)dµ(x).

The relation (3.3) tells us that Lϕ is a negative and symmetric operator, defined on C2
K(R). Thus,

it admits a self-adjoint extension, which is the generator of a Markovian semigroup (Tϕt ; t ≥ 0) of
bounded, positive, symmetric operators on Lp(µ)), 1 ≤ p ≤ ∞ (cf [7]). The norm of Tϕt is 1 as an
operator on any Lp(µ).

2.2 Let Xx
t be the solution of the following stochastic differential equation:

Xt = x+Bt +

∫ t

0

ϕ′

ϕ
(Xs)ds; t ≥ 0, (3.4)

where (Bt; t ≥ 0) is a one-dimensional Brownian motion started at 0.
Since ϕ is of class C2 and ϕ > 0 this stochastic differential equation has a unique strong solution up

to an explosion time. We assume that this explosion time is infinite. This occurs for instance if
ϕ′

ϕ
has at most linear growth; for more refined conditions see [21].
Obviously:

E[f(Xx
t )] = Tϕt f(x), for any f ≥ 0, (3.5)

and by the Girsanov formula :

Ex

[

f(Bt) exp
{

− 1

2

∫ t

0

ϕ”

ϕ
(Bs)ds

}]

= ϕ(x)Tϕt (f/ϕ)(x) = ϕ(x)E
[ f(Xx

t )

ϕ(Xx
t )

]

. (3.6)

In particular choosing f = 1 we get :

Z
Vϕ

t (x) = Ex

[

exp
{

− 1

2

∫ t

0

ϕ”

ϕ
(Bs)ds

}]

= ϕ(x)Tϕt (
1

ϕ
)(x) = ϕ(x)E

[ 1

ϕ(Xx
t )

]

. (3.7)

Remark 3.1 If ϕ is locally the difference of two convex functions, then it is understood that

∫ t

0

ϕ”

ϕ
(Bs)ds

is defined as

∫

R

Lxt
ϕ”(dx)

ϕ(x)
.

7



4 The case : ϕ small at infinity

Let ϕ : R →]0,+∞[ be a function of class C2. We suppose moreover that ϕ′/ϕ is bounded.
We define:

Vϕ(x) =
ϕ”(x)

ϕ(x)
, x ∈ R. (4.1)

More generally, if ϕ is locally the difference of two convex functions, we set :

Vϕ(dx) =
ϕ”(dx)

ϕ(x)
, x ∈ R. (4.2)

In this section, we assume that ϕ is small at infinity, in the sense that :

∫

R

ϕp(x)dx <∞, for some 0 < p < 1, (4.3)

and

ϕ is decreasing (resp. increasing) at + ∞(resp.−∞). (4.4)

It is clear that the sign of Vϕ is not constant.
We note that (4.3) and (4.4) imply that

∫

R
ϕ2(x)dx < ∞ and the change ϕ → λϕ, with λ > 0, does

not modify Vϕ, nor (4.3), nor (4.4).

Theorem 4.1 We suppose that ϕ satisfies (4.3), (4.4) and is even, i.e. ϕ(−x) = ϕ(x), ∀x ∈ R.

1. The generic Theorem applies with k = 0 since :

lim
t→∞

(

Tϕt (1/ϕ)(x)
)

=

∫

R
ϕ(y)dy

∫

R
ϕ2(y)dy

, (4.5)

and

∫

R

h(x)ϕ2(x)dx <∞ where h(x) = sup
t≥0

|Tϕt (1/ϕ)(x)|. (4.6)

2. Q
Vϕ

x,t converges weakly to Pϕx , as t→ ∞.

3. Let (Xx
t ; t ≥ 0) be the solution of the SDE :

Xt = x+Bt +

∫ t

0

ϕ′

ϕ
(Xs)ds, t ≥ 0. (4.7)

Then the law of (Xx
t ; t ≥ 0) is Pϕx .

Moreover (Xx
t ; t ≥ 0) is a recurrent process with finite invariant measure µ(dx) = ϕ2(x)dx.

Before proving Theorem 4.1, we give five examples numbered from 4.2 to 4.6. For these examples
Theorem 4.1 applies because (Tϕt ; t ≥ 0) is an ultracontractive [18] or an hypercontractive semigroup
([22], [14], [23]).
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Example 4.2 Let ϕ be the function :

ϕ(x) = e−
|x|α

2 , x ≥ 0,

where α > 2.
Then ϕ obeys (4.3) (in fact, for any p > 0), (4.4), and

Vϕ(x) =
1

4
α2|x|2α−2 − 1

2
α(α − 1)|x|α−2, x ≥ 0.

(Tϕt ; t ≥ 0) is an ultracontractive semigroup (i.e. for any positive t, Tϕt is a bounded operator from
L1(µ) to L∞(µ)) and this implies directly Theorem 4.1.

More generally, we can take ϕ(x) = e−v(x)/2 where v(x) is a convex function for large x and
∫ +∞ 1

v′(x)dx <

∞. Theorem 4.1 remains valid since (Tϕt ; t ≥ 0) is still an ultracontractive semigroup [18].

Example 4.3 Let ϕ(x) = e−x
2/2;x ∈ R. Then Vϕ(x) = x2 − 1 and (Xx

t ; t ≥ 0) is the Ornstein
Uhlenbeck process which solves :

Xt = x+Bt −
∫ t

0

Xsds, t ≥ 0.

Notice that (Tϕt ; t ≥ 0) is an hypercontractive semigroup (cf [22], [14], [23]).

Example 4.4 Let ϕ satisfy :

−
(ϕ′

ϕ

)′
=
ϕ′2 − ϕϕ”

ϕ2
≥ 2κ. (4.8)

For every pair of functions f and g of class C2 with compact support, we recall that :

Γϕ(f, g) := Lϕ(fg) − fLϕg − gLϕf,

Γϕ2 (f, g) := Lϕ(Γ(f, g)) − Γ(Lϕf, g) − Γ(f, Lϕg).

Then ([1]) the operator Lϕ enjoys the spectral gap property in L2(µ) as soon as

Γϕ2 (f, f) ≥ κΓϕ(f, f). (4.9)

It is easy to check that (4.8) implies (4.9). Theorem 4.1 follows immediately.

Example 4.5 Let a ≥ 0 and ϕ such that:

ϕ(x) =

{

e−|x| if |x| > a
e−a(1 + a− |x|) otherwise.

Then

Vϕ(dx) =
ϕ”(dx)

ϕ(x)
= 1{|x|>a}dx− 2

1 + a
δ0(dx),

where δ0(dx) denotes the Dirac measure at 0.
Consequently:

Ex

[

exp
{

− 1

2

∫

R

LytVϕ(dy)
}]

= Ex

[

exp
{

− 1

2

∫ t

0

1{|Bs|>a}ds+
1

1 + a
L0
t

}]

and (Xx
t ; t ≥ 0) solves:

Xt = x+Bt −
∫ t

0

sgn(Xs)1{|Xs|>a}ds−
∫ t

0

sgn(Xs)

1 + a− |Xs|
1{|Xs|≤a}ds, t ≥ 0.
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Example 4.6 Let ϕ(x) = e−λ|x|, with λ > 0. Then Vϕ(dx) = λ2dx− 2λδ0(dx),

lim
t→∞

{Ex

[

1Λs
exp

{

λL0
t

}

]

Ex

[

exp
{

λL0
t

}

]

}

= eλ|x|Ex
[

1Λs
exp

{

− λ|Bs| + λL0
s −

λ2s

2

}

]

,

and (Xx
t ; t ≥ 0) solves:

Xt = x+Bt − λ

∫ t

0

sgn(Xs)ds.

(Xx
t ; t ≥ 0) is the so-called bang-bang process with parameter λ > 0 (cf [12], [13], [6]) which satisfies,

for x = 0:

(|X0
t |; t ≥ 0)

(d)
= (S

(λ)
t −B

(λ)
t ; t ≥ 0), (4.10)

where B
(λ)
t = Bt + λt, S

(λ)
t = sup

0≤u≤t
B(λ)
u .

The proof of Theorem 4.1 is based on two preliminary results which we present in Lemmas 4.7 and
4.8.

Lemma 4.7 Let ρ : [0,+∞[×R → R, ρ(t, x) = Tϕt (1/ϕ)(x). Then

1. For any t ≥ 0, x→ ρ(t, x) is even and non-decreasing on [0,+∞[.

2. t→ ρ(t, 0) is non-decreasing.

Proof of Lemma 4.7.
i) It is well-known that ρ solves:

{

∂ρ
∂t − 1

2
∂2ρ
∂x2 − ϕ′

ϕ
∂ρ
∂x = 0

ρ(0, x) = 1
ϕ(x)

(4.11)

We set : θ(t, x) =
∂ρ

∂x
(t, x).

We take in (4.11) the partial derivative with respect to x :











∂θ
∂t − 1

2
∂2θ
∂x2 − ϕ”ϕ−ϕ′2

ϕ2 θ − ϕ′

ϕ
∂θ
∂x = 0

θ(0, x) = ∂
∂x

(

1
ϕ(x)

)

θ(t, 0) = 0

(4.12)

Since the restriction of ϕ to [0,+∞[ is non-increasing, θ(0, x) ≥ 0 if x ≥ 0.
It is clear that ρ(t, .) is even, i.e. ρ(t,−x) = ρ(t, x); ∀x ∈ R, consequently θ(t, 0) = 0.
But w(t, x) ≡ 0 is a solution to (4.12) on [0,+∞[×[0,+∞[; then, the maximum principle implies that
∂ρ
∂x (t, x) ≥ 0 if x ≥ 0. This proves point i).
ii) Since (Xx

t ; t ≥ 0) is a Markov process and ρ(t, .) is even :

ρ(t+ s, 0) = Tϕt+s
( 1

ϕ

)

(0) = E
[

Tϕt
( 1

ϕ

)

(X0
s )

]

= E
[

ρ(t, |X0
s |)

]

≥ ρ(t, 0).

This proves ii).
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Lemma 4.8 Let h : R → R be the function : h(x) := sup
t≥0

Tϕt
( 1

ϕ

)

(x), then :

∫

R

h(x)ϕ2(x)dx <∞. (4.13)

Proof of Lemma 4.8 .
Let x ≥ 0. Due to point 1. of Lemma 4.7, we have:

< Tϕt
( 1

ϕ

)

, 1[x,+∞[ >µ ≥
(

Tϕt
( 1

ϕ

)

(x)
)

µ([x,+∞[). (4.14)

Recall that µ(dy) = ϕ2(y)dy and (Tϕt ; t ≥ 0) is a symmetric semigroup, then

< Tϕt
( 1

ϕ

)

, 1[x,+∞[ >µ=<
1

ϕ
, Tϕt

(

1[x,+∞[

)

>µ=

∫

R

Tϕt
(

1[x,+∞[

)

(y)

ϕ(y)
µ(dy).

Let p′ = 2 − p > 1 and q′ be the conjugate number (1/p′ + 1/q′ = 1).
We use Hölder’s inequality and the fact that Tϕt is a bounded operator from Lq

′
(µ) to itself with norm

equal to 1 :

Tϕt
( 1

ϕ

)

(x) ≤ h̃(x).

where

h̃(x) = C
(

µ([x,+∞[)
)1/q′−1

,

and

C =
(

∫

R

1

ϕ(y)p′
µ(dy)

)1/p′

=
(

∫

R

ϕ(y)pdy
)1/p′

<∞,

since 2 − p′ = p and ϕ satisfies (4.3).
As for (4.13), we have:

1

C

∫

R

h̃(x)µ(dx) =

∫

R

(

µ([x,+∞[)
)1/q′−1

µ(dx) = −q′
[

µ([x,+∞[)1/q
′
]x=+∞

x=−∞
= q′ <∞.

Proof of Theorem 4.1.
a) We start with the proof of point 1.

Let us introduce the function θ:

θ(x) = limt→∞

(

Tϕt (1/ϕ)(x)
)

.

Lemma 4.8 implies that θ is µ-integrable. Moreover:

Tϕs (θ) = Tϕs

(

lim inf
t→∞

{

Tϕt (1/ϕ)
})

≤ lim inf
t→∞

(

Tϕt+s(1/ϕ)
)

= θ.

Consequently:

Tϕs (θ) ≤ θ. (4.15)
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The semigroup (Tϕt ; t ≥ 0) being µ-symmetric, we have:

< Tϕt (θ), 1 >µ=< θ, Tϕt (1) >µ=< θ, 1 >µ= θ

∫

R

ϕ2(x)dx.

This equality, together with the inequality (4.15) implies that θ = Tϕt (θ).
If we take the derivative with respect to t, we obtain: Lϕ(θ) = 0.
Using (3.3) we have:

< Lϕ(θ), θ >µ= −1

2

∫

R

θ′(x)2dµ(x) = 0.

Consequently θ = C, where C is a constant.
We introduce:

θ(x) = lim sup
t→∞

(

Tϕt (1/ϕ)(x)
)

.

In the same way as before, we easily check that θ = C.

b) We now prove that θ = θ =

∫

R
ϕ(x)dx

∫

R
ϕ2(x)dx

.

Let (xn;n ≥ 1) and (εn;n ≥ 1) be two sequences such that (εn;n ≥ 1) is positive, decreasing and

lim
n→∞

xn = lim
n→∞

εn = 0.

Suppose first that xn and εn are given. Using the definition of θ, there exists tn such that:

Tϕtn(1/ϕ)(xn) ≥ θ − εn.

Moreover we can choose tn in such a way that (tn;n ≥ 1) is an increasing sequence converging to +∞
as n→ ∞.
Let x > 0 fixed. Since x → Tϕt (1/ϕ)(x) is non-decreasing on [0,+∞[ (cf Lemma 4.7) , if n is large
enough:

Tϕtn(1/ϕ)(x) ≥ Tϕtn(1/ϕ)(xn).

Taking the limsup on both sides we obtain:

lim
n→∞

(

Tϕtn(1/ϕ)(x)
)

= θ.

Thanks to Lemma 4.8, we can apply the dominated convergence theorem, hence

lim
n→∞

(

< Tϕtn(1/ϕ), 1 >µ

)

=< θ, 1 >µ= θ

∫

R

ϕ2(x)dx.

But recall that since (Tϕt ; t ≥ 0) is µ-symmetric, then :

< Tϕtn(1/ϕ), 1 >µ=<
1

ϕ
, Tϕtn(1) >µ=

∫

R

ϕ(x)dx.

Consequently

θ =

∫

R
ϕ(x)dx

∫

R
ϕ2(x)dx

.

Replacing (xn;n ≥ 1) by (yn;n ≥ 1) such that yn < 0 and

lim
n→∞

yn = 0,
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we prove similarly that θ = θ.

c) Let t > 0. Recall that Q
Vϕ

x,t is the probability defined on Ft by :

Q
Vϕ

x,t(Λt) =
Ex

[

1Λt
exp

{

− 1
2

∫ t

0
Vϕ(Br)dr

}]

Ex

[

exp
{

− 1
2

∫ t

0 Vϕ(Br)dr
}] , Λt ∈ Ft. (4.16)

Suppose that s > 0 is fixed and pick t > s; then, replacing in (4.16) Λt by Λs ∈ Fs, and, using the
Markov property at time s together with (3.6), we obtain:

Q
Vϕ

x,t(Λs) =
Ex

[

1Λs
exp

{

− 1
2

∫ s

0 Vϕ(Br)dr
}

ϕ(Bs)T
ϕ
t−s(1/ϕ)(Bs)

]

ϕ(x)Tϕt (1/ϕ)(x)
.

The numerator can be written as Ex[1Λs
Ys,t], where :

Ys,t = exp
{

− 1

2

∫ s

0

Vϕ(Br)dr
}

ϕ(Bs)T
ϕ
t−s(1/ϕ)(Bs). (4.17)

On one hand, using (4.6), we get an upper bound for Ys,t:

0 ≤ Ys,t ≤ Ys, for any 0 < s < t

where

Ys = ϕ(Bs)h(Bs) exp
{

− 1

2

∫ s

0

Vϕ(Br)dr
}

.

Identity (3.6) tells us that:

Ex[Ys] = ϕ(x)Tϕs h(x) <∞.

On the other hand, (4.5) and (4.6) imply that

lim
t→∞

Ys,t = λϕ(Bs)1Λs
exp

{

− 1

2

∫ s

0

Vϕ(Br)dr
}

,

lim
t→∞

Tϕt (1/ϕ)(x) = λ, where λ =

∫

R
ϕ(x)dx

∫

R
ϕ2(x)dx

.

Then, for any s > 0, Q
Vϕ

x,t(Λs) converges to Pϕx (Λs) as t→ ∞, where Pϕx is the probability defined on
F∞ by :

Pϕx (Λs) =
1

ϕ(x)
Ex

[

1Λs
ϕ(Bs) exp

{

− 1

2

∫ s

0

Vϕ(Bs)ds
}]

,

for s > 0 given and any Λs in Fs.
Point iii) of Theorem 4.1 is a direct consequence of Girsanov formula.
Moreover (Xx

t ; t ≥ 0) is recurrent since µ is its invariant measure.
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5 The integrable case

Throughout this section, V (dx) shall always denote a finite positive Radon measure on R, different
from 0, with finite first moment; hence :

∫

R

(1 + |x|)V (dx) <∞. (5.1)

Recall that in the previous section the initial data was the function ϕ, whereas now the data is the
potential V .

Theorem 5.1 Let V (dx) be a finite positive Radon measure on R fulfilling (5.1).

1. The generic Theorem applies with k = 1/2.

2. ϕV is a convex function which takes its values in ]0,∞[ and is the unique solution to the Sturm-
Liouville equation

ϕ”(dx) = ϕ(x)V (dx), (5.2)

with boundary conditions :

lim
x→+∞

ϕ′
V (x) = − lim

x→−∞
ϕ′
V (x) =

√

2

π
. (5.3)

As a consequence

ϕV (x) ∼|x|→∞

√

2

π
|x| (5.4)

and

ϕV (x) ≤ C(1 + |x|). (5.5)

3. Let MϕV be the process:

MϕV (s) = ϕV (Bs) exp
{

− 1

2

∫

R

LysV (dy)
}

, s ≥ 0. (5.6)

Then (MϕV (s); s ≥ 0) is a martingale such that E[(MϕV (s))2] < ∞ for any s ≥ 0 (recall that
VϕV

= V ).

4. Let (Xx
t ; t ≥ 0) be the solution to :

Xt = x+Bt +

∫ t

0

ϕ′
V

ϕV
(Xs)ds, t ≥ 0. (5.7)

Then the law of (Xx
t ; t ≥ 0) is PϕV

x .

5. The process (Xx
t ; t ≥ 0) is transient. More precisely, denoting

ρ =

∫

R

dy

ϕ2
V (y)

<∞,

then :

P
(

lim
t→∞

Xx
t = −∞

)

=
1

ρ

∫ +∞

x

dy

ϕ2
V (y)

, (5.8)

P
(

lim
t→∞

Xx
t = +∞

)

=
1

ρ

∫ x

−∞

dy

ϕ2
V (y)

. (5.9)
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Remark 5.2 Theorem 5.1 may be generalized replacing the Brownian motion (Bt; t ≥ 0) by a Bessel
process (Rt; t ≥ 0) of dimension 0 < d < 2. In this case, the generic Theorem applies with a function
V with compact support and k = 1 − d

2 . On the other hand, we have not been able to settle the case
d = 2.

We actually develop two proofs of Theorem 5.1. The first one is based on the study of the function

t 7→ ZVt (x) := Ex

[

exp
{

− 1

2

∫

R

LytV (dy)
}

]

. The second one relies upon the excursion theory and the

Ray-Knight theorem which describes the distribution of (LyS ; y ∈ R), where S is an exponential r.v.
independent of the Brownian motion.

5.1 An analytical approach

Let us briefly describe our first proof of Theorem 5.1. The crucial point is an a priori inequality
concerning ZVt (x) stated in Lemma 5.3 below. To demonstrate that

√
t ZVt (x) has a limit, when

t → ∞ we prove that the normalized Laplace transform A(λ, x) of ZVt (x) converges as λ → 0 (cf
Lemma 5.4).This can be done (Lemma 5.5) through properties involving A(λ, x) and its derivatives.

Lemma 5.3 Let V (dy) 6= 0 be a positive Radon measure on the whole line, satisfying (5.1). Then
there exists a constant C such that:

√
1 + tEx

[

exp
{

− 1

2

∫

R

Lyt V (dy)
}

]

≤ C(1 + |x|), t ≥ 0, x ∈ R. (5.10)

Proof.

1) We start with V (dy) = γδx(dy), where δx(dy) denotes the Dirac measure at x. We claim that:

E0

[

exp{−γLxt }
]

≤
√

2

πt

(

|x| + 1

γ

)

, x ∈ R, γ > 0, t ≥ 0. (5.11)

Observing that Lxt is distributed as (Lt − |x|)+ (cf [26]), then

E0[exp−γLxt ] = E0[exp−γ(Lt − |x|)+)] = P (Lt ≤ |x|) +

√

2

πt

∫ ∞

|x|
e−γ(y−|x|)e

−y2

2t dy,

= P (|B1| ≤
|x|√
t
) +

√

2

π
eγ|x|+γ

2t/2

∫ ∞

|x|√
t
+γ

√
t

e
−z2

2 dz,

≤
√

2

π

|x|√
t

+

√

2

π
eγ|x|+γ

2t/2e
− 1

2 ( |x|√
t
+γ

√
t)2 1

|x|√
t
+ γ

√
t

≤
√

2

π

|x|√
t

+

√

2

π

1
|x|√
t
+ γ

√
t
e−

x2

2t ≤
√

2

πt
(|x| + 1

γ
).

2) Let V (dy) 6= 0 be a positive Radon measure on R. We choose a and b such that a < b and
µ = V ([a, b])/2 > 0. We have:

exp
{

− 1

2

∫

R

LytV (dy)
}

≤ exp
{

− 1

2

∫ b

a

LytV (dy)}.

Since x 7→ e−µx is convex:

exp
{

− 1

2

∫ b

a

LytV (dy)
}

≤ 1

2µ

∫ b

a

exp{−µLyt } V (dy),
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Taking the expectation and applying (5.11), we obtain

Ex

[

exp
{

− 1

2

∫

R

LytV (dy)
}

]

≤ C1√
1 + t

∫ b

a

(|x− y| + 1

µ
)V (dy).

Then (5.10) follows.

Lemma 5.4 Let V (dx) be a finite positive Radon measure as in Theorem 5.1 and A the Laplace
transform:

A(λ, x) =

∫ ∞

0

e−λtZVt (x)dt, (5.12)

where

ZVt (x) = Ex

[

exp
{

− 1

2

∫

R

Lyt V (dy)
}]

. (5.13)

Then lim
t→∞

√
tZVt (x) = ϕV (x) if and only if

lim
λ→0

√
2λA(λ, x) =

√
2πϕV (x). (5.14)

Proof. We set

Ã(λ, x) =
√

2λA(λ, x). (5.15)

The inequality (5.10) implies that

Ã(λ, x) ≤ κ(1 + |x|), for all λ ≥ 0. (5.16)

Since t 7→ ZVt (x) is a decreasing function, a classical version of the Tauberian theorem (cf [11], Chap.
XIII, section 5 ) implies that lim

t→∞

√
tZVt (x) = ϕV (x) if and only if (5.14) holds.

Lemma 5.4 leads us to investigate the asymptotic properties of Ã(λ, x), as λ→ 0.

Lemma 5.5 Let V (dx) be a finite positive Radon measure as in Theorem 5.1 and Ã be the function
defined by (5.15).

1. The measure (Ã)”(λ, dx)−Ã(λ, x)V (dx) admits a density function θ(λ, x) with respect to Lebesgue
measure and

lim
λ→0

(

sup
x∈R

|θ(λ, x)|
)

= 0. (5.17)

((Ã)′(λ, x) denotes the first x-derivative of Ã(λ, ·) and (Ã)”(λ, dx) the second one, in the sense
of distributions).

2. The x-derivative of Ã(λ, x) is bounded:

sup
x∈R,λ≥0

|Ã′(λ, x)| <∞. (5.18)

3. We have:

lim
λ→0,x→±∞

(Ã)′(λ, x) = ±2. (5.19)
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Proof. a) It is well known that the function (t, x) 7→ ZVt (x) is a solution in the distribution sense
to:







∂Z
∂t − 1

2
∂2Z
∂x2 + 1

2V Z = 0

Z0(x) = 1,

(5.20)

and that Z can be expressed through the Brownian motion semigroup (Pt(x, dy) = pt(x, y)dy; t ≥ 0) :

ZVt (x) = Pt(1) − 1

2

∫ t

0

ds

∫

R

pt−s(x, y)Z
V
s (y)V (dy),

= 1 − 1

2

∫ t

0

ds

∫

R

1
√

2π(t− s)
e−

(x−y)2

2(t−s) ZVs (y)V (dy). (5.21)

We take the Laplace transform in time on both sides; this yields to

A(λ, x) =
1

λ
− 1

2

∫

R

A(λ, y)V (dy)
(

∫ ∞

0

1√
2πv

e−
(x−y)2

2v e−λvdv
)

. (5.22)

Recall that
∫ ∞

0

ds√
s

exp{−γs
2

− a2

2s
} =

√

2π

γ
e−|a|√γ ; γ > 0, a ∈ R.

Hence

Ã(λ, x) =
√

2λA(λ, x) =
1√
2λ

[

2 − 1

2

∫

R

Ã(λ, y)e−|x−y|
√

2λV (dy)
]

, (5.23)

√
2λÃ(λ, x) = 2 − 1

2

∫

R

Ã(λ, y)e−|x−y|
√

2λV (dy). (5.24)

Using (5.1), (5.16) and (5.24) we obtain :

lim
λ→0

(

∫

R

Ã(λ, y)e−|x−y|
√

2λV (dy)
)

= lim
λ→0

(

∫

R

Ã(λ, y)V (dy)
)

= 4. (5.25)

b) Let h be a smooth function with compact support. As we multiply both sides of (5.23) by
h”(x), and integrate with respect to dx, we obtain:

(Ã)”(λ, h) :=

∫

R

Ã(λ, x)h”(x)dx = − 1

2
√

2λ

∫

R2

Ã(λ, y)e−|x−y|
√

2λh”(x)dxV (dy), (5.26)

where (Ã)”(λ, dx) denotes the second derivative in the distribution sense of Ã(λ, x) with respect to
the x variable.
Let Uλ(g) be the Brownian λ-potential of the function g :

Uλ(g)(x) = Ex
[

∫ ∞

0

g(Bs)e
−λsds

]

=
1√
2λ

∫

R

e−|x−y|
√

2λg(y)dy.

Since Uλ(g) solves (cf [17]):

Uλ(g”)(x) = (Uλg)”(x) = −2g(x) + 2λUλ(g)(x),

then

(Ã)”(λ, h) −
∫

R

Ã(λ, y)h(y)V (dy) = −λ
∫

R

Ã(λ, y)Uλ(h)(y)V (dy). (5.27)
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This implies that the distribution (Ã)”(λ, dy) − Ã(λ, y)V (dy) is a measure and

(Ã)”(λ, dy) − Ã(λ, y)V (dy) = θ(λ, y)dy,

where:

θ(λ, y) = −
√

λ

2

∫

R

Ã(λ, x)e−|x−y|
√

2λV (dx). (5.28)

Using the inequalities (5.16) and (5.1), we obtain :

sup
x∈R

|θ(λ, x)| ≤
√

λ

2

∫

R

Ã(λ, x)V (dx) ≤ k1

√
λ. (5.29)

This proves part 1. of Lemma 5.5 .
c) Obviously, (5.23) can be written as follows:

Ã(λ, x) =
1√
2λ

[

2 − 1

2

(

e−x
√

2λ

∫

]−∞,x]

Ã(λ, y)ey
√

2λV (dy)

+ex
√

2λ

∫

]x,+∞[

Ã(λ, y)e−y
√

2λV (dy)
)]

.

Taking the derivatives on both sides with respect to x, we get

(Ã)′(λ, x) =
1

2

∫

]−∞,x]

Ã(λ, y)e−|x−y|
√

2λV (dy) − 1

2

∫

]x,+∞[

Ã(λ, y)e−|x−y|
√

2λV (dy). (5.30)

Consequently

sup
x∈R

|(Ã)′(λ, x)| ≤
∫

R

Ã(λ, y)V (dy) ≤ k2.

d) Due to (5.30), we have :

(Ã)′(λ, x) =

∫

]−∞,x]

Ã(λ, y)e−|x−y|
√

2λV (dy) − 1

2

∫

R

Ã(λ, y)e−|x−y|
√

2λV (dy). (5.31)

Since (5.25) and (5.16) hold,

lim
λ→0

(

− 1

2

∫

R

Ã(λ, y)e−|x−y|
√

2λV (dy)
)

= −2, (5.32)

and

|
∫

]−∞,x]

Ã(λ, y)e−|x−y|
√

2λV (dy)| ≤
∫

]−∞,x]

κ(1 + |y|)V (dy).

As a result,

∫

]−∞,x]

Ã(λ, y)e−|x−y|
√

2λV (dy) goes to 0 as x→ −∞, uniformly with respect to λ ≥ 0.

Consequently (Ã)′(λ, x) converges to −2, as x→ −∞, λ→ 0.
In the same way,

(Ã)′(λ, x) = −
∫

]x,+∞[

Ã(λ, y)e−|x−y|
√

2λV (dy) +
1

2

∫

R

Ã(λ, y)e−|x−y|
√

2λV (dy),

lim
λ→0,x→+∞

(Ã)′(λ, x) = 2.

This ends the proof of Lemma 5.5.
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Remark 5.6 If V (dx) has compact support, say supp(V (dx))) ⊂ [a, b], it is easy to check directly:

lim
λ→0

(Ã)′(λ, y) = − lim
λ→0

(Ã)′(λ, x) = 2, for any x ≤ a and y ≥ b. (5.33)

Proof of Remark 5.6.
Let x ≤ a and Ta be the stopping time : Ta = inf{t ≥ 0;Bt > a}.
We have:

Ex

[

exp
{

− 1

2

∫

R

LytV (dy)
}

]

= Ex

[

exp
{

− 1

2

∫ b

a

LytV (dy)
}

1{Ta>t}
]

+Ex

[

exp
{

− 1

2

∫ b

a

Lyt V (dy)
}

1{Ta≤t}
]

,

= Px(Ta > t) + Ex

[

exp
{

− 1

2

∫ b

a

LytV (dy)
}

1{Ta≤t}
]

.

Using the strong Markov property at time Ta, and Px(Ta ∈ ds) =
|x− a|√

2πs3
e−

(x−a)2

2s 1{s>0}ds we obtain

:

Ex

[

exp
{

− 1

2

∫

R

Lyt V (dy)
}

]

=

∫ ∞

t

|x− a|√
2πs3

e−
(x−a)2

2s ds+

∫ t

0

|x− a|√
2πs3

e−
(x−a)2

2s ZVt−s(a)ds. (5.34)

We take the Laplace transform on both sides with respect to time :

A(λ, x) =
1

λ

(

1 − e(x−a)
√

2λ
)

+A(λ, a)e(x−a)
√

2λ, x ≤ a.

Then
A(λ, x) −A(λ, a)

x− a
=

1 − e(x−a)
√

2λ

x− a

1 − λA(λ, a)

λ
, x < a,

(Ã)′(λ, a) =
√

2λA′(λ, a) = −2 + 2λA(λ, a), x < a.

This proves lim
λ→0

(Ã)′(λ, x) = −2 for any x ≤ a. If x ≥ b, we prove by the same way that lim
λ→0

(Ã)′(λ, x) = 2.

Proof of Theorem 5.1.

1. The Itô-Tanaka formula tells us that :

Mϕ(s) = ϕ(Bs) exp
{

− 1

2

∫

R

LysVϕ(dy)
}

, s ≥ 0

is a continuous local martingale.

As a consequence of (5.5):
MϕV (s) ≤ k(1 + sup

0≤u≤s
|Bu|).

Consequently, there exists γ > 0, such that:

E
[

exp
{

γ
(

sup
0≤u≤s

MϕV (u)
)2}

]

<∞.

A fortiori (MϕV (s); s ≥ 0) is a continuous martingale such that E[MϕV (s)2] <∞.
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2. The function Ã(λ, .) solves the following ordinary differential equation, depending on the pa-
rameter λ > 0:

{

(Ã)”(λ, dx) − Ã(λ, .)V (dx) = θ(λ, x)dx

lim
x→±∞

(

(Ã)′(λ, x)
)

= ±2 + o(λ).

Property (5.17) implies that
Ã(λ, x)√

2π
converges, as λ → 0, to a function ϕV , solution to (5.2),

and (5.3). We draw from this three conclusions :

(a) ϕV is a non-negative function, being a limit of non-negative functions. Since ϕV solves
(5.2), ϕV is a convex function.

(b) Lemma 5.4 implies that
√
tZVt (x) converges to ϕV (x), as t→ ∞.

(c) From (5.25), we have :
√

2π

∫

R

ϕV (y)V (dy) = 4.

3. We claim that ϕV is strictly positive. Indeed, (5.2) implies that ϕV 6≡ 0. As a result ϕV (Bt) ≥ 0,
and ϕV (Bt) is not a.s. equal to 0. But (MϕV (s); s ≥ 0) is a martingale, then

ϕV (x) = Ex

[

ϕV (Bt) exp
{

− 1

2

∫

R

LytV (dy)
}]

> 0.

4. The proof of the convergence of Qx,t(Λs) to Qx(Λs) is similar to the one given in section 4.

5. Point 5 is a direct consequence of the Girsanov theorem (cf section 4).

6. The integral

∫

R

dy

ϕ2
V (y)

is finite because ϕV (y) is equivalent to k|y|, as |y| → ∞.

We remark that β(x) =

∫ x

0

dy

ϕ2
V (y)

is a scale function for the diffusion process defined by (5.7)

( [17], Chap. 5, section 5). Indeed

LϕV (β) =
1

2
β” +

ϕ′
V

ϕV
β′ =

1

2

(

− 2ϕ′
V

ϕ3
V

)

+
ϕ′
V

ϕV

( 1

ϕ2
V

)

= 0. �

Example 5.7 Let V (dx) = γ21[a,b](x)dx, where a < b. Then

lim
t→∞

(√
t Ex

[

exp
{

− γ2

2

∫ t

0

1[a,b](Bs)ds
}

])

= ϕV (x),

with

ϕV (x) =



















√

2
π

(

1
γ tanh(γ b−a

2 )
+ x− b

)

if x > b
√

2
π

(

cosh(γ[x−a+b
2 ])

γ sinh(γ b−a
2 )

)

if x ∈ [a, b]
√

2
π

(

1
γ tanh(γ b−a

2 )
+ a− x

)

if x < a.

Example 5.8 Let V (dx) = γ2(δa(dx) + δb(dx)), where a ≤ b. Then

lim
t→∞

(√
t Ex

[

exp
{

− γ2

2
(Lat + Lbt)

}

])

= ϕV (x),

with

ϕV (x) =



















√

2
π

(

1
γ2 + x− b

)

if x > b
√

2
π

1
γ2 if x ∈ [a, b]

√

2
π

(

1
γ2 + a− x

)

if x < a.
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In particular if a = b,

lim
t→∞

(√
t Ex

[

exp
{

− γ2Lat
}

])

=

√

2

π
(

1

γ2
+ |x− a|),

and the process (Xx
t ; t ≥ 0) defined by (5.7) solves:

Xt = x+Bt + γ2

∫ t

0

sgn(Xs − a)

1 + γ2|Xs − a|ds.

5.2 The Ray-Knight theorem and the excursion theory viewpoints

1) Our first approach is based on the Ray-Knight theorem which gives the law of (LyS ; y ∈ R), for S an
exponential r.v. independent of the underlying Brownian motion (Bt; t ≥ 0). We also use the explicit
expressions of Laplace transforms of certain Bessel quadratic functionals in terms of solutions to certain
Sturm-Liouville equations. For the convenience of the reader we present the relevant material from
[2], [25], [26] without proofs, thus making our exposition self-contained.

Definition 5.9 1. Let f : R 7→ R and v be a positive measure on R . We denote by < f, v > or
v(f) the integral of f with respect to v, namely :

< f, v >= v(f) =

∫

R

f(t)v(dt).

We set : v+(dx) = 1{x>0}v(dx) and v−(dx) the image of 1{x<0}v(dx) by the map x 7→ −x.

2. Let δ ≥ 0. We define Q
(δ)
x , the distribution of the square of the δ-dimensional Bessel process,

started at x.

We now present some important properties of the family (Q
(δ)
x )

Proposition 5.10 1. The family of probability measures (Q
(δ)
x ; δ, x ≥ 0) obeys the additivity prop-

erty :

Q(δ)
x ⋆ Q

(δ′)
x′ = Q

(δ+δ′)
x+x′ , δ, δ′, x, x′ ≥ 0. (5.35)

2. If λ(ds) is a positive Radon measure on R+, with finite first moment, then [25]:

Q(δ)
x

[

exp
{

−
∫ +∞

0

Y (s)λ(ds)
}]

= Q(δ)
x

[

exp
{

− < Y, λ >
}]

= exp
{

−xM(λ)−δN(λ)
}

, (5.36)

where x ≥ 0, (Y (s); s ≥ 0) denotes the canonical process on C(R+) (Y (s)(ω) = ω(s)), M
and N are the two positive σ-finite measures on C(R+) ([25],[24]) which allow to express the

Lévy-Khintchine representation of any Q
(δ)
x , i.e. one has :

M(λ) =

∫

(1 − e−<λ,ω>)M(dω), N(λ) =

∫

(1 − e−<λ,ω>)N(dω).

3. Introducing φλ the unique solution of :

1

2
φ” = λφ on (0,∞); φ(0) = 1, 0 ≤ φ ≤ 1, (5.37)

we have [25, Theorem (2.1)]:

Q(δ)
x

[

exp
{

−
∫ +∞

0

Y (s)λ(ds)
}]

=
(

φλ(∞)
)δ/2

exp
{x

2
φ′λ(0)

}

, (5.38)
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where φλ(∞) and φ′λ(0) are respectively the limit at ∞, and the right derivative at 0 of φλ.

Comparing (5.36) and (5.38), we have :

M(λ) = −1

2
φ′λ(0), N(λ) = −1

2
ln(φλ(∞)). (5.39)

Our approach is based on the knowledge of the law of (LyS ; y ∈ R), for S an exponential r.v. independent
of (Bt; t ≥ 0). This distribution is given in Proposition 5.12 below, through the family of measures
(

P
(θ)
a,l ; a ∈ R, l > 0

)

defined in the next Definition 5.11.

Definition 5.11 Let l ≥ 0 and a > 0. We define P
(θ)
a,l to be the unique probability measure on C(R)

such that :

1. Y0 = l,

2. (Y−t; t ≥ 0) is the diffusion process with infinitesimal generator : 2y
d2

dy2
− 2θy

d

dy
,

3. (Yt; 0 ≤ t ≤ a) is the diffusion process with infinitesimal generator : 2y
d2

dy2
− 2θy

d

dy
+ 2

d

dy
,

4. (Yt; t ≥ a) is the diffusion process with infinitesimal generator : 2y
d2

dy2
− 2θy

d

dy
,

When a < 0, (Yt; t ∈ R) is distributed under P
(θ)
a,l as (Y−t; t ∈ R) under P

(θ)
−a,l.

Proposition 5.12 Suppose that V (dy) is a positive measure on R satisfying (5.1), Sθ is an exponential
r.v.with parameter θ2/2 (i.e. with expectation 2/θ2) and independent of (Bt; t ≥ 0). Then (cf [2,
theorem 1]):

E0

[

exp−
{

∫

R

LySθ
V (dy)

}

]

= θ

∫ ∞

0

e−θl
(1

2

∫

R

θe−θ|a|P (θ)
a,l

[

e−<Y,V>
]

da
)

dl. (5.40)

We are now able to state the main result of this subsection.

Proposition 5.13 Suppose that the positive measure V (dy) has compact support.

1. Then :

lim
θ→0

(1

θ
E0

[

exp−
{

∫

R

LySθ
V (dy)

}

])

= H(V ), (5.41)

lim
t→∞

(√
tE0

[

exp−
{

∫

R

LytV (dy)
}

])

=

√

2

π
H(V ), (5.42)

where H(V ) is defined as :

H(V ) =
1

2

∫ +∞

0

(

Q
(0)
l

[

e−<Y,V−>
]

Q
(2)
l

[

e−<Y,V+>
]

+Q
(2)
l

[

e−<Y,V−>
]

Q
(0)
l

[

e−<Y,V+>
]

)

dl. (5.43)

In terms of M(V±) and N(V±) (resp. φλ±(∞), φ′λ±(0)) , we have :

H(V ) =
1

2(M(V+) +M(V−))

(

e−2N(V+) + e−2N(V−)
)

=
φλ+(∞) + φλ−(∞)

φ′λ+
(0) + φ′λ−

(0)
. (5.44)
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2. In particular if V (dx) is a symmetric measure (i.e. V (dx) coincides with its image by the map
x 7→ −x ), then :

Hsym(V ) := H(V ) =
1

2

∫ +∞

0

Q
(2)
l

[

e−<Y,V+>
]

dl =
1

2M(V+)
e−2N(V+) =

φλ+(∞)

φ′λ+
(0)

. (5.45)

Proof of Proposition 5.13. We give two proofs of Proposition 5.13; the first one uses the Ray-
Knight theorem for Brownian local times up to an exponential time (cf Proposition 5.12); the second
one uses excursion theory.
First proof of Proposition 5.13. 1) We set :

∆ = E0

[

exp−
{

∫

R

LySθ
V (dy)

}

]

.

Relation (5.40) implies that ∆ may be written as follows :

∆ = θ

∫ ∞

0

e−θl
(1

2

∫

R

e−|b|∆θ(b, l)db
)

dl, (5.46)

where :
∆θ(b, l) = P

(θ)
b/θ,l

[

e−<Y,V>
]

.

Suppose that b > 0. We decompose < Y, V > in the following way :

< Y, V >=

∫ 0

−∞
YzV (dz) +

∫ b/θ

0

YzV (dz) +

∫ +∞

b/θ

YzV (dz).

Using Proposition 5.12 and taking the limit, θ → 0 we obtain :

lim
θ→0

∆θ(b, l) = Q
(0)
l

[

e−<Y,V−>
]

Q
(2)
l

[

e−<Y,V+>
]

.

Moreover 0 ≤ ∆θ(b, l) ≤ 1. Applying the same reasoning to the case b < 0 we obtain :

lim
θ→0

(1

2

∫

R

e−|b|∆θ(b, l)db
)

= H(V ),

where H(V ) is defined by (5.43).
Identity (5.44) follows directly from (5.36).

2) We now turn to the symmetric case. Since V− = V+, additivity property (5.35) directly implies
that :

Q
(0)
l

[

e−<Y,V−>
]

Q
(2)
l

[

e−<Y,V+>
]

= Q
(2)
2l

[

e−<Y,V+>
]

.

This proves (5.45).
3) Since Sθ is independent from B, it follows that :

E0

[

exp−
{

∫

R

LySθ
V (dy)

}

]

=
θ2

2

∫ ∞

0

(

E0

[

exp−
{

∫

R

LytV (dy)
}

])

e−θ
2t/2dt.

As t 7→ E0

[

exp−
{

∫

R

LytV (dy)
}

]

is decreasing, we conclude from (5.41) and the Tauberian theorem

(cf [11], Chap. XIII, section 5 ) that (5.42) holds.
Second proof of Proposition 5.13.
We suppose for simplicity that V is a positive function with compact support. We start as in the
previous approach considering Sθ an exponential r.v.with parameter θ2/2 (i.e. with expectation 2/θ2)
and independent of (Bt; t ≥ 0). We again consider :

∆ = E0

[

exp−
{

∫

R

LySθ
V (y)dy

}

]

.

We express ∆ with the help of excursion theory
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Lemma 5.14 ∆ is equal to the ratio
N (θ)

D(θ)
, where,

N (θ) =
θ2

2

∫

[

∫ ζ(ε)

0

exp
{

− θ2t

2
− 1

2

∫ t

0

V (εs)ds
}

dt
]

n(dε),

D(θ) =

∫

[

1 − exp
{

− θ2

2
ζ(ε) − 1

2

∫ ζ(ε)

0

V (εs)ds
}]

n(dε),

n(dε) denotes Itô’s measure of excursions and ζ(ε) = inf{s > 0; εs = 0}.

Proof of Lemma 5.14. It follows easily from the general integral representation formula ( cf [26],
Exercise 4.18, Chap. XII):

∫ ∞

0

P t0dt =

∫ ∞

0

P τl

0 dl ◦
∫ ∞

0

nu(· ∩ {u < ζ})du, (5.47)

where, for any random time T , PT0 denotes the Wiener measure restricted to the σ-field FT , nu denotes
the Itô measure restricted to the corresponding σ-field F⋆

u = σ(εs; 0 ≤ s ≤ u) for excursions ε, and ◦
indicates the concatenation, operation acting on measures on path space (see [26], Chap. XII, section
4, for details). Finally (τl; l ≥ 0) is the inverse local time at 0.
As a consequence of (5.47), we get ∆ = ∆−∆+ where :

∆+ =
θ2

2

∫ ∞

0

dt
(

∫

exp
{

− θ2

2
t−

∫ t

0

V (εs)ds
}

1{t<ζ(ε)}n(dε)
)

,

∆− =

∫ ∞

0

dlE0[exp{−
∫ τl

0

V (Bs)ds}].

Using Fubini’s theorem, we find : ∆+ = N (θ); concerning ∆−, we get from excursion theory (cf [26],
Proposition (2.7), Chap XII) :

E0[exp{−
∫ τl

0

V (Bs)ds}] = exp
{

− l

∫

n(dε)
(

1 − exp{−
∫ ζ(ε)

0

V (εs)ds}
)}

,

and consequently ∆− = 1/D(θ).

Let us provide now the second proof of Proposition 5.13.
As θ → 0, the denominator D(θ) tends to :

∫

[

1 − exp
{

− 1

2

∫ ζ(ε)

0

V (εs)ds
}]

n(dε) = −1

2
(φ′V+

(0+) + φ′V−(0+)).

Let us consider the numerator, which we may write as :

N (θ) =
θ2

2

∫ ∞

0

e−θ
2t/2

[

∫

1{ζ(ε)>t} exp
{

− 1

2

∫ t

0

V (εs)ds
}

n(dε)
]

dt.

Now recall that (Ex 4.18, Chap XII in [26]) :

1{ζ(ε)>t}n±(dε) :=
1

2

1√
2πt

M t(dε),

where M t denotes the law of the Brownian meander with length t.
Thus, we find :

N (θ) =
θ2

2

∫ ∞

0

dt√
2πt

e−θ
2t/2 1

2

{

M t
(

exp{−1

2

∫ t

0

V+(εs)ds}
)
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+M t
(

exp{−1

2

∫ t

0

V−(εs)ds}
)}

,

(recall that V+ and V− are defined by the rules given in Definition 5.9).
For simplicity, we now write α = θ2/2, and we make the change of variables : αt = u; then :

N (θ) =
√
α

∫ ∞

0

du√
2πu

e−u
1

2

{

Mu/α
(

exp{−1

2

∫ u/α

0

V+(εs)ds}
)

+Mu/α
(

exp{−1

2

∫ u/α

0

V−(εs)ds}
)}

. (5.48)

Now we use the fact (cf again Ex 4.18, Chap XII in [26]) that :

M t =

√

π

2

√
t

Rt
P

(3)
0|Ft

,

where P
(3)
0 denotes the law of the three dimensional Bessel process started at 0.

It is not difficult to show that :

lim
t→∞

M t
(

exp{−1

2

∫ t

0

V±(εs)ds}
)

= E
(3)
0 [exp{−1

2
< V±, Y >}], (5.49)

where under P
(3)
0 , Y stands for the three dimensional Bessel process starting from 0, and

< V±, Y >=

∫ ∞

0

YsV±(s)ds.

Hence, from (5.48), we deduce :

N (θ) ∼ θ

2
E

(3)
0

[

exp{−1

2
< V+, Y >} + exp{−1

2
< V−, Y >}

]

, θ → 0,

and, from the Ray-Knight Theorem for the three dimensional Bessel process, the right hand-side of
(5.49) is :

θ

2

{

Q
(2)
0 [exp{−1

2
< V+, Y >}] +Q

(2)
0 [exp{−1

2
< V+, Y >}]

}

=
θ

2
(φV+(∞) + φV−(∞)), (5.50)

from, e.g. [25]. Hence, we have proven (5.41).

Remark 5.15 1)Donati-Martin and Hu [10] prove the convergence in law for the Wiener measure

perturbed by the exponential martingale density associated with

∫ t

0

dBs
Bs

1{|Bs|≥ε}, as ε→ 0; the limiting

law is that of the symmetrized BES(3) process, i.e. : a process taking values in R+ with probability
1/2, and in R− with probability 1/2.
2) Let V be a function with compact support. Y. Hu (private communication) has studied the asymp-
totic behaviour of ZVt (x), as t→ ∞, where in (2.3), (Xt; t ≥ 0) is a one-dimensional diffusion process
. With some additional assumptions, using excursion theory for Brownian motion, Y. Hu has deter-
mined the rate of decay of ZVt (x), as t→ ∞. In particular, Y. Hu has recovered the result concerning
Bessel processes with dimension 0 < d < 2.
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6 The unilateral case

In this section the given positive Radon measure V (dy) 6= 0 on R, is supposed to be strongly asymmetric
: it is ”small” at −∞ and ”big” at +∞. More precisely we suppose :

∫ 0

−∞
(1 + |y|)V (dy) <∞. (6.1)

lim inf
x→+∞

(

x2αVa(x)
)

> 0, for some α < 1, (6.2)

where V (dy) = Va(y)dy+ Vs(dy) is the Lebesgue decomposition of V (dy), and in (6.2) the liminf may
be equal to +∞
We remark that if lim

x→+∞

(

x2αVa(x)
)

exists for some α > 1, then V fulfills (5.1). This case has been

studied in the previous section.
Let us state the main result of this section.

Theorem 6.1 Let V (dy) be a positive Radon measure on R fulfilling (6.1) and (6.2).

1. The generic Theorem applies with k = 1/2, i.e. :

lim
t→∞

(√
t Ex

[

exp
{

− 1

2

∫

R

Lyt V (dy)
}])

:= ϕV (x) exists in R.

2. ϕV is a convex function which takes its values in ]0,∞[ and is the unique solution to the Sturm-
Liouville equation :

ϕ”(dx) = ϕ(x)V (dx), (6.3)

with boundary conditions:

lim
x→−∞

ϕ′
V (x) = −

√

2

π
; lim

x→+∞
ϕV (x) = 0. (6.4)

Moreover there exist two positive constants C,C′ such that

ϕV (x) ≤ C(1 + |x|); x ≤ 0, (6.5)

ϕV (x) ≤ Ce−C
′x1−α

; x ≥ 0. (6.6)

3. Let Mϕ be the process defined by (5.6), then (Mϕ
t ; t ≥ 0) is a continuous martingale.

4. Let (Xx
t ; t ≥ 0) be the solution to (5.7), then the law of (Xx

t ; t ≥ 0) is PϕV
x , (Xx

t ; t ≥ 0) is
transient, i.e.

P
(

lim
t→∞

Xx
t = −∞

)

= 1. (6.7)

Our proof of Theorem 6.1 consists of two main steps. We begin by establishing an a priori upper-bound
for t 7→

√
tZVt (x) (cf Lemma 6.2) . In a second step we show that we may reduce the discussion to

the case where V has a compact support.
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Lemma 6.2 Let ϕ̃ be the function defined as follows:

ϕ̃(x) := lim sup
t→∞

(√
t Ex

[

exp
{

− 1

2

∫

R

LytV (dy)
}

])

. (6.8)

Then there exist two positive numbers C,C′ such that

ϕ̃(x) ≤ Ce−C
′x1−α

, for any x ≥ 0. (6.9)

In particular

lim
x→+∞

ϕ̃(x) = 0. (6.10)

Proof of Lemma 6.2. Assumption (6.2) implies that there exist κ, a > 0 such that

∫

R

LytV (dy) ≥ 1

2

κ2

b2α

∫ b

a

Lyt dy, b > a.

Then for any y ∈ [a, b], Example 5.7 implies that

lim sup
t→∞

(√
t Ey

[

exp
{

− 1

2

∫

R

LytV (dy)
}

])

≤
√

2

π

cosh
[

κ
bα (y − a+b

2 )
]

κ
bα sinh

[

κ
bα

b−a
2

] .

Let y > a, we choose b = 2y − a. This brings

ϕ̃(y) ≤ 1

κ

√

2

π

(2y − a)α

sinh
[

κ y−a
(2y−a)α

] , (6.11)

which proves (6.9).

Lemma 6.3 Let ZV be the function :

ZVt (x) = Ex

[

exp
{

− 1

2

∫

R

LztV (dz)
}

]

, t ≥ 0, x ∈ R. (6.12)

Then, if y > max{0, x}, ZVt (x) = Z1(t, y;x) + Z2(t, y;x) where Z1(t, y;x), Z2(t, y;x) are two non-
negative functions and

lim sup
t→∞

(√
t Z1(t, y;x)

}

≤ 2ϕ̃(y), (6.13)

√
t Z2(t, y;x) converges as t→ ∞, (6.14)

where ϕ̃ is the function defined by (6.8).

Proof of Lemma 6.3. We decompose :

ZVt (x) = Z1(t, y;x) + Z2(t, y;x),

Z1(t, y;x) = Ex

[

exp
{

− 1

2

∫

R

LztV (dz)
}

1{Ty<t}
]

,

Z2(t, y;x) = Ex

[

exp
{

− 1

2

∫

R

LztV (dz)
}

1{Ty≥t}
]

,
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where Ty = inf{t ≥ 0;Bt = y}.
a) We start with the study of Z1(t, y;x).

Using the strong Markov property at time Ty, we get:

Z1(t, y;x) = Ex

[

1{Ty<t} exp
{

− 1

2

∫

R

LzTy
V (dz)

}

ZVt−Ty
(y)

]

.

Since V (dx) is a positive measure, then

√
1 + t Z1(t, y;x) ≤ Ex

[

1{Ty<t}

√
1 + t

√

1 + t− Ty

√

1 + t− Ty Z
V
t−Ty

(y)
]

. (6.15)

i) We claim that for fixed y

{

√
1 + t

√

1 + t− Ty
1{Ty<t}; t ≥ 1

}

is uniformly integrable. (6.16)

It suffices to prove that

√
1 + t

√

1 + t− Ty
1{Ty<t} are bounded r.v.’s in L2, uniformly with respect to t ≥ 1.

We have:

E
[ 1 + t

1 + t− Ty
1{Ty<t}

]

=

∫ t

0

at(s)ds,

where:

at(s) =
1 + t

1 + t− s

y√
2πs3

exp{−y
2

2s
}.

We distinguish two cases:

α ) s ∈ [0, t/2], then
1 + t

1 + t− s
≤ 2, hence at(s) ≤

2y√
2πs3

exp{−y
2

2s
} and

∫ t/2

0

at(s)ds ≤ 2,

since s 7→ y√
2πs3

exp{−y
2

2s
} is a density function.

β) s ∈ [t/2, t], then at(s) ≤
1 + t

√

2π(t/2)3
y

1 + t− s
and

∫ t

t/2

at(s)ds ≤
2y√
2π

1 + t√
t3

ln(1 + t/2).

Finally

sup
t≥1

(

∫ t

0

at(s)ds
)

<∞.

This proves (6.16).
ii) The definition of ϕ̃(cf (6.8)) implies the existence of a positive number a (depending on y) such

that:

√
1 + tZVt (x) ≤ 2ϕ̃(y), for any t ≥ a. (6.17)

On the right hand-side of (6.15) the decomposition of {Ty < t} as the disjoint union of {t− Ty > a}
and {t− a ≤ Ty < t}, leads to

√
1 + t Z1(t, y;x) ≤ Z1,1(t, y;x) + Z1,2(t, y;x),
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Z1,1(t, y;x) = Ex

[

1{t−Ty>a}

√
1 + t

√

1 + t− Ty

√

1 + t− Ty Z
V
t−Ty

(y)
]

,

Z1,2(t, y;x) = Ex

[

1{t−a≤Ty<t}

√
1 + t

√

1 + t− Ty

√

1 + t− Ty Z
V
t−Ty

(y)
]

.

The inequality (6.17) and the property (6.16) imply

lim sup
t→∞

(

Z1,1(t, y;x)
)

≤ 2ϕ̃(y).

As for Z1,2(t, y;x), the function ZV being less than 1,

Z1,2(t, y;x) ≤
√

1 + t P (t− a ≤ Ty < t) =

√
1 + t√
2π

∫ t

t−a
e−y

2/2s ds

s3/2
,

Z1,2(t, y;x) ≤
√

1 + t√
2π

a

(t− a)3/2
.

Consequently:

lim sup
t→∞

(

Z1,2(t, y;x)
)

= 0,

hence, finally :

lim sup
t→∞

(

Z1(t, y;x)
)

≤ 2ϕ̃(y). (6.18)

b) We now prove (6.14).
Recall that y > x. The key observation is the following : on {Ty ≥ t}, V (dz) can be replaced by
V (y)(dz) where:

V (y)(dz) = 1]−∞,y](z)V (dz),

which allows us to reduce the discussion to the integrable case since V (y)(dz) satisfies (5.1).
More precisely, we have:

Z2(t, y;x) = Ex

[

exp
{

− 1

2

∫

R

LztV
(y)(dz)

}

1{Ty≥t}
]

.

Hence Z2(t, y;x) = Z2,1(t, y;x) − Z2,2(t, y;x), with

Z2,1(t, y;x) = Ex

[

exp
{

− 1

2

∫

R

LztV
(y)(dz)

}

]

,

and

Z2,2(t, y;x) = Ex

[

exp
{

− 1

2

∫

R

LztZ
(y)(dz)

}

1{Ty<t}
]

.

Theorem 5.1 tells us that
√

1 + t Z2,1(t, y;x) converges as t→ ∞.
As for Z2,2(t, y;x), we use the strong Markov property at time Ty:

√
1 + t Z2,2(t, y;x) = Ex

[

1{Ty<t} exp
{

− 1

2

∫

R

LzTy
V (y)(dz)

}

√

1 + t

t+ 1 − Ty

×
√

t+ 1 − TyZ
V (y)

t−Ty
(y)

]

.

The conjonction of Theorem 5.1, inequality (5.10) (i) and (6.16) implies that

(

1{Ty<t}

√

1 + t

t+ 1 − Ty

√

t+ 1 − TyZ
V (y)

t−Ty
(y); t ≥ 1

)

29



is a family of uniformly integrable r.v.’s converging a.s. to the constant ϕV (y)(y), as t→ ∞. Hence, it
converges in L1.
As a result,

√
1 + t Z2,2(t, y;x) converges as t→ ∞.

This ends the proof of Lemma 6.3.

Proof of Theorem 6.1. a) Let y > max{0, x}. Using Lemma 6.3 we get:

lim sup
t→∞

(√
1 + t ZVt (x)

)

≤ 2ϕ̃(y) + lim
t→∞

(√
1 + t Z2(t, y;x)

)

,

lim inf
t→∞

(√
1 + t ZVt (x)

)

≥ lim
t→∞

(√
1 + t Z2(t, y;x)

)

.

Hence
0 ≤ lim sup

t→∞

(√
1 + t ZVt (x)

)

− lim inf
t→∞

(√
1 + t ZVt (x)

)

≤ 2ϕ̃(y).

The parameter y being arbitrary, property (6.10) implies point 1. of Theorem 6.1 :

ϕV (x) := lim
t→∞

(
√
tZVt (x)

)

= lim
t→∞

(√
tEx

[

exp
{

− 1

2

∫

R

LztV (dz)
}

])

.

b)(6.6) (resp. (6.5)) is a direct consequence of (6.9) (resp. the inequality : V (dz) ≥ 1]−∞,0](z)V (dz)
and (5.5)).
c) Obviously, (6.6) implies lim

x→+∞
ϕV (x) = 0.

In order to end the proof of Theorem 6.1 we have to check:

lim
x→−∞

ϕ′
V (x) = −

√

2

π
. (6.19)

Let x < 0. We have successively:

ϕ′
V (0) − ϕ′

V (x) =

∫ 0

x

ϕ′′
V (dy) =

∫ 0

x

ϕV (y)V (dy),

|ϕ′
V (0) − ϕ′

V (x)| ≤ C

∫ 0

x

(1 + |y|)V (dy).

Assumption (6.1) implies that |ϕ′
V (x)| is bounded. But ϕV is a convex function, hence lim

x→−∞
ϕ′
V (x)

exists. Moreover

lim
x→−∞

ϕ′
V (x) = lim

x→−∞
ϕV (x)

x
. (6.20)

Let V [a](dy) denote the positive measure : V [a](dy) = 1]−∞,a[V (dy), with a < 0.

It is clear that V [a](dy) fulfills (6.2) and (6.1). Let ϕ[a](x) be the limit of
√
t ZV

[a]

t (x), as t → ∞,
where :

ZV
[a]

t (x) = Ex

[

exp
{

− 1

2

∫

R

Lyt V
[a](dy)

}

]

,

Let x < a. We have :

ZVt (x) = Ex

[

exp
{

− 1

2

∫

R

LytV (dy)
}

1{Ta<t}
]

+ Ex

[

exp
{

− 1

2

∫

R

Lyt V
[a](dy)

}

1{Ta≥t}
]

,

We use the strong Markov property at time Ta :

ZVt (x) = Ex

[

exp
{

− 1

2

∫

R

LyTa
V (dy)

}

1{Ta<t}Z
V
t−Ta

(a)
]

+ Ex

[

exp
{

− 1

2

∫

R

LytV
[a](dy)

}

]
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−Ex
[

exp
{

− 1

2

∫

R

LyTa
V [a](dy)

}

1{Ta<t}Z
V [a]

t−Ta
(a)

]

.

We multiply both sides by
√
t and we take the limit as t→ ∞ to obtain :

ϕV (x) = ϕV (a)h(x) + ϕ[a](x) + ϕ[a](a)h[a](x),

where

h(x) = Ex

[

exp
{

− 1

2

∫

R

LyTa
V (dy)

}

]

, h[a](x) = Ex

[

exp
{

− 1

2

∫

R

LyTa
V [a](dy)

}

]

.

The functions h and h[a] are bounded, and V [a](dy) satisfies (5.1), hence

lim
x→−∞

ϕV (x)

x
= lim

x→−∞
ϕ[a](x)

x
= lim
x→−∞

(ϕ[a])′(x) = −
√

2

π
.

Example 6.4 Let V (dy) = λ21[0,+∞[(y)dy.

lim
t→∞

(√
t Ex

[

exp
{

− λ2

2

∫ t

0

1{Bs>0}ds
}

])

= ϕV (x),

where

ϕV (x) =























1

λ

√

2

π
e−λx if x ≥ 0

√

2

π
(
1

λ
− x) if x < 0.

Moreover an explicit formula for Ex

[

exp
{

− λ2

2

∫ t

0

1{Bs>0}ds
}

]

is given in ([3] p 136]):

Ex

[

exp
{

− λ2

2

∫ t

0

1{Bs>0}ds
}

]

=



























e−
λ2t
2 (1 − Erfc(− x√

2t
) +

1

π

∫ 1

0

du
√

u(1 − u)
exp{−λ

2tu

2
− x2

2tu
} if x ≥ 0

(1 − Erfc(− x√
2t

) +
1

π

∫ 1

0

du
√

u(1 − u)
exp{−λ

2tu

2
− x2

2t(1 − u)
} if x < 0.

Example 6.5 Let V (dy) = (y2 − 1)1{y≥1}dy. Then

lim
t→∞

(√
t Ex

[

exp
{

− λ2

2

∫ t

0

(B2
s − 1)1{Bs>1}ds

}

])

= ϕV (x),

where

ϕV (x) =























√

2

π
e1/2e−x

2/2 if x ≥ 1

√

2

π
(2 − x) if x < 1.
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7 Some critical cases

In this section we consider :

V (x) =
λ

θ + x2
, (7.1)

where λ > 0 and θ ≥ 0.
Denoting by (Rt; t ≥ 0) the reflecting Brownian motion : Rt = |Bt|; t ≥ 0, then

∫ t

0

V (Bs)ds = λ

∫ t

0

1

θ +R2
s

ds. (7.2)

This led us to investigate more generally the asymptotic behaviour of Eµx

[

exp
{

− λ

2

∫ t

0

ds

θ +R2
s

}]

when t → ∞, where (Rt; t ≥ 0) is under Pµx , a Bessel process started at x, with index µ > −1 (the
dimension is dµ = 2(µ+ 1)).
Throughout this section, nµ stands for :

nµ =
−µ+

√

µ2 + λ

2
(7.3)

This parameter will play a central role in the formulation of our results.
We begin with the case θ = 0.

Theorem 7.1 Suppose µ > −1. Then :

lim
t→∞

(

tnµEµx

[

exp
{

− λ

2

∫ t

0

ds

R2
s

}])

= x2nµ
1

2nµ

Γ(µ+ nµ + 1)

Γ(µ+ 2nµ + 1)
. (7.4)

Remark 7.2 1. In particular if µ = −1/2, that is if dµ = 1, then :

lim
t→∞

(

tnEx

[

exp
{

− λ

2

∫ t

0

ds

B2
s

}])

= x2n 1

2n
Γ(n+ 1

2 )

Γ(2n+ 1
2 )
, (7.5)

where n = n−1/2 =
1 +

√
1 + 4λ

4
.

2. Taking µ = 0 (i.e. dµ = 2), we obtain :

lim
t→∞

(

tλEx

[

exp
{

− λ2

2

(

4

∫ t

0

ds

R2
s

)}])

=
x2λ

2λ
Γ(λ+ 1)

Γ(1 + 2λ)
=
x2λ

8λ

√
π

Γ(1/2 + λ)
, λ ≥ 0. (7.6)

To obtain the last equality in (7.6) we have used the Legendre duplication formula ([31], p 240)
:

Γ(2z) =
1√
π

22z−1Γ(z)Γ(z +
1

2
).

The formula (7.6) led Roynette and Yor [29] to define and study a family of positive r.v’s (Hc,α)
such that

E
[

exp
{

− λ2

2
Hc,α

}]

=
Γ(α)

Γ(α+ λ)
exp{cλ}, λ ≥ 0,

where α > 0 and c ≤ Γ′(α)/Γ(α).

We observe that these Laplace transforms appear in (7.6) for α = 1/2, and c = 2 logx− log 8.
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Proof of Theorem 7.1 Our approach is based on the well-known identity [26, chapter XI, ex 1.22,
page 430], or [32].

Eµx

[

Y
( x

Rt

)µ

exp
{

− ν2

2

∫ t

0

ds

R2
s

}]

= Eνx

[

Y
( x

Rt

)ν

exp
{

− µ2

2

∫ t

0

ds

R2
s

}]

, (7.7)

for any Ft-measurable r.v. Y ≥ 0.
Choosing : ν = µ+ 2nµ =

√

µ2 + λ and

Y =
( x

Rt

)−µ
exp

{µ2

2

∫ t

0

ds

R2
s

}

,

we get :

Eµx

[

exp
{

− λ

2

∫ t

0

ds

R2
s

}]

=
x2nµ

tnµ
Eν
x/

√
t

[( 1

R2
1

)nµ
]

.

Then, we obtain :

lim
t→∞

(

tnµEµx

[

exp
{

− λ

2

∫ t

0

ds

R2
s

}])

= x2nµEν0

[( 1

R2
1

)nµ
]

.

But, under P ν0 , the distribution of R2
1/2 is gamma(ν + 1). A straightforward calculation yields to :

Eν0

[( 1

R2
1

)nµ
]

=
1

2nµ

Γ(ν − nµ + 1)

Γ(ν + 1)
=

1

2nµ

Γ(µ+ nµ + 1)

Γ(µ+ 2nµ + 1)
. (7.8)

We now investigate the case θ > 0. In the sequel, L(µ) denotes the infinitesimal generator of the
Bessel process with index µ :

L(µ)(f)(x) =
1

2
f”(x) +

2µ+ 1

2x
f ′(x). (7.9)

Theorem 7.3 Suppose µ ≥ −1/2, λ > 0 such that :

λ < 8µ2 + 6µ+ 1. (7.10)

Let ϕ
(µ)
λ be the unique smooth function defined on [0,+∞[, solution of

L(µ)(ϕ)(x) =
1

2
ϕ”(x) +

2µ+ 1

2x
ϕ′(x) =

λ

2

1

1 + x2
ϕ(x); x > 0, (7.11)

such that:

ϕ
(µ)
λ (x) ∼ x2nµ , x→ +∞. (7.12)

Then :

lim
t→∞

(

tnµEµx

[

exp
{

− λ

2

∫ t

0

ds

θ +R2
s

}])

= θnµϕ
(µ)
λ (x/

√
θ)

1

2nµ

Γ(µ+ nµ + 1)

Γ(µ+ 2nµ + 1)
. (7.13)

Remark 7.4 We observe that if we take the limit θ → 0 in (7.13)we recover (7.4).

The function ϕ
(µ)
λ is defined in terms of hypergeometric functions. Let F (α, β, γ;x) be the hypergeo-

metric function with parameters α, β, γ (cf [20]):

F (α, β, γ;x) =

∞
∑

k=0

(α)k(β)k
(γ)kk!

xk, (7.14)

where (ρ)k = ρ(ρ+ 1) × · · · × (ρ+ k − 1).
The series in (7.14) converges for any x such that |x| < 1.

33



Lemma 7.5 The function ϕ
(µ)
λ in Theorem 7.3 which solves (7.11) and satisfies (7.12) is given by :

ϕ
(µ)
λ (x) =

{

kµF (nµ + µ,−nµ, µ+ 1;−x2) if nµ is an integer

kµ(1 + x2)−nµ−µF (nµ + µ, µ+ 1 + nµ, µ+ 1; x2

1+x2 ) otherwise,
(7.15)

where

kµ =
Γ(µ+ nµ)

Γ(µ+ 2nµ)

Γ(µ+ nµ + 1)

Γ(µ+ 1)
.

Remark 7.6 We observe that nµ is a positive real number. If nµ is an integer, then ϕ
(µ)
λ (x) is a

polynomial function with degree 2nµ.

Proof of Lemma 7.5.
1) Recall that F (α, β, γ; ·) fulfills :

x(1 − x)u”(x) + (γ − (α+ β + 1)x)u′(x) = αβu(x). (7.16)

Let v be the function : v(t) = F (α, β, γ; t2). Then [20, p 164], v is a solution to :

t(1 − t2)v”(t) + 2(γ − 1

2
− (α+ β +

1

2
)t2)v′(t) = 4αβv(t).

Finally setting w(t) = v(it), we obtain :

1

2
w”(t) +

1

t(1 + t2)

[

γ − 1

2
− (α+ β +

1

2
)t2)

]

w′(t) = −2αβ
w(t)

1 + t2
. (7.17)

If we choose α = nµ+µ, β = −nµ and γ = µ+1 , then it is easy to check that F (nµ+µ,−nµ, µ+1;−x2)
solves (7.11), with x ∈]0, 1[.

2) If nµ is an integer, it is obvious that F (nµ + µ,−nµ, µ+ 1;−x2) is a polynomial function with
degree 2nµ, and then solves (7.11) for every x > 0. Writing :

F (nµ + µ,−nµ, µ+ 1;−x2) =

nµ
∑

k=0

akx
2k, (7.18)

we obtain :

ak =
(nµ + µ)k × nµ × · · · (nµ − k + 1)

(µ+ 1)kk!
. (7.19)

Hence ak > 0, F (nµ + µ,−nµ, µ+ 1;−x2) > 0 and

anµ
=

Γ(µ+ 2nµ)

Γ(nµ + µ)

Γ(µ+ 1)

Γ(µ+ nµ + 1)
. (7.20)

Consequently ϕ
(µ)
λ (x) satisfies (7.12).

3) Suppose that nµ is not an integer. To obtain a function defined on the half-line [0,+∞[ we use
a fractional linear transformation of hypergeometric functions. Recall [20, (9.5.1)] :

F (α, β, γ; z) = (1 − z)−αF (α, γ − β, γ;
z

z − 1
), |arg(1 − z)| < π.

In our context this identity becomes :

F (nµ +µ,−nµ, µ+ 1;−x2) = (1 + x2)−nµ−µF (nµ +µ, µ+ 1 +nµ, µ+ 1;
x2

1 + x2
), x ∈ R. (7.21)
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An analytic continuation argument shows that ϕ
(µ)
λ is a solution of (7.11) for every x > 0.

It is easy to check that the coefficients in the series are positive, thus, ϕ
(µ)
λ > 0.

We conclude from [31, page 297 , ex 8] :

F (α, β, γ;
x2

1 + x2
) ∼ Γ(α+ β − γ)Γ(γ)

Γ(α)Γ(β)

1

(1 + x2)γ−α−β
, x→ +∞,

that (7.12) holds.

Lemma 7.7 1. The function ϕ
(µ)
λ defined in Lemma 7.5 fulfills :

(ϕ
(µ)
λ )′(x) ≥ 0, x ≥ 0, (7.22)

2nµ −
ρµ

1 + x2
≤ x(ϕ

(µ)
λ )′(x)

ϕ
(µ)
λ (x)

≤ 2nµ, x ≥ 0, (7.23)

where ρµ > 0.

2. Let D
(µ)
λ be the function defined on [1,+∞[×[0,+∞[ by :

D
(µ)
λ (t, x) =

1

tnµ
ϕ

(µ)
λ (x

√
t). (7.24)

Then :

lim
t→+∞

D
(µ)
λ (t, x) = x2nµ ; D

(µ)
λ (t, x) ≥ ρ̂µx

2nµ , ∀t, x ≥ 0, for some ρ̂µ > 0. (7.25)

0 ≤ 1

D
(µ)
λ (t, z)

− 1

D
(µ)
λ (t, y)

≤ k
y − z

z2nµ+1
; 0 < z < y. (7.26)

where k =
2nµ
ρ̂µ

.

Proof of lemma 7.7 We give the proof only for the case nµ ∈ N, the other cases are left to the
reader.
Property (7.19) gives (7.22).
Using (7.18) we get :

2nµϕ
(µ)
λ (x) − x(ϕ

(µ)
λ )′(x) = 2kµ

(

nµ
∑

k=0

(nµ − k)x2k
)

≥ 0.

Hence

2nµ − x
(ϕ

(µ)
λ )′(x)

ϕ
(µ)
λ (x)

=
Q(x)

ϕ
(µ)
λ (x)

,

where Q is a polynomial function with degree less than 2(nµ − 1). This implies (7.23).

Property (7.25) is due to the fact that D
(µ)
λ (t, )̇ is a polynomial function with degree 2nµ and positive

coefficients.
As for (7.26), we take the x-derivative of 1/D

(µ)
λ (t, x), we obtain :

∣

∣

∣

∂

∂x

1

D
(µ)
λ (t, x)

∣

∣

∣
= tnµ+1/2 (ϕ

(µ)
λ )′(x

√
t)

(ϕ
(µ)
λ )2(x

√
t)
.
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Hence, the inequalities (7.23) and (7.25) directly imply :

∣

∣

∣

∂

∂x

1

D
(µ)
λ (t, x)

∣

∣

∣
≤ 2nµ

ρ̂µ

1

x1+2nµ
.

Then (7.26) follows immediately.

Lemma 7.8 For any positive functional F and x ≥ 0, t > 0, we have :

Eµx

[

F (Rs; 0 ≤ s ≤ t)ϕ
(µ)
λ (Rt) exp

{

− λ

2

∫ t

0

ds

1 +R2
s

}]

= ϕ
(µ)
λ (x)Ex

[

F (Xs; 0 ≤ s ≤ t)
]

, (7.27)

where the function ϕ
(µ)
λ is defined in Lemma 7.5 and (X(t); t ≥ 0) is the process solution of :

Xt = x+Bt +
2µ+ 1

2

∫ t

0

ds

Xs
+

∫ t

0

(ϕ
(µ)
λ )′

ϕ
(µ)
λ

(Xs)ds, t ≥ 0. (7.28)

In particular :

Eµx

[

exp
{

− λ

2

∫ t

0

ds

1 +R2
s

}]

= ϕ
(µ)
λ (x)Ex

[ 1

ϕ
(µ)
λ (Xt)

]

. (7.29)

Remark 7.9 Hariya and Yor [15] show the existence, and describe, the limiting measures, as t→ ∞,
of the laws of {Bs + µs; 0 ≤ s ≤ t} perturbed by the Radon-Nikodym density consisting of either the

normalized functionals exp(−αA(µ)
t ), or 1/

(

A
(µ)
t

)m

, where A
(µ)
t =

∫ t

0

ds exp{2(Bs+µs)}. The results

exhibit different regimes according to whether µ ≥ 0 or µ < 0 in the first case, and a partition of the
(µ,m)-plane in the second case.

Proof of lemma 7.8. Let (Rt; t ≥ 0) and (Xt; t ≥ 0) be defined as solutions of :

Xt = x+Bt +
2µ+ 1

2

∫ t

0

ds

Xs
+

∫ t

0

(ϕ
(µ)
λ )′

ϕ
(µ)
λ

(Xs)ds, t ≥ 0, (7.30)

Rt = x+Bt +
2µ+ 1

2

∫ t

0

ds

Rs
, t ≥ 0, (7.31)

with the same underlying Brownian motion (Bt; t ≥ 0).

Since (ϕ
(µ)
λ )′/ϕ(µ)

λ is a bounded function, we may apply Girsanov’s theorem :

Ex

[

F (Xs; 0 ≤ s ≤ t)
]

= Eµx

[

YtF (Rs; 0 ≤ s ≤ t)
]

,

where

Yt = exp
{

∫ t

0

(ϕ
(µ)
λ )′

ϕ
(µ)
λ

(Rs)dBs −
1

2

∫ t

0

( (ϕ
(µ)
λ )′

ϕ
(µ)
λ

)2

(Rs)ds
}

. (7.32)

Applying by now standard arguments (cf, formula (2.6)), we obtain :

Yt =
ϕ

(µ)
λ (Rt)

ϕ
(µ)
λ (x)

exp
{

−
∫ t

0

L(µ)(ϕ
(µ)
λ )

ϕ
(µ)
λ

(Rs)ds
}

.

We conclude from (7.11) that (7.27) holds.
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Lemma 7.10 Let x ≥ 0. Let us denote by (Xt; t ≥ 0) the diffusion :

Xt = x+Bt +
2µ+ 1

2

∫ t

0

ds

Xs
+

∫ t

0

(ϕ
(µ)
λ )′

ϕ
(µ)
λ

(Xs)ds, t ≥ 0, (7.33)

and (Rµt ; t ≥ 0) (resp. (R
µ+2nµ

t ; t ≥ 0) the Bessel processes with index ν = µ, (resp. ν = µ + 2nµ)
solving :

Rνt = x+ B̃t +
2ν + 1

2

∫ t

0

ds

Rνs
, t ≥ 0, (7.34)

where (B̃t; t ≥ 0) is the Brownian motion : B̃t =

∫ t

0

sgn(Xs)dBs, t ≥ 0.

Then a.s. for any t ≥ 0 :

(Rµt )2 ≤ X2
t ≤ (R

µ+2nµ

t )2. (7.35)

Proof of lemma 7.10. Applying Itô’s formula to the squares of the processes X and Rν , we obtain
:

X2
t = x2 + 2

∫ t

0

√

X2
sdB̃s +

∫ t

0

(

2Xs
(ϕ

(µ)
λ )′

ϕ
(µ)
λ

(Xs) + 2(µ+ 1)
)

ds, (7.36)

(Rνt )
2 = x2 + 2

∫ t

0

√

(Rνs )
2dB̃s + 2(ν + 1)t. (7.37)

We observe that the function x 7→ 2x(ϕ
(µ)
λ )′(x)

ϕ
(µ)
λ (x)

+ 2(µ+ 1) may be written as h(x2), a function of x2,

hence:

X2
t = x2 + 2

∫ t

0

√

X2
sdB̃s +

∫ t

0

h(X2
s )ds. (7.38)

Inequalities (7.22) and (7.23) imply :

2(µ+ 1) ≤ h(x) ≤ 2(2nµ + µ+ 1). (7.39)

The inequalities (7.35) are a direct consequence of comparison results for solutions of one-dimensional
stochastic differential equations [17, Prop 2.18, Chapter 5].

Remark 7.11 In (7.34) we have chosen the Brownian motion (B̃) instead of (B) in order to obtain
the inequalities (7.35)). Replacing (B̃t) by (Bt) in (7.34) does not change the law of (Rνt ).

Lemma 7.12 Let a > 0 be fixed. Let (Y at ; t ≥ 0) and (Zat ; t ≥ 0) denote the processes :

Y at =
1

a
(Rνat)

2; Zat =
1

a
X2
at, t ≥ 0, (7.40)

with ν = µ+ 2nµ, (Xt; t ≥ 0) (resp. (Rνt ; t ≥ 0)) solving (7.33) (resp. (7.34)).
Then for any 1 ≤ p <∞, we have :

lim
a→+∞

(

E[(Y a1 − Za1 )p]
)

= 0. (7.41)
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Proof of Lemma 7.12. From (7.36) and (7.37), we deduce :

0 ≤ E[Y at − Zat ] ≤ E
[

∫ t

0

(

4nµ − 2Xas
(ϕ

(µ)
λ )′

ϕ
(µ)
λ

(Xas)
)

ds
]

.

Using successively (7.23) and (7.35), we obtain :

E[Y at − Zat ] ≤ 2θµE
[

∫ t

0

1

1 + (Xas)2
ds

]

≤ 2θµ

∫ t

0

E
[ 1

1 + (Rνas)
2

]

ds,

The scaling property of Bessel processes yields to :

E
[ 1

1 + (Rνas)
2

]

= Eνx

[ 1

1 + (Ras)2

]

= Eνx/
√
a

[ 1

1 + a(Rs)2

]

.

Obviously the right hand-side of the previous inequality tends to 0, as a → +∞. The dominated
convergence theorem implies that :

lim
a→+∞

(

E[Y at − Zat ]
)

= 0.

Let 1 ≤ p <∞ and t = 1. Since 0 ≤ Y a1 − Za1 , then (Y a1 − Za1 )p goes to 0 in probability, as a→ ∞.
We claim that for any α ∈]1,∞[ :

sup
a≥1

E[(Y a1 − Za1 )pα] <∞. (7.42)

This will prove (7.41), because (7.42) implies that ((Y a1 − Za1 )p; a ≥ 1) is uniformly integrable.
To prove (7.42), we use the definition of Y a and (7.35). Denoting β = pα, we have :

E[(Y a1 − Za1 )β ] ≤ E[(Y a1 )β ] ≤ E
[(Rνa√

a

)β]

.

Recall that with our notations :

E
[(Rνa√

a

)β]

= Eνx

[(Ra√
a

)β]

= Eνx/
√
a[(R1)

β ].

The second equality follows from the scaling property of Bessel processes. Comparison theorem tells
us :

Eνx/
√
a

[

(R1)
β
]

≤ Eνx

[

(R1)
β
]

<∞,

for any a ≥ 1. This proves (7.42).

Proof of Theorem 7.3 1) Using the scaling property of Bessel processes, we get :

Eµx

[

exp
{

− λ

2

∫ t

0

ds

θ +R2
s

}]

= Eµ
x/

√
θ

[

exp
{

− λ

2

∫ t/θ

0

ds

1 +R2
s

}]

. (7.43)

Thus, it suffices to prove (7.13) when θ = 1.
2) Let θ = 1. From (7.29), it remains to prove :

lim
t→∞

(

tnµEx

[ 1

ϕ
(µ)
λ (Xt)

])

=
1

2nµ

Γ(µ+ nµ + 1)

Γ(µ+ 2nµ + 1)
. (7.44)
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By (7.40) and (7.24), we get :

Ex

[ 1

ϕ
(µ)
λ (Xt)

]

=
1

tnµ
Ex

[ 1

D
(µ)
λ (t,

√

Zt1)

]

,

3) Let us prove :

lim
t→∞

Ex

[ 1

D
(µ)
λ (t,

√

Zt1)
− 1

D
(µ)
λ (t,

√

Y t1 )

]

= 0. (7.45)

Using (7.26), we obtain :

Ex

[ 1

D
(µ)
λ (t,

√

Zt1)
− 1

D
(µ)
λ (t,

√

Y t1 )

]

≤ CEx

[

√

Y t1 −
√

Zt1
(Zt1)

nµ+1/2

]

≤ CEx

[

√

Y t1 − Zt1
(Zt1)

nµ+1/2

]

.

Since λ < 8µ2 + 6µ+ 1 and nµ =
−µ+

√
µ2+λ

2 , then nµ + 1/2 − µ < 1. Hence we may find ε > 0 such
that :

nµ + 1/2 + ε− µ < 1. (7.46)

Let q = q(ε) =
nµ + 1/2 + ε

nµ + 1/2
> 1 and p be the conjugate exponent of q.

Applying Hölder’s inequality leads to :

Ex

[ 1

D
(µ)
λ (t,

√

Zt1)
− 1

D
(µ)
λ (t,

√

Y t1 )

]

≤ C
{

Ex
[

(Y t1 − Zt1)
p/2

]

}1/p{

Ex
[ 1

(Zt1)
nµ+1/2+ε

]

}1/q

.

Property (7.45) will be a direct consequence of (7.41), once we have proved that : t→ Ex
[ 1

(Zt1)
nµ+1/2+ε

]

is bounded.
Using the definition of Zt1, (7.35) and the scaling property of Bessel processes, we obtain :

Ex
[ 1

(Zt1)
nµ+1/2+ε

]

= Eµx
[

( t

R2
t

)nµ+1/2+ε
]

= Eµ
x/

√
t

[ 1

(R2
1)
nµ+1/2+ε

]

.

Comparison theorem implies that :

Eµ
x/

√
t

[ 1

(R2
1)
nµ+1/2+ε

]

≤ Eµ0
[ 1

(R2
1)
nµ+1/2+ε

]

.

Under Pµ0 , the distribution of R2
1/2 is gamma(µ+ 1). Hence Eµ0

[ 1

(R2
1)
nµ+1/2+ε

]

<∞ as soon as :

∫ 1

0

yµ

ynµ+1/2+ε
dy <∞.

This integral is finite since condition (7.46) holds.
4) Due to the scaling property of Bessel processes,

Ex

[ 1

D
(µ)
λ (t,

√

Y t1 )

]

= Eν
x/

√
t

[ 1

D
(µ)
λ (t, R1)

]

,

where ν = µ+ 2nµ.
Applying (7.25), we obtain :

lim
t→∞

Eν
x/

√
t

[ 1

D
(µ)
λ (t, R1)

]

= Eν0

[ 1

R
2nµ

1

]

.

Relation (7.44) now follows from (7.8).

39



Remark 7.13 Note that condition (7.10) has only been used in the last part of the proof of Theorem
7.3. It may not be necessary but we have not been able to justify this.

Theorem 7.14 Assume that λ, θ > 0 obey (7.10). Let Qx,t be the probability defined on Ft via :

Qx,t(Λt) =
Ex

[

1Λt
exp

{

− λ
2

∫ t

0
ds

θ+R2
s

}]

Ex

[

exp
{

− λ
2

∫ t

0
ds

θ+R2
s

}] , Λt ∈ Ft. (7.47)

Then, for any Λs in Fs, Qx,t(Λs) converges to P
ϕ

(µ)
λ

x (Λs) as t → ∞, where P
ϕ

(µ)
λ

x is the probability
defined on F∞ by :

P
ϕ

(µ)
λ

x (Λs) =
1

ϕ
(µ)
λ (x/

√
θ)
Ex

[

1Λs
ϕ

(µ)
λ (Rs/

√
θ) exp

{

− 1

2

∫ s

0

dv

θ +R2
v

}]

, (7.48)

for any s > 0 and Λs ∈ Fs.
Let (Xx

t ; t ≥ 0) be the solution to :

Xt = x+Bt +
2µ+ 1

2

∫ t

0

ds

Xs
+

1√
θ

∫ t

0

(ϕ
(µ)
λ )′

ϕ
(µ)
λ

(Xs/
√
θ)ds, t ≥ 0. (7.49)

Then the law of (Xx
t ; t ≥ 0) is P

ϕ
(µ)
λ

x .

The proof of Theorem 7.14 is based on Theorem 7.3 and the estimate (7.25), the details are left to the
reader.

Let us mention two consequences of Theorem 7.14.

Corollary 7.15 Let µ ≥ −1/2, θ > 0 satisfying (7.10). Then

lim
ε→0

( 1

εnµ
Eµ
x
√
ε

[

exp
{

− λ

2

∫ 1

0

ds

θε+R2
s

}])

= θnµϕ
(µ)
λ (x/

√
θ)

1

2nµ

Γ(µ+ nµ + 1)

Γ(µ+ 2nµ + 1)
. (7.50)

Corollary 7.16 Assume µ ≥ −1/2, θ > 0 and (7.10) holds. Let ψλ be the unique solution of :
{

∂ψ
∂t (t, x) = 1

2
∂2ψ
∂x2 (t, x) + 2µ+1

2x
∂ψ
∂x (t, x) − λ

2
ψ(t,x)
θ+x2 , t > 0, x ≥ 0,

ψ(0, x) = 1.
(7.51)

Then

lim
t→∞

(

tnνψλ(t, x)
)

= θnµϕ
(µ)
λ (x/

√
θ)

1

2nµ

Γ(µ+ nµ + 1)

Γ(µ+ 2nµ + 1)
. (7.52)

8 On the use of large deviations

In this section we will be concerned with λV , where λ > 0 and :

V (x) =
1

1 + |x|α ; x ∈ R, 0 < α < 2. (8.1)

We investigate the asymptotic behaviour of :

ZλVt (x) = Ex

[

exp
{

− λ

2

∫ t

0

ds

1 + |Bs|α
}]

, (8.2)

when t→ ∞.

Notice that if α > 2 then λ

∫

R

V (x)|x|dx < ∞, hence we may apply the results of section 3. The

critical case α = 2 has been treated in the previous section.
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Theorem 8.1 Let 0 < α < 2, λ > 0. Then

lim
t→∞

(

t
α−2
α+2 ln

(

ZλVt (x)
)

)

= −1

2
I0(λ), (8.3)

where

I0(λ) = inf
ψ∈C0

{

∫ 1

0

ψ̇2(s)ds+ λ

∫ 1

0

ds

|ψ(s)|α
}

, (8.4)

belongs to ]0,+∞[, and C0 is the set of continuous functions f : [0, 1] → R vanishing at 0.

Remark 8.2 We observe that the limit in (8.3) does not depend on x, which may be due to the fact
this result only gives a logarithmic equivalent to ZVt (x). Indeed, consider the equivalent of ZVt (x)

given by Theorem 5.1 : lim
t→∞

(√
tZVt (x)

)

= ϕV (x). Then
ln(ZVt (x))

ln t
converges to the constant −1/2,

as t→ ∞.

Lemma 8.3 Let η > 0. Let us denote :

Iη(λ) = inf
ψ∈C0

{

∫ 1

0

ψ̇2(s)ds+ λ

∫ 1

0

ds

η + |ψ(s)|α
}

. (8.5)

Then Iη(λ) is a positive real number, η 7→ Iη(λ) is decreasing and

lim
η→0

Iη(λ) = I0(λ). (8.6)

Proof of Lemma 8.3. Let ψη be a function in C0 such that :

Iη(λ) =

∫ 1

0

ψ̇2
η(s)ds+ λ

∫ 1

0

ds

η + |ψη(s)|α
. (8.7)

Then ψη ≥ 0 and the Euler equation associated with ψη is :

{

2ψ̈η +
αλψα−1

η

(η+ψα
η )2 = 0

ψη(0) = 0, ψ̇η(1) = 0.
(8.8)

Consequently ψη is a positive, increasing and convex function. Multiplying the first line of (8.8) by

ψ̇η and integrating, we obtain :

ψ̇η
2
(t) = λ

( 1

η + ψη(t)α
− 1

η + ψη(1)α

)

. (8.9)

Let Hη be the function :

Hη(C, x) =
1√
λ

∫ x

0

dy
√

1
η+yα − 1

η+Cα

, x ∈ [0, C], C > 0.

Since the derivative of ψη is positive, the relation (8.9) is equivalent to :

d

dt
Hη(C,ψη(t))) = 1; 0 ≤ t ≤ 1,

or
Hη(C,ψη(t)) = t, 0 ≤ t ≤ 1,

with C = ψη(1).
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This implies that ψη is the inverse of t (≥ 0) 7→ Hη(C, t). As for C, we observe that it remains to take
into account the condition : C = ψη(1). Let Cη be the unique solution in ]0,+∞[ of :

1√
λ

∫ Cη

0

dy
√

1
η+yα − 1

η+Cα
η

= 1. (8.10)

Taking C = Cη, we have C = ψη(1).

Lemma 8.4 Let α ∈]0,2[ and ψ0 be defined by the relation ( 8.7), with η = 0. Then

lim inf
ε→0

(

ε ln
(

P
{√

ε|Bs|α + ε
2α

2−α ≥ ψ0(s)
α; ∀s ∈ [0, 1]

})

)

≥ −1

2

∫ 1

0

ψ̇2
0(s)ds. (8.11)

Proof of Lemma 8.4. We suppose for simplicity α = 1, the general case being only slightly more
complicated.
Let us introduce the set :

Γε =
{√

ε|Bs| ≥ ψ0(s) − ε2; ∀s ∈ [0, 1]
}

.

Since ψ0 is an increasing and positive function, there exists δ(ε) > 0 such that ψ0(s) ≥ ε2 if and only
if s ≥ δ(ε) and δ(ε) goes to 0 as ε→ 0. Consequently :

Γε =
{√

εBs ≥ ψ0(s) − ε2; ∀s ∈ [δ(ε), 1]
}

∪
{√

εBs ≤ −ψ0(s) + ε2; ∀s ∈ [δ(ε), 1]
}

.

Then, computing the probability of Γε, we obtain :

P (Γε) = P
{

Bs ≥
ψ0(s)√

ε
− ε3/2; ∀s ∈ [δ(ε), 1]

}

,

≥ P
{

Bs −
ψ0(s)√

ε
≥ −ε3/2; ∀s ∈ [0, 1]

}

.

Let us denote by Λε the set : Λε = {infs∈[0,1]Bs ≥ −ε3/2}. Using Girsanov’s theorem, we have :

P (Γε) ≥ E
[

1Λε
exp

{

− 1√
ε

∫ 1

0

ψ̇0(s)dBs −
1

2ε

∫ 1

0

ψ̇0(s)
2ds

}]

,

≥ exp
{

− 1

2ε

∫ 1

0

ψ̇0(s)
2ds

}

E
[

1Λε
exp

{

− 1√
ε

∫ 1

0

ψ̇0(s)dBs

}]

.

Jensen’s inequality applied to x 7→ e−x leads to :

1

P (Λε)
E

[

1Λε
exp

{

− 1√
ε

∫ 1

0

ψ̇0(s)dBs

}]

≥ exp
{

− 1

P (Λε)
E

[

1Λε

1√
ε

∫ 1

0

ψ̇0(s)dBs

]}

.

Holder’s inequality yields to :

E
[

1Λε

∣

∣

∣

∫ 1

0

ψ̇0(s)dBs

∣

∣

∣

]

≤ C(p)P (Λε)
1/p,

where p > 1 and

C(p) =
(

E
[

∣

∣

∫ 1

0

ψ̇0(s)dBs
∣

∣

q
])1/q

= cq

(

∫ 1

0

(ψ̇0(s))
2ds

)1/2

,
1

p
+

1

q
= 1,

where cq =
(

E[|B1|q]
)1/q

is a universal constant.
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Recall that (− inf
s∈[0,1]

Bs) is distributed as |B1|, hence, there exist two positive constants c0 and c1 such

that :
c0ε

3/2 ≤ P (Λε) = P (|B1| ≤ ε3/2) ≤ c1ε
3/2, ε ∈]0, 1].

Let 0 < δ < 1/2, we choose p > 1 such that 1 − 1

p
=

2

3
δ, then :

1

P (Λε)
E

[

1Λε

1√
ε

∫ 1

0

ψ̇0(s)dBs

]

≤
c′q

(

∫ 1

0 (ψ̇0(s))
2ds

)1/2

εδ+1/2
,

P (Γε) ≥ c0ε
3/2 exp

{

− 1

2ε

∫ 1

0

ψ̇0(s)
2ds

}

exp
{

−
c′q

(

∫ 1

0 (ψ̇0(s))
2ds

)1/2

εδ+1/2

}

,

where c′q =
cq

c
2δ/3
0

. Then (8.11) follows immediately.

Proof of Theorem 8.1 Suppose that x = 0. Setting ε = t
α−2
2+α and using the scaling property of

Brownian motion and definition (8.2), we have :

ZλVt (0) = E0

[

exp
{

− λt

2

∫ 1

0

ds

1 + tα/2|Bs|α
}]

= E0

[

exp
{

− λ

2ε

∫ 1

0

ds

ε
2α

2−α + |√εBs|α
}]

. (8.12)

1)We first prove :

lim sup
t→+∞

(

t
α−2
α+2 ln

(

ZλVt (0)
)

)

≤ −1

2
I0(λ), (8.13)

where I0(λ) is defined by (8.4).

Let η > 0 be a fixed real number, and ε > 0 such that ε
2α

2−α < η. Hence :

ZλVt (0) ≤ exp
{

− 1

2ε
Φη(λ,

√
εB·)

}

, (8.14)

where

Φη(λ, f) = λ

∫ 1

0

ds

η + |f(s)|α . (8.15)

Varadhan’s theorem [9] yields to:

lim
ε→0

(

ε ln
(

E0

[

exp
{

− 1

2ε
Φη(λ,

√
εB·)

}

]))

= −1

2
Iη(λ),

where Iη(λ) is defined by (8.5).
Consequently,

lim sup
t→+∞

(

t
α−2
α+2 ln

(

ZλVt (0)
)

)

≤ −1

2
Iη(λ),

for any η > 0.
Lemma 8.3 implies (8.13).

2) We claim that :

lim inf
t→+∞

(

t
α−2
α+2 ln

(

ZλVt (0)
)

)

≥ −1

2
I0(λ), (8.16)

43



Starting from (8.12), we have :

ZλVt (x) ≥ E0

[

1Γη
exp

{

− λ

2ε

∫ 1

0

ds

ε
2α

2−α + |√εBs|α
}]

,

with η > 0 and

Γη =
{√

ε|Bs|α + ε
2α

2−α ≥ ψ0(s)
α; ∀s ∈ [0, 1]

})

)

.

Hence,

ZλVt (x) ≥ exp
{

− λ

2ε

∫ 1

0

ds

ψ0(s)α

}

P (Γη).

Relation (8.16) is a direct consequence of Lemma 8.4 and (8.7).

9 The bilateral case

In this section it is required that V (x) goes to +∞ as |x| → ∞. The asymptotic behaviour of

ZVt (x) := Ex

[

exp
{

− 1

2

∫ t

0

V (Bs)ds
}

]

, when t → ∞ has been initiated by Kac [16] . Let us briefly

recall (cf [30]) the main result. Let us consider the second order differential equation :

1

2
ψ” − V ψ = −λψ. (9.1)

Then there exist a sequence (λn)n≥1 of positive numbers, 0 < λ1 < λ2 < · · · and an orthonormal
basis of functions (ψn)n≥1 in L2(R) such that for any n, ψn is a solution to (9.1) with λ = λn, and
the ground state ψ1 > 0. This spectral gap property (i.e. λ1 > 0, cf [30]) plays a central role. With
some additional assumptions, Kac proved :

Ex

[

exp
{

− 1

2

∫ t

0

V (Bs)ds
}

]

∼ ρe−λ1t t→ ∞, (9.2)

where

ρ =
∑

λj=λ1

ψj(0)

∫

R

ψj(x)dx.

R. Carmona [4], [5] generalized this result to the case where V may be written as the sum V1 + V2,
where V2 ∈ Lp(R), V1 being larger than a constant and fulfilling for any β > 0 :

lim
|x|→∞

(

∫ x+α

x−α
e−βV1(y)dy = 0

)

, for some α > 0.

The proof is based on the compactness of the family of operators (Tt)t≥0, and the discrete spectrum
of the generator L of the semi group (Tt)t≥0 :

L(f) =
1

2
f” − V f. (9.3)

Here, we investigate the case where

V : R → R is an even function, non-decreasing on [0,+∞[, (9.4)

V (x) converges to a real number V̄ , as |x| → ∞. (9.5)

Notice that, to our knowledge, this setting was neither considered by Kac nor Carmona.
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Our approach is direct. We prove that there exists a unique γ0 such that a solution ϕV−γ0 to the
Sturm-Liouville equation ϕ′′ = (V − γ0)ϕ with suitable boundary conditions, satisfies the condition of
Section (4). This allows us to prove the exponential decay of ZVt (x), as t→ ∞.
In order to present our main result in Theorem 9.1 below,we need to define the parameter γ0.
We start with the following definitions :

V = inf
x∈R

V (x) = V (0) , V̄ = sup
x∈R

V (x) <∞. (9.6)

Notice that we do not require that V (x) is non-negative.
If V is constant, the result is obvious. Therefore we suppose in the sequel that : V < V̄ .
The function V being monotone on [0,∞[ (resp. ] −∞, 0]), coincides with its right continuous modi-
fication V0, except on an at most countable set. Then, a.s. :

∫ t

0

V (Bs)ds =

∫ t

0

V0(Bs)ds, for any t ≥ 0.

Then V may be assumed to be right continuous.
Let V −1 be the right inverse of the restriction of V to [0,∞[ :

V −1(γ) = inf{t ≥ 0;V (t) > γ}, γ ∈]V , V̄ [.

Then:

V (V −1(γ)) ≥ γ, V < γ < V̄ . (9.7)

For any γ ∈]V , V̄ [, let Fγ (resp. Gγ) be the unique solution to

Y ” = (V − γ)Y, (9.8)

on [0, V −1(γ)] (resp. [V −1(γ),∞[) with the boundary conditions

Fγ(V
−1(γ)) = 1, F ′

γ(0) = 0. (9.9)

Gγ(V
−1(γ)) = 1, Gγ(+∞) := lim

x→∞
Gγ(x) = 0. (9.10)

We set:

ϕV−γ(x) =

{

Fγ(x) if x ∈ [0, V −1(γ)]
Gγ(x) if x ≥ V −1(γ).

(9.11)

We extend ϕV−γ to the whole line, setting : ϕV−γ(−x) = ϕV−γ(x). Then ϕV−γ is a continuous and
even function defined on R. Notice that ϕV−γ(x) is differentiable for any x 6= ±V −1(γ).

Theorem 9.1 Let V be a function fulfilling (9.4) and (9.5).

1. There exists a unique γ0 ∈]V , V̄ [ such that the function ϕV−γ0 defined by (9.11) is differentiable
on R.

2. The quantity:

eγ0t/2 Ex

[

exp
{

− 1

2

∫ t

0

V (Bs)ds
}]

,

converges as t→ ∞, to
(

∫

R

ϕV−γ0(y)dy
)

ϕV−γ0(x).
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3. Let us define the probability QVx,t on Ft via :

QVx,t(Λt) =
Ex

[

1Λt
exp

{

− 1
2

∫ t

0 V (Bh)dh
}]

Ex

[

exp
{

− 1
2

∫ t

0 V (Bh)dh
}] , Λt ∈ Ft. (9.12)

Then, for any Λs in Fs, QVx,t(Λs) converges to P
ϕV −γ0
x (Λs) as t → ∞, where P

ϕV −γ0
x is the

probability defined on F∞ by :

P
ϕV −γ0
x (Λs) =

eγ0s/2

ϕV−γ0(x)
Ex

[

1Λs
ϕV−γ0(Bs) exp

{

− 1

2

∫ s

0

V (Bh)dh
}]

, (9.13)

for any s > 0 and Λs ∈ Fs.
4. Let (Xx

t ; t ≥ 0) be the solution to :

Xt = x+Bt +

∫ t

0

ϕ′
V−γ0
ϕV−γ0

(Xs)ds, t ≥ 0. (9.14)

Then the law of (Xx
t ; t ≥ 0) is P

ϕV −γ0
x .

5. The process (Xx
t ; t ≥ 0) is recurrent with invariant finite measure (ϕV−γ0)

2(x)dx.

We begin by proving two preliminary results in the form of the next Lemmas 9.2 and 9.3.

Lemma 9.2 Let θ1, θ2 be two functions defined on [a, b), θ1 ≥ θ2 ≥ 0, ϕi a solution of ϕ′′
i = θiϕi, i =

1, 2 on [a, b), such that ϕ1(a) = ϕ2(a) and ϕ1(b) = ϕ2(b) ≥ 0 (If b = +∞, ϕi(b) has to be understood
as lim

x→∞
ϕi(x)). Then ϕ2 ≥ ϕ1.

Proof of Lemma 9.2. Suppose there exists x0 in (a, b) such that ϕ2(x0) < ϕ1(x0). We can find a
non-empty interval [α, β[ included in [a, b) such that ϕ1(α) = ϕ2(α), ϕ1(β) = ϕ2(β) and ϕ1 > ϕ2 on
]α, β[.
Let h = ϕ1 − ϕ2. Then h′′ = θ1ϕ1 − θ2ϕ2.
But on [α, β[:

θ1 ≥ θ2 ≥ 0, ϕ1 ≥ ϕ2 ≥ 0, ⇒ h′′ ≥ 0.

This generates a contradiction because then h is a non-constant and non-negative convex function on
[α, β[ such that h(α) = h(β) = 0.

Lemma 9.3 Let γ ∈]V , V̄ [.

1. There exists two positive constants k1, k2 such that

ϕV−γ(x) ≤ k1e
−k2|x|. (9.15)

2. The function : γ :∈]V , V̄ [ 7→ ϕ′
V−γ(V

−1(γ)−) is continuous, increasing and

lim
γ→V

ϕ′
V−γ(V

−1(γ)−) = 0, lim inf
γ→V̄

(

− ϕ′
V−γ(V

−1(γ)−)
)

> 0 (9.16)

( ϕ′
V−γ(V

−1(γ)−) denotes the left derivative of ϕ′
V−γ at point V −1(γ)).

3. We have :

lim
γ→V̄

ϕ′
V−γ(V

−1(γ)+) = 0, lim
γ→V

ϕ′
V−γ(V

−1(γ)+) < 0. (9.17)

46



Proof of Lemma 9.3. 1) Let u < γ < γ′ < ū and θ be the solution to θ′′ = (γ′ − γ)θ, on
[V −1(γ′),+∞[, with the boundary conditions : θ(V −1(γ′)) = ϕV−γ(V −1(γ′)), θ(+∞) = ϕV−γ(+∞) =
0.
Because 0 < γ′ − γ ≤ V (x) − γ, for any x ≥ V −1(γ′), Lemma 9.2 implies ϕV−γ ≤ θ.
But

θ(x) = ϕV−γ(V
−1(γ′))e−k1(x−V −1(γ′)),

with k1 =
√
γ′ − γ.

This proves (9.15).
2) Since ϕV−γ coincides with Fγ on [0, V −1(γ)],

ϕ′
V−γ(V

−1(γ)−) =

∫ V −1(γ))

0

(V (x) − γ)ϕV−γ(x)dx.

The function ϕV−γ is concave on [0, V −1(γ)], consequently, if x ∈ [0, V −1(γ)], then

ϕV−γ(x) ≥ 1, (9.18)

|ϕ′
V−γ(V

−1(γ)−)| = −ϕ′
V−γ(V

−1(γ)−), (9.19)

|ϕ′
V−γ(V

−1(γ)−)| =

∫ V −1(γ))

0

(γ − V (x))ϕV −γ(x)dx, (9.20)

|ϕ′
V−γ(V

−1(γ)−)| ≥
∫ V −1(γ))

0

(γ − V (x))dx, (9.21)

ϕV−γ(x) ≤ 1 + ϕ′
V−γ(V

−1(γ)−)(x − V −1(γ)),

ϕV−γ(x) ≤ 1 + |ϕ′
V−γ(V

−1(γ)−)|(V −1(γ) − x).

Minoring ϕV−γ(x) in (9.20), we obtain:

|ϕV−γ(V
−1(γ)−)|

(

1 −
∫ V −1(γ))

0

(γ − V (x))(V −1(γ) − x)dx
)

≤
∫ V −1(γ))

0

(γ − V (x))dx. (9.22)

From now on, we suppose for simplicity that the restriction of V to [0,+∞[ is strictly increasing. In
particular V −1 is a continuous function. Relation (9.22) implies that

lim
γ→V

ϕ′
V−γ(V

−1(γ)−) = 0.

From (9.21), it easily follows that

lim inf
γ→V̄

ϕ′
V−γ(V

−1(γ)−) > 0.

3) Let h be the solution to h′′ = (V̄ − γ)h, on [V −1(γ),+∞[, with the boundary conditions :
h(V −1(γ)) = ϕV−γ(V −1(γ)), h(+∞) = ϕV−γ(+∞) = 0.
Since 0 < V − γ ≤ V̄ − γ, for any x ≥ V −1(γ), Lemma 9.2 shows that ϕV−γ ≥ h.
But h(V −1(γ)) = ϕV−γ(V −1(γ)), hence

|ϕ′
V−γ(V

−1(γ)+)| = −ϕ′
V−γ(V

−1(γ)+) ≤ −h′(V −1(γ)) =

√

V̄ − γ,
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lim
γ→V̄

ϕ′
V−γ(V

−1(γ)+) = 0.

It is easy to check that :
lim
γ→V

ϕ′
V−γ(V

−1(γ)+) = H ′(0),

where H is the solution to H”(x) = (V (x) − γ)H(x) x ≥ 0, with the boundary conditions : H(0) = 1
and H(∞) = 0.
Because H ′(∞) = 0,

−H ′(0) =

∫ ∞

0

(V (y) − γ)H(y)dy > 0.

This gives (9.17).

Proof of Theorem 9.1.
The existence of γ0 such that ϕV−γ0 is of class C1 can be derived using the continuity of the functions
γ 7→ ϕ′

V−γ(V
−1(γ)+) and γ 7→ ϕ′

V−γ(V
−1(γ)−), and properties (9.16), (9.17).

ϕV−γ0 is an even function, non-decreasing on (0,∞[. Inequality (9.15) leads to

∫

R

(ϕV −γ0(x))
pdx <∞,

for any p > 0. Then we may apply Theorem 4.1 :

lim
t→∞

Ex

[

exp
{

− 1

2

∫ t

0

(V (Bs) − γ0)ds
}]

=

∫

R
ϕV−γ0(y)dy

∫

R
(ϕV−γ0)

2(y)
ϕV−γ0(x). (9.23)

Consequently point 2 of Theorem 9.1 holds.
Obviously the probability measure QVx,t defined by relation (9.12) is also given by the following :

QVx,t(Λt) =
Ex

[

1Λt
exp

{

− 1
2

∫ t

0 (V (Bh) − γ0)dh
}]

Ex

[

exp
{

− 1
2

∫ t

0 (V (Bh) − γ0)dh
}] , Λt ∈ Ft.

From Theorem 4.1 we may conclude that QVx,t(Λs) converges to QVx (Λs), for any positive s and Λs in

Fs, and P
ϕV −γ0
x is defined by (9.13).

Parts 3. and 4. of Theorem 9.1 are direct consequences of Theorem 4.1.

Example 9.4 We will denote by V the function : V (x) = 1{|x|>a}, where a > 0. Let γ0 be the unique

solution in ]0, 1 ∧ (π
2

4 )[ to

tan(a
√
γ) =

√

1 − γ

γ
.

Then :

ϕV−γ0(x) =







e−
√

1−γ0|x−a| if |x| > a
cos(

√
γ0x)

cos(
√
γ0a)

if |x| ≤ a.
(9.24)
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