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The shape of a liquid bell resulting from the overflow of a viscous liquid out of a circular dish is
investigated experimentally and theoretically. The main property of this bell is its ability to sustain
the presence of a “transonic point,” where the liquid velocity equals the speed of antisymmetric—or
sinuous—surface waves. Their shape and properties are thus rather different from usual
“hypersonic” water bells. We first show that the bell shape can be calculated very accurately,
starting from the sonic point. We then demonstrate the extreme sensitivity of the shape of these bells
to the difference of pressure across the interface, making them a perfect barometer. Finally, we
discuss the oscillations of the bell which occur close to the bursting limit.2004 American
Institute of Physics.[DOI: 10.1063/1.1738650

I. INTRODUCTION cause of the nonuniformity of the velocity field that compli-
cates the analysis.

Water bells appear when a cylindrical liquid jet impacts ~ To be more precise, all available theoretical studies of
on a solid disk of similar diameter. An example is presentecturtain stability basically involve the comparison between
in Fig. 1. The shape of these bells is a famous problem thaivo velocities: the fluid velocity) and a critical velocity that
goes back to the pioneering experimental work of Sdvartreads
and theoretical work of Boussineégyho has shown that in
the low-gravity regime, the shape of opened bells reduces to 20\ 12
a catenary. These objects are usually observed by impacting USZ(—E) ;
a disk with a jet, or by extruding liquid across a thin circular P
slot® A complete study combining experiments as well as ) . . .
analytical calculations was performed by Taylmpmparing yvhereE IS the local th|ck_n_essr IS th? surface tension, ar_p;d
direct measurements of the shape with exact calculations? _the def?s'ty- For a m'ﬂgme”'c thick srjzeet for_med with a
These solutions of the bell shape problem were numericallsmcone oil (p~980 kgm*, ¢~0.02 kgs "), Us is of the

71 . . . . _
sued by Lance and Periery ecenty the sty of I 0y 20, < Ts velocty an ecete o merrea:
uid bells has shown a revival. Buckingham and Busk : ' y

ported the possible existence of polyhedral shapes in the in%atmg on the sheete., waves conserving the thickngand

. . . A nore generally on any liquid sheet of constant thickrieés
pingement problem with a viscous liquid jet. Also, Clahnet It is also the velocity at which the boundaries of a hole

has recently discussed the stability and oscillations of th§yijleq across the inviscid sheet recedes under the combined
bells. actions of surface tension and inefit.

Such studies are not only motivated by the aesthetic and Tpese interpretations imply that “usual” water-bells are
fundamental interest. Liquid bell formation and rupture isgypersonic: indeed, these bells form when the velocity of the
observe#® and used in a variety of atomization devices, es-et overcomes the retraction speed of the rim, a condition
pecially in engines where liquid fuel burs as dropi-  which implies that the velocity in the liquid sheet is always
nally, the study of liquid bell stability is connected to that of |arger than the speed of antisymmetrical waves.
falling planar liquid curtains, such as those involved in coat-  Depending on the authors, and on the specific geometry
ing technique¥-*?or in paper making? Such liquid curtains  involved, the instability of a liquid curtain is usually attrib-
are usually formed below a rectangular slot or in more comuted to the growth of sinuous waves that are able to propa-
plicated devices just below an inclined rectilinear wedge gate upstreant> or to the growth of a hole and again es-
Their stability still remains a disputed probléf*~1®be-  pecially its ability to grow upstrearf. In both cases, one is

()
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¢ Liquid jet

<
Liquid film

FIG. 1. Example of water bell obtained through the impaca @ mm jet (a)
diameter @ a 6 mmcircular impactor.

led to distinguish two regions in a curtain accelerated by
gravity: an upstream unstable region in whidk<U4 and a
downstream stable region for whi¢h>Ug. Using the anal-
ogy between sound waves and sinuous waves, the upstrea
region is often called a “subsonic” region, and the down-
stream region a “supersonic” region. The line separating
both regions being called “transonic.”

The distinction between these two regions can also be
expressed in terms of a “Mach number,” which is here the
Weber number

W_uszu2 )
e=U_S_20" @

Of course, the coexistence of both regimes is avoided if the

fluid is injected at the top of the curtain with a velocity ®

higher thany2o/(pE). This is the case of classical water

bells. which can only form iﬂJ/US> 1_7 Typically impact FIG. 3. (a) Viscous oil bell generated under an overflowing circular dish.
" . ’ Array of liquid column obtained in the same conditiong@sbut lower flow

velocities for classical water bells ar_e of the or(_JIer of therate.

meter per second and the whole bell is supersonic.

We underline that the structure of the flow in a falling

curtain(the liquid flows from the subsonic to the supersonicyhickness decreases with the distance from the impact, the
region is exactly the inverse of what happens in an axisymiqiq flows from the supersonic to the subsonic region. In
metrical sheet obtained by impacting a jet on an obstacle, aqtice, this axisymmetrical liquid sheet is observed to dis-
Such an axisymmetrical sheet is presented in Fig. 2. In thigyeqrate at the sonic pofhtdevelopment of an atomization
latter case, since the velocity is constant in the sheet and ”}F‘ont). The situation is more complicated for a falling cur-

tain, because the unstable region stays upstream: the curtain
should break as a whole, its stability becoming a global prob-
lem.

In the present paper we investigate the shape and behav-
ior of a particular kind of liquid bell that is in some sense
intermediate between axisymmetrical sheets or bells ob-
tained by jet impact and falling liquid curtains. An example
of these so-called “transonic liquid bells” is presented in
Fig. 3(@). In our experiment, such bells are formed below an
overflowing dish supplied with liquid at constant rate when
the flow over the dish is “sufficient.” At “low” flow rates,
instead of the bell, one observes liquid columns, as presented
in Fig. 3(b). This latter regime has motivated several

1 19-22 . . : - ;
FIG. 2. Example of axisymmetrical water sheet desintegrating at theStUd|e_Sla _espeually_ since it prqwdes a large V"_i”ety of
sonic point. one-dimensional nonlinear dynamical patteth&:At higher
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cP, surface tensiowr=20.4 dyn/cm, and density=0.97
g/cn. This liquid is referred further by the abridged name
“V200.” We must underline here that we were not able to
obtain stable transonic bells with low viscosity liquids such
as water: the liquid sheet always breaks. Experimentally, we
have thus increased the liquid viscosity and observed that
with a silicone oil 200 times more viscous than water, we
were able to form a transonic stable bell. The fluid is injected
A at the dish center across a central hollow tube that supports
the dish. Its temperature is kept constant by a thermostatic
bath (), Neslab RTE-101, and frequently measured during
the experiment with a thermocouple in contact with the lig-
uid arriving in the dish. We have kept it in the ran¢#i,
22°C). The half filled chamberd), which consists in a cyl-
T inder of diameter 25 cm and height 10 cm, damps the pos-
0 sible noise of mechanical origin generated by the pump. A
flow-meter @) (Brooks full-view GT1024 size Ballows to
FIG. 4. Experimental setup. tune the flow rate. The liquid is then driven toward a cylin-
der, whose internal and external radii are respectively equal
- to 1.5 and 2.5 cm. It is possible to vary the internal pressure
TIOW. rate, one opserves a Ilqwd bell such as that reproduce the bell by injecting or removing air with a tubé)( The
in Fig. 3(@), in which the vertical structure of the flow is very dish horizontality is tuned with the method exposed by Bru-

S|rtr;1llar o (tjr_\atbmvo:jved n adff}lllng tc;}urttanﬁfree fall, bUIt [netet al:?! at a sufficiently low flow rate, the bell breaks and
with periodic boundary conditions nat are reminiscent ofy oo 4y array of liquid columns is formed instead of the

morte ctlas;cswa!{ s_heettsb?_r:d k;re]:_llslobttam_e(il _by Jet 'mptaCt- It_n thSell. The liquid columns exhibit a collective dynamics that is
context of curtain stability, this jast point IS very Interesting very sensitive to the dish horizontality. For instance, in spe-

since in mo:[st exp_grlmtﬁnts |(;1volvm? It'r?u'd CL:rt_aHSl‘t’ IS cific conditions (high enough column spacing increased by
nﬁqeisary Od gwthe ?_ € gfes Of et cur amih 0 pre\_’g%rcing coalescencgsthe column pattern undergoes a spatial
shrinkage under the action of surtace tension, these gul ebseriod doubling in which the column positions oscillate, each
being potential sources of u!’]controlled perturbations. one being out of phase with its two neighbors. The horizon-

. _We present an exhaustive study.of the shape_ of thes,%"ty is nearly perfect when the oscillation amplitude is uni-
liquid beII; hanging below an overflowmg d.'Sh’ varying ﬂ(.)W form around the dish. The bell is observed with a charge
rate and internal pressure. In a way S|m'|lar toa .pre.v'ou%oupled device camera, images being captured and analyzed
study performed on planar falling curtains by Finnicum on a G3 Power PC Macintosh computer, across a Data Trans-
et al,* our experiment shows that an annular sheet with 3ation card using NIH Image software, Except in Sec. VI
large spatial region in which Wel does not necessarily the side edge of the dish is stefgs presented in Fig.(8]. '

break. We do not address here the stability problem itself, bu{.his geometry imposes liquid detachment at the very edge of
rather focus, for the present paper, on the shape of stab{

am rhe e : of stabife dish, i.e., a bell radiudefined in a horizontal plane
liquid bells obtained in these conditions with Newtonian vis- R(Z) equal toR, when Z=0. If the overhang is flat, as

gousdllgw?;. n partlculafr, \;VE emphasget thetr:‘eatﬁres Ir:ﬁresented in Fig. ®), the flow is less constrained and the
uced by Ihe presence of a fransonic point on e Shape Cay, | 5y select a differer® for Z=0. In certain conditions,

culations, and thus on the shape sele.ctlon problem. this can lead to oscillatory instabilities of the bell.
In Sec. Il, we describe our experimental setup. In Sec.
[ll, we present our experimental results, focusing on the
structure of the flow and on the bell shapes. In Sec. IV, wdll. PRELIMINARY OBSERVATIONS
recall the general equilibrium equatlon_s which govern the Starting from the liquid column arrajfig. ab)], the
shape. In Sec. V, we solve these equations and compare the o . . .
) ! appearance of the liquid beflFig. 3@] requires a high
numerical shapes to those observed experimentally. In Sec. = . . .
. - €nough flow rate. For the V200 silicon oil, and with a dish of
VI, we show that, close to the bursting limit, the bell can radiusRy=5 cm, the bell replaces the circular array of liquid
oscillate with three different moddsxial, planar, rotating 0 ' P y orlg

and we discuss qualitatively the observed frequencies columns when the flow rat€@ exceeds the critical value
q y q ' Q.=17.6cni/s, which corresponds to a flow rate per unit

length of I';.=Q./2wR,=0.587 cn¥/s. The bell flow regime

is strongly hysteretic: once the bell is formed, it is possible to
The setup is presented in Fig. 4: a liquid bell is formedreduce the flow rate to a very low value without bursting.

below an overflowing circular dishef, of radiusR,. We  The bursting flow rat&,, is difficult to measure accurately:

have used two different dishes witRy=5cm andR, ata very low flow rate, the bell is very sensitive to perturba-

=1.5cm. The flow is imposed by a gear pump Ismatec BVRions, for instance the air flow in the experiment room. In this

Z, (2). The liquid is a silicon oil(poly-dimethyl siloxane, “metastable” regime, the bell walls are very thin and inter-

Rhodorsil 47V200, with dynamic viscosityu=200.0+1)  ference colors can be observed at the surface, which suggests

Q.

1Y

=2

Il. EXPERIMENTAL SETUP
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FIG. 5. (a) Qualitative structure of the flow, when the detachment is forced R (z) (cm)

at the very edge of the dish with an adhesive tape rolled around the side o1 (b)

the dish. The bold dotted line suggests the expected free fall velocity flow

profile that leads to a separation in two zones>We(stablg and We<1  F|G. 6. (a) Picture of transonic bell obtained by substraction. The shape is

(unstablg. (b) Qualitative structure of the flow, when detachment is allowed then extracted, using a thresholtl) Experimental shapes extracted for two

everywhere below the dish. extreme values of the flow rate with a noninflated b@lk 22.46 cnd/s and
Q=0.92cni/s.

that holes are about to appear and to expand. As mentioned

in Sec. Il, a large viscosity appeared to improve the belithe flow rateQ is strongly decreased: the bell remains stable
stability, and we chose therefore to work with a 200 cP sili-until Q reaches a very small value arouq, where we

con oil. In these conditions, the minimal flow rate allowed isextract the second shape. Despite the reduction of the flow
of order Q,=0.855cni/s, orI',=0.0285cm/s. This is to  rate by a factor of 24, we observe that the difference between
be compared to the largest flow rate that we can reach witthese two shapes is weak. Since the volume of air trapped

our gear pump of orde®y, =25 cn?/s (I'y,=0.837 cni/s). inside the bell is constant, we deduce that the related varia-
The range of allowed flow rate for our study is large tions of pressure are small. A very different behavior is ob-
(Qm /Q,=30). served with classical “water bells” formed by impingement

Figure 8a) shows the result of image subtraction be-of a jet on a solid surface: when one starts from a static
tween the side view of a bell and the same side view of thelosed bell, and decreases the flow rate, a bursting of the bell
dry dish. By subtraction, we mainly see the liquid which is observed leading to the birth of a new one with an internal
appears as dark in the picture. Such treatment provides gressure equal to the ambient valudle have not observed
easy way to measure the film thickness on the dish and teuch an instability with our transonic liquid bells.
extract shapes such as those presented in Fiy. Bhe two Prior to the detailed analysis of the shape, we study the
superposed profiles are obtained as follows: as soon as tis¢ructure of the flow, and first start by the lubrication film on
bell is created, for high flow rate@pproximately 22 ciifs  the side of the dish. For a given flow rate, it is observed that
for a dish radius of 5 cpip we extract the first shape. Then, the liquid thickness on the side of the dish is consfaee
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FIG. 7. (a) Liquid thickness at the side of the dish, vs flow rdt®G—-LOG plo). The fitting curve is an algebraic law, with a power 1(#3. Vertical velocity

versus distance to dish, deduced by measurements on sinuous wakes behind a needle, for two values of the flow rate. Data suggest a free-fall law, added to
an oﬁset:U2:U§+ 2gZ, U, depending on the flow rate but staying very small comparedytd. Z'his result is obtained with both configurations of Figs.

5(a) and §b), but the linez=0 lies at two different places with or without the adhesive tdpeCylindrical bell obtained by pumping a large volume of air

inside. The measurements of velocity fields have been done with this situation.

Fig. 6(a)], so that inertia is negligible in this part of the flow. g s
In these conditions, the lubrication theory predicts a thick- U,=| ————| Q%2 4)
i : on- 12um?R3
ness which takes the following expression: H 0
3/-" 1/3
Eo= (W) Qs (3)  With the flow rates used in our experimenit, varies from
THRoPY 0.1 to 0.8 cm/s.

The evolution of the film thickness with the flow rate has The velocity in the falling film is measured using the
been checked and the results, obtained Wig+=5 cm, are  following method: to simplify the geometry, we have inflated
presented in Fig. @). In this figure, we observe that the the bell(using tubef) to form a perfect vertical cylindrical-
experimental measurements are in close agreement with tielaped bel[a vertical sheet with periodic boundary condi-
solid line representing Eq3). Using the mass conservation, tions, see Fig. (€)]. An obstaclgwe used here a thin needle
we can then deduce the mean velocltly, in the film of diameter 0.5 mrnis put in the supersonic zone to create a
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sinuous wakgFig. 7(d)]. The “Mach angle” 6 is directly Q=27URE. (8

connected to the local velocity by the relatfon ) ) o )
Using this expression in E47) we remove the thicknesk,

1 470R and get
=— : ©)
sirk(612) pQ dy [ pQU AP pgQ
. L . —|———R|+cosyy= —R~— siny. 9)
To insure that mass conservation is verified close to the over- dS\ 4no 20 4oV

hang, we takeU(Z=0)=U,. Neglecting viscous effects,
surface tension gradients and friction with the ambient air
the fluid velocity should be given by

For open bells in the low gravity limit, the right-hand side of
Eqg. (9) is null and Boussinesg has shown that the equation
admits a catenary for analytical solutién.

U2=U3+2gZ, (6) To discuss the shape of transonic liquid bells, we intro-

whereZ is the vertical coordinate defined in Figiah duce the characteristic lengity and the characteristic veloc-

The results, reported in Fig(l3), show that Eq(6) is a ity V2gR,:

reasonable approximation. R i S U
The needle can also be used to investigate the response r=—, z=—, s=—, U= .
of the bell to perturbations. When it is moved upward and Ro Ro Ro V29R,

leaves the supersonic region by crossing the transonic poingne finally obtains the nondimensional equation describing
the wake disappears. This allows a precise determination gf,e pell shape

the sonic point. A bit surprisingly, the bell does not break
when we keep moving the needle in the subsonic region. ) dt/f+ B siny
Several attempts showed that it was possible to gently per- ( Bu—r)E cosy=ar—p u '
turb the flow in the upper subsonic domdi¥e<1) without ) ) )
causing its destructioteven if We<1 everywhere on the where « and S, re'spectlvely, stand for the dimensionless
bell). The bell is just “shaken” a bit during nearly 1 s, while Pressure and gravity

the perturb.ation propagates gpstream, reflects on the over- APR,

hang and finally vanishes. This confirms some observations «=

(10

of Finnicumet alX! performed on planar sheets. Now, on the 20

other hand, a strong perturbati¢for example when a larger pQ\/§
obstacle is violently put in contact with the beiih the sub- =
sonic zone creates an expanding hole leading to the breakup 47”7\/2_R0
of the bell.

As stated earlierg can be turned to zero by connecting both
sides of the bell. Concerning, its value changes from
IV. CALCULATIONS OF THE BELL SHAPE 3~0.03, obtained with the smallest flow rate,#e-0.7 cor-
The calculation of the shape of a liquid bell has firstresponding to the largest one. The effect of gravity can thus
been achieved by Boussinésand reformulated by Tayldr. not be neglected.
We first present the method and show how to adapt it to the ~We identify in Eq.(10), four unknownsuw, r, ¢, ands.
specific conditions of transonic bells. The shape of a liquidEquation(6) which can be presented as the evolution of the
bell is to be deduced from the force balance projected normomentum in the direction tangent to the bell surface pro-
mally to the bell surface. In what followg, is the vertical ~vides a second equation and a new unknawn
distance from the bottom of the overhafigigs. 5a and
5(b)], R(Z) is the radial coordinate of the bek(Z) is its

local thicknessS s the curvilinear coordinate, and is the Whereug:U%/(Zg R,) and U, is defined in Eq.(4). Since

u?=u+z, (1Y

angle between the bell and teaxis [see Fig. $)]. Upo<1lcms?!, we deduce the order of magnitude,

For a steady shape, the balance of forces on a unit sur-10-4, u, is then negligible in Eq(11) as soon a< is
face element written along the normal, takes the form typically larger than a millimeter.

cody) dy _ - dy , | Einally, the system is closed using the three geometrical
o = +ngS|n(z//)—AP—d—SpEU . (7 relations

The first term on the left-hand side represents surface tension ds’=dr+dz’, (12
forces by unit surface: ca8R andd/ds are, respectively, dz
the axisymmetric and the meridian curvature. The factor 2  cosy= Js’ (13
accounts for the two sides of the surface element. The second
term on the left-hand side of E¢y) is the weight. Next term dr
AP=P;,— Py represents the effect of a pressure difference  siny= . (14)
across the bell. For an open bell, this term is null. The last
term is the centrifugal force. Considering open bells with small curvature, such as the one

In addition to this force balance, the mass conservatiopresented in Fig. &), we considered the limiw=0 and
takes the form dy/ds<1. In this limit, Eg.(10) reduces to
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04— 7] conditionr(z=0)=1 is satisfied. Once* is found through
o ———— ] this shooting method, the second part of the shape*, is
©02[ 1 - 1 7 computed and provides the entire shape.
: : = = =Experimental shape| , The shapes obtained numerically using this procedure
oF v | = r(z) from (16) "l 5 are compared to the shapes observed experimentally in Fig.
L /] 9. All of them have been obtained wiRy=5 cm. We first
0.2 ‘. ,' 5 focus on Fig. @a), where there is no pressure jump across the
i \\ s bell (a=0) andQ=22.46cnis 1. In this case, there is no
0.4 - \.\ ,' — parameter free and we observe no difference between the
N i \ # 1 numerical shape and the actual one. The three other compari-
0.6 [ \ "' . sons are conducted with a pressure differeface0) and the
i "\. ,," numerical calculation will be used to evaluatewhich is not
0.8 _ “_ ’l . measured in our experiment. Prior to comment on these val-
: LY - # 1 ues, we make several remarks on the numerical procedure
1 _ : : 1 used.
[ i . I 1 The necessity of the earlier algorithm can be understood
. -} S I N P R EE I considering Eq.(10). In this equation, the sonic point ap-
12 -08 -04 0 04 08 1.2 pears as the point where the coefficient of the higher deriva-
r (z) tive vanishes. It follows that a numerical integration cannot

crossz*. The crossing is thus avoided by starting the calcu-
FIG. 8. Comparison between an experimental shape and the one obtainggtion atz*, then going upward toward the dish to verify the
from Eg. (16), with a pressure difference equal to zero a@  oher houndary condition and then finishing the calculation

=22.46 cni/s. . .
by the supersonic region.
Since the whole procedure depends on the existence of
u z*, it is essential to show that this sonic point always exists
tanyg=— E (19 in the bells we consider: this can be demonstrate by consid-

ering the respective evolution ofand 28u. When the film
which can be integrated using the geometrical relations andetaches from the dish=1 and 28u, is much smaller than
the boundary condition(z=0)=1. The integration leads to unity. Since the bell is closed, varies from 1 to 0. At the

the analytical expression of the shape same timey increases through the free fall law. There is thus
043 ;)32 a point where both quantities get equai:=28u*.

r(z)=1— Ol 1+ = -1l (16) However in practice, for the lowest flow rates, the tran-

3B ug sonic point may disappear from the bell, due to the finite size

of the central tube. In this case, the term-28u) is larger
than zero everywhere. The corresponding bells do not exhibit
a supersonic region and one do not observe any wake when
moving the needle up and down along the whole surface of
the bell. The different comparisons of shapes are performed
with experimental bells which do exhibit a sonic point on
their surface.

We now come back to the effect of a pressure difference
on the shape of the bell. Experimentally, the bell is first
formed with the flow rateQ, without any pressure differ-
ence,«=0. (With our conditions,Q, has a minimal value

Sincedy/ds is a second order derivative i(z), we  close to 7.5 crifs. At weaker flow rates, a bell cannot exist
need two boundary conditions to integrate the bell shapewith a pressure difference equal to zérdhe flow rate is
The first condition isr(z=0)=1. The second condition is then changed t®@ leading to a positive value o if Q
provided by the sonic poirtthe symbol* is used to desig- <Q, and to a negative one in the opposite ca3e;Qp.

In Fig. 8, we compare this analytical solution to the
shape observed experimentally with open bélis=0) and
Q=22.46cnis 1. We observe that the analytical expression
in dotted line is a good approximation of the actual shape.

In the general casey is different from zero and the
curvature cannot be neglected. The system of Ed3—(14)
must then be integrated numerically.

V. NUMERICAL INTEGRATION OF THE SHAPE
AND COMPARISON WITH EXPERIMENTS

nate the quantities obtained at the sonic pont z* where Numerically, we integrate the shape and select dhe

2pu*=r*. At this location, oncez* is known,u* is de- leading to the best comparison with the experimental bell.

duced from Eq(11), r* from the conditionr* =2pu* and In Fig. 9b), the bell has first been formed wit®,

* from Eq. (10): =22.46cmist  and then compressed with Q
siny* =15.63cnis 1. The numerical shape presented with the

solid line cannot be distinguished from the actual one. It is
obtained witha=0.0466, corresponding to a pressure differ-
Thus, if z* is known, all the other quantities can be calcu-ence AP~0.38 Pa. Such a small pressure difference can
lated. Numerically, we initially guess the position #f>0  hardly be measured. This measure illustrate the extreme sen-
and integrate the set of equations downzteO where the sitivity of the bell shape to pressure difference, which make
value ofr is checked. The procedure is repeated until the firsthem almost perfect barometers.

cosy* =ar*—p *
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FIG. 9. (8 Experimental and calculated shapes @& 22.46 cni/s, Q,
=22.46 cri/s, andR=5 cm. The nondimensional pressureequals zero.
The dotted curve represent the solution of ELf). (b) Experimental and
calculated shapes f@=15.63 cni/s, Q,=22.46 cni/s, andR=5 cm. The
nondimensional pressure is found equal to 0.0466AP=0.38 Pa).(c)
Same aga) and(b) but with Q=22.24 cni/s andQ,=7.62 cni/s, leading
to a strong depression inside the bel —0.221 AP= —1.8 Pa).(d) Same
as(a) but with Q=0.92 cni/s. « is found equal to 0.180XP=1.47 Pa).
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FIG. 10. (a) Open symbols: pressure difference vs flow rate for three values
of Qg (R=5 cm). (b) Adimensional pressure presented as a function of
the nondimensional flow ratey— Q)/Qy .

In Fig. 9c), the bell is in depression: it is first formed
with the flow rateQ,=7.62 cni s ! which is then increased
to Q=22.24cnis 1. The numerical shape presented in
solid line superposes to the actual shape when-0.221.
This value corresponds to a depressior-df.8 Pa. To check
the sensitivity of the shape on the free parametewe also
present in Fig. &), the shapes obtained with=—0.233 and
a=—0.208. These values differ from=-0.221 by =5%
and clearly do not superpose on the observed shape. Such
comparisons lead us to estimate the uncertaintyrdo be
+2%.

Finally, in Fig. 9d), we present the maximal compres-

sion, obtained with Qy,=22.46cnis! and Q
=0.92cnts 1. Numerically, we measure=0.18, that is
AP=1.47 Pa.

More generally, the relation between the pressure differ-
enceAP and the flow rateQ is presented in Fig. 1@), for
the same distiRy=5 cm and different initial conditiongy .
For a givenQg, we observe thaA P is a decreasing function
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of Q. The order of magnitude is typically the Pascal. The 250
same results are presented in a dimensionless form in Fig. [
10(b), wherea is plotted versusQ,—Q)/Q,. We observe Foo © © o 4 o
that all our measurements collapse on a single curve which 200f 4
can be approximated by the linear relation ]
AF)Rowo.lQo_Q. 17) 7077 "m0 o0 0 0
20’ QO
This equation can be interpreted as the development of
=APR,/(20) in terms ofe=(Qy—Q)/Qp. As already dis-
cussed,a is null when the bell is open@=Q,) and is —
changed when the bell is closed and the flow rate varied from © © © o 0 5 o o
its formation value Q # Qg). The general form o# can thus
be written asa=F(e), where the functionF vanishes for
e=0. We deduce tha# can be expanded as

a~eF' (0)+ €2 2F~(0)+... . 0

Equation(17) represents the leading order of this devel- (a)
opment from which we deducg’ (0)~0.1. 1 R : : :

To conclude this section dedicated to the numerical inte- %@ o Q.27.62 cm¥'s
gration of the bell shape, we present in Fig. 11, two others O O Q°=17.8 om/'s
characteristic of the shape, namely, their volurig. 11(a)] 0.8 - © o 00-22 16 em¥s|1
and the position of the sonic poiat [Fig. 11(b)]. In Fig. o o ;
11(a), the volume of the numerical bell is shown to be inde- o
pendent of the flow rat€ and to increase with the initial s 0.6 | ]
condition Q,. To be more precise, the volume perturbation N~ © .
AV/V, should be of the order- AP/P,<10° which is = °
smaller than the accuracy of our calculation. N el R ° .

Concerning the position of the sonic point, we present in Bt DO o °
Fig. 11(b) its position relative to the maximal extension of ° O
the bell ., for different values of the flow rat€ and oo
different initial conditionsQ,. We observe that*/z,. is a 0.2 |
decreasing function of and weakly depends on the initial
conditionQ,. We also observe that*/z,,,, tends to one as

- . M| PR | I L PR
Q approaches 0. 0 5 10 15 20 25

v) Q (cm?/s)

FIG. 11. (a) Volume of the bell vs flow rate, for three values @f (R
In this last section, we show that once the sonic point=5 cm). (b) Relative position of the sonic point as a function of the flow

disappears from the bell surfa¢due to the presence of a rate, for three values d@o.
central tubg, the bell can oscillate with different modes. If
the liquid overflows from a dish with an horizontal overhang,
i.e., if the adhesive tape is removed from the edge of the disimtuitively, we think that the disappearance of the sonic point
[see Fig. )], different dynamical behaviors can be ob- plays also a central role here and we will insist on these
served. The bell surface can oscillate as suggested on Figspects while presenting in more details our observations.
12, this oscillation being coupled with modulations of the In this configuration(i.e., without adhesive tapethe
circle on which the bell intersects the solid ceilifgttach-  solution of the shape can still be performed with the numeri-
ment perimeter cal method described in the previous section, except for the
It is to note here that, in this cagee., after removing the cases where the transonic point is taken away from the bell
adhesive tape the value ofr at z=0 is no more imposed (at lowest flow rates As the condition forr(z=0) is not
strictly at Ry, but can select a slightly smaller radifias  properly fixed and that no information from the transonic
illustrated in Fig. 8a)]. This is the consequence of the so- point is able to go upstream, the bell then “hesitates” be-
called teapot effec® tween several possible shapes, corresponding to several pos-
Strictly speaking, we are not sure of the details involvedsibilities for the angley(r=0). Actually, some dynamical
in the physical mechanisms of these oscillations. The obmodes start to grow preferentially, leading to oscillations. It
served frequencie¢see later are close to those observed is then remarkable that the emergence of these oscillations
previously on liquid column arrayS; 2% suggesting a pos- can be connected to the structure of the equation which gov-
sible coupling of instabilities of the film hanging below the erns the shape: this property can be seen as follows. Above
ceiling and free horizontal motions of the bell waifsNow,  the transonic point, the information can be driven upstream.

V (cm®)

100 1

50 © Q=7.62 cmi/s ]
o Qo=17.8cm°/s
© Q,=22.46 cm’/s

PR SR R R S S S| TRt
0 5 10 15 20 25

Q (cm?/s)

VI. TEAPOT EFFECT AND OSCILLATIONS
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R A In the planar modéP), perturbations ofR(R=0) are mainly
localized in two diametrically opposite points. The resulting

motion is a pendulum-like one, in a diametrical plan. This

— plan seems to be chosen by initial perturbations and it is
about to slightly evolve in the same cycle of oscillations. It is
possible to preferentially choose a mode rather than another,

}4 \\ by pumping or deflating the bell, at the flow rate of its cre-
% ation: an initially deflated bell, with a small volume and a
large ejection angle preferentially generates axisymmetric

P || oscillations. With a medium-sized bell, with an initial pres-

7J]

B _ ] sure difference nearly equal to zero, one observes both rotat-
ing and planar oscillations. A larger bell, initially pumped,
most often generates planar oscillations. The largest bells,

with a large internal pressure and which take a cylindrical
shape do not exhibit oscillations. The reason is that, because
of their height, these bells always include the transonic point
(this has been experimentally observed, by creating a sinuous
a) - . wake with a needle
o Axisymmetrical mode) To measure the frequency of oscillations, and to verify
0 Eg:airo%n:éem“e ] more precisely than a direct view that these motions are pe-
AL 1 riodic, oscillating bells are visualized by a camera put above
- E]J E@ Eﬂlfﬁj@@ E@ 1 the dish. A static bell appears as a dark circle which diameter
I EP <NP % is slightly smaller than the dish diameter. When the bell
3l <E> $ %} ] starts to oscillate, this circle is moving around its equilibrium
} position. By acquiring gray levels along the initial static
circle, and creating spatiotemporal diagrams from these ac-
o[ ] quisitions, a clearly periodic phenomenon appears in the
[ 3 ] form of temporally regular dark linetot reportedl and a
[ $ N@@ ] frequency can be precisely measured. The plot on Figp)12
10 - reports these measurements: no significant dependence with
I ] a flow rate has been noticed. Rotational oscillations have the
i 1 higher frequencie¢from 3.5 to 3.8 Hz Planar oscillations
0l L e e have frequencies from 2.8 to 3.3 Hz. Axisymmetric ones are
2 3 g 5 much slower: frequencies are from 1.2 to 1.6 Hz. It may be
(b) Q (cm /S) relevant to compare these frequencies to the one given by the
frequency of vibration for a madd with a sheet of tension

FIG. 12. (a) Oscillation modes developing on a liquid bétlish without 24 An order of magnitude for the frequency can be given by
adhesive tape Rotating(R), axisymmetric(A), and planarP) oscillations.

(b) Frequency of oscillations vs flow rate per unit length for the three

previous modes.

—

f (H2)

1 20
If there is not any transonic point on the bell, the information
given at this point, necessary to remove the singularity on the
equations, cannot go upstream anymore. M is taken as the mass of air inside the bell added to the mass
These oscillations are about to last for a long tifmere  of liquid. The first term can be approximated by the mass of
than 10 min, but they can lead to the bursting of the bell if air inside a cone of base radius 5 cm and height 5 cm. The
their amplitude becomes too large. In order of magnitude, thélensity of air equals 0.00129 g/érand the mass of air is
amplitude of oscillations can vary from 1 mm to 2 or 3 cm. near 0.2 g. The second ter(mass of liquid shegtcan be
It is worth to notice that continuing to decrease flow rate, thisdeduced from the simple integration ofrZ(z)R(z)p (or
amplitude decreases and oscillations disappear at very logQ/U(z) with the mass conservatidig. (8)] from z=0 to
flow rates(whenT'<0.05 cnf/s). Zma- ONe finds a value close t92Q%p?z,4,/g, Which is
Three main oscillation modes are obserMege Fig. approximately included from 0.1 to 0.5 g, in the range of
12(a)]. A rotating one(R), where the perturbation oR(Z  flow rates where oscillations appeassis the surface tension
=0) turns around the dish, as a propagative wave. This peef silicon oil (20 dyn/cm. The frequency takes values from
turbation is at the same time convected by the flow, showind..2 to 1.8 Hz. This is close to the measurements obtained for
a helicoidal-like motion for the bell. In the axisymmetric the most symmetric mode of vibratidmode(A)]. The pla-
mode (A), the fluctuations ofR(Z=0) are simultaneously nar (P) and rotational(R) vibrations may correspond to
equal along the whole dish, as a stationary wave. The beliigher modeshigher frequencigdecause they are less sym-
then has a motion comparable to the swimming of a Medusanetric than(A). Experimentally, the frequency is weakly in-
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