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The shape of a liquid bell resulting from the overflow of a viscous liquid out of a circular dish is
investigated experimentally and theoretically. The main property of this bell is its ability to sustain
the presence of a ‘‘transonic point,’’ where the liquid velocity equals the speed of antisymmetric—or
sinuous—surface waves. Their shape and properties are thus rather different from usual
‘‘hypersonic’’ water bells. We first show that the bell shape can be calculated very accurately,
starting from the sonic point. We then demonstrate the extreme sensitivity of the shape of these bells
to the difference of pressure across the interface, making them a perfect barometer. Finally, we
discuss the oscillations of the bell which occur close to the bursting limit. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1738650#

I. INTRODUCTION

Water bells appear when a cylindrical liquid jet impacts
on a solid disk of similar diameter. An example is presented
in Fig. 1. The shape of these bells is a famous problem that
goes back to the pioneering experimental work of Savart1

and theoretical work of Boussinesq,2 who has shown that in
the low-gravity regime, the shape of opened bells reduces to
a catenary. These objects are usually observed by impacting
a disk with a jet,1 or by extruding liquid across a thin circular
slot.3 A complete study combining experiments as well as
analytical calculations was performed by Taylor,4 comparing
direct measurements of the shape with exact calculations.
These solutions of the bell shape problem were numerically
studied by Lance and Perry.5 Very recently, the study of liq-
uid bells has shown a revival. Buckingham and Bush6 re-
ported the possible existence of polyhedral shapes in the im-
pingement problem with a viscous liquid jet. Also, Clanet7

has recently discussed the stability and oscillations of the
bells.

Such studies are not only motivated by the aesthetic and
fundamental interest. Liquid bell formation and rupture is
observed8,9 and used in a variety of atomization devices, es-
pecially in engines where liquid fuel burns as drops.10 Fi-
nally, the study of liquid bell stability is connected to that of
falling planar liquid curtains, such as those involved in coat-
ing techniques11,12or in paper making.13 Such liquid curtains
are usually formed below a rectangular slot or in more com-
plicated devices just below an inclined rectilinear wedge.
Their stability still remains a disputed problem,11,14–16 be-

cause of the nonuniformity of the velocity field that compli-
cates the analysis.

To be more precise, all available theoretical studies of
curtain stability basically involve the comparison between
two velocities: the fluid velocityU and a critical velocity that
reads

Us5S 2s

rED 1/2

, ~1!

whereE is the local thickness,s is the surface tension, andr
is the density. For a millimetric thick sheet formed with a
silicone oil ~r'980 kg m23, s'0.02 kg s22!, Us is of the
order of 20 cm s21. This velocity can receive two interpreta-
tions. On one hand, it is the velocity of sinuous waves propa-
gating on the sheet~i.e., waves conserving the thickness! and
more generally on any liquid sheet of constant thicknessE.4

It is also the velocity at which the boundaries of a hole
drilled across the inviscid sheet recedes under the combined
actions of surface tension and inertia.4,17

These interpretations imply that ‘‘usual’’ water-bells are
supersonic: indeed, these bells form when the velocity of the
jet overcomes the retraction speed of the rim, a condition
which implies that the velocity in the liquid sheet is always
larger than the speed of antisymmetrical waves.

Depending on the authors, and on the specific geometry
involved, the instability of a liquid curtain is usually attrib-
uted to the growth of sinuous waves that are able to propa-
gate upstream,14,15 or to the growth of a hole and again es-
pecially its ability to grow upstream.18 In both cases, one is
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led to distinguish two regions in a curtain accelerated by
gravity: an upstream unstable region in whichU,Us and a
downstream stable region for whichU.Us . Using the anal-
ogy between sound waves and sinuous waves, the upstream
region is often called a ‘‘subsonic’’ region, and the down-
stream region a ‘‘supersonic’’ region. The line separating
both regions being called ‘‘transonic.’’

The distinction between these two regions can also be
expressed in terms of a ‘‘Mach number,’’ which is here the
Weber number

We[S U

Us
D 2

5
rEU2

2s
. ~2!

Of course, the coexistence of both regimes is avoided if the
fluid is injected at the top of the curtain with a velocity
higher thanA2s/(rE). This is the case of classical water
bells, which can only form ifU/Us.1.7 Typically, impact
velocities for classical water bells are of the order of the
meter per second and the whole bell is supersonic.

We underline that the structure of the flow in a falling
curtain~the liquid flows from the subsonic to the supersonic
region! is exactly the inverse of what happens in an axisym-
metrical sheet obtained by impacting a jet on an obstacle.
Such an axisymmetrical sheet is presented in Fig. 2. In this
latter case, since the velocity is constant in the sheet and the

thickness decreases with the distance from the impact, the
liquid flows from the supersonic to the subsonic region. In
practice, this axisymmetrical liquid sheet is observed to dis-
integrate at the sonic point9 ~development of an atomization
front!. The situation is more complicated for a falling cur-
tain, because the unstable region stays upstream: the curtain
should break as a whole, its stability becoming a global prob-
lem.

In the present paper we investigate the shape and behav-
ior of a particular kind of liquid bell that is in some sense
intermediate between axisymmetrical sheets or bells ob-
tained by jet impact and falling liquid curtains. An example
of these so-called ‘‘transonic liquid bells’’ is presented in
Fig. 3~a!. In our experiment, such bells are formed below an
overflowing dish supplied with liquid at constant rate when
the flow over the dish is ‘‘sufficient.’’ At ‘‘low’’ flow rates,
instead of the bell, one observes liquid columns, as presented
in Fig. 3~b!. This latter regime has motivated several
studies,19–22 especially since it provides a large variety of
one-dimensional nonlinear dynamical patterns.23,24At higher

FIG. 1. Example of water bell obtained through the impact of a 3 mm jet
diameter on a 6 mmcircular impactor.

FIG. 2. Example of axisymmetrical water sheet desintegrating at the
sonic point.

FIG. 3. ~a! Viscous oil bell generated under an overflowing circular dish.~b!
Array of liquid column obtained in the same conditions as~a! but lower flow
rate.
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flow rate, one observes a liquid bell such as that reproduced
in Fig. 3~a!, in which the vertical structure of the flow is very
similar to that involved in a falling curtain~free fall!, but
with periodic boundary conditions that are reminiscent of
more classical sheets and bells obtained by jet impact. In the
context of curtain stability, this last point is very interesting
since in most experiments involving liquid curtains,11,15 it is
necessary to guide the edges of the curtains to prevent
shrinkage under the action of surface tension, these guides
being potential sources of uncontrolled perturbations.

We present an exhaustive study of the shape of these
liquid bells hanging below an overflowing dish, varying flow
rate and internal pressure. In a way similar to a previous
study performed on planar falling curtains by Finnicum
et al.,11 our experiment shows that an annular sheet with a
large spatial region in which We,1 does not necessarily
break. We do not address here the stability problem itself, but
rather focus, for the present paper, on the shape of stable
liquid bells obtained in these conditions with Newtonian vis-
cous liquids. In particular, we emphasize the features in-
duced by the presence of a transonic point on the shape cal-
culations, and thus on the shape selection problem.

In Sec. II, we describe our experimental setup. In Sec.
III, we present our experimental results, focusing on the
structure of the flow and on the bell shapes. In Sec. IV, we
recall the general equilibrium equations which govern the
shape. In Sec. V, we solve these equations and compare the
numerical shapes to those observed experimentally. In Sec.
VI, we show that, close to the bursting limit, the bell can
oscillate with three different modes~axial, planar, rotating!
and we discuss qualitatively the observed frequencies.

II. EXPERIMENTAL SETUP

The setup is presented in Fig. 4: a liquid bell is formed
below an overflowing circular dish (eI ), of radiusR0 . We
have used two different dishes withR055 cm and R0

51.5 cm. The flow is imposed by a gear pump Ismatec BVP
Z, (aI ). The liquid is a silicon oil~poly-dimethyl siloxane,
Rhodorsil 47V200!, with dynamic viscositym5200.0~61!

cP, surface tensions520.4 dyn/cm, and densityr50.97
g/cm3. This liquid is referred further by the abridged name
‘‘V200.’’ We must underline here that we were not able to
obtain stable transonic bells with low viscosity liquids such
as water: the liquid sheet always breaks. Experimentally, we
have thus increased the liquid viscosity and observed that
with a silicone oil 200 times more viscous than water, we
were able to form a transonic stable bell. The fluid is injected
at the dish center across a central hollow tube that supports
the dish. Its temperature is kept constant by a thermostatic
bath (bI ), Neslab RTE-101, and frequently measured during
the experiment with a thermocouple in contact with the liq-
uid arriving in the dish. We have kept it in the range~21,
22 °C!. The half filled chamber (cI ), which consists in a cyl-
inder of diameter 25 cm and height 10 cm, damps the pos-
sible noise of mechanical origin generated by the pump. A
flow-meter (dI ) ~Brooks full-view GT1024 size 8! allows to
tune the flow rate. The liquid is then driven toward a cylin-
der, whose internal and external radii are respectively equal
to 1.5 and 2.5 cm. It is possible to vary the internal pressure
of the bell by injecting or removing air with a tube (fI ). The
dish horizontality is tuned with the method exposed by Bru-
netet al.:21 at a sufficiently low flow rate, the bell breaks and
a circular array of liquid columns is formed instead of the
bell. The liquid columns exhibit a collective dynamics that is
very sensitive to the dish horizontality. For instance, in spe-
cific conditions~high enough column spacing increased by
forcing coalescences!, the column pattern undergoes a spatial
period doubling in which the column positions oscillate, each
one being out of phase with its two neighbors. The horizon-
tality is nearly perfect when the oscillation amplitude is uni-
form around the dish. The bell is observed with a charge
coupled device camera, images being captured and analyzed
on a G3 Power PC Macintosh computer, across a Data Trans-
lation card, using NIH Image software. Except in Sec. VI,
the side edge of the dish is steep@as presented in Fig. 5~a!#.
This geometry imposes liquid detachment at the very edge of
the dish, i.e., a bell radius~defined in a horizontal plane!
R(Z) equal to R0 when Z50. If the overhang is flat, as
presented in Fig. 5~b!, the flow is less constrained and the
bell can select a differentR for Z50. In certain conditions,
this can lead to oscillatory instabilities of the bell.

III. PRELIMINARY OBSERVATIONS

Starting from the liquid column array@Fig. 3~b!#, the
appearance of the liquid bell@Fig. 3~a!# requires a high
enough flow rate. For the V200 silicon oil, and with a dish of
radiusR055 cm, the bell replaces the circular array of liquid
columns when the flow rateQ exceeds the critical value
Qc517.6 cm3/s, which corresponds to a flow rate per unit
length ofGc[Qc/2pR050.587 cm2/s. The bell flow regime
is strongly hysteretic: once the bell is formed, it is possible to
reduce the flow rate to a very low value without bursting.
The bursting flow rateQb is difficult to measure accurately:
at a very low flow rate, the bell is very sensitive to perturba-
tions, for instance the air flow in the experiment room. In this
‘‘metastable’’ regime, the bell walls are very thin and inter-
ference colors can be observed at the surface, which suggests

FIG. 4. Experimental setup.
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that holes are about to appear and to expand. As mentioned
in Sec. II, a large viscosity appeared to improve the bell
stability, and we chose therefore to work with a 200 cP sili-
con oil. In these conditions, the minimal flow rate allowed is
of order Qb50.855 cm3/s, or Gb50.0285 cm2/s. This is to
be compared to the largest flow rate that we can reach with
our gear pump of orderQM525 cm3/s (GM50.837 cm2/s).
The range of allowed flow rate for our study is large
(QM /Qb'30).

Figure 6~a! shows the result of image subtraction be-
tween the side view of a bell and the same side view of the
dry dish. By subtraction, we mainly see the liquid which
appears as dark in the picture. Such treatment provides an
easy way to measure the film thickness on the dish and to
extract shapes such as those presented in Fig. 6~b!. The two
superposed profiles are obtained as follows: as soon as the
bell is created, for high flow rates~approximately 22 cm3/s
for a dish radius of 5 cm!, we extract the first shape. Then,

the flow rateQ is strongly decreased: the bell remains stable
until Q reaches a very small value aroundQb where we
extract the second shape. Despite the reduction of the flow
rate by a factor of 24, we observe that the difference between
these two shapes is weak. Since the volume of air trapped
inside the bell is constant, we deduce that the related varia-
tions of pressure are small. A very different behavior is ob-
served with classical ‘‘water bells’’ formed by impingement
of a jet on a solid surface: when one starts from a static
closed bell, and decreases the flow rate, a bursting of the bell
is observed leading to the birth of a new one with an internal
pressure equal to the ambient value.7 We have not observed
such an instability with our transonic liquid bells.

Prior to the detailed analysis of the shape, we study the
structure of the flow, and first start by the lubrication film on
the side of the dish. For a given flow rate, it is observed that
the liquid thickness on the side of the dish is constant@see

FIG. 5. ~a! Qualitative structure of the flow, when the detachment is forced
at the very edge of the dish with an adhesive tape rolled around the side on
the dish. The bold dotted line suggests the expected free fall velocity flow
profile that leads to a separation in two zones We.1 ~stable! and We,1
~unstable!. ~b! Qualitative structure of the flow, when detachment is allowed
everywhere below the dish.

FIG. 6. ~a! Picture of transonic bell obtained by substraction. The shape is
then extracted, using a threshold.~b! Experimental shapes extracted for two
extreme values of the flow rate with a noninflated bell.Q522.46 cm3/s and
Q50.92 cm3/s.
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Fig. 6~a!#, so that inertia is negligible in this part of the flow.
In these conditions, the lubrication theory predicts a thick-
ness which takes the following expression:

E05S 3m

2pR0rgD 1/3

Q1/3. ~3!

The evolution of the film thickness with the flow rate has
been checked and the results, obtained withR055 cm, are
presented in Fig. 7~a!. In this figure, we observe that the
experimental measurements are in close agreement with the
solid line representing Eq.~3!. Using the mass conservation,
we can then deduce the mean velocity,U0 , in the film

U05S rg

12mp2R0
2D 1/3

Q2/3. ~4!

With the flow rates used in our experiments,U0 varies from
0.1 to 0.8 cm/s.

The velocity in the falling film is measured using the
following method: to simplify the geometry, we have inflated
the bell~using tubefI ) to form a perfect vertical cylindrical-
shaped bell@a vertical sheet with periodic boundary condi-
tions, see Fig. 7~c!#. An obstacle~we used here a thin needle
of diameter 0.5 mm! is put in the supersonic zone to create a

FIG. 7. ~a! Liquid thickness at the side of the dish, vs flow rate~LOG–LOG plot!. The fitting curve is an algebraic law, with a power 1/3.~b! Vertical velocity
versus distance to dish, deduced by measurements on sinuous wakes behind a needle, for two values of the flow rate. Data suggest a free-fall law, added to
an offset:U25U0

212gZ, U0 depending on the flow rate but staying very small compared to 2gZ. This result is obtained with both configurations of Figs.
5~a! and 5~b!, but the linez50 lies at two different places with or without the adhesive tape.~c! Cylindrical bell obtained by pumping a large volume of air
inside. The measurements of velocity fields have been done with this situation.

2672 Phys. Fluids, Vol. 16, No. 7, July 2004 Brunet, Clanet, and Limat

Downloaded 08 Jul 2004 to 147.94.57.1. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



sinuous wake@Fig. 7~d!#. The ‘‘Mach angle’’ u is directly
connected to the local velocity by the relation4

U5
1

sin2~u/2!

4psR

rQ
. ~5!

To insure that mass conservation is verified close to the over-
hang, we takeU(Z50)5U0 . Neglecting viscous effects,
surface tension gradients and friction with the ambient air,
the fluid velocity should be given by

U25U0
212gZ, ~6!

whereZ is the vertical coordinate defined in Fig. 5~a!.
The results, reported in Fig. 7~b!, show that Eq.~6! is a

reasonable approximation.
The needle can also be used to investigate the response

of the bell to perturbations. When it is moved upward and
leaves the supersonic region by crossing the transonic point,
the wake disappears. This allows a precise determination of
the sonic point. A bit surprisingly, the bell does not break
when we keep moving the needle in the subsonic region.
Several attempts showed that it was possible to gently per-
turb the flow in the upper subsonic domain~We,1! without
causing its destruction~even if We,1 everywhere on the
bell!. The bell is just ‘‘shaken’’ a bit during nearly 1 s, while
the perturbation propagates upstream, reflects on the over-
hang and finally vanishes. This confirms some observations
of Finnicumet al.11 performed on planar sheets. Now, on the
other hand, a strong perturbation~for example when a larger
obstacle is violently put in contact with the bell! in the sub-
sonic zone creates an expanding hole leading to the breakup
of the bell.

IV. CALCULATIONS OF THE BELL SHAPE

The calculation of the shape of a liquid bell has first
been achieved by Boussinesq2 and reformulated by Taylor.4

We first present the method and show how to adapt it to the
specific conditions of transonic bells. The shape of a liquid
bell is to be deduced from the force balance projected nor-
mally to the bell surface. In what follows,Z is the vertical
distance from the bottom of the overhang@Figs. 5~a! and
5~b!#, R(Z) is the radial coordinate of the bell,E(Z) is its
local thickness,S is the curvilinear coordinate, andc is the
angle between the bell and theZ axis @see Fig. 5~a!#.

For a steady shape, the balance of forces on a unit sur-
face element written along the normal, takes the form4

2sFcos~c!

R
2

dc

dSG1rgE sin~c!5DP2
dc

dS
rEU2. ~7!

The first term on the left-hand side represents surface tension
forces by unit surface: cosc/R anddc/ds are, respectively,
the axisymmetric and the meridian curvature. The factor 2
accounts for the two sides of the surface element. The second
term on the left-hand side of Eq.~7! is the weight. Next term
DP[Pint2Pext represents the effect of a pressure difference
across the bell. For an open bell, this term is null. The last
term is the centrifugal force.

In addition to this force balance, the mass conservation
takes the form

Q52pURE. ~8!

Using this expression in Eq.~7! we remove the thickness,E,
and get

dc

dS S rQU

4ps
2RD1cosc5

DP

2s
R2

rgQ

4psU
sinc. ~9!

For open bells in the low gravity limit, the right-hand side of
Eq. ~9! is null and Boussinesq has shown that the equation
admits a catenary for analytical solution.2

To discuss the shape of transonic liquid bells, we intro-
duce the characteristic lengthR0 and the characteristic veloc-
ity A2gR0:

r 5
R

R0
, z5

Z

R0
, s5

S

R0
, u5

U

A2gR0

.

One finally obtains the nondimensional equation describing
the bell shape

~2bu2r !
dc

ds
1cosc5ar 2b

sinc

u
, ~10!

where a and b, respectively, stand for the dimensionless
pressure and gravity

a5
DPR0

2s
,

b5
rQAg

4psA2R0

.

As stated earlier,a can be turned to zero by connecting both
sides of the bell. Concerningb, its value changes from
b'0.03, obtained with the smallest flow rate, tob'0.7 cor-
responding to the largest one. The effect of gravity can thus
not be neglected.

We identify in Eq.~10!, four unknowns:u, r, c, ands.
Equation~6! which can be presented as the evolution of the
momentum in the direction tangent to the bell surface pro-
vides a second equation and a new unknownz:

u25u0
21z, ~11!

whereu0
25U0

2/(2gR0) and U0 is defined in Eq.~4!. Since
U0&1 cm s21, we deduce the order of magnitudeu0

;1024. u0 is then negligible in Eq.~11! as soon asZ is
typically larger than a millimeter.

Finally, the system is closed using the three geometrical
relations

ds25dr21dz2, ~12!

cosc5
dz

ds
, ~13!

sinc5
dr

ds
. ~14!

Considering open bells with small curvature, such as the one
presented in Fig. 3~a!, we considered the limita50 and
dc/ds!1. In this limit, Eq.~10! reduces to
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tanc52
u

b
, ~15!

which can be integrated using the geometrical relations and
the boundary conditionr (z50)51. The integration leads to
the analytical expression of the shape

r ~z!512
2u0

3

3b F S 11
z

u0
2D 3/2

21G . ~16!

In Fig. 8, we compare this analytical solution to the
shape observed experimentally with open bells~a50! and
Q522.46 cm3 s21. We observe that the analytical expression
in dotted line is a good approximation of the actual shape.

In the general case,a is different from zero and the
curvature cannot be neglected. The system of Eqs.~10!–~14!
must then be integrated numerically.

V. NUMERICAL INTEGRATION OF THE SHAPE
AND COMPARISON WITH EXPERIMENTS

Since dc/ds is a second order derivative inr (z), we
need two boundary conditions to integrate the bell shape.
The first condition isr (z50)51. The second condition is
provided by the sonic point~the symbol* is used to desig-
nate the quantities obtained at the sonic point!. z5z* where
2bu* 5r * . At this location, oncez* is known, u* is de-
duced from Eq.~11!, r * from the conditionr * 52bu* and
c* from Eq. ~10!:

cosc* 5ar * 2b
sinc*

u*
.

Thus, if z* is known, all the other quantities can be calcu-
lated. Numerically, we initially guess the position ofz* .0
and integrate the set of equations down toz50 where the
value ofr is checked. The procedure is repeated until the first

condition r (z50)51 is satisfied. Oncez* is found through
this shooting method, the second part of the shapez.z* , is
computed and provides the entire shape.

The shapes obtained numerically using this procedure
are compared to the shapes observed experimentally in Fig.
9. All of them have been obtained withR055 cm. We first
focus on Fig. 9~a!, where there is no pressure jump across the
bell ~a50! and Q522.46 cm3 s21. In this case, there is no
parameter free and we observe no difference between the
numerical shape and the actual one. The three other compari-
sons are conducted with a pressure difference~aÞ0! and the
numerical calculation will be used to evaluatea, which is not
measured in our experiment. Prior to comment on these val-
ues, we make several remarks on the numerical procedure
used.

The necessity of the earlier algorithm can be understood
considering Eq.~10!. In this equation, the sonic point ap-
pears as the point where the coefficient of the higher deriva-
tive vanishes. It follows that a numerical integration cannot
crossz* . The crossing is thus avoided by starting the calcu-
lation atz* , then going upward toward the dish to verify the
other boundary condition and then finishing the calculation
by the supersonic region.

Since the whole procedure depends on the existence of
z* , it is essential to show that this sonic point always exists
in the bells we consider: this can be demonstrate by consid-
ering the respective evolution ofr and 2bu. When the film
detaches from the dish,r 51 and 2bu0 is much smaller than
unity. Since the bell is closed,r varies from 1 to 0. At the
same time,u increases through the free fall law. There is thus
a point where both quantities get equal:r * 52bu* .

However in practice, for the lowest flow rates, the tran-
sonic point may disappear from the bell, due to the finite size
of the central tube. In this case, the term (r 22bu) is larger
than zero everywhere. The corresponding bells do not exhibit
a supersonic region and one do not observe any wake when
moving the needle up and down along the whole surface of
the bell. The different comparisons of shapes are performed
with experimental bells which do exhibit a sonic point on
their surface.

We now come back to the effect of a pressure difference
on the shape of the bell. Experimentally, the bell is first
formed with the flow rateQ0 without any pressure differ-
ence,a50. ~With our conditions,Q0 has a minimal value
close to 7.5 cm3/s. At weaker flow rates, a bell cannot exist
with a pressure difference equal to zero.! The flow rate is
then changed toQ leading to a positive value ofa if Q
,Q0 and to a negative one in the opposite case,Q.Q0 .

Numerically, we integrate the shape and select thea
leading to the best comparison with the experimental bell.

In Fig. 9~b!, the bell has first been formed withQ0

522.46 cm3 s21 and then compressed with Q
515.63 cm3 s21. The numerical shape presented with the
solid line cannot be distinguished from the actual one. It is
obtained witha50.0466, corresponding to a pressure differ-
ence DP'0.38 Pa. Such a small pressure difference can
hardly be measured. This measure illustrate the extreme sen-
sitivity of the bell shape to pressure difference, which make
them almost perfect barometers.

FIG. 8. Comparison between an experimental shape and the one obtained
from Eq. ~16!, with a pressure difference equal to zero andQ
522.46 cm3/s.
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In Fig. 9~c!, the bell is in depression: it is first formed
with the flow rateQ057.62 cm3 s21 which is then increased
to Q522.24 cm3 s21. The numerical shape presented in
solid line superposes to the actual shape whena520.221.
This value corresponds to a depression of21.8 Pa. To check
the sensitivity of the shape on the free parametera, we also
present in Fig. 9~c!, the shapes obtained witha520.233 and
a520.208. These values differ froma520.221 by65%
and clearly do not superpose on the observed shape. Such
comparisons lead us to estimate the uncertainty ona to be
62%.

Finally, in Fig. 9~d!, we present the maximal compres-
sion, obtained with Q0522.46 cm3 s21 and Q
50.92 cm3 s21. Numerically, we measurea50.18, that is
DP'1.47 Pa.

More generally, the relation between the pressure differ-
enceDP and the flow rateQ is presented in Fig. 10~a!, for
the same dishR055 cm and different initial conditionsQ0 .
For a givenQ0 we observe thatDP is a decreasing function

FIG. 9. ~a! Experimental and calculated shapes forQ522.46 cm3/s, Q0

522.46 cm3/s, andR55 cm. The nondimensional pressurea equals zero.
The dotted curve represent the solution of Eq.~16!. ~b! Experimental and
calculated shapes forQ515.63 cm3/s, Q0522.46 cm3/s, andR55 cm. The
nondimensional pressurea is found equal to 0.0466 (DP50.38 Pa).~c!
Same as~a! and~b! but with Q522.24 cm3/s andQ057.62 cm3/s, leading
to a strong depression inside the bell:a520.221 (DP521.8 Pa).~d! Same
as ~a! but with Q50.92 cm3/s. a is found equal to 0.180 (DP51.47 Pa).

FIG. 10. ~a! Open symbols: pressure difference vs flow rate for three values
of Q0 (R55 cm). ~b! Adimensional pressurea presented as a function of
the nondimensional flow rate (Q02Q)/Q0 .
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of Q. The order of magnitude is typically the Pascal. The
same results are presented in a dimensionless form in Fig.
10~b!, wherea is plotted versus (Q02Q)/Q0 . We observe
that all our measurements collapse on a single curve which
can be approximated by the linear relation

DPR0

2s
'0.1

Q02Q

Q0
. ~17!

This equation can be interpreted as the development ofa
[DPR0 /(2s) in terms ofe[(Q02Q)/Q0 . As already dis-
cussed,a is null when the bell is open (Q5Q0) and is
changed when the bell is closed and the flow rate varied from
its formation value (QÞQ0). The general form ofa can thus
be written asa5F~e!, where the functionF vanishes for
e50. We deduce thata can be expanded as

a'eF8~0!1e2/2F'~0!1... .

Equation~17! represents the leading order of this devel-
opment from which we deduceF8~0!'0.1.

To conclude this section dedicated to the numerical inte-
gration of the bell shape, we present in Fig. 11, two others
characteristic of the shape, namely, their volume@Fig. 11~a!#
and the position of the sonic pointz* @Fig. 11~b!#. In Fig.
11~a!, the volume of the numerical bell is shown to be inde-
pendent of the flow rateQ and to increase with the initial
condition Q0 . To be more precise, the volume perturbation
DV/V0 should be of the order2DP/P0&1025 which is
smaller than the accuracy of our calculation.

Concerning the position of the sonic point, we present in
Fig. 11~b! its position relative to the maximal extension of
the bell zmax, for different values of the flow rateQ and
different initial conditionsQ0 . We observe thatz* /zmax is a
decreasing function ofQ and weakly depends on the initial
conditionQ0 . We also observe thatz* /zmax tends to one as
Q approaches 0.

VI. TEAPOT EFFECT AND OSCILLATIONS

In this last section, we show that once the sonic point
disappears from the bell surface~due to the presence of a
central tube!, the bell can oscillate with different modes. If
the liquid overflows from a dish with an horizontal overhang,
i.e., if the adhesive tape is removed from the edge of the dish
@see Fig. 5~b!#, different dynamical behaviors can be ob-
served. The bell surface can oscillate as suggested on Fig.
12, this oscillation being coupled with modulations of the
circle on which the bell intersects the solid ceiling~attach-
ment perimeter!.

It is to note here that, in this case~i.e., after removing the
adhesive tape!, the value ofr at z50 is no more imposed
strictly at R0 , but can select a slightly smaller radius@as
illustrated in Fig. 3~a!#. This is the consequence of the so-
called teapot effect.25

Strictly speaking, we are not sure of the details involved
in the physical mechanisms of these oscillations. The ob-
served frequencies~see later! are close to those observed
previously on liquid column arrays,19–22 suggesting a pos-
sible coupling of instabilities of the film hanging below the
ceiling and free horizontal motions of the bell walls.19 Now,

intuitively, we think that the disappearance of the sonic point
plays also a central role here and we will insist on these
aspects while presenting in more details our observations.

In this configuration~i.e., without adhesive tape!, the
solution of the shape can still be performed with the numeri-
cal method described in the previous section, except for the
cases where the transonic point is taken away from the bell
~at lowest flow rates!. As the condition forr (z50) is not
properly fixed and that no information from the transonic
point is able to go upstream, the bell then ‘‘hesitates’’ be-
tween several possible shapes, corresponding to several pos-
sibilities for the anglec(r 50). Actually, some dynamical
modes start to grow preferentially, leading to oscillations. It
is then remarkable that the emergence of these oscillations
can be connected to the structure of the equation which gov-
erns the shape: this property can be seen as follows. Above
the transonic point, the information can be driven upstream.

FIG. 11. ~a! Volume of the bell vs flow rate, for three values ofQ0 (R
55 cm). ~b! Relative position of the sonic point as a function of the flow
rate, for three values ofQ0 .

2676 Phys. Fluids, Vol. 16, No. 7, July 2004 Brunet, Clanet, and Limat

Downloaded 08 Jul 2004 to 147.94.57.1. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



If there is not any transonic point on the bell, the information
given at this point, necessary to remove the singularity on the
equations, cannot go upstream anymore.

These oscillations are about to last for a long time~more
than 10 min!, but they can lead to the bursting of the bell if
their amplitude becomes too large. In order of magnitude, the
amplitude of oscillations can vary from 1 mm to 2 or 3 cm.
It is worth to notice that continuing to decrease flow rate, this
amplitude decreases and oscillations disappear at very low
flow rates~whenG,0.05 cm2/s!.

Three main oscillation modes are observed@see Fig.
12~a!#. A rotating one~R!, where the perturbation onR(Z
50) turns around the dish, as a propagative wave. This per-
turbation is at the same time convected by the flow, showing
a helicoidal-like motion for the bell. In the axisymmetric
mode ~A!, the fluctuations ofR(Z50) are simultaneously
equal along the whole dish, as a stationary wave. The bell
then has a motion comparable to the swimming of a Medusa.

In the planar mode~P!, perturbations onR(R50) are mainly
localized in two diametrically opposite points. The resulting
motion is a pendulum-like one, in a diametrical plan. This
plan seems to be chosen by initial perturbations and it is
about to slightly evolve in the same cycle of oscillations. It is
possible to preferentially choose a mode rather than another,
by pumping or deflating the bell, at the flow rate of its cre-
ation: an initially deflated bell, with a small volume and a
large ejection angle preferentially generates axisymmetric
oscillations. With a medium-sized bell, with an initial pres-
sure difference nearly equal to zero, one observes both rotat-
ing and planar oscillations. A larger bell, initially pumped,
most often generates planar oscillations. The largest bells,
with a large internal pressure and which take a cylindrical
shape do not exhibit oscillations. The reason is that, because
of their height, these bells always include the transonic point
~this has been experimentally observed, by creating a sinuous
wake with a needle!.

To measure the frequency of oscillations, and to verify
more precisely than a direct view that these motions are pe-
riodic, oscillating bells are visualized by a camera put above
the dish. A static bell appears as a dark circle which diameter
is slightly smaller than the dish diameter. When the bell
starts to oscillate, this circle is moving around its equilibrium
position. By acquiring gray levels along the initial static
circle, and creating spatiotemporal diagrams from these ac-
quisitions, a clearly periodic phenomenon appears in the
form of temporally regular dark lines~not reported! and a
frequency can be precisely measured. The plot on Fig. 12~b!
reports these measurements: no significant dependence with
a flow rate has been noticed. Rotational oscillations have the
higher frequencies~from 3.5 to 3.8 Hz!. Planar oscillations
have frequencies from 2.8 to 3.3 Hz. Axisymmetric ones are
much slower: frequencies are from 1.2 to 1.6 Hz. It may be
relevant to compare these frequencies to the one given by the
frequency of vibration for a massM with a sheet of tension
2s. An order of magnitude for the frequency can be given by

f .
1

2p
A2s

M
. ~18!

M is taken as the mass of air inside the bell added to the mass
of liquid. The first term can be approximated by the mass of
air inside a cone of base radius 5 cm and height 5 cm. The
density of air equals 0.00129 g/cm3 and the mass of air is
near 0.2 g. The second term~mass of liquid sheet! can be
deduced from the simple integration of 2pE(z)R(z)r ~or
rQ/U(z) with the mass conservation@Eq. ~8!# from z50 to
zmax). One finds a value close toA2Q2r2zmax/g, which is
approximately included from 0.1 to 0.5 g, in the range of
flow rates where oscillations appears.s is the surface tension
of silicon oil ~20 dyn/cm!. The frequencyf takes values from
1.2 to 1.8 Hz. This is close to the measurements obtained for
the most symmetric mode of vibration@mode~A!#. The pla-
nar ~P! and rotational~R! vibrations may correspond to
higher modes~higher frequencies! because they are less sym-
metric than~A!. Experimentally, the frequency is weakly in-

FIG. 12. ~a! Oscillation modes developing on a liquid bell~dish without
adhesive tape!. Rotating~R!, axisymmetric~A!, and planar~P! oscillations.
~b! Frequency of oscillations vs flow rate per unit length for the three
previous modes.
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fluenced by the flow rate~and so, by the mass of the liquid!,
whereas Eq.~18! predicts a slight decrease off with a flow
rate.

VII. CONCLUSION

Usual water bells are obtained through the impact of a
cylindrical jet on a solid disk of similar diameter. These bells
form when the velocity of the jet overcomes the retraction
speed of the rim, a condition which implies that the velocity
in the liquid sheet is always larger than the speed of antisym-
metrical waves. Usual water bells are thus said to be super-
sonic.

Here, we study the shape of transonic bells generated
through the flow of a viscous liquid over a circular dish. The
velocity of the liquid at the edge of the dish is much smaller
than the velocity of antisymmetrical waves but becomes
larger when leaving the dish, as it increases through a free
fall law. The main property of these bells, is their ability to
sustain a sonic point on their surface. Experimentally, this
point can be precisely determined as the point above which
the wake behind an obstacle disappears. We did not observe
stable transonic bells with low viscosity liquids~the liquid
sheet always broke! but with silicone oil 200 times more
viscous. We do not report the study of the stability of the
sheet but focus on their shape.

For ‘‘open’’ bells, we show that the shape mainly results
from the equilibrium between gravity and surface tension.
We derived in this limit an analytical solution for the shape.

In the general case, where there is a pressure jump
across the bell, the shape must be integrated numerically. We
then take advantage of the sonic point and integrate the equa-
tion from this specific location up to the origin of the bell,
where its radius is imposed by the dish. The shapes obtained
through this method are in perfect agreement with the experi-
mental bells.

The numerical method is then used to measure the pres-
sure difference across the bell. We show that the shape of the
bell is sensitive to a pressure difference of the order of 0.1
Pa. This extreme sensitivity make them a perfect barometer.

Finally, using the imperfection of our experimental
setup, we where able to show that once the sonic point dis-
appears from the bell surface, due to the presence of a central
tube, the bell can oscillate with different modes. These oscil-
lations were observed using a flat overhang where the loca-
tion of the film on the dish is not strictly imposed. The char-
acteristic frequency of these modes is close to the frequency
of a pulsating bubble.
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