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SUMMARY 

A representation theory based on convolution opera­

tions was developed for a large class of linear systems 

containing pure and distributed delays in state and control 

by E. W. Kamen [12]. Using this framework, Kamen [12, 13] 

has also studied the state feedback problem. However, in 

order to utilize state feedback, it is often necessary to 

reconstruct missing state-variable information. In this 

work we consider the design of observers (state-estimators) 

using Kamen's convolution operator framework. In particular, 

conditions for coefficient assignability of the error 

dynamics will be developed by using duality. The observer 

construction will then be used in the design of input/output 

regulators. 
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CHAPTER I 

INTRODUCTION 

We will be looking at the class of systems given by 

a first-order delay differential equation of the form 

^ £ y = F Qx(t) + Z iF ix(t-a i) + g Qy(t) + Z ^ u (t-b ±) (1.1) 

where a^ and b^ are positive real numbers. (resp. g^) 

are nxn (resp. nxl) matrices over the reals R, x(t)eR n is 

the "instantaneous state", and u(t)eR is the input or con­

trol. Systems of this type occur in many applications 

(see [7] for examples). A good deal of work has been 

carried out on systems of the form (1.1) especially in 

recent years (see survey [15]). Essentially all this 

previous work is based on operators defined on Hilbert or 

Banach spaces. This (functional analytical) approach has 

produced many results but as a result of the infinite 

dimensionality of the underlying spaces, it is necessary to 

use approximation methods in carrying out computations. 

The observer problem for (1.1) has been studied also 

in terms of the functional-analytical framework (e.g., 

[4, 5]). However very few results exist on the construction 

of observers for (1.1), due to the infinite dimensionality 

of the Hilbert (or Banach) space setting. In addition, not 
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much work exists on the design of input/output regulators 

for systems with time delays. Recent work by Bhat [3] does 

involve the application of the functional analytical setting 

to the study of regulators, although in general his results 

are not algorithmic. 

Recently, Kamen [11] has developed an operator frame­

work for the study of systems given by (1.1). Kamen's 

approach is based on viewing (1.1) as a vector differential 

equation defined over a ring of delay operators. This 

algebraic structure makes it possible to approach the com­

putation of complete solutions by using an operational 

calculus. The "computability" of the algebraic framework 

is primarily a result of representing operators by (finite) 

matrices defined over a convolution ring. Kamen has also 

studied state-feedback in terms of the convolution operator 

framework [12, 13]. In [12, 13] conditions for spectrum 

assignability are given in terms of module generation 

conditions. 

In this work we will use the "finiteness" properties 

of Kamen's operator theory to develop a theory for the 

design of observers and regulators. We shall develop a 

duality theory which allows us to carry over the state-

feedback construction of Kamen [12, 13]. The use of 

duality here is very similar to the manner in which duality 

is used in the theory of finite-dimensional systems. 
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CHAPTER II 

PRELIMINARIES 

Introduction 

In this section we present Kamen fs [12, 13] algebraic 

theory for the class of systems given by the first order 

delay differential equation (1.1). 

System Definition 

We begin by constructing the commutative rings, 

in terms of which we will define our concept of a system. 

In this development we follow closely that of Kamen [12, 13], 

Let R denote the field of real numbers. Let 6^ 
a 

denote the Dirac distribution concentrated at the point a. 
a 

Let D denote the set of sums I c.6 , a. > o, a.eR, q 
l a t i — i ^ 

finite. This set D is a commutative ring with the obvious 

addition operation and with convolution defined by 

(Z.c.6 )*(Z.d.6, ) = E.Z.cd.6 ^ ^ (2.1) l l a i
/ l l b ± ' 3 i 3 i â . + b i 

Let L + denote the space of R-valued, Lebesgue-measurable, 

locally-integrable functions (defined a.e. on R) with 

supports bounded on the left (i.e., given veL +, there exist 

a t Q, which depends on v, such that v(t) = 0 for all 

t < t Q ) . The set L + is a commutative ring with pointwise 
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addition (u + v)(t) = u(t) + v(t), and with convolution 
oo 

(y*v) (t) = / y(t-T)v(x)dx (2.2) 
— oo 

where u, V E L + 

Given z = Z.c.6 e D and ueL, we define the following 1 1 a^ + 
convolution operation 

(z*y) = S ic iy(t-a i)eL + (2.3) 

Let L Q denote the subring of L + consisting of all functions 

having bounded support contained in [0, «>) . The convolution 

(v*u) , with veL Q and ueL +, is that given by (2.2), but the 

support of v is contained in some interval [0, a], a > 0, 

and then (2.2) can be written as 

t 
(v*y)(t) = £ v(t - s)y(s) ds (2.4) 

t - a 

Let J denote the set consisting of all sums z + v where 

ZE D and v£L Q. J is a commutative ring with convolution 

(z + v)*(y + w) = z*y + z*w + y*v + v*w (2.5) 

with z, yeD, v, weL Q, z*y is convolution in D (2.1), z*w 

and y*v are defined by (2.3), and v*w is convolution in 

L Q (2.2). 

Note that the rings J and D contain the identity 6 q, 



5 

W H E R E AS L A N D L, D O N O T . A L S O J A N D D C O N T A I N R6 = O + O 
{A<5 : A E R } . W I T H T H E O B V I O U S A D D I T I O N A N D M U L T I P L I C A T I O N O 
O P E R A T I O N R 6 Q I S A F I E L D I S O M O R P H I C T O T H E F I E L D R. W E CAN 

T H U S V I E W J AND D AS R I N G E X T E N S I O N S OF R. 

G I V E N U E L , , GEJ, W I T H G = Z + V, Z = Z.C.6 D , V E L ^ , W E + 1 1 A. O 
l 

D E F I N E T H E F O L L O W I N G C O N V O L U T I O N O P E R A T I O N 

(G*U)(T) = Z I C I Y ( T - A ± ) + ( V * Y ) ( T ) E L + (2.6) 

W E ARE N O W A B L E T O D E F I N E T H E N O T I O N OF A S Y S T E M O V E R 

A R I N G . 

D E F I N I T I O N 2.1 

L E T N B E A F I X E D S U B R I N G OF J W I T H R 6 < N C J . A 
O — — 

S Y S T E M Z O V E R N I S A T R I P L E (F, G, H) OF N X N , M X N , N X K 

M A T R I C E S O V E R N , T O G E T H E R W I T H T H E D Y N A M I C A L E Q U A T I O N S 

X ( T ) = (F*X)(T) + (G*U)(T) 
(2.7) 

Y ( T ) = (H*X)(T) 

W H E R E Y E L , , A N D X A C O L U M N V E C T O R O V E R L,. 
T T 

T H E C H A R A C T E R I S T I C O P E R A T O R 

L E T P D E N O T E T H E G E N E R A L I Z E D D E R I V A T I V E OF 6 , AND 

P 1 D E N O T E T H E I T H G E N E R A L I Z E D D E R I V A T I V E OF 6 . G I V E N 
O 

l E L + , W E H A V E P *0 = I T H G E N E R A L I Z E D D E R I V A T I V E OF 0 W H E R E 
l P *8 I S C O N V O L U T I O N IN A S P A C E OF D I S T R I B U T I O N S . L E T J [ P ] 

a 
D E N O T E T H E S E T OF F I N I T E SUMS { Z * P 1 : a eJ]. 

i = o 1 1 
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J[p] is a commutative ring with operations Z.e.*?1 + Z.f ̂p1 1 1 ̂  1 1 ̂  Z . (e. + f.)*p1 ii l c 

iî  iî  
Now consider a system Z (F, G, H) over N<(R5Q _< N <_ J) given by the equation (2.7). Following Kamen [12] in the study of (2.7) we shall consider (pi - F)= nxn matrix over J[p], where I is the nxn identity matrix. Since J[p] is a commutative ring we are able to consider the determinant of (pi - F), denoted by det(pl - F). Definition 2.2 

operator of the system given by (2.7). In functional analytical theory [13], the Laplace transform of det(pl - F) is the characteristic function. The zeros of the character­istic function are the eigenvalues. It is well known [6] that the asymptotic behavior of (2.7) is determined by the location of the eigenvalues in the complex plane. In particular (2.7) is asymptotically stable if and only if all eigenvalues have negative real parts. State Feedback Given a system Z = (F, G, H) over N = D, we can consider state feedback by setting 

The element det(pl - F)eJ[p] is the characteristic 

u = K*x + r (2.8) 
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W H E R E K E J ™ * 1 1 , X ( T ) e L +
n , R IS AN E X T E R N A L I N P U T . N O T E W E 

ARE A L L O W I N G F E E D B A C K E L E M E N T K T O C O N T A I N D I S T R I B U T E D 

D E L A Y S . C O M B I N I N G (2.7) A N D (2.8) Y I E L D S T H E C L O S E D L O O P 

E Q U A T I O N 

X ( T ) = (F - G * K ) * X + G*R 

WE W I L L C H A R A C T E R I Z E T H E S T A T E F E E D B A C K B Y C O N S I D E R I N G T H E 

C H A R A C T E R I S T I C O P E R A T O R OF T H E C L O S E D - L O O P S Y S T E M , G I V E N 

B Y 

D E T ( P L - F + G*K) (2.9) 

S I N C E K I S O V E R J W E H A V E 
N - 1 

D E T ( P L - F + G*K) = P N + E Y ^ P 1 , y^*eJ 

I = 0 

I N T H E R E M A I N D E R OF T H I S P A P E R W E W I L L C O N S I D E R T H E S I N G L E 

I N P U T - S I N G L E O U T P U T C A S E (G = G, H = H) . W E W I L L L E T -

D E N O T E AN A R B I T R A R Y M A T R I X . F O R T H E S I N G L E I N P U T C A S E T H E 

F E E D B A C K W I L L B E AN N E L E M E N T C O L U M N V E C T O R ( K ) . 

G I V E N E = (F, G, H) W E W R I T E 
N - 1 

D E T ( P L - F) = P N + Z ' a.*P 1a.eD 
I = 0 

A N D D E F I N E 
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F = 

0 6 0 • • • 0 
o 

0 6 • 

0 & 

-a -a,.... -a , 
o 1 n - 1 

g = 

0 

& 
o 

L J 
Definition 2.3 

matrix 

The controllability matrix of a pair (F, g) is the nxn 

C = (g, F*g, , F n 1*g) 

It follows for the pair (F, g) 

C = (g, F*g, , F n 1*g) 

Definition 2.4 

The pair (F, g) is J-equivalent (resp. Q-equivalent) 

to the pair (F, g) if det(C) is a unit in J (resp. det(C)^O) 

J - equivalent implies 

F = PFP 1, g = Pg, P = CC •'-eJ1""1 

Q - equivalent implies 

F = PFP 1, g = Pg, P = CC 1 e Q n X n 

where Q is the quotient ring of J given as D "̂J 

(9/A; 6eJ, X e D ) . 
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Definition 2.5 

For (F, g) and (F, g) J - equivalent (resp. Q -

equivalent), the system Z = (F, g, h) where h = hP ^ is 

called the control canonical J form (resp. Q form) of the 

system Z = (F, g, h ) . 

Definition 2.6 

Given a system Z = (F, g, -) over D the characteristic 

operator det(pl - F + g*k) is Coefficient Assignable with 

respect to J if for any e Q , e^,....e _ belonging to J 

there exist an n-element row vector k over J such that 
n - 1 

det(pl - F + g*k) = p n + Z e ^ p 1 

i = 0 

By choosing the e^ to be equal to c ^ & Q r
 C ^ £ R / we see that 

coefficient assignability implies that the eigenvalues of 

the closed loop system can be made finite in number and 

can be placed anywhere in the complex plane. Thus 

coefficient assignability implies eigenvalue placement. 

Following Kamen [12, 13] we have the following sufficient 

condition for coefficient assignability. 

Theorem 2.2 

The characteristic operator det(pl - F + g*k) is 

coefficient assignable with respect to D if det(c) is an 

invertible element of D. 
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Proof 
n - 1 

Write det(pl - F) = p n + £ a i * p 1 , a ±eD 
i = 0 

and l e t 
n - 1 

o(p) = p n + E y^V1, y i e J 
i = 0 

Then from the resu l t s of Kamen [ 1 2 , 1 3 ] we have 

det(pl - F + g*k) = o(p) 

i f 

k = (^o ~ V ? 1 " - - - Y n _ ! " % _ i ^c f 1 

The above condition i s rather severe for a l l but the f in i t e 

dimensional case. In par t i cu lar an inverse w i l l only ex i s t 

for det(C) = a5 with a ^ o, aeR. As seen from the resul ts 
o 

of Kamen [ 1 2 ] , i f we allow the feedback k to be over J , 

then the condition in theorem (2 .2) i s not necessary. 

Again, from the resu l t s of Kamen [ 1 2 ] , we have the following 

necessary and suf f i c ient condition for coef f ic ient assign­

a b i l i t y . 

Theorem 2 . 3 

Given a system £ = (F, g, -) over D the det(pI-F+g*k) 

i s coef f ic ient assignable with respect to J i f and only i f 

there ex i s t a nxn matrix W over J such that 
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W* (pi - F) *g = 

'« 1 
o 1 

'n-1 
P 

(2.11) 

where (pi - F) denotes the adjoint of (pi - F ) . Using this 

result we can derive the following constructive procedure 

for eigenvalue placement. For desired 
n - 1 

det(pl - F + g*k) = a(p) = p n + £ a ^ 1 , a ^ R 
i = 0 

and we have 
n - 1 

det(pl - F) = p n + £ a ^ p 1 

i = 0 

Then the feedback vector is given by 

k = (a - a , a, - a,, ... a , - a ,)*W o o 1 1 n - 1 n - 1 

Input Feedback 

Recently Kamen [13] has studied the feedback control 

problem for the case in which g in the system equation (2.7) 

is of the form g*5 , g*eD n. It is easily shown that for 
a 

this case, condition (2.11) cannot be satisfied. However 

Kamen [13] has shown that through the use of both state and 

input feedback, it may still be possible to achieve 

coefficient assignability. We can achieve this structure 
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by setting 

u = -v*u - k*x + r (2.12) 

with veL Q, keJ n combining (2.7) and (2.12) we obtain the 

following closed loop equation 

(<S + v) *x = (6 + v)*F*x - g*k*x + g*r (2.13) 

We then have the following result from Kamen [13]. 

Theorem 2.4 

The characteristic operator det(pI-F+(6 Q+v) ^*g*k) 

is coefficient assignable up to a multiplicative factor if 

there exists a nx(n + 1) matrix W = (W l f W« . . . . , W , ,) 
1 2 n + 1 

with W . e j n for i = 1, 2, n and W , ,eL n such that l J n + 1 o 

W-
(pi - F)*g 

det(pl - F) 

o 
n - 1 

We will not go into the proof here as it does not pertain 

to the following work. 
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C H A P T E R I I I 

O B S E R V E R 

I N D E S I G N I N G T H E S T A T E - F E E D B A C K C O N T R O L L E R W E A S S U M E D 

T H A T T H E E N T I R E S T A T E V E C T O R W A S A V A I L A B L E . O F T E N SOME 

C O M P O N E N T S OF T H E S T A T E V E C T O R A R E N O T A V A I L A B L E O R A R E 

D E L A Y E D . T H U S W E N E E D A S U I T A B L E E S T I M A T E OF T H E U N A V A I L ­

A B L E S T A T E S . I N T H I S S E C T I O N W E C O N S I D E R T H E D E S I G N OF AN 

O B S E R V E R W H O S E I N P U T S A R E T H E I N P U T S AND O U T P U T S OF T H E 

G I V E N S Y S T E M , A N D W H O S E O U T P U T IS T H E E S T I M A T E D V A L U E OF 

T H E S T A T E V E C T O R . T H E G E N E R A L E Q U A T I O N FOR O B S E R V E R S W E R E 

F I R S T P R E S E N T E D FOR F I N I T E D I M E N S I O N A L S Y S T E M S B Y L U E N B E R G E R 

[14] A N D B A S S [ 2 ] . 

W E W I L L U S E T H E O P E R A T O R S T R U C T U R E OF KAMEN, M A K I N G 

U S E OF D U A L I T Y C O N S T R U C T I O N . C O N D I T I O N S ARE G I V E N FOR T H E 

E X I S T E N C E OF O B S E R V E R S W I T H A R B I T R A R Y E I G E N V A L U E S FOR T H E 

E R R O R D Y N A M I C S . T H E C O N D I T I O N S CAN B E C H E C K E D V I A M A T R I X 

O P E R A T I O N S D E F I N E D O V E R T H E C O N V O L U T I O N RING, R E S U L T I N G IN 

A C O N S T R U C T I V E P R O C E D U R E FOR T H E D E S I G N OF O B S E R V E R S . 

F O R T H E O B S E R V E R P R O B L E M W E W I L L C O N S I D E R S Y S T E M S 

W I T H S I N G L E I N P U T A N D S I N G L E O U T P U T . Z = (F, G, H ) . 

D E F I N I T I O N 3.1 

G I V E N A S Y S T E M Z = (F, G, H ) AS D E F I N E D (DEF. 2 . 1 ) , 
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an observer is the system given by 

x(t) = (F*x)(t) + (g*u)(t) + £*(y-h*x)(t) 
(3.1) 

y(t) = x(t) 

n n ^ where F, g, h are over D, ueL , ieJ and x is the state 
T 

estimate. 

We let x denote the error given by 

x(t) = x(t) - x(t) (3.2) 

By combining (3.1) and (3.2) with the system equations (2.7) 

we have the "error dynamical equation" given by 

x(t) = (F - l*h)*x(t) (3.3) 

Definition 3.2 

The characteristic operator of the error dynamics is 

det(pl - F + £*h) (3.4) 

Note that if det (pi - F + £*h) is coefficient assignable 

then we can place the eigenvalues of the error dynamics 

anywhere in the left half of the complex plane. 

We will now develop conditions for coefficient 

assignability of the characteristic operator of the error 

dynamics. Our approach is based on the construction of a 

dual system. The dual is defined by extending the setup 

over a field Kalman [8] to equations over rings. 
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D E F I N I T I O N 3.3 

G I V E N A S Y S T E M Z = (F, G, H) T H E DUAL OF E I S T H E 

S Y S T E M E^ = ( F % h', G^) W I T H E Q U A T I O N S 

Z(T) = (F'*Z)(T) + (H'*U)(T) 

Y ( T ) - (G'*Z) (T) 

W H E R E F', h*, g' ARE O V E R D , U E L + A N D W H E R E F^ I N D I C A T E S T H E 

T R A N S P O S E OF F. 

T H E O R E M 3.1 

T H E C H A R A C T E R I S T I C O P E R A T O R OF T H E E R R O R D Y N A M I C S IS 

C O E F F I C I E N T A S S I G N A B L E IF A N D O N L Y IF T H E C H A R A C T E R I S T I C 

O P E R A T O R OF T H E D U A L S Y S T E M W I T H S T A T E F E E D B A C K , G I V E N B Y 

D E T ( P L - F^ + H / * K ) , I S C O E F F I C I E N T A S S I G N A B L E . 

P R O O F OF 3.1 

W E L E T K = A N D I T F O L L O W S D I R E C T L Y T H A T 

D E T ( P L - F + £*H) = D E T ( P L - F ' + H"*K) 

C O R O L L A R Y 1 

L E T F A N D H B E O V E R D A N D I I S O V E R J T H E N T H E 

D E T ( P L - F + l*h) I S C O E F F I C I E N T A S S I G N A B L E IF T H E E L E M E N T 

(H/, F'*H/, , F ' N " 1 * H ' ) I S A U N I T I N J. 

F R O M T H E O R E M 3.1 W E H A V E E Q U I V A L E N C E B E T W E E N T H E 

C H A R A C T E R I S T I C O P E R A T O R S OF T H E E R R O R D Y N A M I C S O F T H E G I V E N 

S Y S T E M A N D T H E F E E D B A C K C O N T R O L C A S E O F T H E D U A L . T H E R E F O R E 

T H R O U G H D U A L I T Y A N D T H E O R E M 2.2 W E H A V E T H E A B O V E S U F F I C I E N T 

C O N D I T I O N , W I T H C O N S T R U C T I O N OF I AS G I V E N I N T H E O R E M 2 . 2 . 
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But as stated in the preliminaries this condition is rarely 

met for delay systems. Constructing the dual of theorem 

(2.3) we have the following necessary and sufficient condi­

tion for coefficient assignability. 

Corollary 2 

The characteristic operator of the error dynamics, 

det(pl - F + £*h), is coefficient assignable with respect 

to J if and only if there exist a nxn matrix W over J such 

that 

h*(pi - F)*W = 
o 

. n - 1 
P 

(3.5) 

Using (3.5) we can apply the constructive procedure for 

designing feedback in theorem 2.3 to design observers. 

This procedure is illustrated in the following example. 

Example 

We will construct a coefficient assignable observer 

for the system by 

x x(t) = x 2(t) 

x 2(t) = x-^t - a) + x 2(t) + u(t) 

y(t) = x 2(t) 

Which has system matrices 

0 6 
6 a 6 o 

g = [6 ] 
o 

h = [0 , 6 q] 
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AND WE HAVE MATRICES OF THE DUAL SYSTEM 
0 6 0 

F' = [ A] H' = [ ] G' = [0, 6 ] 6 6 6 r t O O O 

WE FIRST CHECK THE SUFFICIENT CONDITION 
0 6 a 

<T = (IT, F'*H') = [ ] 6 6 O O 
(DET(C')) 1 = -6 *F J 

- A 
SINCE THE SUFFICIENT CONDITION IS NOT MET WE CHECK THE 
NECESSARY CONDITION BY CHECKING IF THERE IS A NXN MATRIX 
W SUCH THAT 

6 
W*(PI - F")*H/ = ( °) 

P 
WE HAVE A NONUNIQUE W GIVEN BY 

6O A J1, 0 < T < A W = [ ] WHERE A(T) = Q G , O, OTHERWISE O 

WE THEN CONSTRUCT THE FEEDBACK OF THE DUAL SYSTEM SUCH THAT 
DET(PL - F' + H'*K) = (P + 6 )(P + 26 ) = P2 + 3P + 26 

O O O 
A_ = 26 0 O 

A = 36 1 O 
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det(pi - F") = p - p - 6 

a 0 = " 6 a 

a = — 6 u l o 

k = (a - a , a. - a,)*W o o 1 1 

k = (26 +5 , 2X + X(t - a) + 46 ) o a o 

From duality we have observer vector 

2 6 + 6 o a 
2A + A(t - a) + 46 

Let us consider the case in which, h is of the form 
* * n h *5 , h eD . In this case the condition given in Corollary a 

2 cannot be met. However we can "dualize" the state and 

input feedback construction in Chapter II. 

Definition 3.4 

An observer of a system with output feedback is given 

by equations 

x(t) 

z(t) 

y(t) 

= (F*x)(t) + (g*u)(t) + (£*z)(t) 

(6 Q + a)*(y - h*x) (3.7) 

= x(t) 

We let x denote the error given by x(t) = x(t) - x(t) 

and combined with the observer equation (3.9) and the system 
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E Q U A T I O N S (2.7) W E O B T A I N T H E E R R O R D Y N A M I C A L E Q U A T I O N 

W H I C H CAN B E C H A R A C T E R I Z E D B Y 

D E T ( P L - F + (5 + A ) ~ 1 * £ * H ) (3.8) 
O 

T H E O R E M 3.2 

T H E C H A R A C T E R I S T I C O P E R A T O R OF T H E E R R O R D Y N A M I C S 

(3.8) I S C O E F F I C I E N T A S S I G N A B L E I F A N D O N L Y IF THE C H A R A C ­

T E R I S T I C O P E R A T O R OF T H E D U A L S Y S T E M W I T H S T A T E AND I N P U T 

F E E D B A C K I S C O E F F I C I E N T A S S I G N A B L E . 

P R O O F 

U S I N G D U A L I T Y A N D E Q U A T I O N (2.13) Y I E L D S T H E C H A R ­

A C T E R I S T I C O P E R A T O R OF T H E D U A L S Y S T E M W I T H S T A T E A N D I N P U T 

F E E D B A C K 

D E T ( P L - F + (<5O + A ) _ 1 * £ * H ) 

I F W E L E T 

K = JT 

I T F O L L O W S T H A T 

D E T ( P I - F + ( 5 o + a ) ~ 1 * £ * H ) = D E T (PI-F'+( 5 Q+a) "* 1*H'*K) 

W E T H E N H A V E T H E C O N D I T I O N FOR C O E F F I C I E N T A S S I G N A B I L I T Y 

OF K A M E N [13] FOR A S Y S T E M W I T H S T A T E A N D I N P U T F E E D B A C K 

G I V E N B Y T H E O R E M ( 2 . 4 ) . 
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CHAPTER IV 

REGULATOR 

In this section we will look at the construction of 

an input/output regulator. We will show that the regulator 

construction can be "separated" into two parts: the design 

of a controller and an observer. We then give conditions 

for coefficient assignability fo the regulator's character­

istic operator. Finally, use is made of the control 

canonical form to simplify regulator construction. 

We again consider a system £ = (F, g, h) given by 

x(t) = (F*x)(t) + (g*u)(t) 

y(t) = (h*x)(t) 
(4.1) 

State feedback was incorporated using 

u = - k*x + r (4.2) 

We then developed an observer (3.1) of the form 

x(t) = (F*x) (t) + (g*u) (t) +l*(y - h*x) (t) 

y(t) = x(t) 
(4.3) 

We now use the estimated value of the state in the state 

feedback. Combining equation (4.2) and (4.3) we obtain 



2 1 

• u , 
x ( t ) = ( F + £ * h ) * x ( t ) + ( g , 

y ( t ) = ( - k * x ) ( t ) 

( 4 . 4 ) 

w h e r e u = y ( t ) + r 

D e f i n i t i o n 4 . 1 

E q u a t i o n ( 4 . 4 ) i s a r e g u l a t o r . W e n o w l o o k a t t h e 

c l o s e d l o o p e q u a t i o n o f t h e s y s t e m w i t h r e g u l a t o r . 

T h e o r e m 4 . 1 

T h e c h a r a c t e r i s t i c o p e r a t o r o f t h e o v e r a l l s y s t e m 

( ( F , g , h ) a n d r e g u l a t o r ) i s e q u a l t o 

d e t ( p l - F + g * k ) * d e t ( p l - F + i*h) 

P r o o f 

U s i n g a n e x p a n d e d s t a t e v e c t o r w e h a v e 

F g * k 

£ * h F + g * k - £ * h 

A n d t h e n u s i n g t h e l i n e a r t r a n s f o r m a t i o n 

- — 
* 
X 

/ \ 
— 

X 

— — 

X 
+ 

g 

X g 
_ — 

- - - — —i 

X I 0 X X 

X I -I X 
_ _ 

X - X 
J 

W e o b t a i n t h e t r i a n g u l a r f o r m 

I 
F + g * k - g * k x 

x 0 F + £ * h 

x 

x 
+ 



22 

which has the characteristic operator 

det(pl - F + g*k)*det(pl - F + £*h) 

Corollary 1 

The characteristic operator of the system with 

regulator is coefficient assignable if and only if 

a) det(pl - F + g*k) is coefficient assignable 

b) det(pl - F + l*h) is coefficient assignable 

This follows directly from theorem 4.1. 

Corollary 1 shows that in considering the coefficient 

assignability of the overall system we are able to look at 

the observer and state feedback systems separately. For 

this reason theorem 4.1 is often known as the separation 

theorem. 

Corollary 2 

The characteristic operator of the overall system is 

coefficient assignable if and only if 

a) there exists a nxn matrix W such that 

W*(pi - F)*g J p 

n - 1 

b) there exists a nxn matrix T such that 

h*(pi - F)*T 
o 

- n - 1 
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From Corollary 1 we have that we need both controller and 

observer to be coefficient assignable. Here we restate the 

necessary and sufficient conditions for each as stated in 

theorem (2.3) and theorem (3.1) Corollary 2. 

We now look at the possibility of using an equiva­

lence transformation to simplify either state feedback design 

or the observer design. We know that the condition given 

in theorem (2.2), that (detC)" 1 exists over D, is rarely 

met. In particular an inverse will only exist for the 

detC = a 5 Q a ^ 0, aeR. By transforming the system to con­

trol canonical form we obtain alternate conditions. 

Corollary 3 

The characteristic operator of the overall system 

is coefficient assignable if and only if 

a) detC t4 0 

b) there exists a nxn matrix T such that 

T*(pl - F)*C _ 1C*h = (6 Q, p, p n " X) 

Recall the control canonical form (def. 2.5). A transfor­

mation P to the control canonical form is 

P = c*c _ 1 

For regulator construction we are free to use any input 

output equivalent system representation. A Q-equivalent 

system (def. 2.4) will be input/output equivalent. We now 

only need to have C ^ 0 for C 1 to exist over Q. For this 
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control canonical form (F, g, h) we have easily constructed 

state feedback as given in proof (theorem 2.2). We now 

develop the condition for coefficient assignability of the 

observer for this transformed system. We have from 

corollary 2 of theorem 3.3 and the system (F, g, h) that 

the observer is coefficient assignable if and only if there 

exists a T such that 

h*(pi - F)*T = 

1 o 

' n - 1 
P 

and then using 

h = h*p 1 = h* (C ""1*C) 

and 

_ -1 1 --1 
F = pFP = CC FC C 

we have the condition as given. 

Corollary 4 

The characteristic operator of the overall system is 

coefficient assignable if 

a) detC 0 

b) (h", F'*h', F" n " 1*h") is a unit in J 

Part a is met as in the previous corollary by transforming 

the system to canonical form. Part b is then the sufficient 

condition as stated in corollary 1 of theorem 3.1. We know 
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that this condition will rarely be met for delay systems. 

Remark 

The conditions in corollary 2 holding does not imply 

that the conditions in corollary 3 will hold. It is pos­

sible to have a system for which the conditions for the 

existence of a regulator (theorem 4.1, cor. 2) are able to 

be met, but when the transformation is made to control 

canonical form, there does not exist a matrix T to meet the 

condition (theorem 4.1, cor. 3), in particular when C ^"*C*h 

if of the form (C ~1*C*h) ""*6 where (C _ 1*C*h) "eD. This is 
a 

easily seen by example. The use of output feedback as 

described in Chapter III may make the problem solvable, 

but this is left for future investigation. 

Conjecture 

If detC = 0 cannot construct both feedback and 

observer. 

Example 

We will construct a coefficient assignable input/ 

output regulator for the system given by 

x 1(t) = x 2(t 

x 2(t) = x 1(t 

y (t) = x 2(t) 

a) + x 2(t) + y(t) 

a) 

We have system matrices 



2 6 

F = 

0 6 

a o 

g = h = [ 0 , 6 q] 

W e c h e c k t h e s u f f i c i e n t c o n d i t i o n ( t h e o r e m 2 . 2 ) f o r c o e f ­

f i c i e n t a s s i g n a b l e f e e d b a c k . 

0 6 

I 
C = [ g , F * g ] = 6 6 

o o 

, ( d e t ( C ) ) 1 = - 6 JJ 

— c l 

T h e n u s i n g c o r o l l a r y 2 t h e o r e m 4 . 1 s i n c e t h e d e t C = 0 w e 

l o o k a t t h e p o s s i b i l i t y o f s i m p l i f y i n g b y c o n s t r u c t i n g 

d e t ( p i - F ) = p - p - 6 2 a a 1 = - 6 a 2 = -6 
2 a 

t h e 

F = 

~ 0 6 o " 
o 

g = 

6 
2 a o 

0 _ — 

C = [ g , F * g ] = 

0 6 

6 - 6 r t 

o o 

( d e t ( C ) ) ~ ± = 6 e J 
o 

T h e r e f o r e w e c a n t r a n s f o r m t h e s y s t e m i n t o c a n o n i c a l f o r m . 

W e t h e n c o n s t r u c t t h e f e e d b a c k k a s i n t h e o r e m 2 . 2 s u c h 

t h a t 
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det(pl - F + g*k) = (p + 6 )(p + 26 q) = p + 3p + 26 q 

6 1 - 3 6 o e 2 = 2 6 o 

k - (8 2 - a 2, B l " c^) = (2S Q + 6 2 a , 46 Q) 

We then look at the observer for this transformed system, 

by first checking the sufficient condition. We have 

0 6 2a 

6 6 o o 

0 6 2a 

6 6 o o 

(detcT) 1 = - < $ _ 2 a £ J 

Since this condition is not met we check the necessary 

condition given in theorem 3.5. By finding a nxn matrix 

W such that 

W*(pl - F')*h' = ( w ) 
ir 

There is a nonunique W given by 

W = 

6 A o 

0 6 
L 

, A(t) = 
1 0 < t < 2a 

0 otherwise 
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We can then construct the feedback for the dual of the trans­

formed system using the procedure in theorem 2.3 such that 

det(pl - F' + h'*lO = (p + 6 )(p + 26 Q) = p + 3p + 26 Q 

a., = 3 6 

a„ = 26 

recall 

a r t = 6 

a. = 6 2a 

then 

= (a - a , a 1 - o^) *w 

k' = (26^ + 6 0 , 2A + A(t-2a) + 46 ) o A a o 

which yields observer vector of the transformed system, 

r 
2 6 + 6 o 2a 

2A + A(t - 2a) + 46 
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