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SUMMARY 

This thesis develops a solution methodology for the problem: 

minimize CX 

subject to: 

A i x = b i 

A 2 X S b 2 

X = Vector with integer components 

where: 

C - Row vector with n integer components. 

X - Column vector with n components. 

A^ - m^ by n matrix possessing the unimodular property. 

A 2 - by n matrix with integer components. 

b^ - Column vector with m^ integer components. 

- Column vector with integer components. 

^The solution methodology is based on the principles of implicit 

enumeration and takes advantage of the structure of the matrix A^ for 

computing lower bounds. 
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Models with the above structure arise in many areas of applica

tion. Examples of some of these are multicommodity network flows, 

multi-period decision making, and scheduling. 

The algorithm developed is general in nature, but requires that 

the imbedded problem be converted to a zero-one integer programming 

problem. A method is suggested in the thesis to make the required 

conversion, but the conversion increases the number of variables in the 

imbedded problem as a function of the values of the components of b^. 

The algorithm is particularly suited for situations in which the com

ponents of b^ are small. 

Computational results for the algorithm are obtained for the 

class of course-time scheduling problems formulated in the thesis. The 

results obtained serve to illustrate the computational aspects of the 

algorithm. 

Approaches to extend the work of this thesis are outlined in some 

detail. One extension suggested is the application of the methodology 

to other classes of problems. Another is the extension of the course 

scheduling model to incorporate university-wide course scheduling. For 

the latter, a stage-wise solution procedure is outlined based on the 

methodology developed earlier in the thesis. 
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CHAPTER I 

INTRODUCTION 

This thesis deals with the development of an algorithm for 

integer programming problems which have imbedded in their constraint 

set a subset of constraints whose coefficient matrix possesses the 

unimodular property. Although the algorithm is applicable to a large 

number of problems, the particular application utilized in this thesis 

is to a course-time scheduling problem. 

The results of the application will demonstrate the computational 

aspect of the algorithm and the computational efficiencies that can be 

obtained. 

This chapter is subdivided in three sections. The first section 

will present some areas in which problems of the type for which an 

algorithm will be developed occur. The second section will state the 

objectives and purpose of the research, and the last section will pre

sent a review of the pertinent literature together with some results of 

the introductory research. 

Areas of Applicability 

Multicommodity Network Flows 

The general multicommodity network flow problem may be stated as: 

(1) minimize 



subject to: 

i Xijk = aik V i £ M ' ^N, kcP 

i Xijk = bjk V l e M > ^ N , k eP 

0 < x. ., < d... vieM, J£N, keP ljk ljk J 

^ x. . < D. . vieM, jeN, keP 

X.ijk = b i n a r y vi sj> 1< 

{1,...,i,...,m}: origins 

{1,...,j ,...,n}: destinations 

{1,... ,k,... ,p}: commodities 

amount of kth commodity available at origin i. 

amount of kth commodity required at destination j. 

cost of shipping one unit of the kth commodity from 
origin i to destination j. 

maximum amount of the kth commodity that can be shipped 
from origin i to destination j. 

maximum amount of all commodities that can be shipped 
from origin i to destination j. 

number of units of kth commodity shipped from origin i 
to destination j. 



For this formulation of the multicommodity flow problem, constraint 

sets (2), (3), and (4) together with the objective function constitute 

a set of P independent capacitated transportation problems for which 

efficient methods of solution are available. For example, see [8], 

[12], or [14]. Constraints (5) create dependencies between various 

variables in the otherwise independent capacitated transportation 

problems, and consequently prevents the use of the efficient solution 

techniques available. 

Bozoki [8] discusses several applications for which the multi-

commodity network flow formulation is an appropriate model. 

Multi-Copy Generalized Networks and Multi-Page Programs 

A multi-page formulation may be thought of as derived from the 

coupling of many component programs. For example, the - individual com

ponent programs may associate with one planning period, and the combined 

activities for all planning periods may be further constrained by over

all considerations such as limited availability of material. In some 

instances a multi-copy designation is used because each component 

program may have the same form albeit with different cost and constraint 

coefficients. With respect to the above, Charnes and Cooper [10], and 

Charnes and Lemke [11] have done work in linear programming relating to 

models which have constraint systems which are not arbitrary in charac

ter, but which consist of portions which individually belong to a 

relatively small number of model types. For some of these, efficiencies 

and capabilities greatly surpassing the computational efficiencies and 

capabilities associated with arbitrary models, e.g., network problems, 

generalized network problems, etc., can be achieved. 
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The work done inthis area by the above authors was in improving 

the efficiencies over those obtainable using standard linear program

ming methodology. For many of the situations discussed, integer 

programming models would be more appropriate. 

The general formulation of the model in question is: 

P 
. . . r T 

minimize I c x 
P = i p p 

subject to: 

A x = b p = 1,P p p p 

) B x + Iy = b 
-i P P ° p=l r 

x p S
 V P 

where: 

A - Constraint coefficient matrix associated with the pth 
^ page program, generally with some "favoured" structure. 

Xp - Decision vector associated with the pth page program. 

bp - Right-hand side vector associated with pth page program, 

B - Coefficient matrix of the decision variables of the pth 
^ page program appearing in the overall constraints. 

y - Vector of slack variables associated with overall con
straints . 

b Q - Right-hand side vector of overall constraint. 
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c - Vector of cost coefficients associated with the decision variables 
^ of the pth page program. 

Situations in which models of the above type are adequate have been 

described in [11]. Some of these are: 

Models to predict traffic flows in an arterial network. 
Models to optimize chemical processing. 
Models to analyze behavior of loaded structures. 
Models to optimize finances and production over time. 

Course-Time Scheduling Problems 

As part of an integrated management information and decision 

system for the School of Industrial and Systems Engineering of the 

Georgia Institute of Technology, the author has developed the following 

model to schedule courses to time slots: 

minimize 

subject to: 

m n 
I J e x . . 

i=i j=i 1 3 1 ] 

m 
I x = 1 j=l,n 

i=l ^ 

) x.. < M. i=l,m; k=l,m' 
• ' r , 11 1 1 

I w,. s 1 i=l,m; k=l,m 

J x.. < 1 i=l,m: k-l,m_ l] 3 
] 6 L k 

x „ = binary i=l,m; j=l,n 
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where: 

x. { 1 if course j is taught at time i 

0 otherwise 

c.. - Cost measure of teaching course j at time i. 

D, - Set of courses with forecasted enrollment ^ U . 
K K 

1VL - Number of classrooms with capacity >: U^. 

W - Set of courses taught by professor k. 
K 

- Set of courses which, if taught concurrently, would create 
conflicts for students. 

The following chapter will present an algorithm which can be utilized 

to solve problems of the type presented in the preceding section. The 

computational results that can be achieved with this algorithm will be 

illustrated by using the course-time scheduling problem presented above.-

The previous sections have presented several situations for which 

the appropriate mathematical model consists of a set of constraints 

which has imbedded in it a subset of constraints whose constraint coef

ficient matrix possesses the unimodular property. If it were possible 

to only consider the imbedded constraint set, then a solution to the 

model could be obtained by very efficient means. 

The objectives of this thesis are: 

(1) To develop a general solution strategy for integer program

ming problems which have imbedded in their constraint set a subproblem 

whose constraint matrix is unimodular. 

(2) To apply this solution strategy to the course-time 

Objectives and Purpose 
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scheduling problem and to illustrate the computational aspects of the 

solution strategy using the scheduling problem as a basis. 

The purpose of the research is to achieve the above objectives by taking 

advantage of the unimodular property of the imbedded problem. 

Introductory Research and Review of Pertinent Literature 

Many methods have been suggested in the literature to solve 

linear programming problems which have imbedded in their constraint sets 

subproblems which, if isolated, could be solved very efficiently. A 

logical approach toward developing solution strategies for integer 

programming problems which exhibit these same characteristics is to 

attempt to extend the procedures developed for linear programming to 

include integer programming problems. The next section will be devoted 

to the presentation of some of the methodologies available for linear 

programs, and some discussion of the difficulties that arise when they 

are extended to include integer programs. 

From a theoretical standpoint, one of the more elegant approaches 

developed for handling the type of problem being discussed is that of 

decomposition. Dantzig and Wolfe [13] present it in the context of 

solving the problem: 

k T 
minimize / C.x. 

i = i 1 1 

subject to: 

k 
J A.x. = b .*V i i o i=l 



where A. is an m by n. matrix, B. an m. by n. matrix, C , x., and b. 
1 o J i ' 1 1 J 1 1 1 1 

are n^ component vectors, and b^ is an n Q component vector. 

The basic concept of solving the above problem by Dantzig-Wolfe 

decomposition is that any solution to the complete problem must satisfy 

the constraint sets B̂ X_̂  = b^ 9 and any point satisfying these can be 

expressed as a convex combination of the extreme points of that con

straint set. Therefore, the problem may be rewritten as: 

minimize 

subject to: 

y ci y x..x'.\ 
i=l 1 i=i 1 : ^ 

E. l 
y A. y x..x?. = b 
i ]=1 

E. 
l I X.. = 1 1=1,k 

where: 

X. . > 0 vi and v-j 

^ij ~ ^ o n v e x combination constants for ith subproblem, 

E_̂  - Number of extreme points in ith subproblem. 



Although it appears that before the above problem can be solved, all 

the extreme points must be known, in actuality these can be generated 

as required. The mechanism developed to achieve this is derived from 

duality considerations. Namely, at any intermediate step, the simplex 

multipliers can be classified according to whether they are associated 
Ei * 

with the constraint set 7 A. 7 X..x... or with the convexity con-
E i i 1 j=l 1 ] 1 ] 

straints 7 X.. = 1 vi. 
j=i 1 ] 

To determine whether optimality has been achieved, the quantity 

T * 
C.x. . - [tt tt, ] i in m k J o 

A.x. . 

e; 

v-j^ Basis 

must be calculated, where tt are the simplex multipliers associated 
o 

with the first m Q rows, and the tt̂  the multipliers associated with the 

last k rows. e. indicates the entry due to the convexity constraints. 

The above quantity may be rewritten as: 

X & & T * C.x.. - [tt A.x. . + TT.'e.] = [C. - tt A.]x.. - tt. 
i i ] m Q i i] k ] i m Q i i] j 

if there exists some x.. for which this quantity is negative, then opti-
i] 

mality has not been achieved, and should enter the basis. 

Since all the x.. are not known, the above determination can be 

made by solving: 

minimize [CT-tt A.]x. l m i i o 
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subject to: 

B.x. = b. 
1 l' 1 

x. > 0 l 

for each i. 

When the structure of the constraint set B. is such that effi-
I 

cient procedures exist to solve the above problem, the use of decompo

sition to solve large scale problems may indeed be very fruitful 

although, in general, it has been found that from a computational 

standpoint it is somewhat inefficient. 

As the first step in the introductory research, the possibili

ties of combining the Dantzig-Wolfe decomposition approach with one of 

the existing cutting plane techniques was investigated. The particular 

problem which was considered was the course-time scheduling problem 

presented earlier. The formulation of this problem could be presented 

as: 

m n 
minimize ) ) c..x.. 

i=l ] = 1 J J 

subject to: 

( 1 ) I x.. < 1 k=l,m , i=l,m 
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(2) k=l,m ; i i=l ,m 

m 
(3) 1 

j eW. ,m0 ; i=l,m 

(4) < 1 

(5) x. = binary 

where the constraints defined by (3), (4), and (5) form the subproblems, 

The above formulation has the interesting property that any solu

tion to the overall problem is composed of one extreme point from each 

subproblem. As such, the optimal solution would be one in which each 

A „ in the decomposition formulation assumes a binary value. Since the 

convexity constraints insure that no value of A „ can be greater than 

one, it is sufficient to specify that the master problem must be solved 

as an integer programming problem. The basic reason for considering the 

combination of decomposition with a cutting plane approach stems from 

the fact that decomposition relies heavily on duality theory in that the 

master problem supplies the simplex multipliers required for the objec

tive functions of the subproblems. If the master problem were to be 

solved by other methods, the duality relationships would be lost, while 

if cutting planes are generated, all duality relationships obtained from 

the master problem still hold when an integer solution has been obtained. 

and the others are overall constraints. 



12 

Gomory's [16] cutting plane approach to solving integer program

ming problems has received considerable attention in the literature. 

This approach is dual in nature since it starts with an optimal solution 

to the linear programming problem, and then sequentially generates new 

constraints or cutting planes, which render the previous solution in-

feasible. These cutting planes have the following properties: (1) 

Generated constraints never exclude from the new feasible region an 

integer feasible point of the original problem. (2) In a finite number 

of steps enough constraints will be generated so that the optimal solu

tion to the modified linear program has integer components. (3) The 

generated constraints pass through at least one integer point. 

The cutting planes described by Gomory are obtained as a linear 

combination of the non-basic variables. Since, in general, the type 

problems solved by decomposition are large and solved through the use 

of the revised simplex algorithm, the necessary information to generate 

cut equations is not readily available. 

In conjunction with investigating decomposition and integer pro

gramming, it was hypothesized that perhaps it would be fruitful to 

determine whether Gomory cuts could be generated implicitly. Basically, 

the question was centered on the issue that, since columns are generated 

for the master problem by minimizing the dual evaluators, the simplex 

multiplier associated with a cut equation could be expressed in terms 

of the objective function associated with a particular subproblem. If 

this were possible, then it would not be necessary to have an explicit 

representation of the columns associated with the non-basic variables. 
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Since the Gomory cutting plane algorithm relies on the dual 

simplex method, the above scheme would not be directly applicable. One 

manner in which to avoid using the dual simplex method is to resort to 

a primal cutting plane approach. Young [20] has proposed such an 

approach. In order to briefly explain the approach, it will be assumed 

that the initial problem is in canonical form, i.e.: 

I- _x_ + Ax,T = A m+1 B N o 

where x^ is a column vector of x. (i=o,m); x„T is a column vector of x. 
B 1 N j 

(i=m+l,n): I- n is an identity matrix of dimension m+1: A is a column ' m+1 ' o 

vector of a^ Q (i=o,m); and A is a m+1 by n-m matrix composed of the 

constraint equation coefficients after these have been put in canonical 

form. The bars above the various terms serve to indicate that these 

are the generic terms of the.original system. 

At some intermediate stage of computation, the existing tableau 

will be denoted by: 

I nx + AU = A m+1 B n o 

The above representation differs from the original in that it includes 

new variables and equations which were added to the original system. 

The added equations are cut equations similar to Gomory cuts that were 

added in order to preserve the integrality of the system, and the vari

ables are the slacks associated with each cut equation. 
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The cutting plane approach developed by Young is primal in 

nature, and it requires that > 0 and that A and A q be integer. The 

cutting plane approach will perpetuate these properties in A and A . 

At some intermediate stage of computation, the following cut 

equation is generated and added to the system : 

where a . is the entry in row v and column j of A, a the entry in V] J vo 
row v of A . and A = a .. This cut is derived as follows: 

O V J 
1. Calculate pivot ratio: 

) = m m 
J a..>0 

a. 
1 0 a. 
ij 

where J is index of some column A T for which a T < 0. 
J oJ 

2. Select a source row for a Gomory cut some row v for which: 

/ avo\ 0 < \ / < e T a u vj 

a 
The variable S in the cut becomes a basic variable with value /——\ in 

^vJ^ 

the current basic solution. 

In the above Y = <x> => Y is largest integer ^ x. 

Although the previous was only a very general outline of some 

basic concepts used by Young, it is enough to illustrate the situation 

encountered when this approach is used in connection with decomposition, 
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Recall that at some intermediate stage of computation of the 

decomposition algorithm, the variable to enter the basis is determined 

from the solution of the problem: 

minimize [C - TT A.]x. m i l o 

subject to: 

B.x. = b. 
1 1 1 

From the solution of the above, the coefficient vector of the variable 

to enter the basis can be obtained in terms of the present basis of the 

master problem. Denote this vector by A , i.e. : 
u 

A j = B 
-1 A.x. . 

I 13 

where B ^ is the inverse of the current basis of the master problem. 

A. is the matrix of coefficients associated with the vector x. in the 1 1 
original problem, x.. is the solution to the subproblem, and 6 is a 

13 x 
vector with zeros everywhere except in the ith position. 

Following Young's procedure, a cut equation of the form: 

s + A. <̂ >UJ = <-r>; withX = a 
j eN 

vJ 
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is appended to the master problem. Since only a vj is known, it would 

be hard to immediately find all the terms of the cut equation. For the 

immediate purpose it is possible to append the slack S to the basis of 

the master problem, and augment A by the term corresponding to it from 

the cut equation. This would yield as the new pivot column: 

and as the new basis 

B = B 0 
0 1 

and a change of basis may now be made with Aj as the pivot column, and 

the newly appended equation as the pivot row. 

To determine optimality of the new solution, the dual evaluators 

must be computed for all non-basic variables. After a cut is adjoined 

to the system, the coefficient vector of each non-basic variable will 

have the form: 
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where are the coefficients added to a column of the master problem 

by the cut equations so far generated, and are a function of the extreme 

point being considered in the particular column. Partitioning the vec

tor of simplex multipliers as follows: 

[tt tt, tt ] m k c o 

where tt̂  are the multipliers for the cut equations so far adjoined to 

the master problem. The evaluators now become: 

[C . — TT A. ]X. . - TT a - TT. 
1 m : 1 11 C X 1 o J J 

in which each term of would have the largest integer operator as 

part of it, and the argument of this operator being a function of x „ 

Therefore, before an additional iteration can be performed, a 

problem of the form: 

minimize 

subject to: 

T [C. - tt A.]x. - tt a 
I m i l c x o 

B.x. = b. 
i i I 

must be solved. The above problem is not trivial to solve since the 

term a is of the form: x 
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°x = < [ a i a 2 a n ] C x l i X n i ] ^ 

in which the terms correspond to elements of the master problem row 

utilized in generating a cut, and the x.. are the decision variables 

of the problem. Here again, y = <x> ^ y largest integer ^ x. 

As can be noted, the objective function of the problem that must 

be solved is non-linear and consequently, the solution of the problem 

is non-trivial. Since many such problems would have to be solved during 

a cutting plane-decomposition approach, further investigation was dis

continued. 

Charnes and Cooper [10] have developed a procedure to solve 

problems of the form: 

. . T 
maximize C A 

subject to: 

P A = P 
o 

R A = b 

A > 0 

where P and R are matrices and C, A , P q , and b are vectors of appropri

ate order. It is assumed that the constraint set P A = P has some 
o 

favored structure in the sense that specialized and efficient techniques 

exist for their solution. 
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The procedure, denoted as the double reverse method, consists of 

writing a basic solution to the above problem as: 

\ BG P 
o 

5 \ b 

where B̂ , is a basis for the favored problem, and is the row-wise 

continuation of the columns associated with B ; finally, B and R are 
r G G 

the completion of the basis for the entire problem. 

The above expression may be rewritten in the form: 

1 ) B FX F t B GX G = P o 

2) R FX p + R GX Q = b 

Since B̂ , is a basis for the favored problem, there exists a unique 

matrix, x , such that: 

B F X G = BG 

substituting the above into 1) yields: 

B F[X F + x GX G] = P o 

or, B F X = P o 
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where: 

To find the values of the corresponding (basic) variables, it can be 

noted that: 

AF = A " XG AG 

and, from 2) 

or 

RF[A - x GX Q] + R QX G = b 

[RQ + R Fx G]X G = R FA , b 

XG = CRG " VG]"1(V " B ) 

T T T Associated with this basis is a vector of dual evaluators, oj = [oj ,oj ] B R 
which uniquely satisfies: •' • ' 

. T T-. oj «oj J B R 
RF RG 

T T 
= [ c J , c T

G ] 

T T T where [C ,0^] are, respectively, favored and non-favored entries in C . 
T T . 

That is, C„ is associated with X and C is associated with X in the 
original problem statement. 
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Rewriting the above expression as 

T T T 
U B B F + \RT = C F 

T T T 

makes a similar procedure used to find the values of the basic variables 

applicable to finding the values of the dual evaluators. To show this, 

let: 

then : 

and: 

where; 

Am m 

» BF = CF 

T T„ 
% = co - to RY R 

Y R B F = RF 

T 

From the knowledge of the vector to it is possible to determine what 

vector should enter the basis. Denoting the vector by: 

rT/ 
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then, in order to determine the vector to leave the basis, it is neces

sary to represent the above vector in terms of the present basis. This 

may be accomplished by solving: 

5 \ 
where [y^ yl]^ is the representation of [ P ^ R^j 1^ in terms of the cur-

rent basis. 

The above may be solved by the previously defined steps of the 

double reverse method. Once y and u have been obtained, then the 
r o 

vector to leave the basis is found in the same manner as with the 

revised simplex method. 

With the information of which vector is to enter the basis and 

which is to leave it, a new basis has been specified and the same 

process is repeated until termination. 

Since the double reverse method's primary advantage is to uti

lize the imbedded problem and its properties to duplicate the function 

of other linear programming approaches, its extension to allow for 

integrality would entail the same difficulties as with linear program

ming and, as a consequence, this approach was not taken to develop 

integer programming schemes. In relation to the above, Bakes [2] pre

sents an approach similar to the double reverse method presented in the 

previous paragraphs. 

Another approach developed independently by the author but found 
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later to be similar to an approach taken by Bozoki [8] to solve the 

multi-commodity network flow problem was considered. In order to pre

sent the basic ideas of this approach, consider the problem: 

minimize Cx 

subject to: 

(1) AjX = b 1 

(2) A 2x < b 2 

where: 

x - Vector of binary components. 

C - Row vector of cost coefficients. 

A^ - Constraint coefficient possessing unimodular property. 

A^ - Coefficient matrix of additional constraints, A^ ^ 0. 

b^ - Right-hand side vector of constraints whose coefficient 
matrix possesses the unimodular property. 

b^ - Right-hand side vector of additional constraints. 

Also, it is assumed that the matrix and vector dimensions are compatible 

for the problem presented. 

For the preliminary investigations, it was assumed that the constraint 

set defined by (1) formed a transportation problem. The basic idea 

motivating the approach was that of the dual simplex method. Namely, 

obtain the solution to the problem: 



minimize Cx 

subject to: 

= b 1 

x > 0 

denoting the optimal solution to the above problem by x , then if 

A^x < b^ the optimal solution has been obtained. Otherwise x compro

mises a solution which is optimal to the imbedded problem, but infeasi

ble with respect to the additional constraints. Consequently, if a 

scheme could be devised which reduced a measure of the infeasibility 

with respect to the additional constraints at minimum cost, while at 

the same time the constraints of the imbedded problem remained satis

fied, then the optimal solution would be obtained. Expressing the con

straints defined by (2) as: -

v j 
I [A0]..x.. < b 2i v i 

then a measure of infeasibility for each constraint may be defined as: 

S. = < 1 

< 0 

l 
0 otherwise. 

and the measure of aggregate infeasibility may be defined as: 



Assuming that the imbedded problem is, or has been, transformed to a 

zero-one integer program (see Chapter V for a method of transforming 

certain classes of general integer programs to zero-one integer pro

grams), then the problem of reducing the aggregate infeasibility, I, 

can be resolved by finding all the x̂ _. which have a value of one, and 

from these select one such that if it were forced to a value of zero, 

the new basic solution obtained from the imbedded problem would reduce 

the measure of aggregate infeasibility. If there exists more than one 

such basis change, then the one selected would be that which increased 

the objective function the least. The above process would then be 

repeated until 1 = 0 . 

As can be noted from the above description, this approach uti

lizes the additional constraints to determine which variable should 

leave the basis obtained from solving the imbedded problem, but 

actually utilizes the imbedded problem to perform the basis change. In 

this manner it is always insured that integrality is maintained. Also, 

each basis change is performed at minimum incremental cost. Unfortu

nately, the dependencies that exist between basic and non-basic varia

bles create a situation in which, even though it is possible to make a 

basis change at minimum incremental cost at each iteration, at the 

termination of the process the sum of the minimum cost basis changes 

performed does not, in general, yield a solution which has reduced the 

measure of aggregate infeasibility to zero at minimum total incremental 

cost. Due to this difficulty, the above described approach was 

abandoned. 
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A logical extension of the above approach, which is iterative in 

nature, would be the investigation of the problem that is obtained by 

attempting to reduce infeasibility at minimum incremental cost. Again 

consider the problem: 

minimize Cx 

subject to: 

A 1 X = b l 

A 2 X £ b 2 

x = Vector with binary components 

Consider that a basic solution to the imbedded problem is available, 

and denote x^ as the set of basic variables and x as the set of non-
B D 

basic variables. Further, partition the problem as follows: 

minimize C Dx t C x_ 

subject to: 

(1) A 1 B x B + A 1 D x D = b x 

(2) A 2 b X b t A 2 ( J x D S b 2 

x = Vector with binary components. 



where 

- Coefficient matrix of basic variables of imbedded problem 
constraints. 

A - Coefficient matrix of non-basic variables of imbedded 
problem constraints. ' 

A 2 B - Coefficient matrix of basic variables of additional con
straints . 

A^p - Coefficient matrix of non-basic variables of additional 
constraints 

From (1), the basic variables may be represented in terms of the non-

basic variables as: 

-1 .-1. 
XB = AIBhl " IB 1D XD 

substituting the above in (2) yields: 

[ A2D " A2B A1B A1D ] XD = b 2 " A2B AlB bl 

and the objective function in terms of the non-basic yariables becomes 

C B A1B^1 "
 [ C B A I B A 1 D " C D ] X D 

with the above, the original problem may be restated as 

maximize [ C
B
A 1 B A 1 D ' C D ] x D 
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subject to: 

(1) T A 2 n - A „ B A - k , ; X . * b 2 - A 2 B A - ^ . 

( 2 ) A 1 B V D ^ AlB bl 

(3)
 Ai.BADXD & AlB bl " 1 

= vector with binary components 

where 1 = vector with all components equal to one. 

The constraints defined by (2) and (3) serve to insure that the 

basic variables remain binary. 

After studying the above problem structure, it was concluded that 

there was no evidence that anything could be gained by concentrating 

on solution methods for such problems as opposed to the original prob

lem. 

As previously pointed out, the course scheduling problem can be 

structured in block diagonal form. For the purpose of the next para

graphs, consider a general representation of the problem in block 

diagonal form to be: 

minimize ^l xl + ̂ 2 X2 

subject to: 
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A 1 X 1 + A 2 X 2 £ b o 

B 2x 2 < b 2 

where: 

- Coefficient matrix .of • siibproblem .one. 

B^ - Coefficient matrix of subproblem two. 

x^ - Vector of binary components associated with subproblem one. 

x^ - Vector of binary components associated with subproblem two. 

- Coefficient matrix associated with the decision vector x^. 

A 2 - Coefficient matrix associated with the decision vector x^. 

- Row vector of cost coefficients associated with the 
decision vector x^. 

C^ - Row vector of cost coefficients associated with the decision 
vector x^• 

b. - Right-hand side vector of the ith constraint set. 1 

If the restriction that the vectors x̂ , must consist of binary components 

is abandoned for the time being, then the dual of the above problem may 

be written as: 

minimize y b + u 'bn + y„b„ 
o o 1 1 2 2 

subject to: 
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"o A2 + P 2 B 2 i C 2 

> 0 

where y^, y and are the vectors of dual variables. The above 

problem structure is ideally suited for solution utilizing a method 

developed by Benders [7], which is intended to solve mixed integer 

programming problems in which the variables represented by the vector 

y Q are restricted to.being integer, while the remaining variables are 

continuous. The basic procedure consists of taking advantage of the 

separability property of the above formulation by noting that, for a 

fixed set of values for the components of the vector y , the problem 

would be: 

maximize P o b o + »lbl + W2 b2 

subject to: 

» 2 B 2 2 C2 " v o A 2 

> 0 

or, equivalently: 
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u b t max{p 1b./y.B >C --y A.} o o 1 1 1 1 1 o 1 

+ max{M 2b 2/y 2B 2>C 2-ii oA„} 
U 2 

Taking the dual of the maximization problems yields: 

U b + min{[C -y A ]x /B x <b } o o 1 o 1 1 1 1 1 
x l 

+ min [C - y o A 2 ] x 2 / B 9 x 2 < b 2 } 

If the concept of having the above problem formulated for a fixed deci

sion vector y^ is changed to having a vector of decision variables, then 

the original problem may be restated as: 

maximize {y b + min{[C -y A., ]x../B., x <b., } o o 1 o 1 1 1 1 1 • 
Mo xl 

+ min{[C 2-M oA 2]x 1/B 2x 2<b 2}}. 
X 2 

Benders has suggested a solution procedure for the above type problem 

which utilizes the principles of implicit enumeration. It is of 

interest to note the similarity that exists between this approach and 

the decomposition approach. 

Knowing that problems such as the above can be solved and, fur

thermore, that since the solutions of the subproblems would be integer, 

the overall solution would also be integer, the difficulty that presents 
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itself lies in what the relationship between solving a primal problem 

which is required to have integer solutions, and the solutions 

obtained by solving the dual of the original problem, neglecting the 

integrality conditions, as an integer program. Even though Balas [4-6] 

has done considerable work in the area of duality in integer program

ming, the results available do not help in resolving the difficulty. 
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CHAPTER II 

ALGORITHM DEVELOPMENT 

This chapter is divided into three sections. Section one will 

describe the general principles employed in developing a solution 

algorithm. The development of the section is based on a paper by 

Balas [2]. Section two will develop the general algorithm in detail, 

and section three will present the algorithm in summary form. 

Basic Principles 

Consider a finite set: 

S =' {s. s. • • • s } 
1 2 n 

on which a function: 

f: S+R 

is defined associating a real number f(s^)eR with each s^eS. The prob

lem is to find an optimal element s^eS defined by: 

min{f(s.)/s.eS} i l 

The basic principles embodied in the algorithm to be developed in later 

f(8 f c).= 
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sections of this chapter involve the definition of a finite superset 

S 1 of S: 

together with an extension g of f: 

g: S^R 

associating a real number g(t.)£R with each t.eS.,, and such that: 
o ° 1 1 1 

t . e S g C t . ) = f ( t . ) . 

k 
A branching rule B will be defined for any subset R such'that 

8(R K) = { R K + 1 , R K + 1 } 

with: 

rk s r k + i f k + i 

^k+1 -k+1 and R n R = <F> 

On each of the subsets obtained by the application of 8 a bound 

will be defined as: 
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, , - °° if no feasible solution exists k+1 J 
k+1 

min{g(t^)/tier } otherwise. 

and: 

, , , 1 0 0 if no feasible solution exists -k+1 J 
-k+1 

min{g(t^)/t^er } otherwise. 

For the purpose of this chapter, the term "no feasible solution exists" 

as used in the definition of the bounds is employed whenever one of the 

following conditions is encountered: 

,x „k+l . ;-k+i , 

1 ) r = c}> or r • = <p 
2) r n S = <f> or r n S = $ 

3) If, for some R < k + 1, 

min{t./t.er k + 1} > min{t./t.€TR} 
3 3 3 3 

or 
min{t./t.er k + 1} > min{t./t.erR} 

3 3 3 3 

4) If, for some R < k + 1, 

min{t./t.€f k + 1} > min{t./t . e r R } 3 3 3 3 
or, 

min{t./t.€f k + i} > min{t./t.efR} 
3 3 3 3 
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If any of the above conditions hold, then there is no further informa

tion to be gathered from the particular subset and, consequently, a 

bound of °° is assigned to it. Any subset which has assigned to it such 

a bound will be excluded from further consideration. 

From a sequential application of 8, a contraction of is 

defined by: 

T O O p 
s ^ r => r ^ r ^ • • • ^ r 

with r 1 ̂  cj> if g 1 < 0 0 for any ie{1,2,... ,P}. The above contraction, 

obtained by the sequential application of 8, terminates when the last 
P 

application of 8 yields a subset r for which one of the following con

clusions can be drawn: 
P a) When an optimal solution t, ET has been found, defined x 

by g(t k) = min{g(t i)/t ier P}, such that "t^eS. 
p 

b) When g = 0 0. 
P 

If conclusion a) can be drawn, then further application of 8 to V can 
i P 

yield no better results and, consequently, all subsets Y c r have been 
implicitly examined and can be discarded from further examination. 

P 
If conclusion b) can be drawn, then r n S = cj> and, consequently, 

i P . . . 
all subsets r c r have been implicitly examined and can be discarded 
from further examination. Since 8 is such that: 
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then, if T can be discarded from further examination, the subset T 

can be further contracted by the sequential application of 8 starting 
_p 

with B(T ). This process shall be referred to as backtracking. The 

sequential application of B is again terminated when conclusion a) or 

b) can be drawn. 

Since S^ is defined to be a finite set, the number of subsets 

that can be generated in a contraction by the successive application of 

B is finite. Furthermore, since any subset T 1 or f 1 is finite, the 

number of subsets that: can be generated in a contraction on any subset 

is also finite. 

Any contraction of a subset must terminate. Consider the case , 

in which the last pair of non-empty subsets that can be generated by 

the application of B, say F^ and f^, each contain only one element, 

i.e.: 

^ = { V 

r q = {t } 
s 

in that case, if t^eS, then conclusion a) can be drawn; otherwise, 
p 

conclusion b) is drawn by the definition of g . Consequently, subset 

will be discarded from consideration. Since F^ ^ = F^ u f̂ -, ^ 

can be examined by only considering f^. Again, if "tgeS, then conclusion 

a) holds, otherwise conclusion b) holds. In either case, subset is 

discarded from further examination, and- immediately subset ^ is also 

discarded from further consideration. The number of unexplored subsets 
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remaining has thus been reduced. 

Consider now the case in which, for some subset containing 

more than one element, conclusion b) can be drawn. In that case the 

subset is immediately discarded from further consideration. On the 

other hand, if conclusion a) can be drawn, then the optimal element con

tained in has been found, and no solution contained in that subset 

will be better in terms of the function f. Consequently, the subset 

can be discarded from further consideration. In either case, the number 

of subsets that still must be considered has been reduced. 

The above observations may be summarized by stating that an 

algorithm based on the presented principles is finite and terminates 

with an optimal solution, or with the conclusion that S ='.<}>. Finiteness 

is a result of the properties of the branching rule 8 which, creates con

tractions on subsets of the superset S^. A contraction is terminated 

when conditions a) or b) are met. The backtracking process insures that 

no subsets are excluded from either implicit or explicit consideration 

and that any subset already considered will not be considered again. 

The Algorithm 

The problem to be considered in this thesis is of the form: 

. . . T 
minimize C X 

subject to: 

A i x = b i 
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A 2X < b 2 

X = Vector with binary components. 

where: 

~ mj_ n matrix possessing the unimodular property. 

A 2 - m 2 by n matrix with integer components. 

C - n vector of cost coefficients. 

b^ and b 2 - m^ and m 2 component vectors with integer components, 
respectively. 

Defining: 

= {X/A^X = b^, X. = Vector with binary components} 

S = {X/XeS.L and A 2X<b 2> 

Then the best solution value contained in the superset is obtained by 

solving: 

. . . T 
minimize C X 

subject to: 

A±X = b 

X = binary 

denoting the optimal solution to the above problem by X then, if X £S, 
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the optimal solution to the entire problem has been obtained and the 

algorithm is terminated. Otherwise the algorithm proceeds to construct 

a feasible solution. 

In order to construct a feasible solution to the problem, the 

set will be partitioned into two mutually exclusive subsets. This 

can be accomplished by noting that, in any solution, x_. must assume a 

value of zero or one. :.e initial partition o1 G will be made by the 

rule: 

= S* u S with S + n S' 

where: 

= {X = [l,x:?,x3,...,xnJ/XeS1} 

S 1 = {X = [0,x 2,x 3,...,x n]/XeS 1}. 

Each vector in each of the subsets contains the variable x^ "fixed" at 

a specific value. All variables not "fixed" will be referred to as 

"free" variables. 

The constraint set A^x < b^ may be rewritten as: 

I [A_]..x. < b 0. i=l,m0 , L. 2 i] ] 2i ' 2 3 = 1 J J 
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where L^^ij r e r " e r s to the entry in the ith row and jth column of the 

matrix A_, and b n. as the ith entry in the vector b_. This constraint 2 2i J 2 

set may be partitioned in terms of the present "fixed" and "free" vari

ables in the manner: 

I [A.]..x. < bi. 

where: 
b2i = b2i " CViA 

Since for any XeS.the above constraint must be satisfied, it is possible 

to derive various tests in order to determine if and under what condi

tions it is possible to obtain a feasible solution to the problem. For 

the above additional constraint representation consider, for example, 

all constraints such that b ^ = 0 . Without loss of generality, consider 

constraint k as one of these. Then, if [A 0], . ̂  0 for j=2,n, then any 
2 k] 

solution which is feasible must meet the following conditions: 

(1) x. = 0 if [A 1 > 0. 
3 A K3 

(2) Xj =."free" if C A 2 D k ^ = 0. 

Consequently, it is possible to consider all the variables which meet 

condition (1) as implicitly fixed as a result of fixing variable x . 

Consider another situation in which for a given constraint: 

n 
B = I min{0,[A2]i.} 

3=2 
• i 

Then, if b^. < 0 and B > b^., no feasible solution exists to the problem 2i 2i r 

with the present set of fixed variables. 
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Depending on the properties of the coefficient matrix A^, more 

specialized tests can be devised. For example, if A^ ^ 0, then B will 

always assume a value of zero, and as soon as b ^ assumes a negative 

value, the conclusion is drawn that no feasible solution exists to the 

problem for the particular set of fixed variables. 

Based on the results presented so far, it has been shown that 

the original superset of the solution space S can be partitioned into 

two mutually exclusive subsets and such that u = S . • Fur

thermore, it was shown that through the use of various tests on the 

additional constraints, indications can be obtained as to whether 

either of these subsets do not contain feasible solutions to the prob

lem. If the tests indicated that some variables are implicitly fixed, 

then these variables are fixed at their values. 

Partitioning the imbedded problem: according to fixed and free 

variables, a lower bound on the solutions contained in either set may 

be obtained by solving the problems: 

For the set 

T T 
minimize ^N +^N + + ^F +^F + 

subject to: 

A1N + V = b l " A1F+ XF+ 

X + = Vector with binary components 
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where: 

C^ + - Cost coefficient vector of free variables associated 

with the subset 

XN+ Vector of free variables associated with the subset S*. 
A1N + ~ Constraint coefficient matrix associated with free vari

ables of the subset S*. 

Cp + - Cost coefficient vector-of fixed variables associated with 
i + the subset S^. 

Xp + - Vector of fixed variables associated with the subset S*. 

- Constraint coefficient matrix associated with fixed 

variables of subset S*. 

Denoting X N + as the optimal solution to the above problem, a lower bound 

on the solutions contained in is given by: 

+ 
r r < '1 

0 0 if no feasible solution exists to 
imbedded problem or additional 
constraints with present set of 
fixed variables 

CN+V + CF+ XF+ otherwise 

By similar means, a lower bound on the solutions contained in S~ may be 

obtained by solving the problem. 

minimize C^.XN_ + cJLx̂  

subject to: 
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W " b l W 

X = Vector with binary components 
1M 

where the notation is the same as above, except the minus superscripts 

indicate the relation to the subset S^. 

A lower bound on the solutions contained in is given in a 

similar manner, i.e.: 

0 0 if no feasible solution 
exist to the imbedded 
problem or the additional 
constraints with the present 
set of fixed variables. 

T * T C X_ + C_ X^ otherwise N N F~ F 

The above lower bounding problems are amenable to efficient solution 

procedures since the constraint coefficient matrices A n i T + and A n i T_ 
1N T IN 

still possess the unimodular property. What has been accomplished so 

far is summarized in Figure 1. 

As a result of the lower bound problem solutions, it is possible 

to have obtained a feasible or optimal solution to the entire problem 

at this level of computation. An optimal solution has been obtained if 

one of the following conditions is satisfied: 

if (1) g~ * 0 0 

(2) g~ ^ g{ 
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(3) A 2X < b 2 where X = [ X ^ X ^ ] • . 

then X is an optimal solution to the problem. 

Original solution 
T * 

space with C X 

s", g" 

xes~ =̂> X = >_ 
where: 
X is composed of = 0 
and the implicitly fixed 
variables. 
X>T - free variables N~ 

• Sl» g l 

x es* => X = 

where: 
Xp + is composed of x^ = 1 
and the implicitly fixed 
variables. 
X^ + - free variables 

Figure 1. Summary Results from Initial Steps of Algorithm 

Condition 2 

If (1)" g[ \ 

(2) g[ * g± 

* -,T (3) A 2X < b 2 where X = [X F +,X N +] 

then X is an optimal solution to the problem. A feasible solution has 

been obtained which, if optimal, cannot yet be identified as such when 

one of the following conditions holds: 
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Condition la 

If (1) g~ 

(2) g - > g + 

(3) A 2X < b 2 where X = [X F_,X^_] T 

then X is a feasible solution to the problem. 

Condition 2a 

If (1) g^ * °° 

(2) g+ > g~ 

(3) A 2X < b 2 where X = [ X F + , X N + ] T 

then X is a feasible solution to the problem. 

If condition la holds, then the subset does not need to be 

considered further since X is an optimal solution contained in the set. 

To denote that no further search in the set is required, the feasible 

solution is stored and its objective function value is stored in the 

variable v. Furthermore, the lower bound on the subset is changed 

to 0 0. The variable v will always contain the objective function value 

of the best feasible solution found so far. 

If condition 2a holds,then the same procedure as above is per

formed, except all conclusions must be applied to the subset S^. 

Whenever a feasible solution is referred to in the rest of this 

chapter, it is meant a feasible solution which is better in objective 

function value than the best one found so far. 

It is also possible to arrive at conclusions regarding the ex

clusion of any one or both of the subsets from further search for a 
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feasible solution. Consider the following: 

Condition 3 

If ( 1 ) g~ 

(2) g+ = » 

then no feasible solution exists to the problem. 

Condition 4 

If (1) g~ = °° 

then no feasible solution exists in the subset S^. 

Condition 4a 

If (1) g[ = 00 

then no feasible solution exists in the subset S*. 

It should be noted that condition 3 can hold even if the initial 

imbedded problem yields a feasible solution. Conditions 4 and 4a hold 

by definition of g^ and g*, respectively. 

The computations associated with this level are continued based 

on the following rules: 

a) If condition 4 holds, or g* < g , 

then select S* for further partitioning 

b) If condition 4a holds, or g^ < g*, 

then select for further partitioning. 

The above rules are based on the hypothesis that, if the subset 

with the lowest lower bound is selected for further partitioning, it is 

likely, based on the information available, that it contains a feasible 

solution which has a lower objective function value than the other 

subset. 



48 

At this point the computations associated with the beginning of 

the algorithm are finished. Before proceeding to show the computations 

associated with some intermediate level of computation, it will be con

venient to establish a more general notation. Let: 

T 1 - Subset selected for further partitioning at the ith level 
of computation. At the first level, T 1 is selected based 
on rules a) and b). 1° is S^. 

F 1 - Subset not selected for further partitioning#at the ith 
level of computation. At the first stage, F 1 is selected 
according to rules a) and b). 

g 1 - Lower bound on subset r 1, 

g 1 - Lower bound on subset . 

xt - Vector of fixed variables at termination of the ith level F of computation. 

- Vector of free variables at termination of the ith level 
of computation. 

Any subset for which the lower bound is °° will be considered as inactive 

in the sense that no additional feasible solutions are contained in that 

set. Any subset not considered inactive will be denoted as active in 

the sense that it may contain feasible solutions which have not yet 

been identified. 

The computations associated with some intermediate level of com

putation, say the kth level, would involve the following: 

A. Branching 
. . . T 

Branching refers to the partitioning of the subset r selected 
at the previous level of computation. Recalling that: 

r K = {x = [x F " 1 , x^" 1] T/X6S 1> 
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where: 

XF 1 = C X ( D X(2) "* X ( r ) ] 

XN 1 = C x(r+1) X(r+2) X ( n ) ] T 

K—1 
The bars over the components of serve to indicate that they are 

K—1 

the values of the variables that are fixed. The components of X^ 

are the free variables. The subscripts enclosed in the parenthesis 

serve to indicate the order in which the variables are fixed. 

The branching rule B applied to the subset T+ will have the 
effect: 

B(r K) = {s^s^} 
where 

S+ = {X = [Y +,N] T/XeS 1} 

S K = {X = [Y",N]T/XeS1} 

Y + - l - X ( l ) , x ( 2 ) J . . . , x ( r ) s x ( r + 1 ) = l ] T 

T 
N = C x ( r + 2 ) s X ( r + 3 ) 9 , " , X ( n ) ] 
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T - T 
Y = C x ( l ) , X ( 2 ) 5 , , , s X ( r ) s X ( r + l ) = 0 ] 

As can be noted, the branching rule 8 provides a partitioning of the 
K 

subset T in the sense that: 

The selection of the element x ( r + 1 ) a"t a n Y level can be made according 

to many rules. Examples of some of these are: 

a. Select the first element from the vector of free vari

ables as x, . >. . 
(r+1) K K—1 b. Select x, .s such as to maximize g -g . This can (r+1) 

be accomplished by considering the dual evaluators 

associated with the solution of the lower bounding problem 

from the previous level of computation. 

c. Select x, ., , so as to achieve maximum reduction of some 
(r+1.) 

measure of infeasibility associated with the additional 

constraints. 

As an example of a measure of infeasibility of the additional 

constraints, consider the value criterion used by Balas [3.] for aug

menting a partial solution, namely define: 

1 = I ( b2i " I tA 2] x - [A 2] ) 
i e Mj jce 
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where: 

- Index set of fixed variables. 

x. - Value at which x. is fixed. 
: 

Index set of free variables 

Le0. M. = {i/(b_. - J [A ]..x. - [A ]) < 0 } 

21
 L_ 2 lj j 2L 

jee The variable to consider next for the branching rule would be 

x , where L" is the index of the variable which maximizes I. L" 
B. Bounding 

After the branching rule has been applied, two mutually exclu

sive subsets must be considered for further branching. This algorithm 

makes this selection based on the values obtained for the lower bounds 

on the hypothesis that the subset with the lowest lower bound is more 

likely to contain the optimal solution than the other. Consequently, 

it is desirable to obtain "tight" lower bounds. In order to obtain the 

"tightest" lower bounds on each of the subsets, the additional con

straints should be examined in order to find any variables which are 

implicitly fixed through the explicit fixing of x( r +-jj' These may be 

determined by consecutively considering first a partition of the addi

tional constraints: 

j=r+2 

and next: 

j=l 

> i = l,m, 

I 
j=r+2 

C V i < j ) x < j > S b2i 
J.-
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K 

in either case denote the right-hand side by b ... A general test that 

can be made to determine the implicitly fixed variables is: 

For every constraint satisfying: 

a) b £ = 0 

b) [ A2 ]i(j) ~ ° j=r+2,n 

set x. = 0 if [A-].,.v > 0, i.e., x. is implicitly fixed at a value of 
3 2 i(] ) 3 . 

zero. 

In some instances, information can also be gained from the addi

tional constraints as to whether it is not possible to obtain a feasible 

solution to the problem with the present set of fixed variables. A 

general test that may be used to determine this was developed by Balas 

[3], and is given below: 

If, for any constraint, b^^ < 0 and 

I min{o,[A2] } > b\ 
3=r+2 

then no feasible solution exists to the problem with the present 

set of fixed variables. 

denoting the vector of explicitly and implicitly fixed variables asso-
+ + . . 

ciated with the set S by y and the vector of free variables associated 

with this set by <f>+, then a lower bound on the solutions contained in 

is obtained by solving the problem: 
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minimize 
T + T + 
V * + V Y 

subject to 

where: 

0 - Vector with binary components 

Vector of cost coefficients associated with the free 
variables; . 

Vector of cost coefficients associated with fixed 
variables. 

Coefficient matrix of free variables associated with 
imbedded problem. 

A + - Coefficient matrix of fixed variables associated with 
imbedded problem. 

+ +*t{ T 

denoting the optimal solution to the above problem by [y <f> ] , then 

the lower bound on the subset is given by: 

T T 
» if [ c : . c . ] 

cj)+ y+ Y 
> v 

0 0 if no feasible solution to above 
= < problem, or test indicated no feas

ible solution to additional constraints. 

otherwise. 

Furthermore, if g < 0 0 and A [y <J> ] ^ b o S then a feasible solution 
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has been found. Consequently it is stored and the following changes 

are made: 

v = g, 

5K 

Denoting the vector of implicitly and explicitly fixed variables 

associated with S by y~ and the vector of free variables associated K 
with this set by d> , a lower bound on S v can be obtained by solving 

the problem: 

T - T -minimize C, cb + C Y 
<T Y" 

subject to: 

a) = Vector with binary components 

where the definition of the terms is the same as with the previous 

problems, except that the superscript indicates that the problem is 

associated with the subset S . 
K 

- T 

Denoting the optimal solution to the above problem by [y <t> ] 9 

then the lower bound on the subset S is given by: 
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( 

oo' Y 
> V 

0 0 if no feasible solution to above problem, 
or test indicated no feasible solution to 
additional constraints 

Y 
otherwise 

Furthermore, if A [y <j> ] ^ b and g < 00 , then a feasible solution has 

been found. Consequently it is stored and the following changes are 

made: 

It should be noted that, if at any time, v = CX*, then the feasible 

solution associated with v is optimal. In such cases, the optimal 

solution to the problem is an alternate optima of the imbedded problem. 

In that case the algorithm is terminated. 

C. Choice of Subset for Further Partitioning 

Before explicitly stating the choice rule to select a subset 

for further partitioning, define the following: 

v = 'K 

00 

If 



56 

Then 
K 

= Vector of explicitly and implicitly fixed variables asso
ciated with subset S * . 

K + X l T = Vector of free variables associated with subset S . N 

r K + 1 = {X = [ x F , x ^ ] T / x e S 1 } . 

K+1 + 
g = g K v 

—K 
X = Vector of explicitly and implicitly fixed variables associated with subset S~. 
—K — X„ = Vector of free variables associated with subset S„. N K 

r K + 1 = {X = [X^X^] T/XeS 1}. 

-K+1 
'K 

If g K < g K. Then: 

K 
X^ = Vector of implicitly and explicitly fixed variables associated with subset S ^ . 

K — X>T = Vector of free variables associated with subset S„. N K 

r K + 1 = { x = [ x * ,X^]/XeS 1}. 

K+1 -
g = g K. 

—K 
Xp = Vector of implicitly and explicitly fixed variables asso

ciated with subset S*. 
—K + XlT = Vector of free variables associated with subset S„. N K 

r K + 1 = ( x = [ x r , x K T]/X£S n]. 
F N 1 

-K+1 + g = gK-

With the above definition, the choice rule for the algorithm will be: 

If g^+~^ = 0 0, then go to section D; 
K+1 

otherwise select Y for further partitioning. 
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K+1 —K+1 
It should be noted that in the first case, if g = «? => g =00 

K+1 —K+1 

and hence, by a previous definition, both of the subsets T and T 

are inactive. 

It should also be noted that the above is not the only choice 

rule that can be employed. Examples of other choice rules that could 

be employed are: 

a) Select for further partitioning the subset T^ 9 where is 

such that y is the index of the subset which satisfies: 

min{ min{g1,i=l,K+l}, min {g1,i=l,K+l}} 
i -i 

g <00 g <00 

In other words, select for partitioning the active subset with the least 

lower bound. 

Even though the above choice rule is appealing, its principal 

drawback for the problems considered was the time required to obtain a 

feasible solution. Computational experience with this choice rule for 

the algorithm presented in this chapter has proven it to be impractical. 

b) Another choice rule that can be employed is to select for 

partitioning the first subset for which gi < °° or g 1 < 0 0. In other 

words, no attention is paid to the lower bounds except when infeasi

bility is encountered. It should be recalled that infeasibility denotes 

either infeasibility with respect to the constraint sets, or that it 

can be concluded that a particular subset does not contain a feasible 

solution with objective function value less than v. 

The choice rule that has been selected for the algorithm is, in 
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a sense, a compromise between a) and b) in that the subset selected for 

further partitioning is the one which has the least lower bound at the 

given level of computation. 

D. Backtracking 

The sequence of computations to be described in this section 

is carried out only after more than one level of computation has been 

performed. Consider that at the kth level of computation the test 

described in part c) indicates that the computations described in 

this section are to be carried out. At that point, the results of the 

previous computations can be described graphically as in Figure 2. 

It should also be recalled that the partitioning scheme has the 

property: 

r° = R1 U f1 n r 1 

R1 = R2 U r 2 , r 2 . n r 2 = 4> 
R2 = R3 u r 3 n r 3 

= <f> 

RK = ?K+1 u r K + 1 , -K+1 n pK+l 

R1 c R1"1 K+1 

K+1 —K+1 K Now, since both T and T are inactive, the implication is that T 

• i • ' • P K P K + 1 ? K +1 j ^K+l -K+1 ^ J 

is also inactive since T = T u T and T n T = <f>. To denote 
that T is inactive, let g v = 0 0. Before proceeding, the information 

K+1 —K+1 

associated with T and T is discarded. The computations are con

tinued as follows: 



Figure 2. General Results of Algorithm at Some 
Intermediate Level of Computation 
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(1) If g < v, then let 
K —K new r = old T 

new g K = old g R 

and, for the original r and g , 

Let: 

old f K = old T K 

old i K = old g K 

Continue with computations described, in Part A. 
- K —K If g Z v then both T and V are inactive and, consequently, 

K—1 K—1 K—1 T is also inactive. Let g = 0 0 to denote that subset r is 

inactive. Letting K = K-l, the computations starting at.(1) above are 

repeated unless K = 0. When K = 0 there are no remaining active sub

sets and the computations are terminated. 

Summary of Algorithm 

The algorithm presented in the previous section of this chapter 

was constructed based on the general principles presented in the initial 

section of the chapter. Figure 3 is a graphical interpretation of the 

logical process described by the algorithm. 

In Figure 3, the blocks labelled Al through AM- denote the steps 

described in the branching part of the algorithm. The blocks labelled 

Bl through B8 represent the steps described in the bounding section of 

the algorithm. The block denoted by CI represents the steps described 

in the section of the algorithm denoted by choice of subset for further 

partitioning. The blocks denoted by Dl through D3 represent the steps 

described in the section of the algorithm denoted by backtracking. 
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B2 

A4 

F i x x . = 0 
1 

F i n d 
m i n { g ( t i ) / 

t.eS.} 
:L 1 

A l 

Apply branching 
r u l e B - i . e . 
F i n d i n d e x ( j )l 
o f v a r i a b l e to| 
F i x 

A2 F i x x . = l 
• 1 

B I 

F i n d 
i m p l i c i t l y 

f i x e d 
v a r i a b l e s 

F i n d t * where : 
g ( t * ) = m i n { g ( t i ) / t ; c S 1 

and t . e s e t o f f i x e d l 
v a r i a b l e s } 

B4 
Pe r fo rm 

i n f e a s i b i l i t y | 
t e s t s 

C I 

Determine sub
s e t on wh ich 
t o a p p l y B 
n e x t 

Per fo rm 
b a c k t r a c k i n g 

p rocedu re 

Figure 3. Summary Presentation of Algorithm 
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The correspondence between the algorithm and the basic principles 

presented is rather straightforward. The finite set S referred to in 

the initial section of the chapter is the set S defined for the 

algorithm, and the superset referred to in the basic principles is 

the set defined in the algorithm. Correspondingly, the function 

f(x) = C TX, XeS and g(X) = C TX, XES^. 

The branching rule 8 has been defined under part A of the 
P -P 

algorithm, and the definitions of the subsets r and T obtained by 8 

are based on the results of part B and C of the algorithm, namely, the 

results of the bounding problems. It should be noted that the bounding 

problems are such that efficient computational procedures exist for 

their solution since their constraint coefficient matrices always retain 

the unimodular property. For bounding problems which do not have a 

special structure, linear programming methodology can be used, and for 

problems which exhibit some special structure for which more efficient 

solution algorithms are available, the particular algorithms applicable 

can be used. 

Finally, the exclusion of the subsets from further consideration 

resulting from the concept of backtracking is presented in part D. 
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CHAPTER III 

APPLICATION-FORMULATION OF 

A COURSE SCHEDULING PROBLEM 

This and the following chapter will present the application of 

the solution methodology developed in Chapter II to a course-time 

scheduling problem. The particular problem arose as part of an inte

grated management information and decision system developed for the 

School of Industrial and Systems Engineering of the Georgia Institute 

of Technology. In order to provide a context for the application, the 

next section will present the basic concepts of this system. 

ISEMIS 

The Industrial and Systems Engineering Management Information 

System (ISEMIS) is designed to provide rapid access to information per

taining to students enrolled in the School of Industrial and Systems 

Engineering. It also provides the administration of the school with 

both the methodology and computer programs necessary to make decisions 

regarding the courses' that should be offered, the faculty that should 

be assigned to teach these courses, and the scheduling of the courses 

to times of the day. A conceptual presentation of ISEMIS is given in 

Figure 4. 

The data base contains pertinent information concerning students 

of both academic and personal nature. In addition, it contains 
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INQUIRER: 
Academic file 
maintenance-
inquiries of 
routine nature 

/ 

FCAST: 
Forecast of core, 
elective, service 
graduate courses 

1+ 
II / 
1 1 

II / 
I I 

11 / }> 

Data Base 

± 
PROFASSIGN: 
Assignment of 

-y^ teaching loads 
all courses 7 

/ 
/ 

/ 

Evaluation-
alteration 
break up in 
sections 

Evaluation-
Alteration 

COURSCHED: 
Course 
Scheduling 

F 

fl 

Evaluation-
Alteration 

Figure 4. Conceptual Representation of ISEMIS 
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historical information concerning past course enrollments, information 

concerning faculty teaching preferences as well as maximum allowable 

teaching loads. 

Four separate subsystems draw information from the data base. 

These are the Inquirer, FeastProfassign, and Coursched subsystems. 

The Inquirer subsystem consists of a set of programs operable in either 

a timesharing or batch mode, which allow speedy and efficient file main

tenance and tabulation of statistics concerning groups of students or 

individual students. 

The Feast subsystem provides forecasts of the number of students 

that will have demand for given courses. The courses are subdivided 

into required courses, and elective or service courses. For the required 

courses a forecast is ma4e based on the results obtained from checking 

the course information of all students ̂ contained in the data base. For 

elective or service courses, a forecast is made based on a statistical 

analysis of the past enrollments. In either case, the effectiveness of 1 

the forecasting system is monitored on a continuing basis in order to 

detect when changes have to be made to the model in order to obtain 

better forecasts. 

From the results of the Feast subsystem, the school administra

tion must make a decision regarding how many sections, if any, of a 

given course should be offered. Once this information is made avail

able, the Profassign subsystem may be used to assign faculty to teach 

these courses. The actual assignment of courses to faculty is made so 

as to minimize the sum of the costs associated with a professor 



66 

teaching a given course. For each professor and course, the associated 

cost is a function of the desire the professor has to teach that course, 

and the degree of competence he has to teach it, as decided by the 

administration of the school. Constraints on this minimization problem 

consist of the maximum and minimum teaching loads permissible for each 

professor; again, as determined by the School Administration based on 

its knowledge of the other commitments a faculty member has such as 

research, student advising, and membership on various committees. 

The results obtained from the Feast and Profassign subsystems 

yield a listing of courses to be offered together with the faculty 

assigned to teach these courses. With this information, together with 

a knowledge of the physical facilities available and the courses which, 

if taught simultaneously., would create conflicts for students or faculty 

or both, the Coursched subsystem can create a schedule indicating the 

times various courses should be offered. Since the problems created 

within this subsystem will be used as application areas for the algorithm 

developed in the previous chapter, this subsystem will be explained in 

greater detail in the next section of this chapter. 

The Coursched Subsystem 

The basic purpose of the Coursched Subsystem is to provide an 

answer to the question, "Given a set'of courses which will be taught 

and a list of teaching assignments, at what times of the day should 

these courses be offered?" The answer to this question is provided sub

ject to the following information being available: 
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1. A relative preference rating indicating what the most 

desirable times are to offer courses. 

2. The number of classrooms available and their student capaci

ties. 

3. A list of courses which, if taught simultaneously, will 

create conflicts for students, or faculty, or both. 

With the above information, a mathematical model can be constructed 

which, when solved, will yield a schedule satisfying the following re

strictions: 

1. All courses taught by the same faculty member are offered 

at different times. 

2. There will be enough classrooms, if available, of the appro

priate size to accommodate all courses offered at any one time. 

3. No more than one course required by the same student type 

will be taught at the same time. 

4. All courses will be scheduled if possible. 

A schematic representation of the information required and generated by 

the Coursched subsystem in relationship to ISEMIS is provided in Figure 

5. In the next section of this chapter, the mathematical model used to 

represent the course scheduling problem will be developed in detail. In 

subsequent sections, the properties of the model will be presented. 

Mathematical Formulation 

In general it will be assumed that there are m possible time 

slots at which any one of n courses could possibly be assigned. The 

basic decision to be made then is whether course j(j=l,2,... ,n) is to 
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Figure 5. Coursched in Relation to ISEMIS 
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be offered at time i(i=l,2,...,m). As such, the decision variable will 

be x.., where: 
1 3 

1 if course j is to be taught at time i 
x 

1"' '0 otherwise. 

Based on information available to the school administration regarding 

what time slots are better than others in which to offer a given course 

j , it is possible to assign a set of preference numbers to each course 

for each time. It will be assumed that the lower the preference number 

ĉ _., the more preferred it is to offer course j at time i. It is also 

assumed that the objective of the school administration will be to offer 

a schedule which has the lowest total preference measurement. In other 

words, the objective to be pursued is to minimize the expression: 

m n 
I L E X . . 

1=1 j=l 1 1 1 3 

the constraints imposed on this minimization fall into four categories. 

The constraints in category one must insure that the solution to the 

model has indeed scheduled all courses that must be offered at some 

time. This may be expressed in the following manner: 

m 
I x = 1 j=l,2,...,n 
1=1 J 

Category two constraints are those expressing the limitations on avail

able classroom space at given times. In most situations, classrooms 
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available in a given school can be subdivided into groups, each having 

a maximum number of seats. 

Supposing that there are m^ groupings of classrooms, each of 

which has a different maximum student capacity, let denote the num

ber of classrooms available in category k (k=l,2,...,m) at time i. The 

subscript i is retained to acknowledge that in many instances various 

classrooms are reserved at specific times for faculty, special group or 

committee meetings; hence, the number of classrooms of a certain group 

available to accommodate courses is variable. Denoting the maximum 

student capacity for classrooms in the kth group by U^, and ordering the 
1 2 mi k's in such a manner that U < U < ••• < U , then the set of courses 

to be offered can be partitioned into subsets.D^ such that D^ = {j/ 
k 

forecasted enrollment in course j < U }. From this definition it can 
be noted that if jcD. => jcD, . i=l,2,...,m -k. Also, it can be noted 

k k+i 1 5 

that if jeD, , then the number of classrooms available in which course 
K m-, 

k y L 
j could be offered at time i is given by M. = 2 N.. From the previous 

1 L=k 1 

definitions, the constraints indicating the limitation on available 

classroom space may be expressed in the form: 
I x < M k i=l,2,...,m; k=l,2,...,m 

Category three expresses the constraints representing faculty 

conflicts. Faculty conflicts represented in this category are those 

which would occur if more than one course taught by the same faculty 

member was scheduled to be taught at the same time. Defining 



71 

W v = {j/course j is taught by faculty member k} with k=l,2,...,m where 

m^ is the number of faculty members, then the constraints expressing 

faculty conflicts may be written as: 

I x < 1 i=l,2,...,m; k=l,2,...,m 

Category four contains all constraints indicating conflicts that would 

be created for students if certain courses were to be scheduled at the 

same time. The most common type of conflicts that arise are those which 

occur when courses which must be taken by groups of students of the same 

type, such as juniors, seniors, etc., are taught at the same time. Any 

other constraints which serve to indicate that for one reason or another 

certain courses should not be offered at the same time may be included 

in category four. Assuming that m sets of courses have been identified 

such that the courses appearing in any one set should not be taught 

simultaneously, the constraints in category four may be written in the 

form: 

< 1 i=l,2,...,m, k=l,2,...,m, 

where L, = index set of courses which may not be taught simultaneously. 
K 

The model developed in the previous pages of this section can be formu

lated as follows: 

n m 
minimize Y V c..x.. 
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subject to: 

m 
(1) I x,A = 1 j=l,n 

i=l 

\ n k . (2) ) x.. < m. i=l,m: k-l.m, ii l 1 
] f i U k 

(3) 7 x.. < 1 i=l,m; k=l,m0 

1 £ W- J 

K 

(4) y x.. < 1 i=l»m: k=l,m0 

. L
T ii ' 3 

x — = binary i=l,m; j=l,n 

From the construction of the model, the sets over which the summations 

are carried out have some properties which will be of importance later 

on. These are: 

1. D c D 0 c D, c ... c D 
1 2 3 m 2 

2. W n W 0 = <J> v-B^a. 
a . $ 
m 2 

3 . u W, = set of all courses to be offered. 
k=l k 

m2 
4. D = u W. 

m l k=l k 

mi 
5. M. = total number of classrooms available at time i. 

I 

Figure 6 gives a graphical representation of the general structure of 

the constraint matrix of the course scheduling problem as formulated on 

the previous page. As can be noted, the constraints represented in 
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Figure 6. Constraint Coefficient Matrix: Course-Time Scheduling Problem 
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category one contain m coefficients of one, each set of which represents 

a given course j offered at any time i. The constraints represented in 

category two can be grouped in sets of m constraints, each one corre

sponding to a given time period. As denoted by property one, each suc

cessive set of m constraints contains in it the entries of the previous 

set of m constraints. As such, the last set of m constraints forms a 

row of n identity matrices. The constraints represented in category 

three can also be grouped into sets of m constraints. Each constraint 

set corresponds to the courses being taught by a particular faculty 

member and, as indicated by property two, each variable appears in only 

one of the constraints of category three. In category four the con

straints may again be grouped into sets of m constraints but there is 

no general characteristic which can be used to further describe the 

structure of the constraints belonging to this category. 

It can be easily verified that the general course scheduling 

problem consists of mn variables and m (m^+m^+m^) + n constraints. 

The mathematical aspects of the course scheduling problem formu

lation will be explored in the next section of this chapter. 

Mathematical Aspects 

If the constraints denoting that x „ must be binary are 

neglected, then the course scheduling problem is a linear program. The 

constraint coefficient matrix of the linear program is composed entirely 

of zeros and ones. Since there are certain classes of problems which 

have constraint coefficient matrices composed entirely of zeros and ones 

and which have the property that any basic solution is integer (i.e. , 
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matrices with this characteristic are said to possess the unimodular 

property), the initial hope for the course scheduling problem was that 

it also possessed this property. 

Several examples were solved by linear programming, and in each 

case the optimal solution was integer. Unfortunately, it was found 

that in some cases intermediate solutions were not integer. Since the 

objective function of the course scheduling problem is general in 

nature, the conclusion was that linear programming will not guarantee 

integer solutions in all cases. This conclusion was further corrobo

rated by the fact that the structure of the problem is similar to the 

structure of the multi-commodity network flow problem as presented in 

Chapter I. The similarity can immediately be noted in that the con

straints defined by (2), (3), and (4) in the formulation of Chapter I 

can be replaced by the constraints defined by (1) and (3) of the formu

lation presented in the previous section, and that the constraint cor

responding to (5) of Chapter I can be replaced by the constraints (2) 

and (4) of the previous section. According to Hu [19], multi-commodity 

network flow problems do not have, in general, constraint coefficient 

matrices possessing the unimodular property. 

In the remainder of this section it will be shown that the con

straint set of the course scheduling problem can be partitioned into 

two sets, one possessing the unimodular property. Furthermore it will 

be shown that there are, in general, three different manners in which 

the constraints may be so partitioned. These will be denoted by the SIP, 

the M1P, and the LIP partitioning schemes, respectively. 
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The SIP Partitioning Scheme 

The course scheduling problem may be rewritten in the form: 

n m 
minimize £ ^ c.x 

J = I I = I I Y 1 ] 

subject to: 

m 
(1) I x = 1 j=l,n 

i=l J 

(2) T x.. < M. 1 1=1,111, 
• RT ^ 1 1 

m l 

(3) y x.. < M k i=l,m; k=l,m -1 
. N 1 3 i 1 

( 4 ) J X . < 1 I = L , M ; K = L , M 

U\ 3 

(5) y x.. < 1 i=l,m; k=l,iru 
• T ^ 0 ^ 

x̂ _. = binary i=l,m; j=l,n 

Recalling that: 

m̂  
D = u W = {j/j=l,n} 

T nl k=l k 

then it can be noted that constraint sets (1) and (2) are the 
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constraints corresponding to a standard transportation problem. It is 

a well-known fact that the constraint matrix of such a problem possesses 

the unimodular property. It is also well known that any transportation 

problem is equivalent to a problem of finding a maximum flow-minimum 

cost in a capacitated network. The type network involved is referred 

to as a bipartite one, since the set of nodes (i=I,m; j=l,n) may be 

divided into two subsets: A = {i/i-l,m} B = {j/j=l,n}, such that all 

arcs leading from nodes in A go to nodes in B. 

The SIP formulation has partitioned the constraints in a manner 

such that the resulting problem can easily be interpreted as being a 

transportation or network flow problem, subject to additional con

straints. The basic reason for this partitioning is that very efficient 

procedures exist for the solution of transportation or network flow 

problems. Since the algorithm developed in the previous chapter utilizes 

the imbedded problem, in this case the network flow problem, to calcu

late the lower bounds on the subsets of the solution space, the compu

tational efficiency attainable in solving the lower bounding problems 

will be largely responsible for the computational efficiency of the 

algorithm as a whole. 

For latter use, it will be convenient to transform the bipartite 

network to circulation form. The general formulation of a network prob

lem in circulation form is given by: 

minimize 
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subject to 

f... - f . = 0 vieN -iN Ni 

L.. < f.. < u.. vijeA i] i] i] 

where: 

N - set of nodes. 

A - set of arcs. 

a.. - cost of a unit flow in arc ij . 
X D : • 

L - minimum permissible flow in arc ij. 

û _. - maximum permissible flow in arc ij . 

f.. - flow in arc ij. 
ID 

The basic difference between the above representation and a bipartite 

network representation is that the above provides a network which is 

source and sink free while the latter does not. This property will 

be convenient for the computation of lower bounds as will be seen in 

later sections. 

The general form of the constraint coefficient matrix of the 

imbedded problem under the present partitioning scheme is given in 

Figure 7. The corresponding general network representation associated 

with the imbedded problem is presented in Figure 8. Associated with 

this general representation, the quantities associated with the formu

lation of the network problem are defined as follows: 



x i r . .X ml X 1 2 " m2 X13- * *Xm3 X1H* . .X , m4 
X15* m5 . . . x . . 

In 
. X 
mn 

i i. . .1 
. - L 

1 1. • - 1 

1 1. . .1 
1 1. . .1 

1 1. . .1 

i 1 1 1 1 1 
i 

1 

1. 

i 
1̂  

1 

1 

1 

1 

"l 
. . . 

1 

1 

Figure 7. Constraint Coefficient Matrix of Imbedded Problem: SIP Partitioning Scheme 



Figure 8. Network Representation of Imbedded Problem: SIP Partitioning Scheme 
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N = N 1 u N 2 u N 3 u (1) 

N = {S} (2) 

N 2 = {j/j=l,n} (3) 

N 3 = {i/i=n+l,r+m} (4) 

\ = {T} (5) 

nodes corresponding to courses. 

nodes corresponding to times. 

A = A u A 2 u A 3 u A^ (6) 

A ± = {ij/i=S,j=l,n} (7) 

A 2 = {ij/i=l,n; j=n+l,m+n} (8) 

A = {ij/i=n+l,m+n; j=f} ( 9 ) 

A^ = {ij/i=T; j=S} (10) 

u.. = L.. = 1 vijeA (11) ii H J l 
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u.. = 1, L;. = 0 *ijeA0 (12) i] i: 2 

m i u. . = M. , L.. = 0 vijeA 0 (13) i] l-n* i: 3 

u. . = n, L. . = 0 ijeA., (14) 

a. . = 0 vijeA1 (15) 

a. . = c. . vijeA. (16) 

a.. = 0 vij eA Q (17) 
i: 3 

a. . = -oo vijeA. (18) 

Since in the original formulation of the course scheduling problem, x_̂_. 

assumes a value of one if course j is offered at time i, and zero other

wise , it follows that the equivalent statement in terms of network flows 

is that if f.. = 1 for some iieA^, then course i will be offered at time ID 2 
j-n. Consequently, the•arc flows occurring in the set A^ have a one to 

one correspondence with the decision variable x_̂_. of the original prob

lem formulation. Definition (11) insures that any course can be taught 

at only one time, while definition (13) insures that the number of 

courses taught at any one time does not exceed the total number of 

classrooms available at that time. Definition (12) has been included 

in the network definition although at this point it does not add any 
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restrictions to the network. Later on this definition will allow for 

an expedient manner in which to introduce implicit constraints on the 

variables,.deduced from the additional constraints, into the network 

problem. 

For the purpose of determining the computational efficiency of 

the algorithm developed in Chapter II, the dimensionality of a problem 

will be defined in terms of the number of decision variables, x.., the 

size of the imbedded problem, and the number of additional constraints. 

The size of the imbedded problem will be defined in terms of the number 

of nodes and the number of arcs present in the circulation form of the 

network problem. For the SIP partitioning scheme the dimensionality of 

the problem is: 

number of variables = nm 

number of nodes = m + n + a 

number of arcs = n + m n + m + l i 

number of additional constraints = m(m - 1 + m Q + m ) 

The MIP Partitioning Scheme 

Consider the course scheduling problem as initially formulated, 

namely: 

minimize 

subject to: 

(1) 

n m 
I l e x . . 

j=l 1=1 1 3 1 ] 

m 
I x. . = 1 j=l,n i=l J 
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(2) . l . < M k 

: i 
i=l,m; k=l,m 1 

(3) y x.. < 1 i=l,m; k=l,m, 
jeW 

(4) y x. . < 1 i=l,m: k=l,m_ ^ 1 1 ' ' 3 jeL 

x „ = binary i=l,m; j=l,n 

In this section it will be shown that the constraints defined by (1) 

and (2) have a constraint matrix which possesses the unimodular proper

ty. In addition, it will also be shown that there exists an equivalent 

network to the constraints defined by (1) and (2). 

In order to show that the constraints defined by (1) and (2) 

possess the unimodular property, consider the following alternate formu

lation: 

(1) 

(2) 

(3) 

m 

i = l 1 3 

j=l,n 

I x.. t s. = M. 

v v 2 2 ) x.. + • > x . . + s . = M . 
^ 1 ^ D 2 " D 1 

> i=l,m 

I x. . -I- I x. . + I x. . + s?• = 
J€D 1

 1 : JeD 3-D 2
 13 JeD 2-D 1

 13 X 

M. 
l 
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(m ) I x. . + I x. . + * 
J£D 1

 1 1 J€D 2" D1 1 3 

x.. + s. = M, • + 1 

m l m l - l 

Now subtracting (1) from (2), (2) from (3) and so on the following 

equivalent sets of constraints are obtained: 

7 x.. = 1 j=l,n 
i=l ^ ... 

(la) 5" x. . + si = Mi >i=l,m 
J€D. 

(2a) 

(3a) 

(ir^a) 

) X . . + S . - s . = 
. ^ ^ ' 11 1 1 1: 

V A
 3 2 ) x.. + s. - s. 

~ 1: 1 1 36D 3-D 2 

jeD -D 
m l V l 

x. . + s . 
1: 1 

2 2 M. - MT 1 1 

3 2 M. - MT 1 1 

m -1 m m -1 
s. = M. - M. 
1 1 1 

> i=l,m 

k ?J- L 
recalling that M^ = £ N^ the above constraint sets may be rewritten as: L=k 

m 
I x = 1 j=l,n i=l 

) x.. + si = Ni i=l,m 
• TS 11 1 1 :e:D. 1: 
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jeD -D. 
L L ;. . + s . - s . L-l i=l,m; L = 2 ,m 1 

L "L-l 

Figure 9 graphically illustrates the structure of the coefficient 

matrix of the above constraints. Denoting the constraint coefficient 

matrix by A, and partitioning the rows of the matrix A into two disjoint 

sets and such that contains the first n rows, and the re

maining rows, the unimodular property for the matrix can be claimed 

based on a theorem of Heller and Tompkins [18] which is quoted below: 

Let A be an m by n matrix whose rows can be partitioned into 
two disjoint sets, T^ and T 2 , such that A, Tj_ and T 2 have the 
following properties: 

Every entry in A is 0, +1, or -1; every column contains at 
most two non-zero entries; if a column of A contains two 
non-zero entries, and both have the same sign, then one is 
in Tj_ and the other in T 2 ; if a column of A contains two 
non-zero entries, and they are of opposite sign, then both 
are in T 2 or both in T 2 ; 

Then A has the unimodular property. 

From Figure 9 it can be noted that the coefficient matrix satisfies all 

the conditions stated in the above theorem; hence the MIP partitioning 

scheme does indeed yield an imbedded constraint whose coefficient 

possesses the unimodular property. 

The imbedded problem in the MIP partitioning scheme can also be 

represented as a maximum flow-minimum cost problem in a capacitated 

network. Correspondingly, as with the SIP partitioning scheme, the 

network problem can be put in circulation form. Its general represen

tation is as shown in Figure 10. With this representation the quanti

ties associated with the network formulation may be defined as follows: 



Row 
Set x i r " x m i X12'" Xm2 X 1 3 , , , X m 3 X14'" xm4 • • • Xln * * * Xmn s 1 2 3 m i 

sz s d . . . s 1 

1 1...1 

1 1...1 
T 

1 1...1 

1 1...1 

1 1...1 

-

Entries for all I I 
courses contained 
in D 1 I -I I 

T Entries for all I -I I 
2 courses in D 2-D x 

Entries for all I • • • I -I I 
courses in D -D 

m^ m^-1 

Figure 9. Constraint Coefficient Matrix of Imbedded Problem: MIP Partitioning Scheme 



88 

F i g u r e 10., Network R e p r e s e n t a t i o n o f Imbedded 
P r o b l e m : MIP P a r t i t i o n i n g Scheme 
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N = N 2 u N 2 u'Ng u (1) 

N x = {S} (2) 

N 0 = {j/j=l9n} (3) 

N 3 = {i/i=n+l9 iraî +n} (4) 

\ = {T} (5) 

where: 

= nodes corresponding to courses 

= nodes corresponding to times. 

A = A 2 u A 2 u A 3 u A^ (6) 

A± = {ij/i=S, j=l 9n} (7) 

A 2 = {ij/i=l.,n9 j=n+(k-l)m+l9 n+mm^ for kaieD^} (8) 

= {ij/i=n+l, n+m-m l 9 j=T} (9) 

A^ = {ij/i=T, j=S} (10) 

u.. = L.. = 1 v-ijeA, (11). 
IJ i] 1 
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u.. = 1 , L... = 0 *ijeA„ ( 1 2 ) 

U i j = N 3 > L i j = ° ^ E A 3 ( 1 3 ) 

where: 

<x> = greatest integer < x 

3 = i - n - (a-l)m 

u.. = n, L. . = 0 -̂iJeA. ( 1 4 ) 

a i. = 0 vile\ ( 1 5 ) 
a. . = c . *-ijeA0 ( 1 6 ) 

1 3 Y 1 2 

where: 

Y = j - n - U-l)m; £ = <J-"t(m-Jj) 

a.. = 0 *ijeAQ ( 1 7 ) i] 3 

a. . = -« vijeA., ( 1 8 ) 
1 3 4 

In the above formulation of the imbedded problem network formulation, 

the correspondence between the arc flows f and the original decision 

variables x̂ _. of the course scheduling problem is somewhat different 
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than the SIP formulation. This stems from the fact that for each sub

set of courses D - D , a complete set of nodes corresponding to 
Li LI — 1 

available times was introduced. As such, there are m^ repetitions of 

the set of m nodes representing time slots. Since, by definition (11), 

there is exactly one unit of flow going to any node representing a 

course, it follows that the total flow leaving a course node must be 

one and, furthermore, that unit can flow to one and only one time node. 

The classroom availabilities are expressed as upper limits on the flows 

leaving the nodes representing time slots. The possibility of teaching 

courses contained in in classrooms with capacities greater than 

is considered by the arcs going to nodes representing time slots num

bered greater than n+m. The same holds true for courses contained in 
m l 

any other subset except D . For courses m D , there are only N. 
classrooms availablewhich is denoted by only having arcs leaving any 

node corresponding to courses contained in going to last m nodes 

representing time slots. 

The dimensionality of a course scheduling problem using the MIP 

partitioning scheme is as follows: 

number of variables = rim 

m, 1 m 1 

number of nodes = n + mm 1 + a 

number of arcs = n + m + m nm + 1 

number of addi
tional constraints = m(m 0+m.) 
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The LIP Partitioning Scheme 

Consider the course scheduling problem formulation as follows: 

n m 
minimize 

subject to: 

m 

I I e x . . 
j=l i=l 1 3 1 3 

(1) I x = 1 j £W ; K=l,m 
i=l J 

(2.) I x < 1 i=l,m; k=l,m. 

(3) T x.. < M. i=l,m; k=l,m, 
] £ D k 

I xij s 1 ' i=l.n; k=l,m 3 

x „ = binary i=l,m; j=l,n 

Recalling that W n W Q = <J> vci*$, it is immediately apparent that the 

constraint sets defined by (1) and (2) define independent transpor

tation problems and, consequently, m^ independent network flow problems, 

As a result, the LIP partitioning scheme as presented above contains im

bedded in its constraint set a subset of constraints whose coefficient 

matrix possesses the unimodular property. 
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For this partitioning scheme a decision must be made as to 

whether the imbedded problem should be considered as independent 

subproblems, or to join these into one larger problem. For the purpose 

of this thesis, the latter decisioh;was taken. 

The general representation of the network problem in circulation 

form is presented in Figure 1 1 : the quantities associated with the 

network formulation may be defined as follows: 

N = N x u N 2 u N 3 u ( 1 ) 

N x = {S} (2) 

N 2 = {j/j=l,n} (3) 

N 3 = {i/i=n+l,n+mm2} (4) 

\ = {T} (5) 

where: 

= nodes corresponding to courses 

N 3 = nodes corresponding to times. 

A = A u A2 u A3 u (6) 

Ax = {ij/i=S, j=l,n} (7) 



Figure 11. Network Representation of Imbedded 
Problem: LIP Partitioning Scheme 
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where: 

A 2 = { i j / i e W k and j = n + ( k - l ) m + l , (8) 
(k - l )m+m+n and 
k = l s m 2 > 

A 3 = { i j / i = n + l s m m 2 + n s j = T > (9) 

A u = { i i / i = T s j = S } (10) 

u . . = L . . = 1 v i j e A n (11) 1] 1] J 1 \-*-w 

u . . = 1, L . . = 0 v i j e A (12) 

u i j = l s L i j = ° ¥ i : ' £ A 3 ( 1 3 ) 

u i j = n* L i j = 0 *Lle\ 
a „ = 0 ^ i j ^ (15) 

a . . = c . v i j e A _ (16) i] ai J 2 v J 

a = J - ( k - l ) m - n f o r k 2> ieW. . 
k 

a „ = 0 v i : e A
3 (17) 

a = -co * i j e A 4 (18) 
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From definition (8) it can be noticed that for a specific k, repre

senting a faculty member of the school, the set of arcs contained in 

go from every ieW^ to the nodes defined by j = n+(k-l)m+l, n+(k-l)m+m. 

This set of arcs defines a transportation problem where the sources are 

the m time slots, and the destinations the courses taught by faculty 

member k. The m^ independent transportation problems have been merged 

into one by the introduction of the nodes S and T, and by adjoining the 

arcs contained in A , A^, and A^ to the independent transportation 

problems. 

Using the LIP partitioning scheme, the dimensionality of the 

class scheduling problem is: 

number of variables = nm 

number of nodes = n + m^m + 2 

m 2 

number of arcs = n + £ 
k=l 

number of addi
tional constraints = m[m +m ] 

J. O 

Relevance of Partitioning Schemes 

In the previous sections of this chapter three alternate parti

tioning) schemes have been presented for the course scheduling problem. 

For each scheme, the partitioning of the constraint set was such that a 

set of constraints, the coefficient matrix of which possessed the uni

modular property, were placed in one group and the remaining constraints 

in another. Further analysis of the constraints in the first group 

revealed that the problem defined by these imbedded constraints together 

I 1 
UK 

m + mm 2 + 1 
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with the objective function could be expressed as an equivalent problem 

of finding the minimum cost-maximum flow in a capacitated network. 

The dimensionality of a course scheduling problem was defined for 

each partitioning scheme in terms of the number of variables, x^., of 

the problem, the number of arcs and nodes in the network representation 

of the imbedded problem and the number of additional constraints or, in 

other words, the number of constraints that are not included in the 

imbedded problem formulation. Table 1 summarizes the dimensionality of 

the problem for each partitioning scheme. 

The relationship between the SIP and the MIP partitioning schemes 

is quite clear. While the SIP formulation has a smaller imbedded prob

lem in terms of nodes and arcs than the MIP formulation, the number of 

additional constraints is significantly larger than in the MIP formula

tion. The constraints forming the imbedded problem in the MIP formula

tion include the constraints of the imbedded problem in the SIP formu

lation. Consequently, the lower bounds obtained by using the MIP par

titioning scheme are at least as "tight" as the lower bounds obtained if 

the SIP partitioning scheme was used. Generally speaking, it is desir

able to use the procedure which gives the "tightest" lower bounds when 

utilizing an implicit enumeration approach. Nevertheless, it is 

important to recognize that the size of the imbedded problem of the MIP 

partitioning scheme is much larger than the imbedded problem of the SIP 

formulation and, consequently, each lower bounding operation takes more 

time for the larger imbedded problem than for the smaller. In the next 

chapter, computational results will be presented for several problems 



Table 1. Dimensionality of Course Scheduling Problem 
for Different Partitioning Schemes 

SIP MIP LIP 

Variables mn mn mn 

Nodes m + n + 2 n + mm 1 + 2 n + n^m + 2 

" m i m 2 _ 

Arcs n + mn + m + 1 n + m^m + 1 + I 
i = l I 1 

l^Di J 

(m1+l-i) m n + I 
k=l I i 

_ j eV 
m + mm 2+l 

Additional 
Constraints m(m -l+m 0+m Q) 

1 Z <5 

m(m 2+m 3) m(m,+m 1 3> 
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solved using both the MIP and SIP partitioning schemes. These results 

are intended to provide an understanding of the behavior of the algorithm 

for the partitioning schemes, and give an indication as to which parti

tioning scheme is more desirable. 

The LIP partitioning scheme contains different constraints in the 

imbedded problem than either the SIP or MIP formulation. Since the 

dimensionality of the imbedded problem using the LIP partitioning scheme 

is dependent on the subsets and the number of faculty members (m 2) 

available to teach, it: is difficult to deduce general statements about 

the relation between the LIP or the MIP and SIP formulations in terms 

of problem size, "tightness" of lower bound, or other measures of com

parison. 

In summary, three distinct manners of partitioning the course 

scheduling problem have been presented in detail. In the next chapter 

the computational effects of using these to solve specific problems 

will be presented. The specific algorithms used are derived from the 

general algorithm developed in Chapter II. Furthermore, various pos

sible means of synthesizing two or more of the partitioning schemes 

will be presented together with a discussion of the computational 

advantages which can be obtained from such synthesis. 



CHAPTER IV 

APPLICATION-COMPUTATIONAL ASPECTS OF 

THE COURSE SCHEDULING PROBLEM 

This chapter will present the concepts and methodologies 

employed in developing a computational algorithm for the course 

scheduling problem as developed in the previous chapter. In addition, 

the computational results obtained by using the algorithm to solve 

various example problems will be presented. 

The central concepts about which the algorithm is constructed 

are those presented in Chapter II. From a computational standpoint, 

these concepts are used to develop the Branch Help Table (BHT). The 

BHT is a dynamic representation of all the relevant information that 

can be extracted from the problem at' some stage of computation. 

The BHT contains the information presented in Figure 2 of 

Chapter II in tabular form. It is dynamic in the sense that at any 

point of the computation it contains only pertinent information and 

all non-pertinent information is discarded. Furthermore, at the 

beginning of the computation the table will be empty, and the algorithm 

terminates whenever the table becomes empty again. 

In order to properly describe the BHT, it is first necessary to 

describe the manner in which the information describing the particular 

problem is organized for computational purposes. From data input, the 

information is organized for the network representation of the imbedded 
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problem and for the additional constraints. The next section of this 

chapter will describe the actual data organization. 

Data Organization 

The data input necessary in order to execute the course 

scheduling program must: be in a specific sequence. The first elements 

of this sequence will consist of information obtained or generated from 

the Feast and Profassign subsystems. With respect to the terminology 

developed in the previous chapter, the first elements of the data input 

sequence describe the subsets W for all K. In addition, it associates 

the name of the faculty member K with each subset of courses W . 
K 

The next elements of the data input sequence contain information, 

derived from the ISEMIS data base, describing the subsets D - D for 
L L—1 

L = l,m^. Included with the information describing each of the subsets 
K D T - D T ., will be the associated N.. L L-l 1 

Next in the input sequence will be the descriptions of the sub-
r 

sets L , followed by a listing of the available time slots and of the 

costs associated with each. 

The data input sequence as described above is presented in a 

general form in Table 2. 

The above data input sequence will be utilized regardless of 

whether the SIP, MIP, or LIP partitioning schemes are employed to solve 

the course scheduling problem. Although the general concepts for the 

storage of the additional constraint and imbedded problem formulation 

will be retained for each partitioning scheme, the actual information 

stored will naturally vary depending on the partitioning scheme. 
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Table 2. Data Input Sequence Description 

Sequence 1: 
Describes <J 
V s 

Name of Faculty Member 1 
All jeW^} courses taught by faculty member l 

Name of Faculty Member 
All jeWn^} courses taught by faculty member m^ 

Sequence 2: 
Describes <! 

m. 

All jeDm -D . J 1 m-1 

N 1 

1 All jeD. 

number of classrooms available 

courses in category m 

I number of classrooms available 
courses in category 1 

Sequence 3 : 
Describes <! 
V s 

1, 1 right-hand side 
All jcL^ | courses contained in category 1 

1 right-hand side 
All JeLm3J courses contained in category m 3 

Time and . . , . _ Cost Info ltime slot descriptor, cost> for all time slots 
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The information describing the additional constraints is sub

divided into the right-hand side information and the constraint coeffi

cient matrix. All the information describing the constraint coefficient 

matrix can be very compactly stored in a one-dimensional array in 

binary form. Furthermore', it is only necessary to store information 

about the first constraint of each constraint set. For example, one 

constraint set corresponding to the faculty conflicts is normally 

written as: 

£ X. , ̂  1 i=l,m; some specific K 

All information necessary to generate the above constraints is contained 

in the single constraint: 

1 X . ̂  1 for some specified K 

because, if the constraint matrix is written such that the first m 

columns correspond to X ^ i=l,m, the next m corresponds to X ^ i =ls ms 

etc., then the above single constraint indicates the first element of 

the set of identity matrices in the constraint coefficient matrix 

which describes those constraints. 

Based on the above, all the information describing the additional 

constraint's coefficient matrix is contained in a single array of the 

form: 

Entry, Row, Column. 
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Entry refers to the array element being described. Row refers to the 

particular constraint set being described, and Column refers to the 

particular set of variables being described. In all cases, the value 

of Row represents a given K. For example, if the SIP partitioning 

scheme is being utilized, then the constraints: 

m 
Y X.. = 1 j=l,n 
1=1 J 

y X.. < M. i=l,m 
jeD 1 3 1 

m i 

will be included in the imbedded problem. The additional constraints 

will be: 

y X.. < i=l,m9 k=l, m.-l 
L „ 1"! 1 1 

y X.. < 1 i=l»m; k=l,m0 

• T I ! 3 2 

y X.. < 1 i=l,m; K=l,m0 • T ID • 3 

3 € L K 

Supposing that it was desirable to keep the above constraints in the 

same order when constructing the additional constraint coefficient 

matrix, Row could assume a value from one to (m -1)'+ m + m q. Each 

value of Row will represent the m constraints associated with the 

actual constraint set represented. Each value of Column will represent 

m variables, namely ^j_pows i=l,m. Consequently, with respect to the 
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constraint coefficient matrix, a given value for Row and Column repre

sents an m by m identity matrix in the additional constraint coefficient 

matrix. 

Information concerning the right-hand sides of the additional 

constraints is stored in a one-dimensional array with as many entries 

as additional constraints. 

The information defining the network representation is described 

below: 

NODES: the total number of nodes in the network. 

ARCS: the total number of arcs in the network. 

STARTARC: beginning node of a particular arc. 

ENDARC: ending node of a particular arc. 

ARCCOST: cost of having one unit of flow in a particular arc. 

MAXCAP: maximum permissible flow in a particular arc. 

MINCAP: minimum permissible flow in a particular arc. 

P I : value of dual variable associated with a particular arc. 

FLOW: actual flow in a particular arc. 

For a given partitioning scheme, the number of nodes and arcs can be 

computed by the relationships presented on Table 1 of Chapter III. The 

nodes are numbered sequentially starting with the first node repre

senting a course, and ending with the node S. Arcs are numbered 

sequentially starting with the arc leaving node S to node one and end

ing with the arc leaving node T going to node S. Although the order 

in which the courses appear as nodes will vary depending on the parti

tioning scheme utilized, the set of arcs appearing between the course 
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and the time nodes will always have a correspondence with the decision 

variables X. .. 

The Branch Help Table 

The BHT is intended to provide all the pertinent information 

about a problem at a given stage of computation. The computational 

aspects of the course scheduling solution algorithm are directed toward 

obtaining the necessary information so that it may be inserted in the 

BHT. The BHT is a single array of variable length containing, in 

binary form, the following information: 

a. Level of computation. 

b. Arc utilized at that level of computation to determine 

further partitioning of solution space S^. 

c. Time represented by arc. 

d. Course represented by arc. 

e. Lower bound on solution space subset with flow in arc set a 

value zero, and all flows in arcs represented by previous levels fixed 

at a given value. 

f. Lower bound on solution space subset with flow in arc set 

at one, all flows in arcs represented by previous levels of computation 

set at given values, and all implicit arc flows set at zero. 

g. Indicator indicating feasibility of flows , obtained in lower 

bounding operation resulting in e, to be feasible with respect to addi

tional constraints or not. 

h. Same as above, except with reference to f. 
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i. Indicator showing at what value the flow in the arc should 

be fixed. 

As can be noted, all the entries contained in the BHT have a direct 

interpretation with the algorithm presented in Chapter II. Further

more, the information contained in the BHT is the same as the informa

tion presented in a general form on Figure 2 of Chapter II. Namely, 

the levels contained in the BHT are the same, the subsets T 1 and f 1 are 

defined by entries b, c, d, and I of the BHT. The BHT entries described 

by e and f represent t h e g 1 and g 1 of Figure 2. The BHT entries 

described by g and h s e r v e to indicate w h e t h e r it i s worthwhile to 

further explore a given branch in the search for optimality. 

The above has been a brief description of the BHT. The next 

sections will describe in more detail the computational aspects of 

obtaining the necessary information for the BHT. 

Construction of the BHT 

The BHT is constructed starting with the level zero. The 

information contained in this level is the result of solving the imbed

ded problem without regard to the additional constraints. Recalling 

that the imbedded problems associated with the particular application 

being discussed can always be represented as network flow problems, 

the particular technique utilized to solve the network problem is the 

out of kilter algorithm developed by Ford and Fulkerson [14]. 

The out of kilter algorithm was selected as a tool to solve the 

network flow problems because it is extremely general in procedure. It 

assumes lower bounds as well as capacities on each arc flow, the cost 
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coefficients can be arbitrary in sign, and the method can be initiated 

with any circulation, feasible or not and any set of dual variables, 

or node numbers. 

The above presented properties also make the out of kilter 

algorithm an ideal tool to solve the lower bounding problems. The 

freedom to begin with any circulation and any set of node numbers 

implies that from one level of computation to the next, the previous 

optimal flows may be used as a starting point to calculate the new 

optimal flows. 

The property that the out of kilter algorithm assumes lower 

bounds as well as capacities for each arc flow is another reason why 

the out of kilter algorithm is ideally suited for the algorithm. Con

sider, for example, that variable is to be fixed at a value of zero. 

This restriction can directly be specified in the network problem by 

setting the flow capacities of the arcs representing X̂ _. at zero. 

Before the imbedded problem is solved the first time using the 

out of kilter algorithm, the initial flow values for the arcs and the 

initial dual variables are assigned a value of zero. The solution to 

the imbedded problem consists of the optimal flows and dual variables. 

Conceptually, this process is represented on Figure 12. 

Before proceeding with the construction of the BHT, it is neces

sary to determine whether the solution to the out of kilter algorithm 

is the optimal solution to the problem. Before this can be done, it is 

necessary to relate the Flow [I] and the X.. . The actual conversion 
1 3 

from flows to decision variables is dependent on the partitioning scheme 

utilized. 



109 

Imbedded problem 
network description: 

Nodes 

Arcs 

Startarc [I] 

Endarc [I] 

Maxcap° [I] 

Mincap° [I] 

Arcost [I] 

Initial flows and 
dual variables: 

i> 1=1 ,Arcs 

Out of Kilter 
Algorithm 

| Optimal flows and dual variables 
Flow° [I]" = Flow° [I] 1=1,Arcs 

. PI° [I]" = PI° [I] I=l,Nodes 

Figure 12. Computations Required at Level Zero of BHT. 
Upper Script Zero Implies Parameters 
Dependent on Level of Computation 

From the construction of the network, the following correspondences 

can be noted: 

For arc I: 

SIP: 

j = Startarc [I] 
no correspondence 

i = Endarc [I] - n 
[no correspondence 

IeA2 

otherwise 

IeA2 

otherwise 
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MIP 
and: <! 
LIP 

j = Startarc [I] l£A2 

no correspondence otherwise 

i = Endarc [I] -Am - n l£A2 

where: .̂ 

• ^ . ̂  ^ [Endare [I] - (n+lT A = greatest integer < -̂
m 

[no correspondence otherwise 

Denoting the decision variables obtained from the Flow9 [I] by X?., 

then the optimal solution has been obtained if X° = X° 2 ... 

X > £ S ; otherwise, the BHT is filled for other levels of computation, mn 
After the results of the computation described above have been 

entered in the BHT, the subsequent levels are computed. The computa-
) 

tional logic associated with applying the branching rule B and the 

lower bounding procedures, as discussed in Chapter II, is illustrated 

in Figure 13. The computations are started by selecting arc n+1 as 

the initial arc to be fixed. From the results of level zero of the BHT, 

this arc will have either a flow of zero units or of one unit in it. 

If the flow in the arc is one, then the variable associated with the 
arc, denoted as X..,„v, is fixed at one, the implicitly fixed variables i](K) J 

are found by applying the tests presented in Chapter II. 

To find the lower bound on the subset of solutions to the imbed
ded problem with X. = 1 and all implicitly fixed variables at a 

i](K) 

value of zero, the arc capacities and lower bounds are fixed in the 

network, and the out of kilter algorithm is used to find the new 

optimal flow through the network subject to the fixed variables. 
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Figure 13. Application of Branching Rule and 
Bounding of Subsets - Part I 
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If the value of the objective function from the out of kilter 

algorithm is greater than the best feasible solution objective function 

value found so far, then the bound is set at 0 0. Otherwise the flows 

are converted to values of the X.,'s and the additional constraints are 

checked for feasibility. If a feasible solution has been found, then 

it is stored and the bound on the subset is set at 0 0, otherwise the 

bound on the subset is given the value of the objective function from 

the out of kilter algorithm. 

The bound on the subset generated by setting equal to 

zero is found in a similar manner after all arc capacities and low 

bounds have been reset to the values they had at the beginning of this 

level of computation. After the bounds of both subsets have been 

obtained, the decision must be made as to what subset to select for 

further branching. The logic associated with this selection will be 

discussed in a later paragraph. 

If the original flow in arc K is zero, then the computations 

presented in Figure 14 must be performed. These are similar to those 

described on Figure 13, the basic difference being that the bound on 

the subset having j ̂  K ) equal to zero is already available from the r 

previous level of computation. The bound on the subset having 

at one are computed in the same manner as exhibited in Figure 13. 

Figure 15 exhibits the decision process required to select a 

subset for further partitioning. If both bounds are 0 0, then backtrack

ing is required, otherwise the subset with the smallest lower bound is 

selected for further partitioning. In order to initiate the next level 
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Figure 14. Application of Branching Rule and 
Bounding of Subsets - Part II 
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of computation with the set of optimal flows associated with the given 

set of fixed variables, the out of kilter algorithm is used to optimize 

the flow. The computations described so far are then repeated, but the 

arc selected for partitioning Is now the first arc for which the flow 

has not been fixed, either implicitly or explicitly. 

If backtracking is necessary, the computations shown on Figure 

16 are performed. The computations simply amount to examining the 

preceding level of computations in order to see if there is some active 

subset for which the lower bound is better than the objective function 

value of the best feasible solution found so far. If this is the case 

at some level, then the branch and bound process described in Figures 

13 and 14 is applied again, otherwise the values of the bounds are made 
0 0 for that level, and the previous level is examined. 

After the computations associated with a level are completed, 

the relationship of the results obtained to entries in the BHT may be 

observed in Table 3. 

Table 3. Relation of BHT Entries to Computational Sequences 

a b c d e f g h i 

Level L K K K ) J(K) LowboundO Lowboundl Fo F l Path 

This section of the thesis has presented the general computa-

tional sequences that must be performed in order to construct the BHT. 

For the various partitioning schemes presented in the previous chapter, 
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some details are different, but will not be presented in detail. It is 

felt that with the information provided in this section the computa

tional algorithms can be reconstructed without too much difficulty. 

The next section of this chapter will present the computational 

results obtained with various computer programs written for the spe

cific application discussed in this thesis. 

Computational Analysis and Experience 

Three separate computer programs were developed to obtain com

putational experience with the basic algorithm developed in Chapter II, 

specialized for the course scheduling problem presented in Chapter III. 

Although each computer program follows the computational sequence 

described in the previous section of this chapter, they are different 

in detail to incorporate the peculiarities of each scheme. 

The programs have been written in Algol and all results have been 

obtained from a Burroughs B-5500 computer operating simultaneously in a 

batch and remote operations mode. Since the B-5500 is a multiprocessing 

machine, the times presented with the various solutions cannot be com

pared to those that can be obtained from a computer processing programs 

sequentially in that the processing times of the B-5500 are dependent on 

the particular load on the machine at that time, and also on the types 

of programs being processed simultaneously with the course scheduling 

program. The only general statement that can be made is that the pre

sented times are slower than those that could be obtained from a similar 

machine processing programs sequentially. 
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The computational experience with three problems will be pre

sented. Problem one is a relatively small problem which was utilized 

for testing purposes. Problem two is composed of data obtained from 

an actual scheduling situation and represents a fairly typical problem. 

Problem three is also composed of actual data, but it represents the 

largest problem that would normally be encountered. The following 

sections of this chapter will be devoted to describing each of these 

problems in greater detail and to presenting the computational results 

from the algorithm. 

Problem 1 

This problem was designed to test the computational algorithm of 

the course scheduling problem. 

Table 4 summarizes the basic information about the problem to

gether with the solution times obtained for each partitioning scheme. 

Table 4. Summary Presentation of Problem One with Solution Times 

No. Number 
Parti of No. No. of Input-
tioning Vari of of Additional Process Output 
Scheme ables Nodes Arcs Constraints Time Time Total Time 

SIP 30 14 43 35 0.547 min 0.253 min 0.80 min 
MIP 30 18 62 30 4.18 min 0.106 min 4.28 min 
LIP 30 24 52 25 0.460 min 0.241 min 0.70 min 

Original integer programming formulation: 30 variables 
46 constraints. 
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The running time information has been subdivided into processing, 

input-output, and total time. Since the Burroughs B-5500 computer is 

a multiprocessing machine utilizing dynamic overlay, the amount of 

time it spends allocating core storage is considered as input-output 

and is not present in serial processing computers. The total time is 

considered the sum of the processing and input-output time for the 

purposes of this thesis. 

Problem 2 

This problem has been taken from an actual set of course 

offerings and teaching assignments and could be considered as a fairly 

representative example of the majority of problems that would be en

countered in the operation of the School of Industrial and Systems 

Engineering. Table 5 summarizes the relevant information about this 

problem together with the solution times obtained for each partitioning 

scheme. 

Table 5. Summary Presentation of Problem Two with Solution Times 

No. Number 
Parti of No. No. . of Input-
tioning Vari of of Additional Process Output 
Scheme ables Nodes Arcs Constraints Time Time Total Time 

SIP 115 30 144 105 26.85 min 0.253 min 27.2 min 
MIP 115 45 374 90 8.46 min 0.304 min 8.75 min 
LIP 115 85 199 50 Optimality achieved , not veri-

fied > 60 min. 
Original integer programming formulation: 115 variables 

135 constraints. 
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Problem 3 

This problem is somewhat different from the previous in that in 

it laboratory sessions must be scheduled. Since many courses have 

associated with them more than one laboratory section, the number of 

variables in this problem is much larger. On the other hand, since 

laboratory sections normally have less students in them than lecture 

sections, the number of constraints indicating physical facility con

straints are less than in the previous problem. Table 6 summarizes 

the relevant information of the problem together with the solution 

times obtained using each partitioning scheme. 

Table 6. Summary Presentation of Problem Three with Solution Times 

No. Number 
Parti of No. No. of Input-
tioning Vari of of Additional Process Output 
Scheme ables Nodes Arcs Constraints Time Time Total Time 

SIP 400 52 451 290 No optimality achieved > 60 min 
MIP 400 62 651 280 No optimality achieved > 60 min 
LIP 400 192 591 150 Optimality achieved---not veri-

fied > 60 min. 
Original integer programming formulation: 400 variables 

340 constraints. 

Up to this point the computational results were presented in a 

summary form. Since the algorithm finds a sequence of feasible solu

tions, each one having a better solution value than the previous, it 

is of interest to show the behavior of the algorithm for the various 

problems. From a user's standpoint, the interest arises due to the 
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trade-offs that are present between obtaining a feasible solution 

better than one found so far, and the additional cost in computational 

time involved with finding it. Tables 7 through 9 present the sequence 

of increasingly better feasible solutions found for each problem and 

partitioning scheme together with the computer time required to find 

each. -

Table 7. SIP Partitioning Scheme: Detailed 
Solution Patterns and Times 

Imbedded Feasible Feasible Input-
Problem Solution Solution Process Output Total 

Problem f(x) Number f(x) Time Time Time 

.1 14 0, .110 min 0 .247 min 0 .358 min 
1 6 CM 12 0, .233 min 0 .249 min 0 .482 min 

End 12 0. .547 min 0 .253 min 0 .800 min 

1 33 1, .475 min 0 .160 min 1 .635 min 
2 29 CM 31 2. .222 min 0' .165 min 2 .490 min 

3 29 26. .800 min 0 .168 min 27 .100 min 
End 29 26. .850 min 0 .170 min 27 .200 min 

3 70 1 76 10. .800 min 0 .633 min 11 .48 min 
Termination 

Not 
Achieved > 60 min 

In each of the tables, the first column gives reference to the 

particular problem, the second column presents the initial lower bound 

which is calculated by solving the imbedded problem without regard to 

the additional constraints. Columns three and four, respectively, 

present the feasible solutions found in their proper sequence and the 
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Table 8. MIP Partitioning Scheme: Detailed 
Solution Patterns and Times 

Imbedded Feasible Feasible Input-
Problem Solution Solution Process Output Total 

Problem f(x) Number f(x) Time Time Time 

1 
End 

12 
12 

0.161 min 
4.180 min 

0.104 min 
0.165 min 

0.267 min 
4.280 min 

29 

1 
2 
3 

End 

33 
31 
29 
29 

2.970 min 
3.090 min 
8.450 min 
8.460 min 

0.294 min 
0.297 min 
0.302 min 
0.304 min 

3.260 min 
3.390 min 
8.740 min 
8.750 min 

70 

1 
2 

3 
Termination 

Not 
Achieved 

79 
77 
76 

14.890 min 
14.950 min 
15.250 min 

0.286 min 
0.289 min 
0.292 min 

15.150 min 
15.300 min 
15.500 min 

> 60 min 

objective function value associated with the respective feasible solu

tions. The remaining columns present a breakdown of the times required 

to achieve the solutions. As can be noted, problem three does not 

result in termination utilizing any one of the partitioning schemes 

individually. Except for the LIP partitioning scheme, all other prob

lems terminate with optimality of the solutions verified. The LIP 

partitioning does not terminate for problems two or three. 

Computational Synthesis 

After studying the detailed solution patterns and times presented 

in the previous section, it became apparent that for the specific prob

lems solved, considerable computational advantages could have been 
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Table 9. LIP Partitioning Scheme: Detailed 
Solution Patterns and Times 

Imbedded Feasible Feasible Input-
Problem Solution Solution . Process Output Total 

Problem f(x) Number f(x) Time Time Time 

1. 12 .1025 min 0, .2400 min 0.330 min 
1 6 End 12 0, .460 min 0, .2410 min 0.700 min 

1 35 1. .700 min 0, .123 min 1.825 min 
2 31 1, .845 min 0, .125 min 1.973 min 

2 23 3 29 3, .90 min 0. .129 min 4.050 min 
Termination 

Not 
Achieved > 60 min 

1 72 14. .300 min 0. .393 min 14.700 min 
3 53 2 70 14. ,450 min 0. .398 min 14.800 min 

Termination 
Not 

Achieved > 60 min 

obtained by. the synthesis of two or more of the partitioning schemes. 

The following paragraphs of this section will describe a specific syn

thesis which would have resulted in considerable computational improve

ments for the problems that were solved, and then to describe some other 

syntheses which could improve computational results for other problems. 

Considering the results presented in Tables 8 and 9, it becomes 

apparent that the LIP scheme could have terminated with an optimal 

solution for problems two and three if some of the information obtained 

from the MIP scheme was made available a priori. Namely, given the im

bedded problem solution obtained with the MIP scheme, the feasible 

solutions obtained through the use of the LIP scheme could have been 

compared with it, and as soon as a feasible solution was obtained with 
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an objective function value equal to the objective function value of 

the optimal solution to the MIP imbedded problem, the computations 

terminated. The additional computational times involved with such a 

scheme is marginal. The basic concepts of this particular synthesis 

are summarized in Figure 17, and the results obtained are exhibited 

in Table 10. 

Table 10. Summary Results: Synthesis of 
LIP and MIP Partitioning Schemes 

Time to Additional 
Optimal Time 

Problem Variables Constraints LIP MIP 

1 30 46 0.70 min 0.026 min 0.703 min 
2 115 133 4.05 min 0.186 min 4.236 min 
3. 400 340 14.80 min 0.472 min 15.272 min 

The above presented synthesis was developed under the consideration 

that the initial lower bound obtained through the LIP partitioning 

scheme was lower than the lower bounds obtained with the MIP scheme. 

Furthermore, the imbedded problem of the LIP partitioning scheme is 

composed of constraints which have as their right-hand sides a value 

of one. Since there are mrr̂  of such constraints embodied in the 

imbedded problem, the possibility of obtaining a feasible solution when 

solving some intermediate lower bound problem may be better than when 

these "tight" constraints are considered as additional constraint in 

the manner of the SIP or MIP schemes. 

Total 
Solution 
Time 
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The computational success of the above synthesis for the prob

lems considered was primarily due to the fact that the optimal solution 

to the problems turned out to be an alternate optima to the imbedded 

problem of the MIP partitioning scheme. This cannot be guaranteed in 

all cases, as can be noted by the results of problem one, 

Whenever the above synthesis is applied to problems for which the 

optimal solution is not an alternate optima of the MIP imbedded problem, 

then the results obtained will be identical to those obtained if just 

the LIP scheme was used; consequently, a more general synthesis proce

dure will be suggested. Before doing so it should be noted that the 

LIP scheme failed to terminate as a direct consequence of the "loose" 

bounds that were obtained. This can be verified by considering that 

the optimal solution was obtained after more than 150 levels of compu

tations were performed. In order to verify optimality, the algorithm 

had to backtrack to each active node and branch on it until the bounds 

obtained were greater or equal to the optimal solution. Since the 

bounds calculated were "loose," the amount of branching required to 

obtain a high enough value of the lower bound was considerably more 

than with the other partitioning schemes and, naturally, more time con

suming . 

The concept utilized to develop the general synthesis consists 

of branching according to the LIP scheme, making a decision as to what 

subset to branch on next as in the LIP scheme, but then to utilize the 

SIP scheme to assign a lower bound to the subset which was not selected 

for further branching. Whenever a feasible solution is obtained as a 
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result of solving the bounding problems with the LIP or SIP scheme, 

the solution value is checked against the optimal solution value of the 

MIP imbedded problem. 

The above concepts can be used whenever the initial bounds ob

tained by the LIP, SIP, and MIP scheme are ordered. In other words, 

when lowbound (LIP) < lowbound (SIP) < lowbound (MIP). It will always 

be the case that lowbound (MIP) > lowbound (SIP). This follows from 

the fact that the MIP imbedded problem is the same as the SIP imbedded 

problem except that it incorporates more constraints. Nothing can be 

said, in general, about the relation between the initial lower bound 

of the LIP scheme and the other schemes. 

The synthesis of the LIP and SIP schemes was suggested since, 

for both of these schemes, there is a one-to-one correspondence between 

the variable X̂ _. and the flow in a particular arc of the network repre

sentation. This correspondence does not hold in the MIP scheme since 

any node representing a course has one arc going to it with a flow of 

one, but several arcs leaving it going to nodes representing the same 

time, each with a maximum capacity of one and a minimum capacity of 

zero. These facts can be observed in Figure 9 of Chapter III. 

The general method of synthesis is exhibited in Figure 18. 

Even though initially the general synthesis procedure may seem 

to be inefficient in the sense that two sets of lower bounding problems 

must be solved at each level of computation, the advantages that are 

associated with this approach are twofold. First, it is possible to 

obtain a feasible solution each time a lower bounding problem is 
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solved. Since the lower bounding problems are different in structure 

and since the variables are fixed according to the LIP scheme, the solu

tions obtained by solving the LIP lower bounding procedure are feasible 

to a large set of additional constraints of the SIP scheme, and vice 

versa. Second, the large amount of computational effort associated with 

backtracking in the LIP scheme may be eliminated due to the tighter 

lower bounds obtained with the SIP scheme. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Although the algorithm presented in Chapter II was developed to 

solve general problems which have imbedded in their constraint set a 

subset of constraints whose coefficient matrix possesses the unimodular 

property, the application discussed in Chapters III and IV was very 

specific in nature, namely, the course scheduling problem. In the 

development of the algorithm it was specified that the original integer 

program be converted to a zero-one integer programming problem. The 

main purpose for this transformation was the simplification it allowed 

in partitioning the solution space of the imbedded problem. Since it 

is the solution space of the imbedded problem that is partitioned, it 

suffices to transform the imbedded problem to a zero-one integer pro

gramming problem, and when feasibility of the additional constraint set 

is to be determined, the zero-one variables may be transformed back to 

the original variables.. 

For situations in which the imbedded problem is of the form: 

m n 
minimize Y 7 C .'.X. . 

subject to: 
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m 
y x.. = A. vi 

1=1 J J 

n 
y X.. < B. vj 

j=l ^ 1 

x. . ̂  0 vi,j 

which is a transportation problem, or for more general imbedded problems 

which have an equivalent network formulation, the imbedded problem may 

be readily transformed to a zero-one integer programming problem by the 

following procedure: 

define: 

Y. . = 0 or 1 
l] 

such that: 

m 

and let 

where: 

i = i 1 ] 

v3 
X.. = V Y.„ i=l,m 

1 ] K=a. l K 

a. = ) A + 1 with A = 0 vi 
^ L=0 ° 

: L=0 L 

Substituting for x̂ .. in the original problem yields: 
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minimize 
subject to 

m n ] 

(1) J f Y. K = A j=l,n 

1=1 K=a. J 

(2) .1. . / YiK * 3 i ^ 1=1 K=a. 
] 

Y . > 0 vi K lK 5 

Expanding the above yields: 

m n 
minimize J X Cij I' YiK i=l j=l J K=a. 

subject to: 

n n 
(i) y Y . v = i K = I , N = y A . 

1=1 ]=1 

N 
(2) I Y < B i=lsm 

K=l l K 1 

(3) Y.„ > 0 i=l,m; K=1 SN 
lK 

The resulting problem in the Y^'s still possesses a constraint coeffi

cient matrix which is unimodular. By constraint set (1) the zero-one 

J X Cij ^ YiK i=l j=l J K=o. 
1 
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restriction on the Y..'s will automatically be satisfied. 

In terms of the network equivalent to the above problem, the only 

difference is that the number of nodes and arcs have been increased over 

the original network representation. Since solution methods for net

work problems are extremely efficient, the suggested transformation can 

be made providing that the number of arcs and nodes that must be 

adjoined to the problem is not excessive. 

It is recommended that further computational experience should 

be obtained with the algorithm presented in this thesis for different 

types of problems which possess imbedded unimodular constraints. 

Furthermore, for other types of applications, attention should be paid 

to possible additional advantages that may be derived from the structure 

of the problem. 

As an extension to the application area presented, in this thesis, 

it is recommended that the concepts developed be implemented for solu

tion to the university-wide course scheduling problem. In Chapter III 

it was made clear that the particular course scheduling problem formu

lated represented a problem faced by the School of Industrial and 

Systems Engineering in scheduling its courses. This subsystem of ISEMIS 

will not create conflicts for students providing that they are only 

required to take the courses offered by that school. If, however, a 

student is taking courses from several schools within the university 

simultaneously, as is normally the case, then it is quite likely that 

conflicts will arise because courses offered by different schools of 

the university which he must take simultaneously could be offered at 
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the same time. Consequently, the problem of scheduling courses should 

ideally consider the interdependencies between the various schools. 

A formulation of the university-wide course scheduling problem 

can be developed along similar lines as the course scheduling problem 

for a single school, namely, define the following: 

X. 
i:P 

Jl if course j of school P is offered at time i 

[o otherv/ise -

n p = Number of courses to be scheduled for school P. 
K D = Set of courses with forecasted enrollment < \J in school P xvr r 

K 

Up = Maximum capacity of classrooms in group K of school P. 

lP 

M^.D = Number of classrooms available in group K at time i for 
school P. 

W = Set of courses taught by faculty member K of school P. KP 

L = Set of courses which conflict within school P. KP 

M^p = Number of classroom groupings in school P. 

M^p = Number of faculty in school P. 

M^p = Number of course conflict groups in school P. 

6^ = Kth set of inter-school courses which, if taught simul
taneously , would create conflicts for students. 

With the above definitions, the university-wide scheduling problem may 

be stated as: 

minimize 
t n P m 
y y y c . . _ x , 
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subject to: 

m 
( 1 ) . I x = i 

1=1 

( 2 ) I X i i P ^ M i I j e D KP 

(3) J X < 1 
JcW K p ^ 

( 4 ) A ^ j P ^ 1 

J£L KP 

i=l,m; K=l,m IP 

i=l,m, K=l,m 2P 

i=l,m; K=l,m 3P 

> P = 1,T 

(5) I X . 1 
(j,p) €e K 

1=1,m; K=l,m. 

X.L..p = binary *i 9j 9P 

As can be noted,constraint sets (1) through (4) in the above formulation 

are identical to the constraint set of the Coursched subsystem, and that 

there are as many independent constraint sets of that form as there are 

schools within the university. The constraint set represented by.(5) 

are those which indicate the interdependency between the courses offered 

in different schools in the sense that if they are taught at the same 

time, conflicts would be created for various segments of the student 

population. 

Figure 19 represents, in a conceptual manner, the structure of 

the constraint coefficient matrix of the constraints defined on the 
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Constraints Defining Interdependencies 
Between Schools—Defined by (5) 

Course Sched 
Problem - < 
School 1 

Additional 
Constraints! 
Imbedded 
Problem 

Course Sched 
Problem - < 
School 2 

Additional 
Constraints 
Imbedded 
Problem 

Course Sched 
Problem -
School 3 

Additional 
Constraints 
Imbedded 
Problem 

Course Sched 
Problem - < 
School 4 

Additional 
Constraints 
Imbedded 
Problem 

Course Sched 
Problem - < 
School P 

Additional 
Constraints 
Imbedded 
Problem 

Figure 1.9. Conceptual Structure of University-
Wide Course Scheduling Problem 
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previous pages. As can be noted, it is a block diagonal type structure, 

the individual blocks of constraints being linked together by the con

straints defined by (5). . One immediate solution procedure which pre

sents itself would consist of adjoining the additional constraints for 

each school with the constraints defining interdependence between the 

schools. The resulting problem would then be of the type applicable 

directly to the solution algorithm presented in this thesis. This can 

be noted by observing that, in Figure 19, the remaining constraints of 

the block diagonal elements would correspond to the individual imbedded 

problems, and consequently the constraint coefficient matrix containing 

the remains of each block of constraints would possess the unimodular 

property. 

Another approach to the solution of the university-wide course 

scheduling model which is different in concept to the previous can be 

considered. For ease of exposition, consider a conceptual matrix 

representation of the structure defined in Figure 19, namely: 

minimize Cn Xn + C„X 0 + C 0X 0 + ••• + 

subject to: 
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A 1 X 1 + A 2 X 2 + A 3 X 3 + A pX p S 

3 . 

< b. 

< b. 

< b. 

= Vectors with binary components i=l,P 

where: 

X. - Vector of decision variables for school i. 1 
C. - Row vector of cost coefficients for school i. l 
B. - Coefficient matrix of additional constraints associated 

with the course scheduling problem formulation for school i, 

U. 
l 

A. 
l 

- Coefficient matrix of imbedded constraints associated with 
the course scheduling problem formulation for school i. 

- Portion of overall constraints coefficient matrix corre
sponding to the decision vector X^. 

b Q - Right-hand side vector of overall constraints. 

b. - Right-hand side vector associated with course scheduling 
problem for school i. 

With the above representation of the university-wide course scheduling 
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problem, a solution procedure combining some of the ideas of stage-

wise decision making and implicit enumeration can be devised. Consider 

a P stage optimization problem, in which the first stage consists of the 

problem: 

minimize C X 

subject to: 

A i x i * b 1 1 o 

X^ := Vector with binary components. 

The above is the course scheduling problem for school one with an 

enlarged set of additional constraints. The methodology necessary to 

solve it has been developed in this thesis. One modification necessary 

for the stage-wise solution of the university-wide problem is that in 

the construction of the BHT, lowboundO and lowboundl should be modified 

by the addition of a constant, this constant is calculated by solving 

the problem: 



m o 

minimize C 2 X 2 +
 C 3 X 3 + ''' + Cp Xp 

subject to 

u 2 x 2 = b* 
U 3 X 3 = b 2 

b ^ = b U 

P ' T P 

X^ = Vector with binary components 

where: 

bY - Right-hand side vector associated with the imbedded problem 
for school i. 

The constant referred to earlier is the objective function value 

obtained from solving the above problem. This modification is neces

sary in order to account for the remaining stages of computation after 

the problem associated with the present stage has been solved. 
A 

Denoting the optimal solution vector of stage i by X^, the 

general problem associated with the qth stage is: 

minimize C X 
q q 

subject to: 
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X < b 
q q 

X^ = Vector with binary components 

The constant that must be added to lowboundO and lowboundl during the 

computations of this stage is: 

q v 1 * y c.x. + K 
. L

 n 1• 1 c 1=1 

where is the objective function value obtained by solving the 

problem: 

minimize I c.x. 
i=q+l 

subject to: 

U.X. = b. i=q+l,P 
1 1 1 *1 9 

X_̂  = Vector with binary components i=q+l,P 

The BHT itself will be constructed in a continuous sequential manner as 

the various stages are considered during the computation. If backtrack

ing is necessary at some level of computation, care must be exercised in 

defining the constant terms that are added to lowboundO and lowboundl 
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once another branch has been found to explore further. For example, if 

it is necessary to backtrack from a level of computation encountered in 

the nth stage of computation, and if the backtracking terminates in the 

n-lth stage, the constants added to lowboundO and lowboundl must be 

changed from those being utilized during the nth stage to the appropri

ate constants associated with the n-lst stage. 

It is recommended that the Coursched subsystem of ISEMIS be 

generalized to a university-wide model along the general concepts pre

sented in the previous sections. It is also recommended that the com

putational aspects of the stage-wise solution suggested be explored 

with respect to the organization of the computations and the efficien

cies obtainable. 
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