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Some consequences of a Fatou property
of the tropical semiring

Daniel KROB

LACIM and CNRS(Institut Blaise Pascal; LITP) *

Abstract

We show that the equatorial semiring Z,,;, = (ZU{+00}, min,+) is a Fatou extension
of the tropical semiring M = (NU {400}, min,+). This property allows us to give partial
decidability results for the equality problem for rational series with multiplicities in the
tropical semiring. We also deduce from it the decidability of the limitedness problem for
the equatorial semiring, solving therefore a question of I. Simon.

0 Introduction

The tropical semiring is the semiring denoted by M which has support NU{+oc} and
operations a @ b = min{a,b} and ¢ ® b = a + b. It is currently used in the context of
cost minimization in operations research. However it appeared that M plays in fact an
important role in several problems concerning rational languages (see [8] for a survey of
the tropical semiring theory and of its applications). For instance, I. Simon showed that
the finite power property for recognizable languages can be reduced to the limitedness
problem for the tropical semiring (cf [8]). In the same way, I. Simon used the tropical
semiring to study the non-deterministic complexity of a usual finite automaton (cf [9]).

An important problem in the tropical semiring theory was to see if it is possible to
decide whether two M-rational series are equal or not. We solved recently this question
by proving that this equality problem was undecidable (cf [4, 5]). Our proof was strongly
based on the introduction of the equatorial semiring Z,,;, which is just the extension of
M to arbitrary integers. Indeed it can be shown that the equality problem for Z,,;, is
undecidable and that the two above decidability problems are equivalent (cf [4, 5]).
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Hence the question remains to see if partial decidability results can be given for special
kinds of equality problems in M or in Z,,;,. This is one of the purposes of this paper.
Indeed we show that the equality problem is decidable for M-rational or Z,,;,-rational
series which are both min and max recognizable. This gives for instance a new class of
M-rational series for which the equality problem is decidable and that contains several
classes for which this problem was known to be decidable.

It is also worth to noticing that the above decidability result highly depends in fact on
a Fatou property of M. Indeed we can show that Z,,;, is an effective Fatou extension of
M. This allows us to show that it is decidable whether a Z,,;,-rational series belongs to
M << A>> and this last result is the fundamental tool in the above decidability result. It
is also interesting to observe that our study points out a great lack of symmetry between
min and max. For instance, if V" and Z,,,, denote respectively the semirings NU {—oc}
and ZU {—oc} equiped with max and + as sum and product, it is not true anymore that
Z.mae 18 a Fatou extension of V.

On another hand, it appears that the above effective Fatou property has other appli-
cations. Indeed, using again this result, it can be shown that the limitedness problem for
the equatorial semiring is decidable. This was also an open question of I. Simon (see [8]).
We devote the last section of this paper to this result.

1 Preliminaries

1.1 Min and max semirings

The equatorial semiring is the commutative semiring denoted by Z,,;, which has Z U
{+0oc} as support, whose addition & is defined by @ & b = min{a, b} and whose product
® 1s given by a ® b = a + b. The operations of Z are extended to Z,,;, in the usual
natural way and the units for & and ® are respectively +oc and 0. The tropical semiring
is the subsemiring of Z,,;, denoted by M which has NU {400} as support. Let us also
introduce the semiring Z,,,, which is the semiring whose support is Z U {—o0}, whose
addition, denoted also @, is given by a & b = max{a, b} and whose product ® is defined
by a @b = a+b. We can now also consider the polar semiring N” which is the subsemiring
of Z,,4z which has NU {—oc} as support. It is interesting to notice that Z,,;, and Z,,,,
are isomorphic, an effective isomorphism being obtained by the mapping + — —z from
Zin 10t0 Z,4,. Observe that this isomorphism maps the subsemiring M~ of Z,,;, whose
support is Z~ U {+oc} onto N and that therefore M~ is clearly effectively isomorphic to

N.

1.2 Rational and recognizable series

We refer to [1], [2], [6] or [7] for all details concerning series, rational series and
recognizable series with multiplicities in an arbitrary semiring K. We will denote here by
K << A>> the K-algebra of series over A with multiplicities in K. Let us recall that an
element S of K << A>> is a formal sum of the form

S= > (Sww (2.1)

wEA*



where (S|w) € K denotes the coefficient of the series S on w € A*. The sum and the
multiplication by an element of K are defined componentwise on K << A >>. The product
is defined on K << A >> by the usual Cauchy rule. We can also define the star S* of
every proper series 2 S of K << A >> by the relation

+oo
S = (> > (Slwy)...(Slwg) ) w .
wEA* k=0 wi..wp=w
The K-algebra of K -rational series is then the smallest sub- K-algebra of K << A>>, de-
noted by KRat(A), that contains all letters @ € A and that is stable by the star operation
(defined on proper series).

Let us also recall that a K -representation of order n of a free monoid A* is just a
monoid morphism g from A* into the monoid of square matrices of order n with entries
in K. Note therefore that a K-representation of order n of A* is completely defined by
the images (p(a))qeca of all letters a € A. We will therefore often identify in the sequel a
K-representation p with the matrix family (p(a))aeca-

A K-automaton of order n is then a triple (I, u, T') where u is a K-representation of
order n of A* and where I and T' are respectively a row and a column vector of order
n with entries in K (see [1], [2], [6] or [7] for more details). Note that one can always
graphically represent any K-automaton A = (I, u,T") of order n by a graph G(.A) defined
as follows (see also figure 2.1) :

— the set of vertices of G(A) is [1,n],

— for every letter @ € A and every pair (, j) of vertices in [1, n], there is an oriented
edge in G(A) labelled by the pair p(a);;a € K x A going from ¢ to j,

— for every vertex ¢ € [1,n], there is an input-arrow labeled by I; € K that points

onto the vertex i,

— for every vertex ¢ € [1,n], there is an ouput-arrow labeled by 7; € K which is issued
of the vertex z.
L~ wa)ija o~ T
L U

Figure 2.1

When an element g(a); ;, I; or T; is equal to Ox, one do not usually write the corresponding
edge or arrow in the graph G(A). The family (p(a)).ca appears now in this graphical
representation as the family of transition matrices of the automaton A. Note finally that
one obtains the usual notion of automaton when K is equal to the boolean semiring
B ={0,1} where 1 +1 = 1.

A series S of K << A>> is then said to be K-recognizable iff there exists a K-auto-
maton A = (I, p,T) such that (S|w) = I u(w)T for every w € A*. In the previous case,
we say that the series S is recognized by A. Note finally that the Kleene-Schiitzenberger
theorem claims that a series of K << A >> is K-recognizable iff it is K-rational. We will
often use this result in the sequel without mentioning it explicitely.

2 A series S of K << A>> is said to be proper iff its constant term (S|1) is zero.
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For every series S of K << A>> and for every word u € A*, the left derivative of S
with respect to u is the series u™1S of K << A>> defined by (u~S|w) = (S|uw) for every
w € A*. We recall that we have

S=(S|IN)+ > ala”'S) (22)
acA
for every S € K << A>>. We also recall that a series S of K << A>> is recognizable iff
there exists a K-semimodule M =< 51,...,5, > of finite type that contains S and that
is stable by left derivative ® (cf proposition 1.5.1 of [1] or theorem 2.3.1 of [7] for more
details). This is exactly equivalent to asking that there exists a finite family (S;)i=1,, of
series of K << A >> such that

a8 =" ky(a,i) S, (2.3)
p=1

for every a € A and every ¢ € [1,n], where every k,(a,t) is in K, and such that S is a
K-linear combination of the series .S;.

1.3 Other definitions concerning series

Let us now explicit some notions concerning K-rational series that will be useful. First
we denote by L the characteristic series of any language L C A* which is the series of
K << A>> defined by

\V/ w e A*) (L|w) _ { 1]{ lf w e L

O ifwél (2:4)

L is always a K-rational series when L is a rational language (cf [1] or [7] for instance).
When K is equal to Z,,;, or to M, one should observe that L is then defined by (L|w) = 0
ifwe Land (Ljw)=+ccifw¢ L.

We also denote here as usually by S © T the Hadamard product of two series S, T of
K << A>>. It is the series defined by (S © T'|w) = (S|w)(T|w) for every w € A*. We
recall that S ® T is a K-rational series when S and T are K-rational series (see [1] or [7]
for more details). The constant K -rational series whose every coefficient is equal to some
element k£ € K, will be always denoted by £.

Let K be a semiring and let L be a subsemiring of K. Then K is said to be a Fatou
extension of L iff every K-rational series which belongs to L. << A >> is in fact a L-rational
series. We refer the reader to [1] or [7] for more details on Fatou extensions.

Let K be a semiring, let m be an element of K and let S be a series in K << A >>.
Then the m-support of S is exactly the language {w € A*, (S|w) = m}. In the same
way, the support of S is the language {w € A*, (S|w) # 0k }.

1.4 Series over min or max semirings

When K is equal to Z,,;, or M, the K-recognizable series can be interpreted in a very
simple way. Indeed let A = (I, u,T) be a K-automaton with K = Z,,;, or K = M. The
element of ZU {+00} or NU {400} that labels every edge of the associated graph G(A)

3 This last property is expressed more simply by saying that the K-semimodule M is stable.
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is then said to be the cost of the corresponding edge. We also associate with every path
p going from some vertex i to some other vertex j in G(A) its cost which is the sum of
I;, of all costs of the edges used by p and of T};. For every word w € A*, the coeflicient
(S|w) = I u(w) T of the series S recognized by A is then equal to the minimal cost of all
paths indexed by w in G(A). The same kind of interpretation (replacing “minimal” by
“maximal”) holds also when K is equal to Z,,,, or to N.

Let now K be a semiring. Then a series 5§ € K << A >> is said to be limited iff the
set { (S|w), w € A*} is a finite subset of K. Let now K be equal to M or V. Then we
say that a K-rational series S € KRat(A) is N-limited iff the set { (S|w), w € A*} is a
finite subset of N. We denote by N-Lim(K’) the set of N-limited K-rational series.

Let us also define two important classes of Z,,;, and M-rational series. A series S of
7Z<< A>> (resp. of N<< A >>) is said to be a Z-MinMax series (resp. a N-MinMaz series)
iff S belongs both to Z,.;,Rat(A) and Z,,,,Rat(A) (resp. MRat(A) and NRat(A)). We
denote respectively by Z-MinMax(A) and by N-MinMax(A) these two classes which are
therefore equal to

N-MinMax(A) = MRat(A) N NRat(A) C N<<A>> |
z-MinMax(A) = Z,.;,Rat(A) N Z,,..Rat(A) C z<<A>>

Let us finally equip Z,.in, Zmaz, M and N with the order induced by the usual order
of Z, extended in a natural way by setting —oc < z < +oc for every z € Z. This order is
also transported to series by defining for every series S and 7" with multiplicities in these
semirings, S < T'if and only if (S|w) < (T'|w) for every w € A*.

2 Structure of m-supports

We give in this section some basic results concerning the structure of m-supports of
Zomin, M and N-recognizable series that will be useful in the sequel. Let us first recall
the following result which is folklore (it is in fact a general property of positive semirings).
We refer to [4] for the proof.

PROPOSITION 2.1: Let S be arational series of Z,,,,Rat(A) (resp. of Z,..,Rat(A)).
Then the set
{ w E A*, (S|w) = +00 } (resp_ { w E ,4*7 (S|w) = —0 })

is a constructible rational language of Rat(A).

The following proposition gives us the structure of m-supports of series with multi-
plicities in M or in V.

PROPOSITION 2.2 : Let S be a rational series of MRat(A) (resp. of NRat(A)) and
let m be an element of NU {400} (resp. of NU {—oc}). Then the set
{we A, (Sw)=m}

is a constructible rational language of Rat(A).



Proof : We will argue only in the tropical semiring case, since the other case is similar.
Note first that the result follows from proposition 2.1 when m = +oc. Let us suppose
now that m € N. Then we can write

fwed, (Slw)=m}={weA, (Slw)>m}—{wed, (Sw)>m+1}
It follows from this equality that it suffices to prove that the set
{we A, (S|w)=m}

is a constructible rational language in order to conclude. Let us now introduce the semiring
M., whose support is {0,...,m} and which is equipped with min as addition and with
a product defined by @y =z 4+yife+y <mand 2@y =mifz4+y > m. We
can clearly consider the projection 7, from M into M,, defined by 7, (z) =z if e <m
and 7, (x) = m if @ > m. We also denote by 7, its natural extension as a morphism of
algebras from M << A>> into M,, << A>>. With these notations, we now have

{weA*, (Slw)y>m } ={weA* (7 (5)|w)=m}

Since recognizable series are effectively preserved by morphisms (cf [2, 7] for instance),
Tm(S) is a M, -recognizable series. Hence we are now led to prove that the set

{weA*, (Tlw)=m}

is a constructible rational language for every M, -rational series T'. However, since M,,
is a finite semiring, such a series 7" has a finite number N of left derivatives (cf corollary
2.3.2 of [7] for instance). Hence there exists an effective finite family (w;);=1 y of words of
A* such that 7 = (T;),=1 v is exactly equal to the finite family of the left derivatives of
T, if we set T; = w; ' T for every i € [1, N]. We can always suppose that w; = 1 in such
a way that Ty = T'. Since T is by construction stable by left derivative, there exists for
every ¢ € [1, N] and for every a € A another (effectively computable) integer i(a) € [1, N]
such that a™'7T; = Tj,). Applying now relation (2.2) to every T;, we get the relations

Ve [1,N], T, = (TZ|1) + Z CLTZ'(G)

a€A
that can also be expressed as a linear system
T (T + (Y aM)T
a€A

where 7 denotes the column vector (7;);=1 5, where (7|1) denotes the column vector
(Ti)iz1xn € MY and where M, denotes the square matrix of order N defined by
(Ma)ii(ay = 0 and by (M,);; = m if j # i(a) for every ¢ € [1, N]. Using now propo-

sitions 7.6.1 and 7.6.2 of [2], it follows easily from our computations that we can write
T=0mm ... m)( Z M, a) (Ti|1)iz1,n
a€A
in an effective way. Observe that all the entries of any matrix M, belong to {0,m}.
Hence, since the subsemiring {0,m} of M,, is isomorphic to the boolean semiring, it
follows easily from this last relation that

i=1,N



where I; denotes for every ¢ € [1, N] the rational language recognized by the boolean
(up to the previous isomorphism) automaton (I, pu,T) with I = (0 m...m), where the
representation g is defined by the matrices (M,)q.ca and where T is the column vector
whose every entry is equal to m, excepted the i-th which is 0. Note that (/;);=1,n is a
partition of A* that consists in constructible rational languages. Hence it follows that

{wed, (Tlw)y=m}= U I
(Tilt)=m

Our proposition follows now immediately from this last relation. g

Notes : 1) Using the effective isomorphism between N and M~ mentioned in the
preliminary section, it follows easily from the above proposition that m-supports are also
effectively rational for every M™-rational series.

2) It follows easily from propositions 2.1 and 2.2 that every limited M-rational series
S can be effectively written as follows

M
S=min(a;®L)  (Lim)

where M is a positive integer, where (I;);=1 is a family of rational languages and where
(a;)i=1,m is a family of positive integers. When S is a N-limited series, relation (Lim)
is in particular still valid but the family (/;);=1,m is now a partition of A*. In this last
case, relation (Lim) holds also when we replace min by max in it. It follows that every
N-limited M-rational series is also a (N-limited) A -rational series and it can be easily
checked that the converse also holds. Thus we proved that

N-Lim(M) = N-Lim(N) C N-MinMax(A4) C N<<A>> .
All the above inclusions are in fact strict (see the notes following corollary 4.4).

3) Note finally that the situation in the tropical semiring is completely different from
the situation in N for instance. Indeed m-supports are not rational in general for arbitrary
N-rational series (cf [1]).

The following result follows immediately from the two previous propositions.

COROLLARY 2.3 : Let m be a constant in NU {+oc} (resp. in NU {—o0}). Then
it is decidable whether a series in MRat(A) (resp. in N'Rat(A)) is equal to the constant
series m or has a coefficient (or an infinite number of coefficients) equal to m.

Note : The same result holds obviously for M ~-rational series.

3 Fatou properties

The purpose of this section is to show a lack of symmetry between min and max with
respect to Fatou properties. Indeed we can prove that Z,,;, is a Fatou extension of M,
but that Z,,,. is not a Fatou extension of N'. We will see later that this result is strongly
connected with decidability results for special sorts of equality problems.



3.1 A Fatou property of M

PROPOSITION 3.1 : Z,,, is a Fatou extension of M.

Proof : Let S be a Z,,;,-recognizable series of M << A >>. To prove our proposition, we
must show that S is M-recognizable. Note first that we can suppose that S is not equal
to the constant series +o00o since there is nothing to prove in this case. Then, according
to proposition 1.5.1 of [1] or to theorem 2.3.1 of [7], there exists a stable Z,,;,-module
Z =< S1,...,5, > of finite type which contains S. Since S # 400, we can always
suppose that S; is not equal to the constant series 400 for every ¢ € [1,n]. Hence there
exists a family (k;);=1 ., of elements of Z such that

S=& koS =mnkos) (3.1) .
k=1 k=1

Since S € M << A>>, it follows from relation (3.1) that every series k; @ S; belongs to
M << A>>. Let us now introduce for every ¢ € [1, n| the integer

L=min{lez I®S e M<A>>} (3.2)

which exists since the set considered in (3.2) is non-empty and has obviously a least
element. Then T; = [; ® S; € M << A>> and [; < k; for every 7 € [1,n]. Let now M be
the M-module generated by the series T1,...,T,. It follows from relation (3.1) that

To end our proof, it suffices to show that M is stable. Let then a be in A and k be in
[1,n]. Since Z is stable, there exists a family of integers (z;(a, k))i=1,, € Z" such that

a_lTk =0, ® a‘lSk =0 ® (él Zi(a, k) ® SZ) = H;lln((lk + ZZ'(CL, k)) X SZ) e M<<A>> .

Hence every series (I + z;(a, k)) ® S; belongs to M << A>> and according to definition
(3.2), it follows that I 4+ z;(a, k) > [; for every ¢ € [1,n]. Hence we have

a Ty =k +2z1(a,k)—L)R@Ty & ... & (I +2u(a,k)—1,)0T, € M .
This proves that M is stable. Thus S is M-recognizable and this ends our proof. g

It should be noticed that Z,,;, is in fact a constructive Fatou extension of M as shows
the following corollary of the previous result.

PROPOSITION 3.2 : Z,., is a constructive Fatou extension of M.

Proof : Let S € M << A>> be a Z,,;,-recognizable series given by a Z,,;,-automaton.
Let us then show that the proof of proposition 3.1 enables one to effectively construct
a M-automaton recognizing S. Note first that it is decidable according to proposition
2.1 whether S = +00 and that it is immediate to conclude in this case. Hence we can
suppose that S is not equal to the constant series +00. Then, according to the proot of
proposition 1.5.1 of [1] or of theorem 2.3.1 of [7], we can construct explicitely the series
S; and the elements k; of Z,,;, involved in relation (3.1) of the proof of proposition 3.1.
Moreover, according again to proposition 2.1, we can also effectively suppose that every



S; is distinct from the constant series +oo and it is possible to choose for every i € [1,n]
a coefficient A; # +oo of S;. Using the denotations of the proof of proposition 3.1, we get
immediately that —A; — 1 < [; < k; for every ¢ € [1, n].

Let us now define the finite set P = [-A;—1,k| x ... x[—A,—1,k,|. For every
p = (pi)iz1,n € P, let us then define the series T;(p) = p; ® S; where ¢ € [1,n]. Arguing as
in the proof of proposition 3.1, it is easy to show that

S = Z_él (ki —pi) @ Ti(p)  (3.3)

and that we have for every a € A and every ¢ € [1,n],
a ' Ti(p) = B (pi+zia,0) —p;) ©Tlp)  (34).

Since (T3(p)|1) = pi + (Si|1) for every ¢ € [1,n], it is now easy to deduce from the proofs
of proposition 1.5.1 of [1] or of theorem 2.3.1 of [7] and from relations (3.3) and (3.4) that
S is recognized by the Z,,;,-automaton

A(p) = ((ki = pi)izin 5 ((pi + zj(a,8) — pi)i<ij<n)aea 3 (pi + (Si|1))iz1,0)
for every p = (pi)iz1,n € P. Moreover the proof of proposition 3.1 shows that there exists

p € P such that A(p) is an M-automaton. Therefore it follows that we can effectively
find a M-automaton recognizing S by looking at every automaton A(p). m

The following result is an easy consequence of the previous proposition.

COROLLARY 3.3 : It is decidable whether a Z,,;,-recognizable series belongs to
M << A>> or not.

Proof : The corollary follows easily from the proof of proposition 3.2 which shows that
a Zpyi-rational series S belongs to M << A >> iff it is a M-rational series and iff there
exists p € P such that A(p) is an M-automaton. m

3.2 The case of Z,,,,

We have the following negative result for Z,,,,. Note that it claims equivalently that
Z..in 1s 10t a Fatou extension of M™.

PROPOSITION 3.4 : Z,,. is not a Fatou extension of N.

Proof : Let g and v be the two Z,,,,-representations of A* of order 1 defined by
pla) = (1), u(0)=(0) and  v(a)=(0), v(b)=(-1)

Using these two representations, it is easy to see that the series
ra= 3, |wiw and rn= > —|wpw
w€ (a+b)* wE(a+b)*

are Z,q.-rational since they are respectively recognized by the two Z,,,.-automata of
order 1 associated with g and v and given by



a i
) 1

U U

0b —1b

Figure 3.1

Hence the series

R=r,0om= Y (jwl—|w))w
wE(a+b)*

is Z,q-rational. By symmetry, the series

S= Y (lwh— wl)w

we(a+b)*
is also Z,,,.-rational. It follows that the series T' defined by

T=R&S=max(S,R) = > ||w|.—|w|w
w€(a+b)*
is Z,,q4.-rational. Moreover T belongs to N'<< A>>. But T cannot belong to N'Rat(A)
since it were the case, we would have according to proposition 2.2

{we(a+b)*, (Tlw)=0}={we(a+b)* |w,=w} € Rat(a,b)

which is clearly not the case. Hence it follows that Z,,,, is not a Fatou extension of N.
This ends our proof. m

Notes : 1) It follows easily from the above result that proposition 2.2 cannot be extended
to Z,.4-rational series or equivalently to Z,,;,-rational series. Even worse, there exists in
fact m-supports of Z,,;, or Z,,,,-rational series which are not recursive (cf [4, 5]). Hence
proposition 2.1 gives really the only kind of m-support which is rational for every Z,.;,
or Z,..c-rational series.

2) The “negative part” of a Z,,;,-rational series S, that is to say the series S~ defined
by (S~|w) = (S|w) when (S|w) < 0 and by (S™|w) = 0 when (S|w) > 0, is always
Z in-rational since we clearly have S~ = S @& 0. On the other hand, we can also define
the positive part ST of a Z,,;,-rational series S by setting (ST|w) = 0 when (S|w) < 0
and (ST|w) = (S|w) when (S|w) > 0. One should notice that ST is not in general a
Zin-rational series. Indeed if it was the case, ST would be M-rational according to
proposition 3.1. Hence the 1-support (cf section 1.3) of S, which is the l-support of St,
would always be a rational language according to proposition 2.2.

Let us now consider the series R and S constructed in the proof of proposition 3.4.
They are also Z,,;,-rational series that are recognized by the automata of Figure 3.1
interpreted as Z,.;,-automata. It suffices then to consider the Z,,;,-rational series T' =
1 ® min(R, S) in order to conclude to a contradiction since the 1-support of 7" is the set
of words over {a,b}* with the same number of a and of b which is clearly not rational.
The same kind of result holds also for Z,,,,-rational series by interchanging the terms
“positive” and “negative”.

10



4 Some partial decidability results for the equality
problem in Z

We will give in this section some decidability results for special kinds of Z,,;,-series.
These results can always be translated for Z,,,,-rational series, using the effective isomor-
phism mentioned in section 1.1.

4.1 Constant series

This short section is devoted to the generalization of corollary 2.3 to Z,,;,-rational
series.

PROPOSITION 4.1 : It is decidable whether a Z,,;,-rational series is equal to a given

constant series m € Z U {400}.

Proof : Let k € ZU {400} be a given constant and let S be a Z,;,-rational series.
It £ = +oo, the decidability of S = 400 follows easily from proposition 2.1. Let us
now suppose that k& € Z. In this case, the decidability of the problem S = k is clearly
equivalent to the decidability of the problem S @ (—k) = 0. Hence we can suppose that
k = 0. Observe now that S = 0 implies obviously that S is a M-rational series. Hence,
according to corollary 3.3, we can effectively reduce the problem S = 0 for Z,,;,-rational
series to the same problem for M-rational series. The decidability of this last problem
follows now immediately from corollary 2.3. This ends our proof. g

4.2 Min-max series

Let now S be a series of Z,,;, << A>> (resp. of Z,,,, << A>>). Let us then denote
by —S the series of Z,,,, << A>> (resp. of Z,,;, << A>>) defined by (—S|w) = —(S|w)
for every w € A* where we set —(+00) = —o0 and —(—o0) = +oo. This new operation
allows to directly connect Z,,;,-rational series with Z,,,,-rational series.

PROPOSITION 4.2 : Let S be a Z,,;,-rational (resp. Z,,q,-rational) series. Then the

series —S is a Z,,q,-rational (resp. Z,;,-rational) series.

Proof : It is an obvious consequence of the fact that —S is just the image of S in the
isomorphism (which is an involution) z — —z from Z,,;,, into Z,,4.. -

We are now able to give our main decidability result.

PROPOSITION 4.3 : Let S be a Z,,;,-rational series and let 7" be a Z,,,,-rational
series. Then it is decidable whether S = T" or whether S > T'.

Proof : Let S be a Z,,;,-rational series and let 7' be a Z,,,,-rational series. Let now [
be the +oo-support of S and J be the —oo-support of T' (cf section 1.3). According to
proposition 2.1, these two languages are constructible rational languages.
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Let us now first study the equality problem S = T'. If [ or J are non-empty, then S is
clearly distinct from 7T'. Hence we can suppose that I = .J = (). In this case, the problem
S =T can be reduced to the problem S ® (=7) = 0. But it follows immediately from
propositions 4.2 and 4.1 that this last problem is decidable.

Let us finally study the inequality problem S > T'. In this case, let us introduce the
two respectively Z,,;,-rational and Z,,,,-rational series

S=(S®IUJ)min A*—(IUJ) and T =(T®IU.J) max A*—(IU.J) .
We clearly have
&y (Slw) ifwglUJ - _{(T|w) ifwégluJ
(S|“)_{ 0 itwerug M TO=1"0" ey
for every w € A*. Hence the inequality problem S > T' is now clearly equivalent to the
inequality problem S > T which is itself equivalent to the inequality problem S ® (=7 >

0. But it follows immediately from proposition 4.2 and corollary 3.3 that this last problem
is decidable. This ends therefore the proof of our proposition. -

Note : Note that the problem S < 0 is undecidable when S is a Z,,;,-rational series (see
[4] or [5]). It follows that the problem S < T'is undecidable when S is a Z,,;,-rational
series and 7' a Z,,,--rational series.

COROLLARY 4.4 : The equality problem is decidable for the Z-MinMax series of
Zpin << A>> and for the N-MinMax series of M << A >>.

Notes : 1) In a note following proposition 2.2, we showed that the N-MinMax series
contain the N-limited series. It can also be shown that every one-letter M-rational series
in N<< A>> is a N-MinMax series. Hence the above corollary contains in particular the
two corresponding known decidability results.

2) The restriction to series which have not 4+o0c as coefficient is not very important
in our context since it can easily be shown using proposition 2.1 that the decidability of
S =T can always be reduced for every Z,,;,-rational series S and T to the decidability
of S =T where (S|w) is equal to (S|w) if (S|w) # +oc and to 0 if not.

3) It follows clearly from the above result and from the undecidability of the equality
problem for M-rational series that there exists M-rational series which are not N -rational
series. In fact using all the results of this paper and of [4] or [5], it is not difficult to deduce
such a series from the series HD involved in the proof of the main theorem of [4] or [5].
However the problem remains to characterize N-MinMax series and to construct less tricky
examples.

5 Decidability of the limitedness problem for Z,,,

In this section, we show how to apply our results for solving the limitedness problem
for Z,,i,-rational series. This will answer to a question of I. Simon (cf [8]).
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5.1 Negatively limited Z,,,-rational series

Let us first give the following definition.

DEFINITION 5.1 : A Z,,;,-rational series S is said to be a negatively limited series iff
there exists an integer K € Z such that (S|w) > K for every w € A*.

Note : A Z,,;,-rational series S is clearly not a negatively limited series if and only if
there exists an infinite sequence (w;);ey of words of A* such that

(S|wo) > (S|wq) > ... > (S|wy,) > ...

Let us now give some important lemmas.
LEMMA 5.1: Let S be a proper Z,,;,-rational series. Then the two following conditions
are equivalent :

1) S* is negatively limited.

2)Vwe A", (S|w) >0.
Proof : Let us suppose first that the second condition holds. Then we clearly have
(S*|w) > 0 for every w € A* and hence S* is obviously negatively limited.

Let us now consider a proper Z,,;,-rational series S such that S* is negatively limited
and let us suppose that the second condition is not satisfied. Then, since S is a proper
series, there exists a non-empty word u such that (S|u) < 0. Therefore we clearly have

(S*|u™) < (Slu) 4+ ...+ (Slu) =n(Slu) — ot —

n times

for every n € N—{0}. It follows clearly from this last inequality that S* cannot be
negatively limited. Hence we obtained a contradiction and the second condition must
hold. This ends therefore the proof of our lemma. g

LEMMA 5.2 : Let 5,7 be two Z,,;,-rational series. Then the two following assertions
are equivalent :

1) S & T is negatively limited.
2) S and T are negatively limited.

Proof : Let us first suppose that assertion 1) holds. Then there exists K € Z such
that min((S|w), (T'|w)) = (S & T|w) > K for every w € A*. It follows clearly from this
last inequality that (S|w) > K and (T'|w) > K for every w € A*. Hence S and 7' are
negatively limited.

Let us suppose conversely that S and T are negatively limited. Then there exists
M, N € 7Z such that (S|w) > M and (T|w) > N for every w € A*. It follows clearly
from these two inequalities that we have (S & T'|w) = min((S|w), (T|w)) > min(M, N)
for every w € A*. Hence S & T is a negatively limited series. This ends therefore our
proof. -
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LEMMA 5.3 : Let S be a Z,,;,-rational series and let k& € Z. Then the two following
assertions are equivalent :

1) k® S is negatively limited.

2) S is negatively limited.

Proof: The first assertion is clearly equivalent to the fact that there exists some constant
K € 7 such that (S|w) > K — k for every word w € A* and this last condition is also
obviously equivalent to the fact that S is negatively limited. This proves therefore our
lemma. g

LEMMA 5.4: Let S,T be two Z,,;,-rational series which are different from the constant
series +00. Then the two following assertions are equivalent :

1) S ® T is negatively limited.

2) S and T are negatively limited.

Proof : Let us suppose first that S®T' is negatively limited. Then there exists a constant
K € 7 such that
(S @T|w) =ming=y ((S|u)+ (Tv)) > K

holds for every w € A*. Let us suppose for instance that S is not negatively limited. Then
there would exist an infinite sequence (u;);en of words such that (S|u;) — im0 —00.
Since T' # 400, there exists a word vg such that (7'|vg) # +oo. It follows that we have

(5 ® Tluivo) < (Sfws) + (T|vo) —impoo —00

for every ¢ € N. Hence (5 ® T'|u;v9) —i—40o —0o. This contradiction shows that S
must be negatively limited. Arguing in the same way, we can also show that 7" must be
negatively limited.

Let us now suppose that both S and 7" are negatively limited. Hence there exists two
constants M, N € Z such that (S|w) > M and (T|w) > N for every w € A*. It follows
clearly from these two inequalities that

(S @ T|w) =miny=y ((Slu) 4+ (Tv)) > M+ N.
Hence S @ T' is negatively limited. This ends therefore our proof. g

We can now give our first decidability result for this section.

PROPOSITION 5.5 : It is decidable whether a Z,,;,-rational series S is negatively

limited or not.

Proof : Let us first notice that a proper Z,,;,-rational expression - i.e. a Z,,;,-rational
expression which involves only proper series enclosed under a star - is always effectively
computable from a Z,,;,-automaton recognizing a Z,,;,-rational series S. Note also that
conversely a Z,,;,-automaton is always effectively computable from a Z,,;,-rational expres-
sion. We can then consider the following algorithm that works with a proper Z,,;,-rational
expression F as input and answers “true” or “false” :
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NegLimited(F)

Begin
Case F=ac A:
“true” ; End ;
Case £ = 5"

Positive(.S) ; End ;
Case F=5SaT:

NegLimited(S) and NegLimited(7') ; End ;
Case F=k® S5 :

If £k = +o0 Then “true”

Else NegLimited(S) ;

End ;
Case F=5S®T:

If S=+4occor T'=+occ Then “true” ;

Else NegLimited(S5) and NegLimited(7) ;
End ;

?

End :

?

where Positive(.S) denotes an algorithm that answers “true” or “false” according to the
fact that S is a positive series or not. Note that such an algorithm exists according to
corollary 3.3. Observe also that the tests S = 400 or T' = 400 can effectively be made
according to proposition 4.1.

Notice now that the above algorithm ends clearly always. Moreover all the previous
lemmas shows that it answers “true” if and only if the Z,,;,-rational series represented
by the Z,,;,-rational proper expression £ is negatively limited. This ends therefore our
proof. -

Note : When S is a negatively limited Z,,;,-rational series, it is not difficult using lemmas
5.1 to 5.4 to adapt the previous algorithm in order to effectively compute a constant K € Z
such that (S|w) > K for every w € A*.

5.2 Limited Z,,;,-rational series

We can now give our decidability result for the limitedness problem for Z,,;,-rational
series.

PROPOSITION 5.6 : It is decidable whether a Z,,;,-rational series is limited.

Proof : Let S be a Z,,;,-rational series. If S is limited, S is also in particular negatively
limited. But, according to proposition 5.5, this last property can be decided. Hence the
decidability of limitedness for Z,,;,-rational series can be reduced to the decidability of
the same problem for negatively limited series. Let now S be such a series. According to
the note following proposition 5.5, we can effectively compute K € Z such that (S|w) > K
for every w € A*. Let us then consider the Z,,,,-rational series T'= 5 ® (—K). Then it
is easy to see that S is limited if and only if 7" is limited. But this last series is positive.
Hence according to proposition 3.2, T' is an effective M-rational series. Our result follows
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now from the decidability of the limitedness problem for M-rational series (cf [3]). This
ends the proof of our proposition. -

Notes : 1) It follows clearly from the above proof that a Z,,;,-rational series S is limited
iff there exists a M-rational limited series T and a constant k£ € Z such that S =k ® T.

2) An easy consequence of the above proposition is that it is decidable for every M-
rational series S whether there exists a constant M € N such that

Vwe A", klw|— M < (Sjw) < k|w|+ M

where k denotes a given positive integer.
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