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Semigroups whose idempotents form a

subsemigroup∗

J. Almeida†, J.-E. Pin and P. Weil‡

August 17, 2005

Sumário

Prova-se que todo o semigrupo S cujos idempotentes formam um subsemi-
grupo admite uma cobertura E-unitária com a mesma propriedade. Além disso,
se S é E-denso ou regular, então a sua cobertura pode ser escolhida como
sendo do mesmo tipo. Enfim, descreve-se a estrutura dos semigrupos finitos
E-unitários densos. Estes resultados estendem os de Fountain sobre semigru-
pos cujos idempotentes comutam, e os de Birget, Margolis e Rhodes, e Jones e
Szendrei sobre E-semigrupos finitos.

Résumé

Nous montrons que tout semigroupe S dont les idempotents forment un sous-
semigroupe admet un revêtement E-unitaire avec la même propriété. De plus,
si S est E-dense ou orthodoxe, alors son revêtement peut être choisi de même.
Enfin, nous décrivons la structure des semigroupes E-unitaires denses. Nos
résultats généralisent ceux de Fountain sur les semigroupes dont les idempotents
commutent, et sont analogues à ceux de Birget, Margolis et Rhodes, et Jones
et Szendrei sur les E-semigroupes finis.

Abstract

We prove that every semigroup S in which the idempotents form a sub-
semigroup has an E-unitary cover with the same property. Furthermore, if S is
E-dense or orthodox, then its cover can be chosen with the same property. Then
we describe the structure of E-unitary dense semigroups. Our results generalize
Fountain’s results on semigroups in which the idempotents commute, and are
analogous to those of Birget, Margolis and Rhodes, and of Jones and Szendrei
on finite E-semigroups.
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Introduction

This paper is part of a continuing investigation of the structure theory of semi-
groups whose first cornerstones were two theorems by McAlister on the theory
of inverse semigroups [11, 12]. The first of these theorems states that each in-
verse semigroup is covered by a regular extension of a group by a semilattice,
where the covering map is one-to-one on idempotents. These regular extensions
were later proved to be exactly the E-unitary inverse semigroups [16]. The sec-
ond theorem was a representation theorem of the E-unitary inverse semigroups.
McAlister [11, 12] gave a first description of these semigroups in terms of P -
semigroups. Another representation for these semigroups is due to O’Carroll [15]
who proved that they are exactly the regular subsemigroups of the semidirect
products of a group by a semilattice.

These seminal results were generalized in several directions. In particular,
Margolis and Pin [9] showed that a natural non-regular analogue of the class of
inverse semigroups is the class of semigroups in which the idempotents commute.
They proved a representation theorem for the E-unitary semigroups in this class,
which extends McAlister’s theorem. However this theorem was stated in a rather
different way than the P -semigroup theorem. In the proof, Margolis and Pin
made use of categories, considered as algebraic objects generalizing semigroups.
In the same paper [9], they also proposed a conjecture to generalize McAlister’s
covering theorem to the non-regular case. This conjecture was first solved by
Ash [1] for the finite case, and more recently by Fountain [5] for the general
case, using totally different techniques.

Generalizing further, a natural generalization of semigroups in which idem-
potents commute is given by E-semigroups, that is, semigroups in which the
idempotents form a subsemigroup. Regular E-semigroups, also known as or-
thodox semigroups, were widely studied, in particular by Szendrei [22, 24, 25],
Kaďourek and Szendrei [7], Takizawa [27], and finite E-semigroups were studied
by Birget, Margolis and Rhodes [3] and Jones and Szendrei [6].

In this paper we complete this study by proving two results on arbitrary
E-semigroups. The first one states that every E-semigroup S has an E-unitary
cover, and that if S is E-dense or regular, then its E-unitary cover can be cho-
sen with the same property. The second one is a representation theorem for
E-unitary E-semigroups. Our proof for the first theorem is essentially similar
to Fountain’s [5], even though the presentation is different. The proof of our
second theorem is inspired by the proof of the analogous result of Margolis and
Pin [9] and makes essential use of the concept of category. Note that in order to
complete the picture it would be interesting to generalize 0’Carroll’s represen-
tation theorem mentioned above to the case of E-unitary orthodox semigroups,
and to extend Szendrei’s [23, 24] results in this direction.

The paper breaks up into four main sections. The first one deals with basic
properties of E-dense and E-unitary E-semigroups. The covering theorem is
stated and proved in Section 2, while the representation theorem is proved in
the third section. The last section, included here for the sake of completeness,
contains a survey of the analogous results on finite E-semigroups.
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1 Preliminaries

Let S be a semigroup. Then S1 denotes the monoid constructed as follows:
S1 = S if S is a monoid, and, if S is not a monoid, S1 = S ∪ {1} where 1 is an
identity.

If S and T are semigroups, a relational morphism τ : S → T from S into T is a
mapping from S into the power set P(T ) such that sτ 6= ∅ and (sτ)(s′τ) ⊂ (ss′)τ
for all s, s′ ∈ S. If τ is a relational morphism from S into T , then the graph of
τ , that is, the set Rτ = {(s, t) ∈ S × T | t ∈ sτ}, is a subsemigroup of S × T
whose projection into its first component is onto S (this constitutes an alternate
definition of a relational morphism). Morphisms and inverses of onto morphisms
are examples of relational morphisms. Relational morphisms are closed under
composition. Let τ : S → T be a relational morphism, and let α and β be the
projections from the graph Rτ of τ into S and T respectively. It is easy to verify
that τ = α−1β. This factorization is called the canonical factorization of τ (see
[19, 18]).

Rτ

S T

α β

τ

Let X and Y be subsets of S. We let

X−1Y = {s ∈ S | ∃x ∈ X : xs ∈ Y }

XY −1 = {s ∈ S | ∃y ∈ Y : sy ∈ Y }.

A subsemigroup T of S is called unitary [2, 8] if T−1T ∩ TT−1 ⊂ T , that
is, if, for all t, t′ ∈ T and s ∈ S, ts ∈ T and st′ ∈ T implies s ∈ T . The
subsemigroup T is called dense if every element s of S can be completed on the
right and on the left into an element of T , that is, if there exist s′ and s′′ in S
such that ss′ ∈ T and s′′s ∈ T .

As usual, E(S) denotes the set of idempotents of S. An E-semigroup (resp.
an E-commutative semigroup) is a semigroup such that E(S) is a subsemigroup
(resp. a commutative subsemigroup)1.

An E-unitary semigroup (resp. E-dense semigroup, E-unitary dense semi-
group) is a semigroup S such that E(S) is a unitary subsemigroup (resp. a dense
subsemigroup, an unitary and dense subsemigroup). An orthodox semigroup is a
regular E-semigroup. The next propositions summarize some elementary prop-
erties of E-semigroups and have been rediscovered many times. More properties
of E-dense semigroups can be found for instance in Mitsch [14].

Proposition 1.1 Let S be an E-semigroup and let E = E(S). The following
conditions are equivalent.

(1) S is E-dense.

(2) For every s ∈ S, there exists s′ ∈ S such that ss′ ∈ E.

(3) For every s ∈ S, there exists s′′ ∈ S such that s′′s ∈ E.

1This terminology is different from the one used in [9, 5], but seems to be more appropriate
in this more general context.
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(4) For every s ∈ S, there exists s′ ∈ S such that ss′ ∈ E and s′s ∈ E.

Proof. Clearly, (4) implies (1) and (1) implies (2) and (3). By symmetry, it
suffices to show that (2) implies (4). Let s ∈ S and let s′ ∈ S be such that
ss′ ∈ E. Then s′ss′s ∈ E since s′ss′ss′ss′s = s′(ss′)(ss′)(ss′)s = s′(ss′)s. It
follows that (s′ss′)s ∈ E and s(s′ss′) ∈ E, proving (4).

Proposition 1.2 Let S be an E-unitary semigroup, and let E = E(S).

(1) For every s, t ∈ S, if st ∈ E, then ts ∈ E.

(2) For every s, t ∈ S and e ∈ E, if st ∈ E, then set ∈ E.

(3) For every s, t ∈ S and e ∈ E, if set ∈ E, then st ∈ E.

Proof. (1) Since st ∈ E, tsts and tststs are idempotents. It follows that ts lies
in E−1E ∩ EE−1, whence ts ∈ E, since S is E-unitary.

(2) If st ∈ E, then ts ∈ E by (1), and ets ∈ E since S is an E-semigroup.
Now ets = (et)s ∈ E, and, by (1), set ∈ E.

(3) If set ∈ E, then t(se) ∈ E and (et)s ∈ E by (1). It follows that ts lies in
E−1E ∩ EE−1, whence ts ∈ E. Finally, st ∈ E by (1).

Proposition 1.3 Let S be an E-semigroup and let E = E(S). The following
are equivalent:

(1) S is E-unitary.

(2) For every e, s ∈ S, the conditions e, es ∈ E imply s ∈ E.

(3) For every e, s ∈ S, the conditions e, se ∈ E imply s ∈ E.

Proof. Clearly, (2) or (3) implies (1). By symmetry, it suffices to show that
(1) implies (2). Suppose that S is E-unitary, and let e, es ∈ E. Then, by
Proposition 1.2, se ∈ E. It follows that s ∈ E−1E ∩ EE−1 and s ∈ E since E
is unitary.

Proposition 1.4 Let S be an E-unitary dense semigroup and let E = E(S).
Then, for all r, t ∈ S1 and s ∈ S, rst = rt implies s ∈ E.

Proof. Suppose rst = rt. Since E is dense, there exists r′, t′ ∈ S such that
r′r, tt′ ∈ E. It follows that (r′r) s (tt′) = (r′r)(tt′) ∈ E. Since S is E-unitary,
it follows that (r′r)s ∈ E by Proposition 1.3 (3) and s ∈ E by Proposition 1.3
(2).

Given a semigroup S, we denote by ≤R and ≤L the quasi-orders on S defined
by

s ≤R t if and only if there exists u ∈ S1 such that s = tu,

s ≤L t if and only if there exists u ∈ S1 such that s = ut.

Note that, if e is an idempotent and s ∈ S, then s ≤R e if and only if es = s
and s ≤L e if and only if se = s.

4



2 The covering theorem

Let S and T be semigroups. A surjective morphism ϕ : T → S which is one-
to-one on idempotents (or “idempotent separating”) is called a covering. In
this case, T is said to be a cover of S. The aim of this section is to prove the
following theorem.

Theorem 2.1

(1) Every E-semigroup has an E-unitary cover.

(2) Every E-dense semigroup has an E-unitary dense cover.

(3) Every orthodox semigroup has an E-unitary orthodox cover.

Our proof is basically the same as the proof given by Fountain [5] in the case
of E-commutative dense semigroups, but our presentation is slightly different.
We first give a sufficient condition to ensure that an E-semigroup has an E-
unitary cover, extending a result of [13] on inverse semigroups. Then we show
that every E-semigroup satisfies this condition.

Proposition 2.2 Let S be an E-semigroup. Suppose there exists a group G
and a relational morphism τ : S → G such that 1τ−1 = E(S). Then S has an
E-unitary cover. Furthermore, if S is E-dense and if τ satisfies the following
condition

(∗) for all s ∈ S and g ∈ sτ , there exists s′ such that ss′ ∈ E(S)
and g−1 ∈ s′τ ,

then S has an E-unitary dense cover. Finally, if S is orthodox and if τ satisfies
the following condition

(∗∗) for all s ∈ S and g ∈ sτ , there exists an inverse s′ of s such
that g−1 ∈ s′τ ,

then S has an E-unitary orthodox cover.

Proof. Let τ = α−1β be the canonical factorization of τ . Thus, we let R be the
graph of τ , R = {(s, g) ∈ S ×G | g ∈ sτ}, α : R → S is defined by (s, g)α = s
and β : R → G is defined by (s, g)β = g. We claim that R is an E-unitary cover
of S. The idempotents of R are of the form (e, 1) where e ∈ E(S). Therefore R
is an E-semigroup and α is one-to-one on idempotents.

Let (e, 1) ∈ E(R), (s, g) ∈ R and suppose that (e, 1)(s, g) ∈ E(R). Then
g = 1 and, since (s, g) ∈ R, s ∈ gτ−1 = 1τ−1 = E(S). Therefore (s, g) ∈ E(R)
and R is E-unitary.

Suppose now that S is E-dense and that τ satisfies (∗). Let (s, g) ∈ R. Then,
by (∗), there exists s′ such that ss′ ∈ E(S) and (s′, g−1) ∈ R. It follows that
(s, g)(s′, g−1) = (ss′, 1) ∈ E(R). Thus R is E-dense by Proposition 1.1.

Finally, suppose that S is regular and that τ satisfies condition (∗∗). For
each (s, g) ∈ R, by (∗∗), there exists an inverse s′ of s such that (s′, g−1) ∈ R.
Then (s′, g−1) is an inverse of (s, g), so R is orthodox.
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Theorem 2.3 Let S be an E-semigroup, and let E = E(S). Then there exists
a group G and a relational morphism τ : ESE → G such that 1τ−1 = E. Fur-
thermore, if S is E-dense, then ESE is E-dense and τ satisfies (∗), and if S is
regular, then ESE = S and τ satisfies (∗∗).

Proof. Let G be the free group with basis the set S. Let S̄ be a copy of S and
let s 7→ s̄ be a bijection from S onto S̄. To avoid confusion with multiplication
in S, we write elements of the free monoid (S ∪ S̄)∗ as finite sequences; in
particular, ( ) will denote the empty sequence. It is well known that G is the
quotient of (S ∪ S̄)∗ by the congruence generated by the relations (s)(s̄) = ( )
and (s̄)(s) = ( ). We denote by π : (S ∪ S̄)∗ → G the morphism induced by this
congruence.

The bijection s 7→ s̄ can be extended into an involution of (S∪S̄)∗ by setting
s = s for every s ∈ S and

(a1, . . . , an) = (ān, . . . , ā1) for every a1, . . . , an ∈ S ∪ S̄.

Define a map σ from S ∪ S̄ into the set of subsets of S by setting

sσ = EsE

s̄σ =
⋃

{s′|ss′∈E and s′s∈E}

{e ∈ E | e ≤L s
′s}s′{e ∈ E | e ≤R ss′}.

Then we have the following lemma.

Lemma 2.4 For every s ∈ S,

(a) (sσ)E = E(sσ) = sσ;

(b) (s̄σ)E = E(s̄σ) = s̄σ;

(c) (sσ)(s̄σ) ⊂ E and (s̄σ)(sσ) ⊂ E.

Proof. (a) is clear.
(b) Let e ∈ E and t ∈ s̄σ. Then t = e1s

′e2 for some s′ ∈ S such that ss′ ∈ E
and s′s ∈ E and some e1, e2 ∈ E such that e1 ≤L s

′s and e2 ≤R ss′. It follows
that ee1 ≤L s

′s and e2e ≤R ss′. Thus

et = (ee1)s
′e2 ∈ s̄σ and te = e1s

′(e2e) ∈ s̄σ

Therefore E(s̄σ) ⊂ s̄σ and (s̄σ)E ⊂ s̄σ. Conversely, if t = e1s
′e2 ∈ s̄σ, then

e1t = t = te2, whence t ∈ E(s̄σ) ∩ (s̄σ)E.
(c) By symmetry, it suffices to show that (sσ)(s̄σ) ⊂ E. Let t = e1se2 ∈ sσ

(where e1, e2 ∈ E) and let t′ = e3s
′e4 ∈ s̄σ (where ss′, s′s, e3, e4 ∈ E, e3 ≤L s

′s
and e4 ≤R ss′). Then se2e3s

′ ∈ E since

se2e3s
′se2e3s

′ = se2e3e2e3s
′ (because e3 ≤L s

′s)

= se2e3s
′ (because e2e3 ∈ E)

It follows that tt′ = e1(se2e3s
′)e4 ∈ E.

Let T be the set of all subsets of S of the form EXE, where X ⊂ S. Then T
is a monoid with identity E under multiplication of subsets. Lemma 2.4 shows
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that σ is a map from S ∪ S̄ into T . Hence, it can be extended (in a unique way)
into a monoid morphism σ : (S ∪ S̄)∗ → T by setting

( )σ = E

(a1, . . . , an)σ = (a1σ) · · · (anσ) for every a1, . . . , an ∈ S ∪ S̄.

Lemma 2.5 For every u ∈ (S ∪ S̄)∗ such that uπ = 1, uσ ⊂ E.

Proof. It is well known that 1π−1 is the smallest submonoid D of (S∪ S̄)∗ such
that, for every u1, u2 ∈ (S ∪ S̄)∗ and for all s ∈ S,

u1u2 ∈ D implies u1(s)(s̄)u2 ∈ D and u1(s̄)(s)u2 ∈ D.

Let D′ be the set of all u ∈ D such that uσ ⊂ E. Since ( )σ = E and (uv)σ =
(uσ)(vσ) for all u, v ∈ (S ∪ S̄)∗, D′ is a submonoid of 1π−1. Furthermore, if
u1u2 ∈ D′ and s ∈ S, then

(

u1(s)(s̄)u2

)

σ = (u1σ)(sσ)(s̄σ)(u2σ) ⊂ (u1σ)E(u2σ)

⊂ (u1σ)(u2σ) = (u1u2)σ ⊂ E,

and symmetrically,
(

u1(s̄)(s)u2

)

σ ⊂ E. Therefore u1(s)(s̄)u2 and u1(s̄)(s)u2 lie
in D′, whence D′ = 1π−1.

Since for every s ∈ S, sσ = EsE, the relation σ−1 : ESE → (S∪ S̄)∗ defined
by sσ−1 = {u ∈ (S ∪ S̄)∗ | s ∈ uσ} is a relational morphism. Let τ = σ−1π.
Then τ : ESE → G is a relational morphism. The following diagram may help
the reader to visualize the mappings and relations we are considering.

ESE (S ∪ S̄)∗ T ⊂ P(S)

G

σ−1 σ

τ π

We claim that 1τ−1 = E. First, if e ∈ E, then ( ) ∈ eσ−1 and ( )π = 1.
Therefore 1 ∈ eτ , and thus E ⊂ 1τ−1. Conversely, let s ∈ 1τ−1. Then there
exists u ∈ (S ∪ S̄)∗ such that uπ = 1 and s ∈ uσ. By Lemma 2.5, uσ ⊂ E and
thus s ∈ E. This completes the proof of the first part of Theorem 2.3.

It remains to show that if S is E-dense (resp. regular), then τ satisfies (∗)
(resp. (∗∗)). Let us first assume that S is E-dense. Let s ∈ ESE and let
g ∈ sτ . Let u ∈ (S ∪ S̄)∗ be such that s ∈ uσ and uπ = g. Then, by Lemma
2.5, (uσ)(ūσ) ⊂ E and (uū)π = 1. Since S is E-dense, ūσ is non-empty: indeed,
for every t ∈ S, by Proposition 1.1, there exists an element t′ such that tt′ ∈ E
and t′t ∈ E, and thus t̄σ 6= ∅. Let s′ ∈ ūσ. Then ss′ ∈ (uσ)(ūσ) ⊂ E and thus
ss′ ∈ E. On the other hand, g−1 ∈ s′τ .

Now let us assume that S is regular, that is, S is orthodox. For each s ∈ S,
let V (s) be the set of inverses of s. It is well-known that in orthodox semigroups
V (s)V (t) ⊂ V (ts) [20]. Again we may consider u ∈ (S ∪ S̄)∗ such that s ∈ uσ
and uπ = g, say u = (a1, . . . , an) with a1, . . . , an ∈ S ∪ S̄. So s = s1 . . . sn for
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some si ∈ (ai)σ (1 ≤ i ≤ n). Since V (sn) . . . V (s1) ⊂ V (s), it suffices to show
that, for each t ∈ S, each element of (t)σ (resp. (t̄)σ) has an inverse in (t̄)σ
(resp. (t)σ). Indeed this will imply that ūσ contains an inverse s′ of s. But
ūπ = g−1, so τ satisfies (∗∗).

So let t ∈ S and let x ∈ (t)σ. Then x = etf for some e, f ∈ E. Let
t′ ∈ V (t). Then x′ = ft′e ∈ V (x) and x′ ∈ (t̄)σ since x′ = (ft′t) t′ (tt′e).
Now let y ∈ (t̄)σ. Then y = (et′t) t′ (tt′f) for some e, f and t′ such that e,
f , tt′ and t′t are idempotents. Let t′′ ∈ V (t′) and y′ = (ftt′) t′′ (et′t). Since
y′ ∈ V (tt′f)V (t′)V (et′t), y′ is an inverse of y, and since y′ = (f) t (t′t′′et′t),
y′ ∈ (t)σ.

We can now conclude the proof of Theorem 2.1. Let S be an E-semigroup.
ThenM = S1 is an E-monoid. By Proposition 2.2 and Theorem 2.3, EME = M
has an E-unitary cover ϕ : M̂ → M . Since ϕ is one-to-one on idempotents the
restriction of ϕ to Ŝ = Sϕ−1 is also a covering ϕ : Ŝ → S, and Ŝ is E-unitary.
Furthermore, if S is E-dense (resp. regular), then so are M , M̂ and Ŝ.

Since a covering is one-to-one on idempotents, Fountain’s result follows im-
mediately [5] (see McAlister [11, 12] and O’Caroll [15], or [9] for the inverse
case).

Corollary 2.6

(1) Every E-commutative semigroup has an E-commutative unitary cover.

(2) Every E-commutative dense semigroup has an E-commutative unitary dense
cover.

(3) Every inverse semigroup has an E-unitary inverse cover.

We conclude this section by pointing out an interesting property of the above
construction of an E-unitary cover. Let αS : Ŝ → S be the covering constructed
in the proof of Theorem 2.1. It has the following property.

Proposition 2.7 For every morphism ϕ : S → T , there exists a morphism
ϕ̂ : Ŝ → T̂ such that ϕ̂αT = αSϕ. However, ϕ̂ needs not be onto even if ϕ
is.

Proof. Let πS : (S ∪ S̄)∗ → GS and πT : (T ∪ T̄ )∗ → GT be the canonical
projections onto the free groups with bases, respectively, the sets S and T . It
is straightforward that the morphism ϕ : S → T can be extended canonically to
morphisms ϕ : P(S) → P(T ) and ϕ : (S ∪ S̄)∗ → (T ∪ T̄ )∗, and that it induces
a morphism ϕ1 : GS → GT such that πSϕ1 = ϕπT .

Let now σS (resp. σT ) be the map from S (resp. T ) into the set of subsets of
(S∪S̄)∗ (resp. (T ∪T̄ )∗) defined in the proof of Theorem 2.3. For each s ∈ S, we
have (s)σSϕ ⊂ (sϕ)σT and (s)σSϕ ⊂ (sϕ)σT . Note that here equality does not
necessarily hold since, in particular, E(S)ϕ may be strictly contained in E(T ).
Then, for each u ∈ (S ∪ S̄)∗, uσSϕ ⊂ uϕσT . If τS = σ−1

S πS and τT = σ−1

T πT ,
we have, for every s in S:

sτSϕ1 = sσ−1

S πSϕ1 = sσ−1

S ϕπT ⊂ sϕσ−1

T πT = sϕτT .
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But Ŝ and T̂ are respectively the graphs of τS and τT , and αS and αT

are the projections of these graphs onto their first components. So, letting
(s, g)ϕ̂ = (sϕ, gϕ1) for each (s, g) ∈ Ŝ defines a morphism ϕ̂ : Ŝ → T̂ that
verifies ϕ̂αT = αSϕ.

3 The structure of E-unitary dense semigroups

According to [9], we define the fundamental group π1(S) of a semigroup S as
the quotient of the free group F (S) with basis S by the relations (s)(t) =
(st), for every s, t ∈ S. Let ι : S → F (S) be the natural embedding and let
π : F (S) → π1(S) be the natural surjective group morphism. Then the map
η = ιπ : S → π1(S) is a morphism which is characterized by the following
universal property. For every semigroup morphism γ : S → G into a group
G, there exists a unique group morphism ϕ : π1(S) → G such that γ = ηϕ.
Moreover, if Sγ generates G as a group, then ϕ is surjective. It follows that,
when S is E-dense, π1(S) is the maximal quotient group of S [9].

We can now state and prove a theorem which generalizes an analogous result
for E-commutative semigroups (Margolis and Pin [9]).

Theorem 3.1 Let S be a non-empty E-semigroup. The following conditions
are equivalent:

(1) There exist a group G and a surjective morphism ϕ : S → G such that
1ϕ−1 = E(S).

(2) There exists a surjective morphism ψ : S → π1(S) such that 1ψ−1 = E(S).

(3) The morphism η : S → π1(S) is surjective and satisfies 1η−1 = E(S).

(4) S is E-unitary dense.

Proof. Let E = E(S). Clearly (3) implies (2) and (2) implies (1). We prove
that (1) implies (4). If e, es ∈ E for some e, s ∈ S, then 1 = (es)ϕ = (eϕ)(sϕ) =
sϕ, whence s ∈ 1ϕ−1 = E. Therefore S is E-unitary. Moreover, for every s ∈ S,
there exists t ∈ S such that tϕ = (sϕ)−1. Therefore (st)ϕ = 1, whence st ∈ E.
Thus S is E-dense.

It remains to show that (4) implies (3). Let S be an E-unitary dense semi-
group. For every s ∈ S, let X(s) be the smallest subset X of S1 containing s
and such that

(a) for all s1, s2 ∈ S1 and e ∈ E, s1s2 ∈ X implies s1es2 ∈ X ,

(b) for all s1, s2 ∈ S1 and e ∈ E, s1es2 ∈ X implies s1s2 ∈ X .

We define an equivalence relation ∼ on S by letting

s ∼ t if and only if X(s) = X(t).

It is easy to verify that s ∼ t if and only if there exist three sequences of elements
of S, (u0, . . . , u2k+1), (u′0, . . . , u

′
2k+1

) and (u′′0 , . . . , u
′′
2k+1

), and a sequence of
elements of E, (e1, . . . , e2k+1), such that

u0 = s, u2k+1 = t and

u2i = u′2iu
′′
2i, u2i+1 = u′2ie2iu

′′
2i (0 ≤ i ≤ k)

u2i+1 = u′2i+1e2i+1u
′′
2i+1, u2i+2 = u′2i+1u

′′
2i+1 (0 ≤ i ≤ k − 1)
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It follows that ∼ is a congruence.
We claim that X(e) = E for every e ∈ E. Indeed 1 · e · 1 = e ∈ X(e) and

thus, by (b), 1 ∈ X(e). It follows by (a) that E ⊂ X(e). Conversely, e ∈ E and,
by Proposition 1.2, E satisfies (a) and (b). Thus, X(e) ⊂ E. In particular, all
idempotents of S are congruent modulo ∼. Conversely, if s ∼ e for some e ∈ E,
then s ∈ X(e) = E and s is idempotent.

Let π : S → S/∼ be the natural projection. We claim that S/∼ = π1(S)
and π = η. First, since S is non-empty and E-dense, it contains at least one
idempotent e. Since es ∼ s ∼ se, eπ = 1 is an identity for S/∼. Furthermore,
since S is E-dense, there exists for each s ∈ S an s′ ∈ S such that ss′ ∈ E and
s′s ∈ E. Therefore (ss′)π = (s′s)π = 1. Thus S/∼ is a group. By the preceding
paragraph, we have

1π−1 = {s ∈ S | s ∼ e} = E.

Finally, let γ : S → G be a surjective semigroup morphism onto a group G.
The constructive definition of ∼ shows that, if s ∼ t, then sγ = tγ (since for
every e ∈ E, eγ = 1). Therefore there exists a unique surjective semigroup
morphism ϕ : S/∼ → G such that γ = πϕ. In fact ϕ is a group morphism and
π satisfies the same universal property as η. So S/∼ = π1(S) and π = η.

An important tool introduced in [9] and later extended in [28] is the use of
categories as a generalization of monoids. In the case of semigroups, the nat-
ural extension is the notion of “category without identity”, also called “semi-
groupoid” by Tilson. Since both terms seem to be unfortunate — the first one is
too negative and the second one too technical—, we take the risk of introducing
the new terminology of quiver for these objects. “Quiver” is the translation
of the French word carquois, which was originally chosen by the authors. It is
meant to be as descriptive as possible, in the sense that a quiver “contains a
bunch of arrows”.2

Formally, a quiver C is given by

(a) a set3 Ob(C) of objects,

(b) for each pair (u, v) of objects, a set C(u, v) of arrows,

(c) for each triple (u, v, w) of objects, a mapping from C(u, v) × C(v, w) into
C(u,w) which associates to each p ∈ C(u, v) and q ∈ C(v, w) the compo-
sition p+ q ∈ C(u,w).

The additive notation is convenient because it will allow us to write group
actions multiplicatively, but it does not imply commutativity. Composition is
assumed to be associative (when defined).

Note that a semigroup is simply a quiver with exactly one object. A quiver
C is said to be locally idempotent (resp. locally commutative, etc.) if, for each
object u of C, the semigroup C(u, u) is idempotent (resp. commutative, etc.).
It is regular if, for each arrow p ∈ C(u, v), there exists an arrow q ∈ C(v, u)
such that p+ q+ p = p, and it is connected if C(u, v) 6= ∅ for each pair (u, v) of
objects of C.

2As is attested by the classical literature: “I perceived it to be a human creature not six
inches high, with a bow and arrows in his hands, and a quiver at his back.”[21]

3Since we consider quivers and categories as algebraic objects, there is no need to introduce
the usual distinction between sets and classes. In the terminology of category theory, we
consider only “small” categories.
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In the usual terminology of category theory, what we call here arrows is
called morphisms. Since we want to view quivers as generalized semigroups, we
prefer to reserve the term morphism for what is usually called functors. More
precisely, a morphism ϕ : C → D between two quivers C and D is given by:

(1) a function ϕ : Ob(C) → Ob(D) and

(2) for every u, v ∈ Ob(C), a function ϕu,v : C(u, v) → D(uϕ, vϕ) such that,
for every u, v, w ∈ Ob(C) and for every p ∈ C(u, v) and q ∈ C(v, w),

pϕu,v + qϕv,w = (p+ q)ϕu,w .

Subscripts are usually omitted, and the last formula is written as

pϕ+ qϕ = (p+ q)ϕ.

An automorphism ϕ of a quiver C is defined as usual. In particular, ϕ is
then a permutation of Ob(C) and is a bijection between C(u, v) and C(uϕ, vϕ).
We denote by Aut(C) the group of automorphisms of C. An action of a group
G on C is given by a group morphism from G into Aut(C). In this case we write
gu (resp. gp) the result of the action of g on the object u (resp. the arrow p).
Note the following identities.

(1) g(p+ q) = gp+ gq for all g ∈ G, p ∈ C(u, v) and q ∈ C(v, w).

(2) (gh)p = g(hp) for all g, h ∈ G and p ∈ C(u, v).

Whenever a group G acts on a quiver C, a quotient quiver C/G is defined,
with object set Ob(C)/G, that is, the set of disjoint subsets of Ob(C) of the
form Gu (u ∈ Ob(C)), and with arrow sets

C/G(Gu,Gv) = {Gp | p ∈ C(u′, v′), u′ ∈ Gu, v′ ∈ Gv}.

Composition of consecutive arrows Gp and Gq (that is, p ∈ C(u, v) and q ∈
C(gv, w) for some objects u, v and w and some element g of G) is given by,
Gp+Gq = G(p+ g−1q).

The following results are proved in [9] for categories, but their proofs can be
readily adapted to the case of quivers.

If a group G acts transitively without fixpoints on a quiver C, then the
quiver C/G is a semigroup. Let u be any object of C and let

Cu = {(p, g) | g ∈ G, p ∈ C(u, gu)}.

Then Cu is a semigroup for the multiplication defined by (p, g)(q, h) = (p +
gq, gh), and we can state

Proposition 3.2 Let G be a group acting transitively without fixpoints on a
quiver C. Then, for all u ∈ Ob(C), the semigroup Cu is isomorphic to C/G.

Let ϕ : S → T be a semigroup morphism. Define a quiver C with Ob(C) = T
and, for u, v ∈ T , C(u, v) = {(u, s, v) ∈ T × S × T | u(sϕ) = v}. Composition
is given by (u, s, v) + (v, t, w) = (u, st, w). Clearly it is associative. So C is a
quiver which we call the derived quiver of ϕ. (Tilson’s definition of the derived
quiver of a semigroup morphism [28] is the quotient of C by a certain quiver
congruence. But for our purposes this simplified definition will be sufficient.)

Now the derived covering of ϕ is the morphism Φ: C → S defined by the
following conditions:
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(a) for all u ∈ Ob(C), uΦ is the only object of S,

(b) for all (u, s, v) ∈ C(u, v), (u, s, v)Φ = s.

Proposition 3.3 [9] Let ϕ : S → G be a morphism into a group and let Φ: C →
S be the derived covering of ϕ. Then G acts transitively without fixpoints on C
and S is isomorphic (as a semigroup) to C/G.

Theorem 3.4 Let S be an E-semigroup. The following conditions are equiva-
lent.

(1) S is E-unitary dense.

(2) S is isomorphic to C/G where G is a group acting transitively without
fixpoints on some connected locally idempotent quiver C.

Proof. The proof essentially mimics the proofs of Propositions 3.12 and 3.14
of [9].

(1) =⇒ (2). By Theorem 3.1, there exists a morphism ϕ : S → G onto a
group such that 1ϕ−1 = E(S). By Proposition 3.3, S is isomorphic to C/G
where C is the derived quiver of ϕ. Since ϕ is onto, then, for every g, h ∈ G,
there exists s ∈ S such that s ∈ (g−1h)ϕ−1. It follows that (g, s, h) ∈ C(g, h)
and C is connected. Next, for every g ∈ G,

C(g, g) = {(g, s, g) | g(sϕ) = g}

is a semigroup isomorphic to 1ϕ−1 = E(S). Thus C is locally idempotent.
(2) =⇒ (1). By Proposition 3.2, C/G is isomorphic to C1. Now (p, g) is

an idempotent in C1 if and only if p = p + gp and g = g2, that is, if and
only if g = 1 and p ∈ C(1, 1) is idempotent. Since C is locally idempotent, it
follows that E(C1) = C(1, 1)×{1} and C1 is an E-semigroup. Assume now that
(p, g)(q, 1) = (p + gq, g) ∈ E(C1). Then g = 1 and p ∈ C(1, 1). Thus, C1 is
E-unitary.

Finally let (p, g) ∈ C1. Since C is connected, there exists a morphism q in
C(1, g−1). Then (p, g)(q, g−1) = (p+gq, 1) ∈ E(C1). Thus C1 is E-dense.

Remark. Theorem 3.4 above was already formulated in the regular (orthodox)
case by Szendrei [25].

4 The finite case

The class of finite E-semigroups was described in a paper by Jones and Szendrei
[6]. This section is only a rewriting of her work, and it is included here in order
to provide a complete presentation.

Let ES be the class of all finite E-semigroups. ES is the variety of finite
semigroups which is defined by the pseudo-identity (xωyω)ω = xωyω (see Eilen-
berg [4], or Pin [17]). For each variety of finite bands V, we let ES(V) be the
variety of finite E-semigroups whose band of idempotents is in V.

Note that in a finite E-semigroup, the set of idempotents is always dense,
since every element can be completed on the right and on the left into an
idempotent of the minimal ideal. So the structure of the E-unitary elements of
ES is described in Section 3 above.
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The covering theorem (Theorem 2.1 above) can be applied to finite E-semi-
groups, but the E-unitary cover that is constructed in its proof is infinite.
However, the theorem can be relativized to finite semigroups, thanks to the
following result of Birget, Margolis and Rhodes [3]. Note that in the case of
E-commutative monoids, the result is a consequence of Margolis and Pin [10]
and Ash [1].

Theorem 4.1 Let S ∈ ES. There exist a finite group G and a relational mor-
phism τ : S → G such that 1τ−1 = E(S).

Proof. The exact result proved in [3] is that, if S ∈ ES, then K(S) = E(S),
where K(S) (the “kernel” of S, or the subsemigroup of “type II” elements of
S) is the intersection of the 1σ−1 for all relational morphisms σ from S into a
finite group. This implies the announced result. Indeed (see [18]), since there
are only finitely many subsemigroups of S, one can select finitely many such
relational morphisms, σ1 : S → G1, . . . , σk : S → Gk, in such a way that, for
any relational morphism σ from S into a finite group G, 1σ−1 = 1σ−1

i for
some 1 ≤ i ≤ k. The direct product τ = (σ1, . . . , σk) : S → G1 × · · · × Gk is

then a relational morphism and 1τ−1 =
⋂k

i=1
1σ−1

i = K(S) = E(S).

Corollary 4.2 Let S ∈ ES(V).

(1) S has a finite E-unitary cover R in ES(V).

(2) If S is regular (that is, S is orthodox), then R can be chosen to be regular
too.

Proof. Let τ : S → G be a relational morphism into a finite group G such that
1τ−1 = E(S). If R is the graph of τ , then R is finite and the same proof as for
Proposition 2.2 shows that R is an E-unitary cover of S. Suppose next that S
is regular, and let (s, g) ∈ R. Let s′ be an inverse of s and let g′ ∈ s′τ . There
exists an integer k ≥ 1 such that (gg′)k = 1. Then

g−1 = g′(gg′)k−1 ∈ s′τ(sτs′τ)k−1 ⊂
(

s′(ss′)k−1
)

τ = s′τ.

So (s′, g−1) ∈ R and hence τ satisfies condition (∗∗) of Proposition 2.2.

Theorem 4.1 above also implies the following characterization of the varieties
ES(V), where V is a variety of finite idempotent semigroups, and V−1G is the
class of all semigroups S for which there exists a relational morphism τ from S
into a finite group such that 1τ−1 ∈ V.

Corollary 4.3 Let S be a finite semigroup and let V be a variety of finite bands.
The following are equivalent.

(1) S ∈ ES(V).

(2) K(S) = E(S) and K(S) ∈ V.

(3) S ∈ V−1G.

(4) S ∈ V ∗ G.

(5) S divides some finite orthodox E-unitary semigroup in ES(V).
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(6) S divides some finite orthodox semigroup in ES(V).

Proof. (1) implies (2) and (2) implies (3), as was proved in Theorem 4.1 above.
(4) implies (5), as one can readily verify that the semidirect product of an
idempotent semigroup by a group is E-unitary and orthodox. (5) implies (6)
and (6) implies (1), trivially.

The fact that (3) implies (4) is a consequence of a result of Szendrei [25]
(which itself was a generalization of a theorem of Weiss and Thérien [29]),
according to which the finite quivers that are locally in V divide a semigroup in
V, and of Tilson’s derived category theorem [28]. Let τ : S → G be a relational
morphism into a group G, such that 1τ−1 ∈ V. Let Rτ be the graph of τ ,
and let τ = α−1β be its canonical factorization (see section 1). It is easy to
verify that 1β−1 is isomorphic to 1τ−1 and hence lies in V. So the derived
quiver of β defined section 3 is locally in V. Jones and Szendrei’s result and
Tilson’s theorem then show that Rτ lies in V ∗G, and hence, so does S.
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Théor. Appl. 20 (1986), 357–366.

16


