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Logic on words

Jean-Eric Pin

LIAFA, CNRS, Université Paris VII, Case 7014

2 Place Jussieu, 75251 Paris Cedex 05, FRANCE
E-mail: Jean-Eric.Pin@liafa.jussieu.fr

Quisani: Hello, I think we met before?

Author: Yes, I visited Kevin Compton and Yuri Gurevich some time ago in
Ann Arbor.

Q: I remember it. You are not a logician, aren’t you?

A: No, but I would like to talk with you about questions of logic related to the
theory of finite automata.

Q: I already read a column by Kevin Compton and Howard Straubing on a
similar topic [13]. Are you too interested in circuits and complexity?

A: I read Howard’s excellent book [42] on the subject, but it is not my main
concern today. I would like to discuss more about the expressive power of
fragments of Büchi’s sequential calculus and related decidability questions.

Q: Would you remind me what this calculus is?

A: You identify a word u = a0a1 . . . an−1 on the alphabet A with a relational
structure Mu = (Dom(u), <, (Ra)a∈A), where Dom(u) = {0, . . . , n − 1}, < is
the usual order on Dom(u) and Ra = {i ∈ Dom(u) | ai = a}. For instance, if
u = abbaab, then Dom(u) = {0, 1, . . . , 5}, Ra = {0, 3, 4} and Rb = {1, 2, 5}.

Q: I thought Büchi was interested in infinite words.

A: You’re right. If u is an infinite word, you simply take Dom(u) = N. You may
also consider biinfinite words, for which you would take Dom(u) = Z, or words
over larger ordinals than ω, but we won’t consider these cases today. Now, with
each sentence ϕ, is associated the set of words that satisfy ϕ:

L∗(ϕ) = {u ∈ A∗ | u satisfies ϕ}
LN(ϕ) = {u ∈ AN | u satisfies ϕ}

For instance, if A = {a, b}, the sentence

ϕ = ∃x ∃y
(

(x < y) ∧ (Rax) ∧ (Rby)
)
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defines the languages

L∗(ϕ) = A∗aA∗bA∗ and LN(ϕ) = A∗aA∗bAω

It is convenient to say that two sentences ϕ and ψ are ∗-equivalent (resp. ω-

equivalent) if L∗(ϕ) = L∗(ψ) (resp. LN(ϕ) = LN(ψ))

Q: I see.

A: Now an old result of Büchi [8, 9] states that a language is regular if and only
if it can be defined by a monadic second order sentence. The result also holds
for infinite words: just change regular into ω-regular in the statement. You
remember that a set of infinite words is ω-regular if and only if it is accepted
by a Büchi automaton.

Q: Or, equivalently, if it is a finite union of sets of the form XY ω, where X and
Y are regular languages. But wait a minute! Why did you consider suddenly
monadic second order logic? What about full second order and first order logic?

A: You’re right. Both classes are very interesting too. But monadic second
order is an important border: if you consider weaker logics, such as first order,
you are sure to deal with regular languages and you can hope to have easy
solutions for your problems on logic by converting them into problems on finite
automata. This will be the topic of our conversation today and you will see that
reality is quite different, though.

If you take stronger logics, like full second order, you can define famous
complexity classes like L, NL, P , NP , PH , PSPACE, etc. For instance,
Stockmeyer [40] proved that full second order corresponds to PH , the polyno-
mial hierarchy. There is a lot to say, and this would deserve a column by itself,
but I don’t want to talk about this today.

Q: All right. So you are only interested today in logics that define regular
languages. I am trying to remember the proof of Büchi’s theorem. Could you
give me a hint?

A: Let’s do it for finite words. The case of infinite words is a little more
technical, because you need to consider Büchi or Muller automata instead of
deterministic finite automata (dfa) but the idea is the same. The first step is to
convert a regular language into a sentence by encoding the behaviour of a dfa
A = (Q,A, ·, q0, F ). It suffices to associate with each state q a set variable Xq

that encodes the set of positions in which a given path reaches state q. Do you
see how to do it?

Q: I think so. First, let me use shortenings like Sx, the successor of x, min
and max, the first and last elements of the domain, which can be easily defined
by a first order formula. Next, the Xq ’s should be pairwise disjoint and one
should have x ∈ Xq and Sx ∈ Xq′ if and only if there is a letter a such that
q′ = q ·a. Finally, one should have min ∈ Xq0

and max ∈
⋃

q∈F Xq. To sum up,
if Q = {1, . . . , n}, the language accepted by A can be defined by the following
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sentence:

∃X1∃X2 . . . ∃Xn

[

∧

q 6=q′

¬∃x (Xqx ∧ Xq′x) ∧ ∀x
∨

q·a=q′

(

Xqx ∧ Rax ∧ Xq′Sx
)

)

∧ Xq0
min ∧

(

∨

q∈F

Xqmax
)

]

A: Very good. Now, we have to convert sentences into languages. The idea is
to make induction on formulæ, but for this, we need first to define the language
associated with a formula, and not only to a sentence. Let x1, . . . , xr (resp.
X1, . . . , Xs) be the set of first (resp. second) order variables occurring in some
formula ϕ. Consider a new alphabet

Bp,q = A× {0, 1}p × {0, 1}q

where p ≥ r and q ≥ s. A word on Bp,q can be identified with a sequence

(u0, u1, . . . , up, up+1, . . . , up+q)

where u0 ∈ A∗ and u1, . . . , up, up+1, . . . , up+q ∈ {0, 1}∗. Actually, we are inter-
ested in the language Kp,q formed by all words of u ∈ B∗

p,q whose components
u1, . . . , up contain exactly one occurrence of 1. Note that Kp,q is a regular
language. For instance, if A = {a, b}, a typical word of B∗

3,2 is represented
below:

u0 a b a a b a b · · ·

u1 0 1 0 0 0 0 0 · · ·
u2 0 0 0 0 1 0 0 · · ·
u3 1 0 0 0 0 0 0 · · ·

u4 0 1 1 0 0 1 1 · · ·
u5 1 1 0 1 0 1 0 · · ·

Figure 1: A word of Bω
3,2.

Now the predicate Ra is interpreted as the set of positions carrying an a in
u0, each set variable Xj as the set of positions carrying a 1 in up+j , and the
first order variables xj as the unique position carrying a 1 in uj .

Q: So if p = q = 0, you have Bp,q = A and you obtain the interpretation of
sentences you had before.

A: Right.

Q: Let me try for myself to interpret the formulæ. If ϕ is atomic, this is easy.
For instance

L∗(xi < xj) = Kp,q ∩ B
∗
p,qCiB

∗
p,qCjB

∗
p,q
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where Ck = {b ∈ Bp,q | bk = 1} and

L∗(Xixj) = Kp,q ∩ B
∗
p,qCi+p,jB

∗
p,q

where Ci,j = {b ∈ Bp,q | bi = bj = 1}. Disjunction corresponds to union and
negation to complement.

A: Not exactly. Remember that the universe is now Kp,q.

Q: All right. So L∗(¬ϕ) = Kp,q \L∗(ϕ): negation corresponds to the operation
L → Kp,q \ L. Since Kp,q is regular, this operation still preserves regular lan-
guages. I think I can finish the proof now. Formulae of the form ∃xϕ and ∃Xϕ
correspond to projections.

A: Exactly. If you denote by πi : Bp,q → Bp−1,q the projection that erases the
i-th component, defined by

πi(b0, b1, . . . , bp+q) = (b0, b1, . . . , bi−1, bi+1, . . . , bp+q)

then L∗(∃xiϕ) = πi(L
∗(ϕ)) and L∗(∃Xiϕ) = πp+i(L

∗(ϕ)). Now it is well-known
that regular languages are closed under morphism.

Q: Let me come back to my first question. What happens if you just consider
first order logic?

A: The question was answered by McNaughton and Papert [18] for finite words
and by Thomas [45] for infinite words. What you get is the class of star-free

languages. Let us consider the case of finite words first. One can define the
star-free languages as the smallest class of languages containing ∅, {1}, where
1 is the empty word, the languages {a} for a ∈ A and closed under finite
union, complement and (concatenation) product. I have to warn you that this
definition is a little tricky. Take A = {a, b} and try to see which of the following
languages are star-free:

(1) A∗ (2) a∗ (3) (ab)∗ (4) (aa)∗

(5) (a(ab)∗b)∗ (6) (a, bab)∗ (7) (ab, ba)∗

Q: Let’s see. The languageA∗ is the complement of the empty set, thus it is star-
free. This seems to be a good trick: a∗ is star-free if and only if its complement
is star-free. . . But this complement is A∗bA∗, the set of words containing at
least one occurrence of b and it is star-free, as the product of three star-free
languages, A∗, b and A∗.

A: You’re pretty good!

Q: Let’s try with (ab)∗. Its complement is bA∗ ∪ aA∗ ∪ A∗aaA∗ ∪ A∗bbA∗ and
so it is star-free. The language (aa)∗ looks suspiciously similar, so there must
be a trap. . .

A: You’re right again. The language (aa)∗ is not star-free. I give you the reason
in a minute. Do you want to try the remaining examples?
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Q: I give up; they look quite difficult and I don’t see any general algorithm. Is
there any?

A: There is one, discovered by Schützenberger in 1965 [36]. But I need a little
bit of algebra to explain this result. Do you know anything about semigroups
and monoids?

Q: I think I remember the definition. A semigroup is a set equipped with an
associative multiplication and a monoid is a semigroup with identity. I also know
what a semigroup morphism is. Given two semigroups S and T , a semigroup

morphism from S into T is a map ϕ : S → T such that, for all x, y ∈ S,
ϕ(xy) = ϕ(x)ϕ(y). For monoid morphisms, the condition ϕ(1) = 1 is also
required. I am afraid that’s all I know about the subject.

A: Fair enough! It is sufficient to give the main definition. A monoid M
recognizes a language L of A∗ if there exists a surjective monoid morphism
ϕ : A∗ → M and a subset P of M such that L = ϕ−1(P ). A language is
recognizable if it is recognized by a finite monoid. One can show that a language
is regular if and only if it is recognizable.

Q: So finite monoids are in some sense equivalent to finite dfa. Is it possible to
pass from one world to the other?

A: It’s fairly easy. If you have a finite dfa A, each letter defines a function from
the set of states into itself. Now take the monoid generated by these functions
under the composition of functions. This finite monoid, called the transition

monoid of the automaton, recognizes the language accepted by A. Conversely,
if there exists a surjective monoid morphism ϕ : A∗ →M and a subset P of M
such that L = ϕ−1(P ), the automaton (M,A, ·, 1, P ), where m · a = mϕ(a) for
all a ∈ A and m ∈M , accepts L.

Q: Is there something similar to the notion of minimal automaton?

A: Yes, the syntactic monoid, which is the transition monoid of the minimal
automaton. But there is a better definition. Given two monoids M and N ,
let us write M ≤ N if there is a surjective morphism from N onto M . Then
≤ is a quasiorder on monoids (and even an order on isomorphic types of finite
monoids). Now the syntactic monoid of a recognizable language L is the smallest
monoid (for ≤) among the monoids recognizing L. Finally, there is a third,
direct, definition. Define a relation ≤L on A∗ by setting x ≤L y if and only if,
for every u, v ∈ A∗, uyv ∈ L implies uxv ∈ L. Now set x ∼L y if x ≤L y and
y ≤L x. This defines a congruence on A∗ called the syntactic congruence and
the syntactic monoid is the quotient of A∗ by this congruence.

Q: I understand these definitions, but what is the use for them?

A: Star-free sets are characterized by a simple algebraic property of their syntac-
tic monoid M : there exists an integer n such that, for every x ∈M , xn = xn+1.
Monoids satisfying this property are called aperiodic.

Q: Wow! Let me try with (aa)∗. You told me it was not star-free so its syntactic
monoid should not be aperiodic. Let me draw its minimal automaton:
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1 2

a

a

Figure 2: The minimal automaton of (aa)∗.

If I follow your algorithm, its syntactic monoid M is generated by the partial
functions a and b. But b is the function 0 with empty domain, and a is the
transposition (1 2): its square is the identity function 1. Thus M has only three
elements, 1, a and 0, and a2 = 1. In particular, there are no relations of the
form an = an+1 for any n, so M is not aperiodic. What happens with (ab)∗?
Here is the minimal automaton. . .

1 2

a

b

Figure 3: The minimal automaton of (ab)∗.

Since (ab)∗ is star-free, its syntactic monoid should be aperiodic, shouldn’t it?
I obtain five elements: 1, a, b, aa = 0, ab and ba, which satisfy the relations
a2 = b2 = 0, aba = a and bab = b. Now a2 = a3, b2 = b3, (ab)2 = ab and
(ba)2 = ba, all right, it is aperiodic. But even if you know that the syntactic
monoid is aperiodic, how do you find a star-free expression?

A: The algorithm is hidden in the proof. You should read Perrin’s chapter on
automata in [24] to have the details.

Q: Still, it looks difficult to compute the syntactic monoid of a language. Is
there any better algorithm for determining whether a language is star-free?

A: You don’t need to compute the syntactic monoid. It suffices to check whether
the minimal automaton of the language is aperiodic, or “counter-free”. A dfa
has a counter if there exists a sequence of pairwise distinct states q0, . . . , qn
(with n > 0) and paths with the same label from q0 to q1, q1 to q2, . . . , qn−1

to qn and qn to q0. On the other hand, Cho and Huynh proved that finite
automaton aperiodicity is PSPACE-complete [10].

Q: I think I can now check by myself whether a language is star-free. Let’s go
back to logic.

A: Schützenberger and McNaughton theorems lead to the following character-
ization: a language can be defined by a first order sentence if and only if its
syntactic monoid is finite and aperiodic.

Q: And thus one can decide whether a monadic second order sentence is ∗-
equivalent to a first order sentence.
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A: Exactly.

Q: Could you explain me why star-free languages can be expressed in first order
logic?

A: The proof is by induction on the formation rules. The key argument concerns
the product: if X is defined by ϕ and Y is defined by ψ, then XY can be defined
by ∃x (ϕ′(min, x)∧ψ′(Sx,max)), where ϕ′(u, v) is the relativization of ϕ to the
elements t such that u ≤ t ≤ v.

Q: And conversely, how do you prove that the language defined by a first order
sentence is star-free?

A: This is more difficult. You would enjoy the outline given by Thomas in [48]:
Fräıssé-Ehrenfeucht games are one of the main ingredients of this proof. But
you can also try to mimic the proof of Büchi’s theorem we did before. I will
help you.

Q: Let’s see. I adopt your notations, but since I have no second order variable, I
can get rid of the index q. So I can interpret all first order formulæ with at most
p free variables on B∗

p , where Bp = A× {0, 1}p. The universe is Kp, the set of
all words u of B∗

p whose components u1, . . . , up contain exactly one occurrence
of 1.

A: Do you see why Kp is star-free?

Q: I think so. If Ci denotes the set of b ∈ Bp such that bi = 1, one has

Kp =
⋂

1≤i≤p

(B∗
pCiB

∗
p \B

∗
pCiB

∗
pCiB

∗
p)

The languages associated with atomic formulæ are also star-free. Disjunction
and negation are easy too. For the existential quantifiers, there is this formula
L∗(∃xiϕ) = πi(L

∗(ϕ)). It would be nice if star-free languages were closed under
morphisms.

A: Unfortunately, they are closed under inverse morphisms but not under mor-
phisms. Some more work is needed to achieve the proof. Set L = L∗(ϕ). Note
that every word x ∈ Kp has a unique decomposition of the form x = x′bx′′,
where b ∈ Ci.

Q: I see. You just locate the unique occurrence of 1 in xi.

A: Now, for every x ∈ A∗, set

L(x) = {y ∈ A∗ | ∀z ∈ A∗ (yz ∈ L⇐⇒ xz ∈ L)}

R(x) = {y ∈ A∗ | ∀z ∈ A∗ (zy ∈ L⇐⇒ zx ∈ L)}

I claim that
L =

⋃

L(x′)bR(x′′) (∗)

where the union runs over the set E of all triples (x′, b, x′′) such that x′, x′′ ∈ B∗
p ,

b ∈ Ci and x′bx′′ ∈ L.
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Q: Let’s see. Let L′ be the right hand side of (∗). The inclusion L ⊆ L′

is obvious since x′ ∈ L(x′) and x′′ ∈ R(x′′). For the opposite inclusion, let
(x′, b, x′′) ∈ E, u′ ∈ L(x′) and u′′ ∈ R(x′′). Then x′bx′′ ∈ L by definition of
E, u′bx′′ ∈ L since u′ ∈ L(x′) and finally u′bu′′ ∈ L since u′′ ∈ R(x′′). Thus
L′ ⊆ L.

A: Well done.

Q: Formula (∗) gives a decomposition of L as union of products, but this union
is infinite!

A: This is the main trick. I let you verify as an exercise that

L(x) = (
⋂

y∈x−1L

Ly−1) \ (
⋃

y/∈x−1L

Ly−1)

where Ly−1 = {u | uy ∈ L}. A dual formula holds for R(x). You know that, for
a regular language L, there are only finitely many quotients of the form Ly−1

(resp. y−1L), don’t you?

Q: Yes, it’s a well known result.

A: It follows that there are finitely many sets of the form L(x) and R(x) and
so, the apparently infinite union of (∗) reduces to a finite union. It is also easy
to see that star-free sets are closed under quotients and thus the languages L(x)
and R(x) are star-free.

Q: I understand. So now

L∗(∃xiϕ) = πi(L
∗(ϕ)) =

⋃

πi(L(x′) bR(x′′)) =
⋃

πi(L(x′))πi(b)πi(R(x′′))

But all the letters of the i-th component of a word in L(x′) (resp. R(x′′)) are
0’s. So if δi : Bp−1 → Bp is the morphism defined by

δi(b0, . . . , bp−1) = (b0, . . . , bi−1, 0, bi+1, . . . , bp)

one has πi(L(x′)) = δ−1

i (L(x′)) and πi(R(x′′)) = δ−1

i (R(x′′)). It follows, since
star-free languages are closed under inverse morphisms, that πi(L(x′)) and
πi(R(x′′)) are star-free. Therefore L∗(∃xiϕ) is star-free.

A: That’s it.

Q: What happens for infinite words? You mentioned that Thomas extended
the theorem of McNaughton-Papert, didn’t you?

A: Yes I did. You first need to define star-free ω-languages as the finite unions
of sets of the form XY ω where X and Y are star-free and Y + = Y . Equivalent
definitions are also possible [17]. Thomas established that a set of infinite words
is first-order definable if and only if it is a star-free ω-language [45, 46].

Q: Is there any notion of syntactic monoid in this case?
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A: Arnold [2] defined a syntactic congruence for infinite words. But it took
some time to find the right algebraic framework [22, 23, 19, 20, 49, 26]. First,
it is more appropriate to work with finite and infinite words at the same time.
Next, monoids should be replaced by ω-semigroups.

Q: What is this?

A: An ω-semigroup is a two-sorted algebra S = (Sf , Sω) equipped with three
operations: a product Sf ×Sf → Sf , an infinite product SN

f → Sω and a mixed
product Sf × Sω → Sω. All these products are associative and compatible in
any natural sense. In particular, an infinite product s0s1s2 · · · is unchanged if
you replace a finite subsequence sisi+1 · · · sj by its product. Note that, for any
alphabet A, the pair A∞ = (A+, AN) is an ω-semigroup under concatenation.
Morphisms are defined in a natural way. Now an ω-semigroup S = (Sf , Sω)
recognizes a subset X = (Xf , Xω) of (A+, AN) if there exist a morphism ϕ :
S → A∞ and a subset P = (Pf , Pω) of S such that X = ϕ−1(P ) (that is,
Xf = ϕ−1(Pf ) and Xω = ϕ−1(Pω).) A subset X of A∞ is recognizable if it is
recognized by a finite ω-semigroup [27, 26, 32, 49].

Q: What do you mean by a “finite” ω-semigroup?

A: An ω-semigroup S = (Sf , Sω) such that Sf and Sω are finite sets.

Q: Hold on ! It is not really a finite object, isn’t it? You need an infinite table
to define your infinite product.

A: There is a trick to overcome this problem. A Ramsey-type argument shows
that finite ω-semigroups are totally determined by the finitary product, the
mixed product and the ω-power (infinite products of the type sω = ssss · · · ).

Q: I see another problem. There is no general notion of minimal automaton for
infinite words. How can you define a syntactic ω-semigroup?

A: You’re right, the first definition of a syntactic semigroup can’t be gener-
alized to the case of infinite words. But the two other ones can be adapted.
In particular, given any finite Büchi automaton accepting a language L, you
can effectively compute an ω-semigroup recognizing L and then compute the
syntactic ω-semigroup.

Q: Has anybody extended the theorem of Schützenberger to infinite words?

A: Perrin did. A set of infinite words is star-free if and only if its ω-semigroup
is aperiodic [21].

Q: You didn’t define that notion.

A: Right, but you can guess: S = (Sf , Sω) is aperiodic if the semigroup Sf is.

Q: I suspect that the algebraic characterization of first order logic is not an
isolated result.

A: No. First, Büchi’s theorem also has an algebraic formulation: a language is
expressible in the monadic second order logic if and only if it is recognized by a
finite semigroup. But there is more. Do you know about Σn and Πn formulæ?
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Q: I think so. You write first order formulæ in prenex normal form and then you
count the number of alternations between existential and universal quantifiers.
A formula is in Σn (resp. Πn) if it starts with a series of existential (universal)
quantifiers and has n alternations. For instance, ∃x1∃x2∀x3∀x4∀x5∃x6 ϕ, where
ϕ is quantifier free, is in Σ3.

A: Let me introduce two other classes: BΣn is the smallest class containing Σn

and closed under disjunction and negation, and ∆n is the class of all sentences
which are both ∗-equivalent to a Σn-sentence and to a Πn-sentence. The “B”
in BΣn stands for boolean operations.

Q: It reminds me the arithmetical hierarchy, except that your ∗-equivalence is
rather restricted. Do you have similar inclusions?

A: Yes, inclusions are represented in the following diagram. An edge between
two classes means that the class on the left is a subclass of the class on the right.

Σ1 Σ2 Σ3

∆0 = Σ0 = Π0

= ∆1 = BΣ0

BΣ1 ∆2 BΣ2 ∆3
. . .

Π1 Π2 Π3

It is also known that the hierarchy Σn (respectively Πn) is proper, if the alphabet
contains at least two letters.

Q: I guess you want to know the expressive power of all these classes.

A: Yes, and I would like to know whether the corresponding classes of languages
are decidable.

Q: I think I understand better your problem in terms of logic. What you want to
do is this: given a first order sentence (or even a monadic second order sentence)
ϕ and an integer n, decide whether ϕ is ∗-equivalent to a sentence of Σn (resp.
Πn, BΣn, ∆n.)

A: Right. And you can of course ask the same question for N-equivalence.

Q: Let’s stay with finite words first. Yuri told me once that finite structures
are very important. Do you have any nice description of the languages corre-
sponding to each level of your hierarchy?

A: Yes. There is a natural hierarchy of star-free languages corresponding to
the Σn hierarchy. Let me introduce two convenient definitions. The polynomial

closure of a class of languages L of A∗ is the set of languages that are finite
unions of languages of the form L0a1L1 · · ·anLn, where the ai’s are letters and
the Li’s are elements of L. The boolean closure of a class of languages L of
A∗ is the smallest set of languages containing L and closed under finite union
and complement. By alternating the use of the polynomial closure and of the
boolean closure one gets a hierarchy of star-free languages, defined as follows:
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(1) ∅ and A∗ are the only languages of level 0

(2) for every integer n ≥ 0, level n+ 1/2 is the polynomial closure of level n

(3) for every integer n ≥ 0, level n+ 1 is the boolean closure of level n+ 1/2.

This hierarchy is known as the Straubing hierarchy and is a variation of the “dot-
depth hierarchy” introduced by Brzozowski in the sixties. It is interesting to
note that this hierarchy was introduced in language theory totally independently
from the Σn-hierarchy. Now we can state:

(1) A language is BΣn-definable if and only if it is of level n

(2) A language is Σn+1-definable if and only if it is of level n+ 1/2

(3) A language is Πn+1-definable if and only if its complement is of level
n+ 1/2

The connection between the two hierarchies was discovered by Thomas [47].
Actually, Thomas’s original result concerned the dot-depth hierarchy and didn’t
include the half levels, but it is easy to adapt his proof. Another proof and an
extension to infinite words are given in [25].

Q: You didn’t mention the ∆n’s yet. Do you have any similar result?

A: Yes. Let us say that a product of the form L = L0a1L1 · · · anLn is un-

ambiguous if every word u of L admits a unique factorization of the form
u0a1u1 · · · anun with u0 ∈ L0, u1 ∈ L1, . . . , un ∈ Ln. The unambiguous poly-

nomial closure of a class of languages L of A∗ is the set of languages that are
finite unions of unambiguous products of the form L0a1L1 · · · anLn, where the
ai’s are letters and the Li’s are elements of L. Pascal Weil and myself proved
in [35] that, under certain natural conditions on L, a language L belongs to
the unambiguous polynomial closure of L if and only if L and its complement
belong to the polynomial closure of L. In particular:

(4) A language is ∆n+1-definable if and only if it belongs to the unambiguous
polynomial closure of the languages of level n.

Q: This reminds me a result of André Arnold [1] in a different context. A set
of infinite words is Σ1

1 (analytic) if and only if it is accepted by a countable
Büchi automaton and it is a Borel set if and only if it is accepted by a countable
unambiguous Büchi automaton. Now, by Suslin’s theorem, Σ1

1∩Π1
1 = ∆1

1 is the
class of Borel sets. Thus a set of words is ∆1

1 if and only if it is accepted by a
countable unambiguous Büchi automaton.

A: This is an interesting comparison. By the way I don’t know whether the ana-
log of Suslin’s separation lemma holds for Σn: given two disjoint Σn-definable
languages L0 and L1, does there exist a ∆n-definable language containing L0

and disjoint from L1?

Q: Let me come back to your decidability problems. Are there any alge-
braic characterizations in the spirit of Schützenberger’s theorem for all levels
of Straubing’s hierarchy?

A: Yes, the BΣn-definable languages can be characterized by a set of identi-
ties of their syntactic monoid. An analogous result holds for the ∆n-definable
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languages.

Q: What do you mean by “identities”?

A: The precise definition would push us to far afield. Something similar to the
identities xn = xn+1 of the aperiodic monoids. For instance, by a deep result
of Simon [37], a language is BΣ1-definable if and only if its syntactic monoid
satisfies the identities (xy)nx = (xy)n = y(xy)n for some n.

Q: What about the Σn- and the Πn-hierarchies?

A: You need a little more than the syntactic monoid. You remember this
quasiorder ≤L I introduced to define the syntactic congruence ∼L?

Q: Yes.

A: By projection, it defines an order relation on the syntactic monoid M of
L, called the syntactic order. If you prefer, if η : A∗ → M is the syntactic
morphism of L, and if P = η(L), then the syntactic order is defined on M
by x ≤ y if and only if, for every u, v ∈ M , uyv ∈ P implies uxv ∈ P . The
ordered monoid (M,≤) is called the syntactic ordered monoid of L [30]. Now,
the Σn-definable (resp. Πn-definable) languages are characterized by a set of
identities of their ordered syntactic monoid [30, 35]. For instance, a language
is Σ1-definable if and only if its syntactic ordered monoid satisfies the identity
x ≤ 1.

Q: Thus all these classes are decidable?

A: Maybe, but this is an open problem, except for the low level classes.

Q: I don’t understand. If I have a first order (or monadic second order) sentence
ϕ, I can effectively compute the language L∗(ϕ) and its syntactic monoid. Now
I just have to check whether this monoid satisfies the identities of the class I
want to study.

A: There are two flaws in your argument. First, it could happen that this set
of identities is not recursively enumerable. Second, I never told you that the
identities were known for all classes.

Q: But you gave me several examples!

A: The examples I gave you cover almost all what is known. Identities are
explicitely known for the classes BΣ0, Σ1, Π1, BΣ1, ∆2, Σ2 and Π2. It follows
that these classes are decidable.

Q: What is known about the complexity of the decision problem for these
classes?

A: One can decide in polynomial time whether a language of A∗ accepted by a
deterministic n-state automaton is BΣ0- (resp. Σ1-, Π1-, BΣ1-, ∆2-) definable.
For Σ2 and Π2, the best known algorithm is polynomial in 2|A|n. See [39, 35].

Q: So, if I refer to your diagram, the next step would be BΣ2. What is known
for this class?

12



A: Straubing [41] proved that for a two-letter alphabet, the class is decidable.
But the general case remains open, and this is actually quite a fascinating
problem, which already motivated several articles. Partial results give some
evidence that the class should be decidable, but this is still a conjecture. Would
you like to know more about it?

Q: Yes, if you don’t mind.

A: Depending on your background, you can attack it by combinatorial, algebraic
or logical arguments. Let’s start with the combinatorial aspects. By definition,
the languages of A∗ of level 1 (those corresponding to BΣ1) are the boolean
closure of the languages of the form

A∗a1A
∗a2A

∗ · · · A∗akA
∗

where the ai’s are letters. This class is decidable by Simon’s theorem. Now the
languages of A∗ of level 2 (those corresponding to BΣ2) are the boolean closure
of the languages of the form

A∗
0a1A

∗
1a2A

∗
2 · · · A

∗
k−1akA

∗
k

where the ai’s are letters and the Ai’s are subsets of the alphabet A.

Q: I don’t see why.

A: It is not a direct consequence of the definition, but a non trivial result of
Howard Straubing and myself [34]. But still, languages of level 2 look very
similar to languages of level 1. However, it is not known yet whether the latter
class is decidable.

Q: Hmm. . .

A: Let’s have a look at the algebraic aspects. I don’t want to be too technical,
but I need a few more definitions. A submonoid of a monoid M is a subset of
M containing the identity of M and stable under product. A monoid N is a
quotient of M if there exists a surjective morphism ϕ : M → N . Finally, one
says that M divides N if M is isomorphic to a quotient of a submonoid of N .
I let you verify that division is a transitive relation on monoids. Now let Tn be
the set of all upper-triangular boolean square matrices of size n and Un be the
set of matrices of Tn whose diagonal entries are all equal to 1. Then Tn and Un

are monoids under the (boolean) multiplication of boolean matrices.

Q: Let me see. For n = 3, typical matrices of T3 and U3 look respectively like
this, where the ε ’s are either 0 or 1.





ε1,1 ε1,2 ε1,3

0 ε2,2 ε2,3

0 0 ε3,3









1 ε1,2 ε1,3

0 1 ε2,3

0 0 1
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A: Yes. Now one can show that deciding whether a given regular language is of
level 1 (resp. 2) amounts to decide whether a given finite monoid divides some
Un (resp. Tn).

Q: It is easy to check whether a given finite monoid divides Un (resp. Tn) for
a fixed n, because a finite monoid only has a finite number of divisors. Thus I
guess the problem is to find a bound on n .

A: Exactly. The problem is solved for Un but still open for Tn.

Q: Both problems look very close yet.

A: Yes, and this is quite frustrating to have the solution only for one of them.

Q: What about the logical approach? Do you think my logician friends could
help?

A: Very likely. I already mentionned the back and forth arguments (Fräıssé-
Ehrenfeucht games) used by Thomas and Wilke. Christian Glaßer and Heinz
Schmitz recently obtained some very nice results [15] by using ideas issued from
descriptive set theory. If you have look at their preprints on their web page,
you will see that their forthcoming papers are quite promising.

Q: Do you know anything for the upper levels?

A: It is known, in a rather precise way [35], how to find the identities defining
level n + 1/2 (or Σn if you prefer) given the identities defining the level n (or
BΣn−1). I can only give you a flavour of this result.

Q: Fine.

A: You know about kernels in group theory. When you have a group morphism
ϕ : G→ H between two groups G and H , the set Ker(ϕ) = ϕ−1(1) is a normal
subgroup of G. When you have a monoid morphism ϕ : M → N , you want to
consider not only the inverse image of the identity, but also the inverse image
ϕ−1(e) of each idempotent e of N .

Q: An idempotent is an element e such that e2 = e, right?

A: Yes. You remember that the languages of the full (resp. half) levels are
characterized by their (resp. ordered) syntactic monoid. So we may speak
freely of finite (ordered) monoids of level n (resp. n + 1/2). If you have an
ordered monoid (M,≤), a monoid N and a monoid morphism ϕ : M → N , then
ϕ−1(e) is an ordered subsemigroup of M for every idempotent e of N . Now
here is the key result: if N is of level n and if, for all idempotent e ∈ N , ϕ−1(e)
satisfies the identity xkyxk ≤ xk for some k, then (M,≤) is of level n+ 1/2.

Q: So if you expand a monoid of level n by ordered semigroups satisfying
xkyxk ≤ xk for some k, you get an ordered monoid of level n+ 1/2.

A: Yes.

Q: And to pass from level n+ 1/2 to level n+ 1?
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A: There are some results and some conjectures, too. But it’s definitely too
technical for this conversation.

Q: What happens for infinite words?

A: The decidability results known for finite words can be extended to infinite
words with the proper definitions. In particular, the same decidability results
hold. But, as you have seen before, you need more sophisticated tools to deal
with infinite words.

Q: Does the algebraic approach apply to other cases?

A: Straubing, Thérien and Thomas [43] gave a syntactic characterization of
first order logic with generalized quantifiers. The logic in which the relation
< is replaced by the successor relation was also considered by Thomas [47]. In
this case the first order definable languages form a strict subclass of the star-free
languages which also has a characterization by identities, originally discovered
by Thérien and Weiss [3, 4, 44, 50], but the Σn-hierarchy collapses at the second
level. The decidability of the classes Σ1 and BΣ1 was also recently established
[50, 31]. Blanchet-Sadri investigated the connections between some refinements
of the dot-depth hierarchy and Fräıssé-Ehrenfeucht games [5, 6, 7].

Another application of this approach concerns propositional linear temporal
logic, interpreted on finite and infinite words. A well known result of Kamp
[16, 14] states that this logic has the same expressive power as the first order
logic we talked about. So a language (resp. an ω-language) is expressible in
linear temporal logic if and only if it is star-free. This result can be proved
directly by algebraic methods [11, 12]. Restricted temporal logics may also be
considered.

Q: What do you mean by restricted temporal logic?

A: Consider for instance the “temporal logic without Until”, in which you are
just allowed to use the temporal operators Next and Eventually. Its expressive
power on finite words can be specified by identities [12]. It follows that one can
decide whether a given temporal formula is ∗-equivalent with a formula without
Until. Recently, Thomas Wilke gave a thoroughly study of such fragments of
temporal logic [51]. They are all decidable, for finite words and for infinite
words.

Q: I am a bit tired, and I need to assimilate all what you said. What would
you suggest me to read?

A: There are several survey papers you could read [24, 26, 32, 29, 38, 48]. Then
you can compulse the references given in these papers to go further on.

Q: Before I go, why did you get interested into logic?

A: Because I enjoyed the results of the paper of Wolfgang Thomas [47], but at
the time, I was not able to understand the proof! But there is also something
more, how to say, æsthetic. I have the feeling that there is something deep
in this connection between the most important family of regular languages —
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the star-free languages —, the most important class of finite monoids — the
aperiodic monoids — and the most important fragment of logic — the first
order logic —.

Q: I see what you mean. It’s a good conclusion for our conversation. Thank
you.
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