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Weak disorder for low dimensional polymers:

The model of stable laws.

Francis COMETS1

Université Paris 7,
Mathématiques, Case 7012

2 place Jussieu, 75251 Paris, France
email: comets@math.jussieu.fr

Abstract

In this paper, we consider directed polymers in random environ-
ment with long range jumps in discrete space and time. We extend
to this case some techniques, results and classifications known in the
usual short range case. However, some properties are drastically dif-
ferent when the underlying random walk belongs to the domain of
attraction of an α-stable law. For instance, we construct natural ex-
amples of directed polymers in random environment which experience
weak disorder in low dimension.

Short Title. Stable Directed Polymers
Key words and phrases. Directed polymers, random environment, weak disorder,
strong disorder, stable law.
MSC 2000 subject classifications. Primary 60K37; secondary 60G50, 82A51, 82D30

1 Introduction

Directed polymers in random environment can be viewed as random walks
in a random potential, which is inhomogeneous both in time and space. We
restrict here to the discrete case where the walk has discrete time and space
Z
d, d ≥ 1. A number of motivations for considering these models are given

in the physics litterature, in the context of growing random surfaces [20],
of nonequilibrium steady states and phase transitions [21]. An increasing
interest for these models is showing up in the mathematical community,

1Partially supported by CNRS, UMR 7599 “Probabilités et Modèles aléatoires” and
Projet GIP ANR POLINTBIO
http://www.proba.jussieu.fr/pageperso/comets/comets.html
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and recent, striking results are the characterizations of the “weak disorder –
strong disorder” and the “delocalization – localization” transitions given in
[9] and [13]. We give precise definitions of these concepts in definition 3.1
and above corollary 6.4. Roughly, weak disorder and delocalization mean
that the polymer behaves like the random walk, although strong disorder
and localization mean that it is extremely influenced by the medium and it
concentrates in just a few corridors where the medium is favorable. It is not
known whether these two phase transitions coincide or not; However, a partial
step is made for nearest neighbor walks in [11]. Heavy tailed environments
are studied in [26], they cause a strong form of localization. Small dimensions
are shown to be special [9], [13]: for nearest neighbor walks, strong disorder
always in dimension 1 and 2. Moreover, it was recently proved [14] that the
polymer is always localized in dimension 1.

One of the purposes of the present paper is to clarify the nature of the “weak
disorder – strong disorder” transition. We show that strong disorder relates
to an infinite number of meetings of two independent random walkers, for
a variety of models. We also study the influence of the jump distribution
on the “delocalization – localization” transition, and the interplay between
jump tails, space dimension and existence of delocalized phase. An interest-
ing contribution here is to construct natural, general examples of directed
polymers in random environment which experience weak disorder in low di-
mension. The jumps have to be long-tailed. Since the pionneer work of Paul
Lévy, the long-time behavior of such walks is known to be classified by stable
laws, and our results will depend on the stable law which attracts the random
walk.

Stable laws and Lévy flights model abnormal diffusion and mimic rapid tur-
bulent transport. They also arise naturally from coarse-graining procedures
for short range walks, e.g. hiting times. Lévy flights in a random potential
are considered in [12] to analyze the A+A → ∅ chemical reaction and explain
the phenomenon of superfast reaction, when a small amount of potential dis-
order added to the turbulent fluid leads to an increase rate of the reaction.
Dynamics of particle randomly moving along a disordered hetero-polymer
subject to rapid conformal changes, lead to superdiffusive motion. A model
is introduced in [8], corresponding to a Lévy flight in a random potential in
chemical coordinates. Both these models have time-independent potential,
but the time-dependent case simply corresponds to crossings in the presence
of strong external fields. An instructive review of the ocurrence of Lévy pro-
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cesses in sciences as fluid mechanics, solid state physics, polymer chemistry
and mathematical finance, is given in [27].

We will assume that the random walk belongs to the domain of attraction of
an α-stable law for some α ∈ (0, 2]. This implies that random walk at large
times n roughly scales like n1/α. In the case α < 2 it also means that the tails
P (|ω1| > r) of individual jumps are of order r−1/α for large r. The case α = 2
includes the usual one where the walk is nearest neighbor. The medium is
assumed to have finite exponential moments. We prove that weak disorder
holds for d = 1, α < 1 and d = 2, α < 2, at least for high temperature. This is
rather surprising in view of the results mentioned above in the simple random
walk case. In dimension d ≥ 3, our results here are not qualitatively different
from those obtained for the simple random walk. For completeness we will
state the results in all dimensions, but we emphasize low dimensions. All
through, we assume that the environment has finite exponential moments.

The paper is organized as follows. In the next section, we introduce the model
and recall some necessary facts on stable laws and their attraction domain.
Then, the free energy is defined, together with the regimes of weak disorder
and of strong disorder. We give sufficient conditions for weak disorder in
section 4 together with some properties of the polymer there, and sufficient
conditions for strong disorder in section 5. The last section is dedicated to
the phase diagrams and localization properties. As already mentioned, we
extend some constructions and results from nearest neighbor random walks
to long range ones, we will not repeat proofs unless necessary but indicate
precise references instead.

2 Long jumps polymers

We first need to state a few elementary facts on

2.1 Stable laws

These are all possible distributional limit of sums of i.i.d. random vectors
up to renormalization. By definition, a stable law on R

d is such that, for all
n ≥ 1, if X1, . . .Xn are i.i.d. with this law, there exist an > 0 and bn ∈ R

d

such that
X1 + . . .+Xn − bn

an
still has this law
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To avoid triviality we assume that the law is not a Dirac mass. It can be
shown that there is a unique α ∈ (0, 2] such that for all n, the above an is
an = n1/α. This exponent α is called the index (or characteristic exponent)
of the stable law, and we also say that P is α-stable.
Except a few special cases, stable laws are complicated, they cannot be writ-
ten in terms of simple functions, but their Fourier transforms are simple. An
α-stable random vector Sα has characteristic functions

E(eiz·Sα) = eψ(z) , z ∈ R
d

where the form of the exponent ψ depends on the index α ∈ (0, 2):

for α = 2 , ψ(z) = iτ · z − 1
2
z · Az (2.1)

with τ ∈ R
d and A a d× d symmetric positive definite matrix;

for α 6= 1, 2 , ψ(z) = ψ(z)α,τ,σ (2.2)

= iτ · z −

∫

Sd−1

|z · ξ|α
(
1 − i tan

πα

2
sgn(z · ξ)

)
σ(dξ)

with τ ∈ R
d and σ a finite nonzero measure on the unit sphere Sd−1 (the

sign function is defined by sgn(u) = 1 for u > 0, sgn(u) = −1 for u < 0 and
sgn(0)=0);

for α = 1 , ψ(z) = ψ(z)α,τ,σ (2.3)

= iτ · z −

∫

Sd−1

(
|z · ξ| +

2i

π
z · ξ log |z · ξ|

)
σ(dξ)

with τ ∈ R
d and σ a finite nonzero measure on the unit sphere Sd−1. The

vector τ (sometimes called the translate) and the measure σ (sometimes
called the spherical part of the Lévy measure) are uniquely defined. They
are location and asymmetry parameters. The law is invariant under rotations
centered at some x ∈ R

d if and only if x = τ and σ a uniform measure on the
sphere; The law is invariant under the central symmetry with center x ∈ R

d

if and only if x = τ and σ is invariant under ξ 7→ −ξ.
Here are some special cases where the density is simple. In the case α = 2,
the law is the d-dimensional Gaussian with mean τ and covariance matrix
A, with density

x 7→ (2π)−d/2(detA)−1/2 exp

{
−

1

2
(x−m)∗A−1(x−m)

}
.
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For c > 0, τ ∈ R
d and Γ the Euler function, the d-dimensional Cauchy law

with density

x 7→ Γ((d+ 1)/2)
c

π(d+1)/2(|x− τ |2 + c2)(d+1)/2

is stable with α = 1, with characteristic exponent ψ(z)1,τ,σ with σ the uniform
measure of mass c.
A complete overview on stable laws and domains of attraction is given in the
book [3], and a shorter presentation in [7]. For stable processes, we refer to
the books [3] and [22].

2.2 The model

•The random walk: ({ωn}n≥0, P ) is a random walk on Z
d starting from 0,

ie, the variables ωk+1 − ωk(k = 1, 2, . . .) are i.i.d. under P with ω0 = 0, and
we denote by q their common law q(x) := P (ω1 = x). We assume that q
belongs to the domain of attraction of a stable law (on R

d) with some index
α ∈ (0, 2). More precisely, we assume that there exist α ∈ (0, 2], τ ∈ R

d, σ a
finite nonzero measure on Sd−1, and deterministic sequences an > 0, bn ∈ R

d,
such that

P

(
exp{iz ·

ωn − bn
an

}

)
−→ expψα,0,σ(z) (2.4)

for all z. To simplify our discussion, we will also assume that the limit is
truly d-dimensional, ie, that it satisfies (4.17) below.
We now give a short account on our assumption (2.4), and recall some facts
on the domain of attraction of stable laws, starting with the simpler case of
dimension d = 1. The reader may also decide to skip these details in a first
reading, and jump directly to the important example 2.1.

Dimension 1: In one dimension, this assumption can be described in terms
of the tails of q. We follow the presentation of section 8.3 in [3]. The cases
α ∈ (0, 2) and α = 2 being different, we start with

1. Case α ∈ (0, 2). We let R0 be the space of slowly varying functions in
the sense of Karamata, i.e. of functions ℓ : [0,∞) 7→ [0,∞) such that

ℓ(sr)/ℓ(r) → 1 (r → ∞) ∀s > 0.



Stable laws for polymers 6

Examples of such functions are constants, ln r or exp[ln r/ ln ln r]. As-
sumption (2.4) is equivalent to

P (|ω1| ≥ r) = r−αℓ(r) (2.5)

for some ℓ ∈ R0, and

P (ω1 ≤ −r)

P (|ω1| ≥ r)
→ q∗ ,

P (ω1 ≥ r)

P (|ω1| ≥ r)
→ p∗ (r → ∞) (2.6)

where we note that p∗ + q∗ = 1. Then, the sequence an is of the form

an = n1/αℓ′(n)

with a slowly varying function ℓ′ ∈ R0 which can be taken such that

P 2(eiz(ω1−ω̃1)/an)n → e−2|z|α (n→ ∞) ∀z ∈ R

In this case, the limit in (2.4) has

σ(+1) = p∗ , σ(−1) = q∗

(note that S0 = {−1,+1}). Moreover, we can take

bn = 0 for α < 1 ,

bn = nP (ω1) for α ∈ (1, 2) ,

in which case ω1 is integrable, and

bn = nP [ψ(ω1/an)] , ψ(t) = t(1 + t2)−1 for α = 1 .

The reader is refered to [3], pp. 343-347, for further details.

2. α = 2: the assumption (2.4) is then equivalent to the function r 7→
P (|ω1|2 : |ω1| ≤ r) being slowly varying. A sufficient condition is
existence of a second moment of ω1, and (2.4) is simply the standard
central limit theorem.

Dimension d ≥ 2: Let ϕ(z) = P (eiz·ω1). The characterization of assumption
(2.4) is known in terms of the characteristic function ϕ of the law q and of
slowly varying functions (see theorem 2.6.5 in [19] and [1], corollary 1–2 in
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section 2). Assumption (2.4) with a truly d-dimensional limit in the sense of
(4.17) is equivalent, for α ∈ (0, 2) \ {1}, to

logϕ(z) =

{
φα,0,σ(z)ℓ(1/|z|) + iz · τ + o(|z|αℓ(1/|z|)) if α > 1 ,

φα,0,σ(z)ℓ(1/|z|) + o(|z|αℓ(1/|z|)) if α < 1 .

This is for α 6= 1, the case α = 1 being more complicated. We simply
mention that, for a symmetric law q and α = 1, assumption (2.4) with
(4.17), is equivalent to

lnϕ(z) = −

∫

Sd−1

|z · ξ|σ(dξ)× ℓ(1/|z|) + o(|z|ℓ(1/|z|)) ,

and we refer to corollary 2 in section 2 of [1], for the somewhat cumbersome
general case.
We give a generic example where the assumption holds.

Example 2.1 Let d = 1 or 2, and q be symmetric with

q(x) = b(|x|−d−α + ε(x)) as |x| → ∞ , x ∈ Zd (2.7)

with α ∈ (0, 2). Then, the assumption (2.4) hold true with τ = 0 and σ
uniform, using [1],[19]), and estimates of the characteristic function (see
e.g. (2.13) and (3.11) in [18]).

• The random environment: η = {η(n, x) : n ∈ N, x ∈ Z
d} is a sequence of

r.v.’s which are real valued, non-constant, and i.i.d.(independent identically
distributed) r.v.’s defined on a probability space (Ωη,G, Q) such that

Q[exp(βη(n, x))] <∞ for all β ∈ R.

We then let λ(β) = lnQ[exp(βη(n, x))].

• The polymer measure: For any n > 0, define the probability measure µn
on the path space (Ωω,F) by

µn(dω) =
1

Zn
exp{βHn(ω)} P (dω), (2.8)

where β > 0 is a parameter (the inverse temperature), where

Hn(ω) = Hn(η, ω) =
∑

1≤j≤n

η(j, ωj) (2.9)
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and

Zn = Zn(β, η) = P

[
exp

(
β
∑

1≤j≤n

η(j, ωj)

)]
(2.10)

is the the partition function.

3 Free energy, and the natural martingale

The partition function is random, but it is self-averaging as n increases.

Proposition 3.1 Let α ∈ (0, 2] arbitrary. As n → ∞, the quenched free
energy converges to a deterministic constant:

1

n
lnZn −→ p(β) := lim

m→∞

1

m
Q lnZm (3.11)

Q−a.s. and in Lq (1 ≤ q <∞). Moreover, we have the annealed bound

p(β) ≤ λ(β) (3.12)

2 The proof in the case of a simple random walk P (proof of prop. 2.5 in
[13], pp. 720–722) covers the general case of α ∈ (0, 2] without change. The
last inequality comes from Jensen inequality, which writes

1

m
Q lnZm ≤

1

m
lnQZm = λ(β)

The sequence (Wn, n ≥ 1) defined by

Wn = Zn exp(−nλ(β)) (3.13)

is a positive, mean 1, martingale with respect to the environmental filtration
(Gn) = σ(η(t, x), t ≤ n, x ∈ Z). This was noticed first by Bolthausen [6]. By
the martingale convergence theorem, the limit

W∞ = lim
nր∞

Wn

exists Q-a.s. It is clear that the event {W∞ = 0} is measurable with respect
to the tail σ-field

⋂
n≥1 σ[η(j, x) ; j ≥ n, x ∈ Z

d] . By Kolmogorov’s zero-one
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law every event in the tail σ-field has probability 0 or 1. Hence, there are
only two possibilities for the positivity of the limit

Q{W∞ > 0} = 1 , (3.14)

or
Q{W∞ = 0} = 1 . (3.15)

Definition 3.1 The above situations (3.14) and (3.15) will be called the
weak disorder phase and the strong disorder phase, respectively. In the
first case, p = λ.

In corollary 6.3 at the end of the paper we explain why it is important to
decide if the inequality in (3.12) is an equality or not.

4 Existence of weak disorder, properties

We need now to consider on the product space (Ω2,F⊗2), the probability
measure P⊗2 = P⊗2(dω, dω̃), that we will view as the distribution of the
couple (ω, ω̃) with ω̃ = (ω̃k)k≥0 an independent copy of ω = (ωk)k≥0.
When P satisfies (2.7), we see that the random walk ω − ω̃ is attracted by
the symmetric α-stable law. Precisely, with an from (2.7), we have

P⊗2

(
exp{iz ·

ωn − ω̃n
an

}

)
−→ exp (ψα,0,σ(z) + ψα,0,σ(z)) = expψα,0,σ′(z)

(4.16)
with σ′(B) = σ(B) + σ(−B) for all Borel subset B of Sd−1.
For later purposes, it is essential to observe that the difference ω − ω̃ is a
transient random walk – i.e., N∞ :=

∑∞
n=1 1ωn=ω̃n

< ∞ a.s. – in the three
following cases:

(i) d = 1 and α ∈ (0, 1),

(ii) d = 2 and α 6= 2,

(iii) d ≥ 3 and α ∈ (0, 2],
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provided the limit is truly d-dimensional. This extra assumption for α ∈
(0, 2) means that the linear space spanned by the support of the measure σ
is R

d, and for α = 2 that the covariance matrix A is non-degenerate,

Vect( supp σ) = R
d or rank(A) = d , (4.17)

according to the case α < 2 or α = 2. Indeed, with φ(z) = P⊗2[exp{iz · (ω1−
ω̃1)}], (4.16) amounts to

φ(z) = exp
{
ψα,0,σ′(z)ℓ

( z
|z|
,

1

|z|

)}
(4.18)

with ℓ(ξ, ·) a slowly varying function depending continuously on ξ ∈ Sd−1.
Since it holds, under (4.17),

ψα,0,σ′(z) ≤ C|z|α ,

we have ∫

[−π,π[d

dz

1 − φ(z)

{
= ∞ if α > d
<∞ if α < d

(4.19)

Applying the Chung-Fuchs criterion (P1 in section 8 of [24]), we see that the
walk ω − ω̃ is transient in the second case, and then

π(p) := P⊗2(∃n ≥ 1 ωn − ω̃n = 0) < 1

Remark 4.1 The walk ω − ω̃ is recurrent when α > d. The border case
α = d is more subtle: Transience may hold or may not hold depends on the
slowly varying term in (4.18). In the positive, the validity of the the next two
theorems will extend to critical cases α = d = 1, α = d = 2.

Theorem 4.1 Weak disorder region in dimension 1, 2. In addition to
(4.17), assume either (i) d = 1 and α ∈ (0, 1), or (ii) d = 2, α 6= 2, or (iii)
d ≥ 3 and α ∈ (0, 2]. Then, for all β such that

λ(2β) − 2λ(β) < ln 1/π(p) , (4.20)

we have W∞ > 0 Q-a.s.
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The result may come as a surprise, since for P the simple random walk, it
was proved that W∞ = 0 Q-a.s. [9] [13], and even that p < λ [14]. The
method used in the last reference is based on comparisons with polymers
models on trees. It is impossible to extend it to long range jumps, although
related ideas can be –and will be– in the sequel, see (5.24).
Following the techniques of [4] using a conditional second moment, one could
extend the validity of the result to a domain in β larger than (4.20).

2 Following [6] we compute the L2-norm of the martingale Wn. To do so, we
represent W 2

n in terms of an independent couple (ω, ω̃) introduced above.

Q[W 2
n ] = Q

[
P⊗2

n∏

t=1

eβ[η(t,ωt)+η(t,ω̃t)]−2λ(β)

]

= P⊗2

[
n∏

t=1

(
eλ(2β)−2λ(β)1ωt=ω̃t

+ 1ωt 6=ω̃t

)
]

= P⊗2
[
eγ1Nn

]
,

with γ1 = λ(2β) − λ(β), and Nn the number of intersections of the paths
ω, ω̃ up to time n,

Nn = Nn(ω, ω̃) =

n∑

t=1

1ωt=ω̃t
(4.21)

As n→ ∞, Nn ր N∞, and by monotone convergence Q[W 2
n ] ր P⊗2

[
eCN∞

]
.

In the cases under consideration, the random variable N∞ is geometrically
distributed

P⊗2(N∞ = n) = π(σ)n[1 − π(σ)] , n ≥ 0 ,

with π(p) the probability of return defined above the theorem. Hence it has
finite exponential moments

P⊗2[exp γ1N∞] <∞ ⇐⇒ γ1 < ln 1/π(p)

Therefore, when λ(2β) − 2λ(β) < ln 1/π(p), the martingale Wn is bounded
in L2, and by the classical L2-convergence theorem, it converges in L2 to a
limit, which is necessarily equal to W∞. So QW∞ = limnQWn = 1, which
excludes the possibility that the limit vanishes.

Inside the subset of the weak disorder region determined by the condition
(4.20), the fluctuations of the path remain similar to those of P .
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Theorem 4.2 Assume either (i) d = 1 and α ∈ (0, 1), or (ii) d = 2, α 6= 2,
or (iii) d = 3 and α ∈ (0, 2], and assume (4.17). When (4.20) holds, we have
for all bounded continuous function g : R → R,

µn

[
g

(
ωn − bn
an

)]
→ ν(g)

in Q-probability as n → ∞, where ν is the α-stable law with characteristic
function ψα,0,σ.

2 We let νn(·) = P [(ωn − bn)/an ∈ ·].

Q

(∣∣∣∣µn
[
g

(
ωn − bn
an

)]
− νn(g)

∣∣∣∣
2

W 2
n

)

= P 2Q

(
eβHn(ω)+βHn(ω̃)−2nλ

[
g

(
ωn − bn
an

)
− νn(g)

][
g

(
ω̃n − bn
an

)
− νn(g)

])

= P 2

(
eγ1Nn

[
g

(
ωn − bn
an

)
− νn(g)

][
g

(
ω̃n − bn
an

)
− νn(g)

])
(4.22)

We know that, under P 2, the r.v. Nn converges to N∞ a.s., and that (ωn −
bn)/an – and similarly (ω̃n − bn)/an – converges to ν in law. Now, we claim
that, under P 2, the triple

(Nn, (ωn − bn)/an, (ω̃n − bn)/an)
law
−→ (N, S, S̃) (4.23)

with (N, S, S̃) an independent triple where N has the same law as N∞, S
and S̃ have the law ν. The proof of this fact makes use of the observation
that

sup
n≥m

P 2(Nn 6= Nm) → 0 as n→ ∞

since Nn ր N∞ < ∞ a.s. Fix m ≥ 1 and f, g, g̃ continuous and bounded.
For all n ≥ m, we write

P 2

[
f(Nn)g(

ωn − bn
an

)g̃(
ωn − bn
an

)

]

= P 2

[
f(Nn)g(

ωn − bn
an

)g̃(
ωn − bn
an

)1Nn=Nm

]
+ ε(n,m)

= P 2

[
f(Nm)g(

ωn − bn
an

)g̃(
ωn − bn
an

)1Nn=Nm

]
+ ε(n,m)
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= P 2

[
f(Nm)g(

ωn − ωm − bn
an

)g̃(
ωn − ωm − bn

an
)1Nn=Nm

]
+ ε′(n,m)

= P 2

[
f(Nm)g(

ωn − ωm − bn
an

)g̃(
ωn − ωm − bn

an
)

]
+ ε”(n,m)

= P 2[f(Nm)] × P

[
g(
ωn − ωm − bn

an
)

]
× P

[
g̃(
ωn − ωm − bn

an
)

]
+ ε”(n,m) ,

which equalities define the terms ε(n,m), ε′(n,m), ε′′(n,m) on their first oc-
curence. Here,

|ε(n,m)| ≤ ‖f‖∞‖g‖∞‖g̃‖∞P (Nn 6= Nm)

tends to 0 as m→ ∞ uniformly in n ≥ m, ε′(n,m)− ε(n,m) → 0 as n→ ∞
for all fixed m, and supn≥m ε

′′(n,m) → 0 as m→ ∞. The last equality comes
from independence in the increments of the random walks, and of the two
random walks ω and ω̃. Hence, letting n→ ∞ and then m→ ∞, we get

P 2

[
f(Nn)g(

ωn − bn
an

)g̃(
ωn − bn
an

)

]
→ P 2[f(N∞)] × ν[g] × ν[g̃]

which proves (4.23). Coming back to (4.22), and since P 2(eγNn) < ∞ for
some small enough γ > γ1, (4.23) implies that

Q

(∣∣∣∣µn
[
g

(
ωn − bn
an

)]
− νn(g)

∣∣∣∣
2

W 2
n

)
→ P 2(eγ1N∞) [ν(g) − ν(g)]2 = 0

Since W−2
n converges to a finite limit, it is bounded in probability, this yields

the desired convergence in probability.

Remark 4.2 (i) In the case when P is the nearest neighbor simple random
walk, the condition (4.20) implies a quenched central limit theorem, ie, that
central limit theorem holds for a.e. realization of the environment [6]. Our
result here is weaker. Due to the lack of moments for the long jumps here, the
natural martingales which can be used in the standard case are not defined
in the present setup.
(ii) In the case when P is the nearest neighbor simple random walk, it was
shown in [17] that central limit theorem holds (in a weak form at least) as
soon as W∞ > 0. Then it is questionable whether in the model of the present
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paper, weak disorder implies convergence of the renormalized position of the
polymer to an α-stable law. We leave the question open.
(iii) When P is the simple random walk, many other results are known under
condition (4.20), for instance:

1. Local limit theorem for the polymer measure [23], [25];

2. How does the polymer depends on the environment ? (This question is
answered in [5] by computing the random corrections to gaussian for
cumulants of the polymer position.)

We leave open the question of which is the counterpart of these results for
long range random walks we consider here (α ∈ (0, 2)).

We end this section with a model where weak disorder holds at all temper-
ature and all dimension. Viewed as a growing random surface, it does not
have a roughening transition, and consequently in this respect, it does not
belong to the Kardar-Parisi-Zhang (KPZ) class [20].

Example 4.1 Bernoulli environment. The case when η(t, x) = 1 or 0 with
probability q and 1 − q respectively, is remarkable since weak disorder may
hold at all temperature. Here we find λ = ln[peβ + (1 − q)], and we see from
direct computations that

lim
βր∞

γ1(β) = − ln(q).

Hence, (4.20) holds for all β ≥ 0 if q > π(p). Theorem 4.1 shows that, in
this case, weak disorder holds for all β ≥ 0, and Theorem 4.2 shows that the
polymer position at time n still fluctuates at order n1/α.

5 Existence of strong disorder

The next result gives a sufficient condition for p < λ, which implies strong
disorder.

Proposition 5.1 Let α ∈ (0, 2] and d arbitrary. If

βλ′(β) − λ(β) > −
∑

k∈Z

q(k) ln q(k) (5.24)

then p < λ.
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We note that the important quantity is here the entropy −
∑

x q(x) ln q(x)
of the walk, which does not directly relates to the recurrence/transience
behavior of the walk. The entropy is always finite under our assumptions on
q.

Example 5.1 Gaussian environment. If η is standard gaussian N (0, 1),
then γ1(β) = β2 and hence (4.20) holds if β <

√
ln(1/πd), though (5.24)

holds for all β > −
∑

x q(x) ln q(x). In this case, a phase transition takes
place between weak and strong disorder.

2 Note that
Zn =

∑

x∈Z

q(x)eβη(1,x)Zx
1,n , (5.25)

where Z1,n(x) has the same law as Zn−1. Let θ ∈ (0, 1). By the subadditive
estimate

(u+ v)θ ≤ uθ + vθ , u, v > 0 ,

we get

Zθ
n ≤

∑

x∈Z

q(x)θeβθη(1,x)(Zx
1,n)

θ

Since Zx
1,n has the same law as Zn−1, we obtain a bound on un = QZθ

n:

un ≤

[
∑

x∈Z

q(x)θ exp{λ(βθ)}

]
un−1

≤

[
∑

x∈Z

q(x)θ exp{λ(βθ)}

]n

by induction. Now, observe that

Q
1

n
lnZn = Q

1

nθ
lnZθ

n ≤
1

nθ
lnQZθ

n

which, combined with the previous bound on un = QZθ
n, yields

p ≤ inf
θ∈(0,1)

{
1

θ
v(θ)

}
, v(θ) =

[
λ(βθ) + ln

∑

x∈Z

q(x)θ

]
.

Since the function v is convex and positive at 0, there are only possibilities
for the infimum. If the derivative of v(θ)/θ is positive at θ = 1, the infimum
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is acheived at some θ ∈ (0, 1), and is strictly less than λ(β) (which is the
value at 1). On the contrary, if the derivative of v(θ)/θ is less or equal to 0,
the infimum is for θ → 1 and the value is λ(β). Finally, we compute

d

dθ

v(θ)

θ |θ=1
= βλ′(β) − λ(β) +

∑

k∈Z

q(k) ln q(k) > 0

which proves the claim.

6 Phase diagram, transitions and localization

The sum in (5.24) is always finite with our choice of q. For unbounded η’s,
one easily checks that lim βλ′(β) − λ(β) = +∞ as β → +∞, so that this
condition (5.24) will be checked for large β. On the other hand, the set of β’s
such that p = λ is an interval (possibly with length 0). Indeed it is readily
checked that the argument in Th. 3.2.(b) in [17] for the case α = 2, extends
to all values of α ∈ (0, 2]. To summarize,

Theorem 6.1 Phase diagram. The exists a βc ∈ [0,∞) such that p = λ
for β ∈ [0, βc] and p < λ for β > βc. Moreover, under the assumption (4.17),
we have

βc > 0

in the following cases: (i) d = 1 and α ∈ (0, 1), or (ii) d = 2, α 6= 2, or (iii)
d = 3 and α ∈ (0, 2].

When α = 2 it is well known [9] [13] that the discrepancy between p and λ
relates to localization property of the polymer. In fact the computations in
the special case α = 2 still work for all α (e.g. [13], th. 2.1 and proof pp.
711–715). Then, we have

Theorem 6.2 Let β 6= 0, α and d arbitrary. Define

In = µ⊗2
n−1(ωn = ω̃n)

Then,

{W∞ = 0} =
{∑

n≥1

In = ∞
}
, Q-a.s. (6.26)

Moreover, if Q{W∞ = 0} = 1, there exist c1, c2 ∈ (0,∞) such that Q-a.s.,

c1
∑

1≤k≤n

Ik ≤ − lnWn ≤ c2
∑

1≤k≤n

Ik for large enough n’s. (6.27)
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We define the mass Jn of the favourite exit point for the polymer,

Jn = max
x∈Zd

µn−1(ωn = x)

We view Jn ∈ [0, 1] as an index of localization of the polymer. When Jn
vanishes, the polymer is delocalized in the sense that it spreads over all sites;
This is the case for β = 0. On the other hand, when Jn does not vanish, the
polymer is strongly localized in the sense it has a significant probability to
go through a few special sites. More precisely,

Definition 6.1 The polymer is delocalized if

lim
n→∞

Jn = 0 Q− a.s. ,

and localized if
Cesaro− lim inf

n→∞
Jn > 0 Q− a.s.

where the liminf is taken in the Cesaro sense, i.e.

Cesaro− lim inf
n→∞

Jn = lim inf
n→∞

1

n

n∑

t=1

Jt .

In view of the relations
J2
n ≤ In ≤ Jn ,

and following [13], it is not difficult to derive, from Theorem 6.2 and Propo-
sition 3.1, the following corollary.

Corollary 6.3 We have the equivalences

p = λ ⇐⇒ delocalization

and
p < λ ⇐⇒ localization

In particular, for all β, either delocalization occurs or localization occurs. In
other words, there is another dychotomy: for all fixed β, either Jn vanishes
for almost every environment, or for almost every environment, lim inf Jn is
positive in the Cesaro sense.

Now, from Theorem 4.1 and Proposition 5.1 we derive

Corollary 6.4 (a) Assume (4.17), and either (i) d = 1 and α ∈ (0, 1), or
(ii) d = 2, α 6= 2, or (iii) d ≥ 3, α ∈ (0, 2]. Then, delocalization holds for all
β with (4.20).
(b) Under the condition (5.24), localization holds.
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[2] Bertoin, J.: Lévy processes. Cambridge Univ. Press, 1996.

[3] Bingham, N., Goldie, C., Teugels, J.: Regular variation. Encyclopedia of
Mathematics and its Applications, 27. Cambridge University Press, 1987.

[4] Birkner, M: A condition for weak disorder for directed polymers in random
environment. Electron. Comm. Probab. 9 (2004), 22–25

[5] Boldrighini, C., Minlos, R., Pellegrinotti, A.: Almost-sure central limit theo-
rem for directed polymers and random corrections. Comm. Math. Phys. 189

(1997), 533–557.

[6] Bolthausen, E.: A note on diffusion of directed polymers in a random envi-
ronment, Commun. Math. Phys. 123 (1989), 529–534.

[7] Breiman, L. Probability. Classics in Applied Mathematics, 7. Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992

[8] Brockmann, D., Geisel, T. Particle dispersion on rapidly folding random
hetero-polymers Phys. Rev. Lett. 91 (2003) 048303.

[9] Carmona, P., Hu Y.: On the partition function of a directed polymer in a
random environment. Probab.Theory Related Fields 124 (2002), no. 3, 431–
457.

[10] Carmona, P., Hu Y.: Fluctuation exponents and large deviations for directed
polymers in a random environment. Stoch. Proc. Appl. 112 (2004), 285–308.

[11] Carmona, P., Hu Y.: Strong disorder implies strong localization
for directed polymers in a random environment. Preprint 2006,
http://arxiv.org/abs/math.PR/0601670
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