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Abstract

Reorganization of the nuclear machinery after mitosis is a fundamental but poorly understood
process. Here we investigate the recruitment of the nucleolar processing proteins in the nucleolus

of living cells at the time of nucleus formation. We question the role of the prenucleolar bodies
(PNBs), during migration of the processing proteins from the chromosome periphery to sites of

rDNA transcription. Surprisingly, early and late processing proteins pass through the same PNBs

as demonstrated by rapid two color 4D imaging and quantification, while a different order of
processing protein recruitment into nucleoli is supported by differential sorting. Protein

interactions along the recruitment pathway was investigated using a promissing time-lapse
analysis of fluorescence resonance energy transfer. For the first time, it was possible to detect in

living cells the interactions between proteins of the same rRNA processing machinery in

nucleoli. Interestingly interactions between such proteins also occur in PNBs but not at the
chromosome periphery. The dynamics of these interactions suggest that PNBs are pre-assembly

platforms for rRNA processing complexes.
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Introduction

In higher eukaryotes, the nucleus is dis-assembled when chromosomes condense at the beginning

of mitosis and re-assembled at the end of mitosis. During mitosis there is redistribution and/or
inactivation of the nuclear machineries that will be further involved in re-building nuclear

functions. One of the fundamental features of nuclear organization is that many components of

the RNA synthesis and processing machineries are grouped in compartments (Spector, 1993;
Lamond and Earnshaw, 1998; Matera, 1999; Gall, 2000; Misteli, 2000; Spector, 2001;

Hernandez-Verdun et al., 2002; Huang, 2002; Lamond and Spector, 2003). This implies that the
recruitment of dedicated machineries and formation of discrete nuclear domains are crucial

events at the beginning of interphase. In addition, recent data indicate that the entry as well as

correct relocation of the nuclear machineries into newly forming nuclei are a step-dependent and
ordered process (Savino et al., 2001; Prasanth et al., 2003; Bubulya et al., 2004; Leung et al.,

2004). However, recruitment of the nucleolar processing proteins on transcription sites is still a
poorly understood process. To better understand the re-building of nucleolar functions after

mitosis, we chose to investigate the assembly of the nucleolar processing machinery in real time

in living cells.
The nucleolus is a functional compartment of the nucleus generated by ribosome biogenesis

(Hadjiolov, 1985; Mélèse and Xue, 1995; Leung et al., 2003). It is also a plurifunctional domain
involved in the 3D organization of chromatin in the nucleus (Chubb et al., 2002), in the assembly

of several ribonucleoprotein complexes (Pederson, 1998; Olson et al., 2000) and in the formation

of nuclear speckles (Bubulya et al., 2004). The nucleolus therefore appears to be a key player of
the nuclear functional architecture. Its functions depend on the activation and recruitment of the

nucleolar machineries involved in transcription of the ribosomal genes (rDNA) and processing of

ribosomal RNAs (rRNA). These machineries are inherited through mitosis from the previous
interphase (Hernandez-Verdun et al., 2002). During mitosis, the nucleolar machineries that

participate in rRNA processing within the nucleolus are distributed around all the chromosomes
and therefore at some distance from the rDNA sequences. When rDNA transcription is activated

during telophase, the processing machineries are targeted to the sites of rRNA synthesis. Along

the translocation pathway between chromosome periphery and sites of transcription, prenucleolar
bodies (PNBs) are formed (Ochs et al., 1985; Azum-Gélade et al., 1994; Jiménez-Garcia et al.,

1994; Dundr et al., 2000; Savino et al., 2001). The PNBs are discrete fibrogranular structures
characterized by electron microscopy in animal and plant cells (Stevens, 1965; Ochs et al., 1985;
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Savino et al., 2001). PNB formation occurs on the chromosome surface during telophase and is

under the control of cyclin-dependent kinases (Sirri et al., 2002). The PNBs are also formed

during Xenopus development before complete nucleolar assembly and they can be assembled in
vitro in Xenopus egg extracts (Bell et al., 1992; Verheggen et al., 1998, 2001). Thus PNB

formation is a general phenomenon occurring during cell cycle and development. However, the
role of this steady state along the recruitment pathway of the nucleolar processing complexes is

presently unknown.

To investigate the role of PNBs in the establishment of nucleolar functions, we analyzed the
dynamics and the possible interactions between processing proteins along the assembly pathway

in living cells. The early rRNA processing machinery is co-transcriptionally associated with

rRNAs whereas the late rRNA processing machinery is involved in rRNA processing after
termination of transcription. Here, we chose fibrillarin as representative protein of 90S pre-rRNA

particles (early processing) and Nop52, Bop1 and B23 as representative proteins of 60s pre-
rRNA particles (late processing) (Fatica and Tollervey, 2002; Fromont-Racine et al., 2003). The

behavior of early and late rRNA processing proteins at the exit of mitosis was analyzed by (1)

immunocytochemistry, (2) fast 2 color 4D imaging in living cells, and (3) time-lapse
fluorescence resonance energy transfer (FRET) monitored by time domain fluorescence lifetime

imaging microscopy (tdFLIM), a new, direct and non-invasive method to follow protein-protein
interactions in living cells. Based on data presented here, we propose that PNBs are pre-

assembly platforms of rRNA processing complexes.
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Materials and Methods
Cells

HeLa cells were grown on glass coverslips in modified medium (MEM; Gibco BRL)
supplemented with 10% (v/v) fetal calf serum, 10 µg ml-1 antibiotics (penicillin and

streptomycin) and 2 mM L-glutamine (Gibco BRL) at 37°C in 5% CO2.
They were transfected at 60% confluence using the Superfect reagent (QIAGEN). The following

constructs were used: GFP-Nop52 and GFP-fibrillarin (Savino et al., 2001), GFP-B23 provided

by Dr. S. Huang (Chen and Huang, 2001), GFP-Bop1 provided by Dr. D. Pestov (Pestov et al.,
2001b), and DsRed-Nop52 and DsRed-B23 inserted into pDsRed2-C1 (Clontech). In all cases,

GFP and DsRed were fused to the NH2 terminus of the proteins.

Several stably transformed cell lines were used: GFP-Nop52, GFP-fibrillarin, GFP-B23, GFP-
Bop1, DsRed-B23 and DsRed-Nop52. Selection of the GFP-B23, GFP-Bop1, DsRed-B23 and

DsRed-Nop52 stably transformed cells was carried out as previously described (Savino et al.,
2001). Doubly transfected cells GFP-Nop52/DsRed-B23, GFP-fibrillarin/DsRed-B23, GFP-

B23/DsRed-Nop52, GFP-Bop1/DsRed-B23 and DsRed-B23/GFP-Nop52 were generated from

stably transformed cells transiently transfected with DsRed-B23, DsRed-Nop52 or GFP-Nop52.
For FRET analysis, living adhesive cell lines permanently expressing the donor (GFP-Nop52,

GFP-Bop1 or GFP-fibrillarin) were cultured on glass coverslips in Dulbecco’s Modified Eagle
Medium, supplemented with fetal calf serum (0.5%), at 37°C in 5% CO2. The cells were

transfected with DsRed-B23 one day before measurements. The coverslips were mounted in a

special holder allowing reconstruction of a Petri dish and placed on an inverted microscope.
Measurements were carried out in culture medium without phenol red at 37°C in 5% CO2. A

paraffin oil (Merck) layer was deposited on top of the medium to avoid evaporation and allow
long term observations at 37°C.

Antibodies

The following antibodies were used: a mouse monoclonal anti-fibrillarin, 72B9 (Reimer et al.,

1987), a human serum directed against Nop52 (Savino et al., 1999), and a goat polyclonal anti-
B23 (C19, Santa Cruz Technology). Anti-mouse secondary antibodies conjugated to FITC or to

Cy5, anti-human antibodies conjugated to Cy5, and goat antibodies conjugated to Texas Red

were from Jackson Immuno Research Laboratories. For immuno-labelling, cells were treated as
previously described (Savino et al., 2001).

Time-lapse microscopy
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The cells were grown on glass coverslips, mounted in a Ludin observation chamber (LIS) filled

with complete medium supplemented with 10 mM Hepes, pH 7.4. The microscope and the

chamber were kept at 37°C. A Leica DM IRB microscope, equipped with a piezoelectric
translator (PIFOC, PI, Germany) placed at the base of a 100 x PlanApo N.A. 1.4 objective and a

5 MHz Micromax 782Y interline CCD camera (Roper Instruments, France) were used. To
visualize two differently tagged proteins, rapid wavelength selection was achieved by a Shutter

DG4 illuminator and wavelength changer. For imaging of GFP and DsRed, a dual narrow pass

band FITC/TRITC filter block was used. In the DG-4 illuminator, short pass KP 500 and long
pass LP 515 filters were mounted in positions 1 and 2 respectively. The acquisition software

(Metamorph, Universal Imaging) was set to trigger rapid wavelength changes to acquire two

images at each Z-step (0.3 µm). Imaging at full overlapped speed of the CCD device assured that
the two fluorescent tags were recorded sequentially at maximum speed, without movement of the

filters. The stacks were assembled after image deconvolution as previously described (Savino et

al., 2001).

Fluorescence intensities in PNBs were quantified on the sum of three consecutive non

deconvoluted slices. The measurement on 3 slices was found necessary to include PNB
movement. Measurements on regions of interest (ROI) were carried out in different subnuclear

domains corresponding to diffuse or foci areas from telophase to early G1. Foci are defined as
regions of local intensity greater than three times that of diffuse areas. The same ROI was used

for GFP and DsRed fluorescence. The signals were quantified using the ImageJ software. The

mean grey value, area, standard deviation, min and max grey value were recorded.

FRET determination by tdFLIM measurements

The apparatus used for FRET determination performs tdFLIM by the time- and space-correlated
single photon counting method and is described elsewhere (Emiliani et al., 2003). This technique

directly gives the picosecond time-resolved fluorescence decay for every pixel by counting and
sampling single emitted photons according to i) the time delay between photon arrival and laser

pulse (picosecond time scale, 4096 channels), ii) their xy coordinate (256x256 pixel image), and

iii) their absolute time. A titanium sapphire laser (Millennia 5W/Tsunami 3960-M3BB-UPG kit,
Spectra-Physics, France) that delivers picosecond pulses was tuned at 960 nm to obtain a 480 nm

excitation wavelength after frequency doubling. The repetition rate was 4 MHz after pulse-picker
(Spectra-Physics 3980-35, France). The laser beam was expanded and inserted into an inverted

epifluorescence microscope (Leica DMIRBE, France) for wide field illumination. Green

fluorescence decay images were taken using a Leica Plan-APOCHROMAT 100X1.3NA oil
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objective, a dichroic beam splitter (505DRLP; Omega; Optophotonics, Eaubonne, France), an

emission filter (535AF45; Omega; Optophotonics, Eaubonne, France) and the quadrant-anode

TSCSPC detector (QA, Europhoton GmbH, Germany). The count rate was up to 50 kHz. The
microscope stage was equipped with an incubator system for temperature and CO2 regulation

(37°C, 5% CO2). TdFLIM images were obtained by mapping pixel-by-pixel the mean lifetime
determined from a single exponential fit. For qualitative determination of the occurrence of

FRET, the fluorescence decays corresponding to a nucleolus or PNB area were extracted from

the acquisition matrix and the decays of donor-tagged proteins in the presence of the acceptor-
tagged B23 were compared with the control decays of donor-tagged proteins measured in the

absence of acceptor. The experimental curves were further fitted with a Marquardt non-linear

least-square algorithm (Globals Unlimited software, University of Illinois at Urbana Champaign)
using a Gaussian distribution of lifetimes as theoretical model. Time-lapse FRET images were

obtained from the Gaussian distribution analysis of the fluorescence decays associated with each
region of interest and at different elapsed times of acquisition. A reduction in the center of the

fluorescence lifetime distribution of GFP-tagged protein superior or equal to 0.200 ns (nano

seconde) was considered as occurrence of FRET.
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Results

Early and late rRNA processing proteins colocalize in anaphase and form PNBs in
telophase
In anaphase, both types of rRNA processing proteins formed a faint and continuous sheath
around chromosomes visualized by DAPI. Never was a detectable difference observed between

the distributions of early (fibrillarin) and late (B23, Nop52 and Bop1) proteins (Fig. 1 and Video

1) in the entire cell volume. These observations provide evidence for the colocalization of the
proteins during anaphase, and hence demonstrate that during their migration towards the poles

the proteins of these machineries do so in association with chromosomes. This hypothesis of

chromosome association is also supported by DNase solubilization of B23 during mitosis
(Zatsepina et al., 1997), by the presence of the proteins at the surface of isolated chromosomes

(Gautier et al., 1992b), and by localization of the proteins in electron microscopy (Gautier et al.,
1992a). During telophase and early G1, the rRNA processing proteins form PNBs at the

chromosome periphery and are progressively recruited to the site of transcription. As already

described, early processing proteins (fibrillarin) are recruited first while the majority of late
processing proteins are in PNBs (Savino et al., 1999). It is noticeable that Bop1 and B23 are in

the same PNBs (Fig. 2), as well as Nop52 (not shown). Fibrillarin is also in PNBs before
recruitment to the nucleolus during a short period (Savino et al., 2001). We cannot exclude the

possibility that early and late processing proteins are in the same PNBs during this short period

(about 10 min) of telophase as visible in Fig. 2.

PNBs contain both early and late rRNA processing proteins in telophase
We assessed the relative dynamics of early and late rRNA processing proteins at the time of

PNB formation. Using cells co-expressing GFP-fibrillarin and DsRed-B23, we analyzed in the

same living cell the kinetics of translocation of the two proteins by rapid 2 color 4D imaging
(volume + time for both proteins). Mitotic cells expressing a similar and low level of both tagged

proteins were selected, eliminating cells with high expression. We assume that GFP-fibrillarin is
functional because the permanent cell line was selected on the basis of identical distribution for

endogeneous and GFP-fibrillarin, of normal cell cycle and of the level of GFP-fibrillarin (Savino

et al., 2001). In all the cells (n=24) studied, once near the poles, one or two min after the onset of
telophase, numerous bright fluorescent foci containing both GFP-fibrillarin and DsRed-B23

became visible almost simultaneously (Fig. 3 and Video 2). In particular, in corresponding focal

planes, the same foci contained GFP-fibrillarin and DsRed-B23 and appeared orange in the color
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merge (Fig. 3 arrow and Video 2). To confirm this observation the dynamics of this

colocalization was measured. GFP and Ds-Red were quantified in the same foci and compared to

dispersed proteins in the same nucleus (as described in Materials and Methods). The
identification of foci corresponding to PNBs versus incipient nucleoli was based on the gradual

growth of the structures with time; incipient nucleoli increased in size and intensity contrary to
PNBs (see GFP-fibrillarin Fig 3). Also several tens of PNBs are formed but only a maximum of

6 incipient nucleoli in this cell line (Roussel et al., 1996). Starting in telophase, 12 PNBs were

analyzed in 4 different cells for periods lasting 20 min (Fig. 4). The relative amount of B23 in
PNBs was 5 to 6 times that of the dispersed proteins (Fig. 4 compare continuous and dotted red

curves). Interestingly, the amount of fibrillarin in these PNBs was 3 to 4 times that of dispersed

proteins for about 10 min (Fig. 4 compare continuous and dotted green curves). After this time,
fibrillarin was released while B23 was still present in PNBs, either decreasing or remaining at

high levels (Fig. 4A 19’, and graphs B-C). This clearly illustrates the presence of the two types
of nucleolar processing proteins in the same PNBs and suggests differential sorting of these

proteins.

Accordingly, in all the cells studied, the timing of recruitment of these two proteins into incipient
nucleoli was completely different (Fig. 2 and Fig. 3 and Video 2). In the example shown, 10 min

after the onset of telophase, GFP-fibrillarin was seen in incipient nucleoli whereas in the same
nucleoli, DsRed-B23 was detected only twenty min later (Fig. 3 and Video 2).

Similar dynamics of Nop52 and B23
The dynamics of GFP-Nop52 and DsRed-B23 were analyzed simultaneously in the same living

cells. Both proteins participate in processing of the internal transcribed spacer 2 of rRNAs
(Savkur and Olson, 1998; Savino et al., 1999). We found similar dynamics and flows of both

proteins within the same PNBs when simultaneously observed by 2 color 4D microscopy (Fig.

5A and Video 3). The dynamics of this colocalization was quantified in the same PNBs as
described for fibrillarin and B23. Starting in telophase, 8 PNBs were analyzed in 4 different cells

for periods lasting 25 min. The relative amounts of Nop52 and B23 in PNBs were very similar
(Fig. 5C compare red and green curves). Interestingly, the amounts of both proteins varied

simultaneously in particular when decreasing (Fig. 5C, arrows). This could indicate that these

late processing proteins are released from PNBs as complexes and could interact along the
pathway. This prompted us to investigate the interactions of these proteins from the chromosome

periphery to PNBs and nucleoli.
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Interaction of Nop52 and B23 in nucleoli
To determine whether Nop52 associates with B23 along the PNB pathway, tdFLIM was used to

monitor FRET between GFP-Nop52 (donor) and DsRed-B23 (acceptor). If donor and acceptor
are in close proximity (typically less than 7 nm for the GFP/DsRed couple), FRET reduces the

fluorescence lifetime of GFP. First, FRET was determined between GFP-Nop52 and DsRed-B23
in nucleoli. A significant reduction in the fluorescence lifetime of GFP-Nop52 in the presence of

DsRed-B23, compared with the fluorescence lifetime of the donor in the absence of the acceptor,

was detected as seen in the fluorescence lifetime pseudocolored maps (Fig. 6 a, 6 b). In contrast,
there was no reduction in the fluorescence lifetime of the donor when GFP-fibrillarin was co-

expressed with DsRed-B23 (Fig. 6 b'), as compared with its fluorescence lifetime measured in

the absence of the acceptor (Fig. 6 a'). The absence of FRET between GFP-fibrillarin and
DsRed-B23 was expected since fibrillarin is concentrated in the dense fibrillar component of

nucleoli whereas B23 is localized in the granular component, preventing direct interaction
between fibrillarin and B23. Importantly, the fact that no reduction of fluorescence lifetime could

be detected in nucleoli co-expressing GFP-fibrillarin and DsRed-B23, as compared with nucleoli

expressing only GFP-fibrillarin, means that the green fluorescence coming from either the
immature DsRed or from intra-molecular FRET between immature (green fluorescence) and

mature (red fluorescence) DsRed (Cotlet et al., 2001; Tramier et al., 2002) was not detected in
our conditions. Consequently, the reduction of the fluorescence lifetime of GFP-Nop52

measured in the presence of DsRed-B23 does not arise from a DsRed-associated artifact. In

addition, it was not possible to detect FRET between two late processing proteins, GFP-Bop1
and DsRed-B23 (our unpublished data) indicating that colocalization in the nucleolar granular

component is not sufficient to record a positive FRET signal. Together, these results indicate that
in nucleoli, FRET occurs between GFP-Nop52 and DsRed-B23.

The kinetics of decay of nucleolus-associated fluorescence in the presence or absence of DsRed-

B23, of respectively GFP-Nop52 (Fig. 6 c) and GFP-fibrillarin (Fig. 6 c'), were analyzed by
Gaussian distributions of the fluorescence lifetime (Fig. 6 d, and Fig. 6 d', respectively). Each

bell-shaped curve represents the lifetime distributions of GFP-Nop52 fluorescence (Fig. 6 d) and
of GFP-fibrillarin fluorescence (Fig. 6 d') within a given single nucleolus, measured in the

absence (green curves) and in the presence (red curves) of the acceptor (DsRed-B23). The entire

fluorescence lifetime distribution of GFP-Nop52 measured in the presence of DsRed-B23 in
several nucleoli (n=35) was shifted towards short fluorescence lifetime values as compared to the

distribution measured in the absence of DsRed-B23 (n=53) (Fig. 6 d). This was accompanied by

a concomitant broadening of the fluorescence lifetime distribution (Fig. 6 d). In contrast, the
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fluorescence lifetime distributions of GFP-fibrillarin measured in the absence (n=22) and

presence (n=21) of DsRed-B23 display complete overlap with each other (Fig. 6 d'). The shift of

the center of the fluorescence lifetime distribution in nucleoli of GFP-Nop52/DsRed-B23 cells
(from 2.33 ± 0.05 ns in control GFP-Nop52 cells to 2.04 ± 0.06 ns) makes it possible to calculate

a mean FRET efficiency of 12.4% between GFP-Nop52 and DsRed-B23 in nucleoli of living
cells (from the expression: E = 1- τDA/τD, E being the FRET efficiency, τDA the fluorescence

lifetime of the donor in the presence of the acceptor and τD the fluorescence lifetime of the donor

alone). This is to be compared with the absence of shift between the center of the fluorescence
lifetime distribution in nucleoli of GFP-fibrillarin/DsRed-B23 cells (2.36 ± 0.04 ns) and that in

nucleoli of control GFP-fibrillarin cells (2.34 ± 0.04 ns). The broadening of the lifetime
distribution in nucleoli of GFP-Nop52/DsRed-B23 cells provides evidence of an increasing

heterogeneity of GFP lifetime due to variable situations of GFP-Nop52/DsRed-B23

proximity/orientation in the same nucleolus.

Late rRNA processing proteins already interact in PNBs
Since it is possible to detect FRET between B23 and Nop52 in nucleoli, we decided to track

FRET during the recruitment of these proteins into nucleoli from anaphase to early G1. The

principles of the analysis are presented in Fig 7, i.e. acquisition of GFP fluorescence decay
images in living cells, then manual drawing of the regions of interest around the GFP signals and

analysis of the FRET in these regions throughout recording. Time-lapse tdFLIM-FRET
measurements were carried out by acquiring fluorescence decay images of the GFP donor in

GFP-Nop52/DsRed-B23 along the PNB pathway from late anaphase to the early G1 (Fig. 8 a to

f); only one of the two daughter cells is presented in Fig. 8. We carried out FRET analysis for 35
PNBs and nucleoli in the same living cell. Analysis of the experimental data showed that FRET

was never detected during anaphase at the periphery of the chromosomes (Fig. 8 a') whereas

FRET was registered in 20% PNBs at the beginning of telophase (Fig. 8 b'), in about 40% at the
end of telophase (Fig. 8 c', d'), and in 55% in early G1 (Fig. 8 e', f'). Thus, interaction between

GFP-Nop52 and DsRed-B23 was established progressively in PNBs, as the number of PNBs
exhibiting FRET increased. Such data indicate that Nop52 and B23 did not interact until they

were recruited in PNBs. It is noteworthy that a given PNB can alternatively present FRET or not

present FRET (see for example PNB number 16, Fig. 8).
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Discussion
The rRNA processing proteins are maintained at the periphery of the chromosomes during

mitosis. At the mitosis/interphase transition, recruitment of the rRNA processing machinery to
transcription sites is not direct but involves the formation of large complexes, the PNBs

(Stevens, 1965; Ochs et al., 1985; Jiménez-Garcia et al., 1994; Savino et al., 1999; Dundr et al.,
2000; Savino et al., 2001). This is a general phenomenon that occurs in most cells but the role of

these large complexes in the delivery of the rRNA processing machinery is presently unclear.

The formation of PNBs depends on the inactivation of the cyclin-dependent kinase (CDK) 1-
cyclin B, and recruitment in the nucleoli of early and late processing proteins are differentially

regulated (Sirri et al., 2002). The processing proteins co-transcriptionally associated with rRNA

such as fibrillarin are recruited first, followed by proteins involved in late steps of processing
such as B23 and Nop52 (Savino et al., 2001; Leung et al., 2004). Accordingly, in telophase no

granular component is visible in incipient nucleoli (Hernandez-Verdun et al., 1980). PNB
formation could contribute to the temporal order of recruitment of the processing complexes.

This temporal order could be established either by different PNBs with different lifetimes or by

differential sorting from the same PNBs. The former possibility has been the preferred one so far
(Ochs et al., 1985; Jiménez-Garcia et al., 1994; Savino et al., 2001). In the present study,

comparing the kinetics of early and late processing proteins in the same cells, we obtained
evidence that initially, both early and late processing proteins are concentrated in the same PNBs

from which they are differentially sorted. In retrospect, given the short time window of the

events described here (about 10 min), it was important to compare the kinetics in the same cells
using the rapid two-color 4D microscopy approach, and explains why this mechanism was not

reported before.
An important question concerns the timing of the formation of the rRNA processing protein

complexes. Here we investigated during nucleolar assembly, the interaction of Nop52 and B23,

proteins involved in the processing of 60S ribosome particles. The choice of these proteins was
dictated by their function in the internal transcribed spacer 2, and because immunoprecipitation

indicated that they are in the same complexes (our unpublished data). In yeast, the recent advent
of proteomic analyses demonstrates that rRNA processing implies large protein complexes

associated sequentially to nascent ribosomal particles. These complexes are specific of each

processing step and are different for 40 and 60S ribosomal subunits (Dragon et al., 2002; Fatica
and Tollervey, 2002; Fromont-Racine et al., 2003; Horsey et al., 2004). In mammals, the

characterization of these rRNA processing complexes lags far behind that inf yeast. However, it

is possible to take advantage of the high conservation of some rRNA processing proteins
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between yeast and humans to determine the roles of the human proteins. Rrp1p is the yeast

homologue of the human Nop52 (Savino et al., 1999; Horsey et al., 2004). A proteomic analysis

of the Rrp1p partners has demonstrated that the pre-ribosome particles contain at least 28
nonribosomal proteins necessary for the production of 60S (Horsey et al., 2004). Interestingly

Erb1p, the yeast homologue of the human Bop1 (Pestov et al., 2001a) was detected in the
complex. No yeast homologue of B23 has been identified but this protein is known to be

involved in the processing of the ITS2 (Savkur and Olson, 1998) as Nop52 and Bop1.

To analyze protein interactions in living cells, energy transfer and consequently the distance
between GFP and DsRed of tagged processing proteins was determined using tdFLIM.

Monitoring FRET by tdFLIM has the advantage of being independent of chromophore

concentration and light-path length (Bastiaens and Squire, 1999; Selvin, 2000), as opposed to
steady-state fluorescence intensity-based measurements. The use of a time-correlated single-

photon counting method to perform tdFLIM (Emiliani et al., 2003; Tramier et al., 2003)
provides the additional advantage of allowing precise determination of short fluorescence

lifetimes and of detecting small variations in these lifetimes due to the excellent time resolution

(about 100 picoseconds) of the fluorescence decay kinetics. Moreover, this technique is
minimally invasive since it requires only a very low level of laser excitation intensity (Gautier et

al., 2001; Tramier et al., 2002). It is therefore very well suited to carry out time-lapse FRET
imaging microscopy in living cells during extended periods of time.

In contrast to other GFP-tagged proteins for which fluorescence lifetimes have already been

analyzed in living cells (Gautier et al., 2001; Tramier et al., 2002; Tramier et al., 2003), the
fluorescence decays of nucleolar GFP-tagged proteins, GFP-fibrillarin, GFP-Nop52, GFP-Bop1

and GFP-B23, could not be fitted with a single fluorescence lifetime model in the absence of the
acceptor (not shown). This particularity is not understood and might be due to various

conformational constraints on GFP when embedded in huge macromolecular complexes such as

nucleoli and PNBs. The fact that the fluorescence decay of the donor (GFP-Nop52) was not
mono-exponential prevented a quantitative analysis of FRET (determination of the intrinsic

FRET efficiency and of the ratio of bound and unbound donor). Such an analysis indeed requires
the existence of a single fluorescence lifetime of GFP in the absence of acceptor, that would

allow the determination of both FRET parameters (Tramier et al., 2002; Emiliani et al., 2003).

Here, the presence of FRET between GFP-Nop52 and DsRed-B23 was deduced from the shift
between the centre of the GFP-Nop52 lifetime distribution in the nucleoli and PNBs of GFP-

Nop52/DsRed-B23 cells and of GFP-Nop52 containing cells. The associated broadening of the

lifetime distribution suggests the existence of a distribution of the true FRET efficiency between
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GFP-Nop52 and DsRed-B23 (conformational changes within the nucleus, i.e.

distance/orientation changes between donor and acceptor), and/or the existence of various

relative amounts of bound and unbound GFP-Nop52 within a single nucleolus or PNB. Time-
lapse tdFLIM experiments showed that the FRET signal is transient within a single PNB. This

could arise from either transient interactions between GFP-Nop52 and DsRed-B23 within a
single PNB, or stable interactions but release of the GFP-Nop52/DsRed-B23 complexes towards

the nucleoli. Both explanations reveal unanticipated dynamics within the PNB compartment.

However, the fact that the steady-state intensity of GFP within a single PNB also decreased
during nucleoli reconstruction suggests that the release of GFP-Nop52 and DsRed-B23 towards

the nucleoli most likely occurs in the form of stable complexes. This hypothesis is also supported

by the simultaneous periodic decrease of both proteins from PNBs observed in two color 4D
imaging (Fig. 5 C).

The formation of PNBs occurs during telophase. Given the dynamic nature of many of the
nucleolar proteins composing these bodies (Phair and Misteli, 2000; Huang, 2002), it is

surprising that these structures exist at precisely this period of the cell cycle. As proposed for

other nuclear bodies (Janicki and Spector, 2003), high affinity binding sites could induce the
formation of the PNBs. This is exactly what was found in the present study. During translocation

of the rRNA processing proteins, interactions between GFP-Nop52 and DsRed-B23 were
detected in PNBs and not at the chromosome periphery where these two proteins colocalize.

Hence the capacity of these two proteins to interact is modified at the telophase/early G1

transition and is initiated in PNBs. Such interactions between Nop52 and B23 occur in PNBs
even before their recruitment in the incipient nucleoli (Fig. 9). The presence of rRNAs as well as

of small nucleolar RNAs has been demonstrated in PNBs (Jiménez-Garcia et al., 1994;
Verheggen et al., 1998; Dousset et al., 2000). The interaction of B23 with rRNAs depends on

phosphorylation of the protein by CDK (Okuwaki et al., 2002). In particular, the RNA binding

activity of B23 is disrupted by CDK1-cyclin B during mitosis. Thus the presence of rRNAs
could contribute to the assembly of the rRNA processing complexes in PNBs when CDK1-cyclin

B is inactivated, an event that normally occurs at the end of mitosis. The release of late
processing proteins (B23, Nop52) from PNBs (not the early ones) seems to be regulated by a

presently uncharacterized CDK (Sirri et al., 2002). However, it is impossible to predict what

inhibits this PNB release since the interactions depending on phosphorylation of this CDK are
not characterized. One possible explanation could be that the late processing machinery

assembled with rRNAs in PNBs is activated by this unknown CDK, thus becoming able to

process rRNA and consequently be released from PNBs. This model could explain why
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formation of PNBs occurs only during telophase/early G1 transition and why the recruitment of

late processing proteins takes longer than that of early ones. However, uncovering the

mechamisms that govern the recruitment of the nucleolar processing machinery will require
further investigation of the interactions occuring in PNB complexes and of the transit between

PNBs and the nucleolus.
In conclusion, we observed that early and late rRNA processing proteins pass through the same

PNBs, that differential sorting from the same PNBs ensures differential nucleolar recruitment,

and that interactions between protein partners occur in PNBs. We therefore propose that PNBs
function as assembly platforms of rRNA processing complexes.
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Figure legends

Figure 1: Relative distribution of early (fibrillarin) and late (Bop1 and B23) rRNA processing
proteins during anaphase. Immunolocalization of fibrillarin and B23 in a permanently transfected

GFP-Bop1 cell. The chromosomes are visualized by DAPI. The same focal plane is shown after
deconvolution. Fibrillarin, GFP-Bop1 and protein B23 show the same distribution, mainly at the

chromosome periphery and some dispersed in the cytoplasm. On chromosomes, the distribution

is homogeneous and the few foci visible correspond to bending of chromosomes. A 3D
reconstruction comprising all the focal planes of the same cell is presented in Video 1. Bar: 10

µm

Figure 2: Relative distribution of early (fibrillarin) and late (Bop1 and B23) rRNA processing

proteins during early G1. Immunolocalization of fibrillarin and B23 in a permanently transfected
GFP-Bop1 cell. The chromosomes are visualized by DAPI. The same focal plane is shown after

deconvolution. Fibrillarin is recruited in the nucleoli and few foci are visible outside the nucleoli

(arrows). Protein GFP-Bop1 and B23 show the same distribution, in PNBs at the chromosome
periphery and weak accumulation in nucleoli. The fibrillarin foci colocalize with Bop1 and B23

PNBs (arrows). Bar: 10 µm
Figure 3: Different dynamics of fibrillarin and B23 in the same living cell during nucleolar

assembly. Two color 4D imaging from telophase to early G1. At time 0 (i. e. 9'30" after the onset

of anaphase) both GFP-fibrillarin and DsRed-B23 are in PNBs; in comparison, the same focal
planes with the merged picture indicates that the same PNBs contain both GFP-fibrillarin and

DsRed-B23 (arrow at 10'30"). At 10'30" fibrillarin is already delivered to incipient nucleoli
(arrowhead) whereas DsRed-B23 is recruited in nucleoli later, at 28'30". Differential sorting of

fibrillarin and B23 from PNBs is visualized in merged focal planes by a progression with time

from orange to red of PNBs that have lost fibrillarin and by progression of nascent nucleoli from
green to yellow. See Video 2 for kinetics starting in metaphase. Bar: 10 µm

Figure 4: Differential sorting of GFP-fibrillarin/DsRed-B23 from the same PNBs. A. Time-lapse

sequence from 3 consecutive focal planes containing 2 PNBs (white square) visible in Fig 3 and

Video 2. Time 0 correspond to 9'30" after the onset of anaphase visualized by chromosome
segregation. Enlarged PNBs are shown in the inserts (arrow PNB1 and arrowhead PNB2). PNBs

containing DsRed-B23 are visible during the time-lapse sequence. GFP-fibrillarin rapidly

accumulates in the same PNBs during short time. B, C. Graphs represent relative fluorescence of
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GFP and DsRed in each PNB during 19 min. The curves with large red squares represent DsRed-

B23 in PNB, and the green squares represent GFP-fibrillarin. The dotted red and green curves

represent DsRed and GFP in an area without PNBs, i. e. defined as diffuse proteins. The black
arrows in B and C indicate, in B23-containing PNBs, 4-5 times higher fibrillarin concentrations

compared to dispersed proteins. B’. The same DsRed-B23 and GFP-fibrillarin curves with
standard deviations (vertical bars) respectively indicate that the relative intensity of GFP-

fibrillarin is significantly higher in PNB during 5 min compared to diffuse proteins.

Figure 5: Similar kinetics of GFP-Nop52/DsRed-B23. A. Time-lapse sequence from telophase
to early G1. At time 0 (i. e. 20' after the beginning of anaphase) GFP-Nop52 and DsRed-B23

show the same dynamics during the formation of PNBs as well as during recruitment of these

proteins and accumulation in nucleoli. In the same focal planes, images of GFP and DsRed are
exactly superimposable. See Video 3 for kinetics. Bar: 10 µm. B. Enlargement of a nucleus to

show the PNBs in three consecutive merged optical sections that were analysed (arrow PNB1
and arrowhead PNB2). C. Relative fluorescence intensity from 15 min to 40 min. The green

curves correspond to GFP-Nop52 and red ones to Dsred-B23. The black arrows indicate similar

fluctuation for both proteins, suggesting simultaneous release.
Figure 6: During interphase, Nop52 and protein B23 interact in the nucleolus of living cells.

tdFLIM-FRET measurements were carried out by acquiring fluorescence decay images of the
GFP donor (515 nm < λ< 560 nm) in permanent cell lines expressing GFP-Nop52 (a, b, c, and d)

or GFP-fibrillarin (a’, b’, c’, and d’), alone (a, a’ and green curves) or in the presence of the

DsRed acceptor after transfection with DsRed-B23 (b, b’ and red curves). The tdFLIM images

were obtained by analyzing pixel-by-pixel the fluorescence decays with a single lifetime and are
displayed as fluorescence lifetime pseudocolored maps (a, a’, b, and b’). The lifetime between

2.45 ns and 1.85 ns is indicated by colors presented in the scale. The nucleolus-associated
fluorescence decay of GFP-tagged proteins is visible and compared in c and c’ to donor alone

(green curves; GFP-Nop52 and GFP-fibrillarin, respectively) and to donor with acceptor (red

curves: DsRed-B23). Fits of these fluorescence decays were carried out using a Gaussian
distribution lifetime model and the complete results are plotted in d for Nop52GFP alone (green

curves: n = 53) and in the presence of B23DsRed (red curves, n = 35), and in d’ for GFP-

fibrillarin alone (green curves, n = 22) and in the presence of DsRed-B23 (red curves, n = 21).
Bar: 10 µm.

Figure 7: Detection of FRET in regions of interest. Global acquisition of tdFLIM data is
displayed as total fluorescence intensity image to manually draw the different regions of interest
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(ROI) for the analysis of FRET. Fluorescence decays coming from these regions were then

individually fitted with a Marquardt non-linear least-square algorithm using a Gaussian

distribution of lifetimes. The region appeares in green for negative FRET (no variation in the
center of the fluorescence lifetime distribution of the GFP-tagged protein in the presence of the

DsRed-tagged protein as compared to the control experiment of GFP-tagged protein alone); it
appears in yellow when FRET occurs (reduction in the position of the center of the fluorescence

lifetime distribution of the GFP-tagged protein superior or equal to 200 p.s.); it appeares in red if

a region was considered negative after having been positive.
Figure 8: Time-lapse of the Nop52/B23 interactions studied during nucleolus assembly by

tdFLIM-FRET. Time-lapse tdFLIM-FRET measurements were carried out by acquiring

fluorescence decay images of the GFP donor (515 nm < λ< 560 nm) in permanent cell lines

expressing GFP-Nop52 in the presence of the acceptor (DsRed) of protein DsRed-B23. The
measurement was carried out continuously for the 120 min acquisition time from late anaphase

to early G1. The data were separated in six parts of 20 min each to build up time-lapse tdFLIM
data. Time-lapse total fluorescence intensity images (equivalent to steady state fluorescence

intensity images) are displayed in a (t = 0-20 min), b (t = 20-40 min), c (t = 40-60 min), d (t =

60-80 min), e (t = 80-100 min), and f (t = 100-120 min). The fluorescence decays of the regions
of interest (numbered from 0 to 35) corresponding to PNBs or incipient nucleoli were obtained

by extraction from each set of data. Using a Gaussian distribution of lifetime as model fit, decays
were analyzed and sorted into three FRET groups: negative (green), positive (yellow), and

negative after having been positive (red). Visualization of time-lapse tdFLIM-FRET are done in

a’ (t = 0-20 min), b’ (t = 20-40 min), c’ (t = 40-60 min), d’ (t = 60-80 min), e’ (t = 80-100 min),
and f’ (t = 100-120 min). Bar: 10 µm.

Figure 9: Kinetics of rRNA processing proteins during nucleolar reconstruction. During
anaphase, proteins of early (fibrillarin: green spots) and late (Nop52 and B23 red spots) rRNA

processing machineries colocalize at the periphery of chromosomes (dark fiber). At the

beginning of telophase, these proteins regroup in PNBs; early and late rRNA processing proteins
pass through the same PNBs. Recruitment of rRNA processing proteins in the nucleolus then

occurs according to differential sorting from the same PNBs of early (fibrillarin into dense

fibrillar component; DFC) and late (Nop52 and B23 into granular component, GC) processing
proteins (see Results). As a consequence, at the beginning of telophase, PNBs contain all the

rRNA processing proteins. In contrast, after recruitment of the early rRNA processing proteins
by the incipient nucleolus, PNBs only retain the late rRNA processing proteins. Interactions
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detected between proteins of the same rRNA processing machinery (visualized by bi-directional

arrows between Nop52 and B23) in both PNBs and nucleolus suggest that PNBs are pre-

assembly platforms for rRNA processing complexes.




















