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CHAPTER I 

INTRODUCTION AND LITERATURE SURVEY 

1.1 Sampling 

Acceptance sampling is one of the major fields of statistical 

quality control. It can protect consumers from receiving and producers 

from distributing a product of low quality. Variables sampling is a 

test to see whether or not a parameter related to quality falls within a 

certain range. Attribute sampling is a procedure that determines whether 

or not a particular quality characteristic is present or absent in a unit 

of product. 

The type of sampling investigated in this research will be 

attribute sampling. That is, each item will be judged either defective 

or nondefective on the basis of examination of a single attribute. The 

purpose of the sampling is not to determine lot quality but to make a 

decision about the disposition of lots. A single sampling plan is defined 

by a sample size n and a rejection number c. A sample of size n is taken 

from a lot; and the lot is rejected if there are more than c defectives 

in the sample. The discriminatory power of a sampling plan can be 

measured by its operating characteristic curve. That is, a plot of the 

probability of lot acceptance versus the fraction defective of the lot. 

Traditionally, sampling plans have been chosen by finding the plan whose 

operating characteristic curve passes through two predetermined points. 

For instance, the probability of accepting a lot that has a fraction 
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defective of 0.01 might be chosen to be 0.95. While we might wish the 

probability of accepting a lot with fraction defective of 0.07 to be 0.05. 

These two requirements specify two points on the operating characteristic 

curve, namely, (0.01,0.95) and (0.07,0.05). These two points are usually 

called the producer's risk point and the consumer's risk point respective

ly. Figure 1 shows a graph of an operating characteristic curve with 

these two points. 

A double sampling plan specifies two sample sizes n^ and n^, two 

acceptance numbers c^ and and two rejection numbers r^ and r ^ . A 

sample of size n^ is taken and if c^ items or less are found defective, 

the lot is immediately accepted. If r^ or more items are defective, it 

is rejected. If the number of defectives is more than c^, but less than 

r^, a second sample of n^ items is taken. If the total number of 

defectives is or less the lot is accepted. If there are or more 

defectives the lot is rejected. In this study r^ and are both 

considered equal to o.^ + 1 so that the four numbers n^, , c^, and 

will completely specify the sampling procedure. 

1.2 Fully Economic Schemes 

This research is concerned with double sampling not in the 

traditional sense but in the economic sense. By this, we mean that 

economic criteria are used in the design of the sampling plan, rather 

than only statistical considerations. Schemes of this type are generally 

based on estimates of costs involved in the sampling process and costs 

incurred as a result of errors in the decision process. In addition, a 

distribution of lot quality must be specified. The general procedure is 
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0.01 0.07 
Lot Fraction Defective p 

Figure 1. Operating Characteristic Curve 
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to decide on a risk function of the form: 

R(p) = (cost of sampling) + (cost of loss due to decision). 

Here p is a variable used to designate the lot fraction defective. The 

function R gives the expected cost if the fraction defective is actually 

p. Integrating R over the prior distribution of lot quality gives an 

average cost which is independent of p. Some of the work done previously 

on fully economic schemes is discussed in this chapter. Wetherill and 

Chiu (20) have compiled a thorough bibliography of papers dealing with 

acceptance sampling schemes with emphasis on the economic aspect. 

Numbers in parentheses refer to the bibliography. 

Anscombe (2) gives a general discussion of the economic approach 

to sampling. He describes simple hypothetical process curves, inspec

tion cost curves, and decision loss curves. He also relates this 

procedure to the concepts of AOQL and lot tolerance. 

Champernowne (3) considers the problem of deriving sequential 

sampling plans that minimize the sum of decision and inspection costs. 

He uses the beta distribution as the prior distribution of lot quality. 

His plans are based on a critical fraction defective, Pq, where decision 

costs are zero and a multiplicative factor that relates the decision 

costs to the difference between p^ and the fraction defective. 

Guthrie and Johns (5) introduce a general linear cost model. 

They then find asymptotic characterizations for large lot sizes of the 

decision procedure and sample sizes, which are optimal in the Bayes 

sense for various prior distributions. 
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Hald (6) and Hald (8) give a very detailed discussion of the prob

lems involved in single sampling fully economic schemes. His paper will 

be discussed in detail in Section 1.3. He presents numerical results using 

the beta prior distribution and studies the results obtained by varying 

parameters. He also studies the behavior of the optimum plan with respect 

to large lot sizes. 

Pfanzagl (15) investigates some consequences that occur when assump

tions concerning the prior distributions are modified. He also considers 

the efficiency of optimum double sampling procedures compared to optimum 

single sampling procedures. This paper is primarily based on the results 

of Hald (6). 

Schuler (18) investigates the Bayesian design of a k-stage sampling 

procedure. At each stage j (j=l,...,k-l) the size of the (j+l)st sample 

is given as a function of the outcomes of the first j samples. If a sample 

size is ever determined to be zero or after the kth sample, a decision is 

made regarding the disposition of the lot. 

Schmidt and Bennett (16) study the case of multiple attributes in 

single sampling under the assumption that rejected lots are scrapped. A 

mathematical model is presented and optimized by a search technique. They 

also present sensitivity analysis of the optimum sample size to changes 

in the assumed prior distribution. 

Bennett, Case and Schmidt (17) present two cost models for 

acceptance sampling by variables. The models differ in the disposition 

of rejected lots, which can either be scrapped or totally inspected. The 

sensitivity of the model to errors in the prior distributions is examined. 

Ailor, Schmidt, and Bennett (1) derive an economic acceptance 

sampling model for the case where several attributes and several variables 
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are simultaneously subjected to acceptance sampling. Testing can either 

be destructive or nondestructive. In the case of non-destructive testing 

rejected lots can either be scrapped or screened. 

Hald (9) presents optimum double sampling tests of given strength 

for a normally distributed random variable with unknown mean and known 

variance. The two optimality criteria used are Bayes and minimax average 

sample number. Hald also discusses approximations to optimum double 

sampling tests for Poisson and binomially distributed variables. 

1.3 The Hald Model 

In 1960 Hald gave a very detailed description of the problems 

involved in sampling inspection schemes based on estimates of prior 

distribution of lot quality and costs. His work is the foundation for 

most of the work subsequently done in sampling based on economic 

considerations. Hald considered the average loss caused by an accepted 

defective item as his economic unit. His cost parameters then were the 

cost of sampling a single item, k g and the cost of scrapping a single 

item, k̂ . Rejected lots are scrapped. Let N be the size of the lot, X 

be the number of defectives in the lot, n be the sample size, and x the 

number of defectives in the sample; then the cost for accepted lots is: 

nk + (X -s x). 

The cost for rejected lots is: 

nk + (N - n)k . 
r 
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The probability of getting x defectives from a sample of n items is 

p(x|X) = C(X,x) C(N - X, n - x)/C(N,n). 

Where C(u,v) denotes the number of combinations of u things taken v at a 

time. The average costs for lots of quality p = X/N becomes 

c n 
K(n,c,p) = nk g + (X - x)p(x|X) + (N - n)kr £ p(x|X). 

x=0 x=c+l 

Then the probability of acceptance P (p) is 
cl 

x=0 

Introducing this and dividing by N gives 

K(n,c,p)/N = pP (p) + k (l-P(p) + (n/N)(k -k + V(k -x/N)p(x|X)) 
3. L Si S IT ' I 

x=0 

To find the expected final costs the cost function is averaged 

over the prior distribution. Let f^(X), X = 0,1,2,3,...,N, be the 

probability that a lot of N items contains X defective items. Then the 

corresponding cumulative distribution is 

FN(Np) = E f

N c o -
x=0 
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The related distribution for p is 

V p ) = V N p ) 

After this derivation, Hald studies the distribution of defectives 

in a sample of size n given the distribution of defectives in the lot, 

f^(X). His major contribution is the idea of reproducibility and the 

major theorem is as follows. 

Let X denote the number of elements having a certain attribute in 
a population of N elements and let x and y=X-x denote the correspond
ing numbers of elements in a random sample (drawn without replacement) 
of size n and in the remainder of the population respectively. If 
the distribution of X is a hypergeometric, a binomial, a rectangular, 
a Polya, or a mixed binomial distribution, or any weighted average 
of these distributions with weights independent of N and X, then for 
any N the distribution of x is the same as the distribution of X 
with n substituted for N, and the distribution of y for any given x 
is also of the same type but with parameters depending on x and n. 

This theorem shows that the lot distribution reproduces itself in the 

sample distribution for a certain class of prior distributions. Hald uses 

this result to find approximately optimal solutions for the various prior 

distributions and their properties are studied under changes of lot size 

and prior parameters. 

The major differences in approach between Hald and this research 

occur in the approach to the prior distribution and the procedure for 

optimizing the cost function. Hald uses as a prior distribution f^(X), 

the distribution of defectives in the lot. Here a prior distribution 

for the process quality p, say $(p), is used. Hald optimizes the cost 

function by finding a set of inequalities in n anc c that bound a region 

that contains the optimal solution. Here a search technique utilizing a 



9 

computer algorithm is used to evaluate the cost function and find the 

optimum sampling plan. 
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CHAPTER II 

DEVELOPMENT OF THE MODEL 

2.1 The Cost Structure 

Economic schemes are based on the costs that occur because 

sampling is used. This model contains four cost components: 

= variable cost of sampling or testing one item for the 

presence of an attribute, 

k-j. = fixed cost of sampling inspection, 

s = unit cost of action taken on rejected items, 

k = unit cost of accepting a defective item. 

The variable cost of sampling, k^, includes all direct sampling 

costs attributed to a unit of product. The fixed cost, k^, contains 

all direct and indirect costs that result from the existence of a 

sampling procedure which are independent of the sample sizes n^ and n^-

The acceptance cost arises because of the presence of defective 

items in even lots of high quality. The cost, k , contains all costs, 

such as failure of the finished product, that arise when a defective item 

is used for its intended purpose. 

The cost of action taken on rejected items can take many forms 

depending on the destination of items found defective or of lots found to 

be of inferior quality. It may be the cost of diverting a lot or item to 
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a less stringent job requirement, the cost of repairing defectives or 

replacing them from a known stock of nondefective items, or it may be 

the scrapping costs minus the salvage value. In this model the cost of 

rejection is paid by the tester. Therefore the case of a rejected lot 

that is to be returned to a vendor can be handled by setting k g equal 

to the cost incurred by the tester because of delay minus penalty 

incurred by the vendor because of the rejected lot. 

As a result of applying a double sampling plan, four actions may 

be taken and the corresponding probabilities of these actions must be 

evaluated. These actions are either acceptance or rejection on either 

the first or second sample. Let N be the lot size, n^ and the first 

and second sample sizes, c^ and the first and second acceptance 

numbers. Then let X = [pN + 1/2], where [Z] is the greatest integer 

contained in Z. The probability of acceptance on the first sample, 

2.2 The Probabilities of Lot Acceptance and Rejection 

is 

The probability of rejection on the first sample is 



MlnCn-.X) /X\/N-X 

b=c 2+l 

if X < c 2 

The probability of acceptance on the second sample is 

Min(c2,X) /X\/N-X \ Min(c2-b, X-b) /X-b\ /N-n^CX-b) 
p ( p ) = V 1 \ / \ ni" b/ / V* \ J' / \ n 2 ~ J ' •2 t p - ~r?r 

if X >_ c + 

if X < c 1 + 

Finally the probability of rejection on the second sample is 

P r 2 ( p )

 = E — 7 h Y " £ 7N=KA 

b=c 1 +l (nJ \ j = e 2 . b + 1 (̂ j 

0 

if X > c 1 + 

If x < C l + 
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2.3 The Expected Cost 

Let the number of defective items found on the first sample be d^ 

and the number of defective items found on the second sample be d^» Then 

the cost of a lot containing X defectives that is accepted on the first 

sample can be divided into the cost of inspection, the cost of scrapping 

items found defective during sampling, and the cost of accepting 

defective items in the remainder of the lot. The inspection cost is the 

fixed cost of sampling, k^, plus the unit cost of sampling, k^, times the 

number of items sampled, n^. The cost of scrapping items found defective 

during sampling is the cost of scrapping one item, k g, times the number 

of defective items d^. The cost of accepting defective items in the 

remainder of the lot is the unit cost, k , times the number of defective 
' a 

items in the rest of the lot, X - d^. The cost of a lot accepted on the 

first sample is then 

C , = k T + k n + k d, + k (X - d j al I i l s i a 1 

If a lot is accepted on the second sample then the number of items 

sampled is n^ + n^, the number of defective items found during sampling 

is d^ + d^ and the number of defectives accepted is X - d^ - d^. The 

cost of a lot accepted on the second sample is then 

C 9 = k T + k. (nn + n 0) + k (d- + d 0) + k (X - d.. - d 0) . az I I l z s i z a 1 Z 

If a lot is rejected, then it is assumed that all non-defective 

items found in testing are kept and all other items are disposed of in 
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some way. The cost of inspection and the cost of scrapping items 

found defective during sampling are identical to the corresponding costs 

in acceptance on the first sample. Instead of the cost of accepting 

defectives in the remainder of the lot, there is the cost of disposing 

of the remainder of the lot. The cost of a lot which is rejected on the 

first sample is 

C r l = k ]. + k n x + + k s(N - n x ) . 

If a lot is rejected on the second sample, the number of items 

sampled is n^ + n 2, the number of defectives found during sampling is 

d-̂  + d^ and the number of items in the portion of the lot to be scrapped 

is N - - n^. The cost of a lot rejected on the second sample is 

C r 2 = kj + k i(n 1 + n 2) + k s(d 1 + d £) + k g(N - n± - n 2 ) . 

It would be easier to evaluate the cost equations if d^ and d 2 

could be approximated by functions of p. If the probability that an item 

is defective is p and the size of the sample is n then the average number 

of defectives in the sample will be np. Therefore d^ can be approximated 

by n^p and d 2 by n 2p. Also X will be approximated by pN. The four cost 

functions are then 

C ai(p) = k T + k.n- + k n l P + k (N - njp, 

C a 2 ( p ) = k I + k i ( n l + n 2 } + k s ( n l + n 2 ) p + k a ( N " n l " n 2 ) p > 
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C r l(p) - k r + V l + k s n l P + k s ( N " 

C 9(p) = k T + k.(n- + n 9) + k (n + n 9)p + k (N - n -1 

These cost functions are then weighted with the probabilities on 

the actions of acceptance and rejections. This gives cost as a function 

of p 

The expected cost is given by C(p) averaged over the distribution f(p) 

1 
E(cost) = f C(p)f(p)dp. 

0 

Here p represents the process quality and f(p) is a function that describes 

the behavior of that random variable in a particular lot. The general 

form of f(p) used in this research is the beta distribution. The beta 

distribution is a good continuous approximation of the discrete 

distributions of lot quality, and it has been used by other researchers. 

Writing the expected cost in expanded terms gives 

C(p) = C a l(p)P a l(p) + c
a 2 ( P ) p

a 2
( P ) + C r l ( p ) P r l ( p ) + C r 2 ( p ) P r 2 ( p ) * 
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E(cost) = f((kT + k.iu + k p(N-rO + k pnJP n (p) + J I i i a 1 s l a l 
0 

(kj + k^n-j+n^ + k ap(N- n i-n 2) + k
sP(n i+n 2))P a 2(p) + 

[1] 
(Kj + k ^ + k sp n ; L + k s(N- n ; L))P r ; L(p) + 

(kj + k ^ - h ^ ) + k s(n 1+n 2)p + k ^ N - n . ^ ) )P r 2(p) )f (p)dp. 

2.4 Default Options 

If one had perfect information about the quality of the lot, then 

there would be no need for sampling inspection. Two cases of interest 

might be the acceptance or rejection of the lot without sampling. In the 

case of lot acceptance without sampling, the conditional expected cost 

given p would be 

E(cost of acceptance without sampling|p) = k Np, 

The cost in the rejection case is 

E(cost of rejection without sampling) = k gN. 

Figure 2a shows a graph of these two functions. The two lines intersect 

at a value of p equal to k /k . Hald (4) calls this point the break-even 
S cL 

quality. For p less than this value it is less expensive to accept the 

lot without sampling and for p greater than this value it is less 
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expensive to reject it. The average expected cost for acceptance is 

where p is the mean of the prior distribution on p. 

Another alternative might be a decision to totally inspect the lot. 

This decision might result in a lower per unit sampling cost than any 

individual sampling plan might produce. Letting k^ represent this 

sampling cost the expected cost is 

E(cost of total inspection!p) = k^ + k^N + k gpN. 

If the inequality 

is true, then there will be values for p which result in total inspection 

as the least expensive default procedure. The average expected cost of 

total inspection is 

= k aNp, 

L + k N < (k/k)(k - k )N I t s a a s 

1 
E(cost of total inspection) = J(k-j- + k tN + kgNp)f (p) dp 

0 

= kj + k N + k gNp. 
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In Figures 2b and 2c the curves labeled C , C and C. designate cost ° a r I 

curves for acceptance, rejection, and inspection respectively. Figure 2b 

shows the cost of total inspection as a function of p and gives the points 

of intersection with the other two curves. Figure 2c gives a numerical 

example for the default costs. For values of the lot fraction defective 

p less than p^ = 0.045 acceptance without sampling gives the smallest 

expected cost. For values of p between 0.045 and 0.667 total inspection 

is optimal. For values of p greater than 0.667 the optimal default option 

is rejection without sampling. 

2.5 Evaluation of the Cost Function 

The first step in optimizing the cost function is solving [1] for 

an arbitrary sampling plan n^, n^, c^, c^. Examining Pa^> ^ a 2 ' ̂ rl* a n C* 

P^2 w e note that their general form is a step function whose interval 

width is determined by N and is in fact 1/N excepting the first and last 

interval whose width is 1/2N. The reason for this is the relationship 

assumed between X and p, namely 

X = [pN + 1/2] 

Then [1] may be viewed as a sum of Stiljes integrals with weighting 

functions P -, P 0, P -, and P 0. 
al a2 rl r2 

The original intent was to apply numerical integration techniques 

to the model, but that method proved intractable in both the required 

computer time and the number of points required per integration. Since 

the intervals in the weighting functions were, for N equal to 1000, say 
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Costi 
Cost 

k I+k tN 

P i (k+k N)/(N(k -k )) I t a s 

Figure 2a. Costs of Acceptance 
and Rejection Without 
Sampling 

Po = (Nk -(k T+Nk ))/(Nk ) s i t s 

Figure 2b. Cost of Total Inspection 

1000 

.1 .2 1.0 

Figure 2c. Numerical Example of Default Costs 
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on the order of .001, more than 2000 points on the interval zero to one 

were required to achieve even an accuracy of one ten-thousandth. However 

to evaluate 2000 points required well over 15 minutes of central 

processing unit time. One source of computational inefficiency was the 

use of a library hypergeometric function. This was remedied by developing 

a hypergeometric function that made use of recursive relationships among 

the weighting functions. The number of points needed per evaluation was 

reduced by a different approach to the integration. 

Consider the expected cost of acceptance on the first sample 

C-̂  = E(cost of acceptance on the first sample) 

1 
f ( k T + n ^ + k g n l P + k a(N-n 1)p)P a l(p)f (p)dp, 

Because of the relationship between X and p namely X = [pN + 1/2], 

P - (p) is a step function. Let R denote the region on the interval zero aj. x 
to one where X takes on the value x. If N = 1000, then RQ is the interval 

[0.0, 0.0005) R 5 5 is the interval [0.0545, 0.0555). The integral can then 

be rewritten 

N 

C i = E Ak
T
 +

 n l k - i + k
Q

n l P + K(N-n )p)P 1(p)f(p)dp. 
1
 x=o \ 1 3 1 a 1 a 

Since X is constant over each interval R , P -(p) is constant over the 
x al r 

interval. Let the value of P -(p) over the interval R be designated 
cl-L X 

W a^(x). This quantity is independent of p and can be brought outside of 

the integral. The integral is 
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N 
C 1 = X w

a l ( x ) / (k

T

 + k i n i + k
s

n i P + ka(N-n1)p)f(p)dp, 
X=0 R 

x 

Now given the form of the distribution f(p), the integral can be 

evaluated directly. If the form of f(p) is beta then the integrand is 

merely a weighted sum of beta functions. Similar results are obtained 

for the cases of acceptance on the second sample, rejection on the first 

sample, and rejection on the second sample. Letting w ^ C x ) , ^rl^ x^ ' a n c* 

W o (x) denote the value of P „ (p) , P (p) and P „ (p) over the interval r2 a2 r rl r r2 r 

R x respectively and noting that and k^n^ appear in all four cost 

segments, equation [1] can be rewritten as 

N 

E(cost) = k + k.n + £ W (x) f (k n p + k (N-n )p)f(p)dp + x=o R 

x 

W a 2 ( x ) / ( k i n 2 + k s ( n l " h l 2 ) + k

a ( N ~ n r n 2 ) p ) f ( p ) d p 

R x 

+ W r l(x) J ( k ^ p + k s(N- n i))f (p)dp 
R 
x 

+ W r 2(x) f (k ±n 2 + kgO^+n^p + k s(N- n i-n 2)) 
R x 

f(p)dp. 

This form proved computationally tractable and could be evaluated in a 

reasonable amount of computer time. 
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2.6 The Search Procedure 

The original approach was to optimize the cost function using the 

Hook and Jeeves pattern search. This procedure consists of finding the 

function value at a base point, (n^J, c^', c^ 1)* Then an exploratory 

move is made by evaluating the function at points corresponding to the 

base point incremented and decremented by a predetermined step size in 

each coordinate direction one at a time. When a decrease in the function 

value is detected, that value of the coordinate is substituted in a new 

base point, and the process is continued until all the coordinates have 

been tested. If the point found by the exploratory move is (n^*, c-̂ *> 

n^** c2*) » t^1611 t n e n e w base point is found by the formula 

(n^', c^', n 2", c 2") = 2( n ; L*, c±*, n 2*, c 2*) - (n^, c^', n ^ , c ^ ) . 

This is the pattern move. After this another exploratory move is made 

and the process is repeated. The optimization procedure continues until 

there is no decrease in function value following an exploratory move. 

The pattern search is described in more detail in Appendix 1. 

The Hook and Jeeves pattern search works very well for a unimodal 

surface, but for a multimodal surface it must be restarted at several 

points in the factor space to insure that the global minimum is reached. 

This is very inefficient in terms of computer time and it is often hard 

to determine a stopping rule that guarantees that the global minimum is 

found. Alternatively, it is very inefficient to perform a full grid 

search of every point in the area in questions. The cost surface has 

many local minimum and is not well suited to a pattern search in all four 
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variables. 

From examination of grid search data, it was determined that the 

surface defined by 

S = {(n^*, c^, n^*, c^) : n.̂ * and n^* are optimal for c^ and c^} 

was unimodal. This is a surface in only two variables, c^ and c^. If c^ 

and were fixed then the remaining two variable surface was unimodal. 

Then the procedure evolved to a two variable pattern search. For each 

pair, (c^, Cy) values of n^ and are found that give minimum expected 

cost by a pattern search. Finally a pattern search in c^ and will 

produce a global optimum. 



CHAPTER III 

NUMERICAL ANALYSIS OF THE SCRAPPING MODEL 

3.1 Introduction 

The expected cost is dependent on the cost vector by 

E(cost ak T, ak., ak , ak ) = aE(cost k T, k., k , k ), l i a s I 1 a s 

and 

E(cost k T, k., k , k ) = K T + E(cost 0.0, k., k , k ). 
l i a s I l a s 

Both these equations follow directly from equation [2]. The second 

relationship allows us to assume any value for k̂  without loss of 

generality. Then for any values of the two ratios k./k and k /k a 

unique point in the cost space is determined. Thus the optimal point 

the sampling plan space is the same for both cost vectors 

(k_, k., k k ) = (0., .1, .25, .1) 
JL 1 dL S 

and 

(kj, k., k a, k s) = (0., 1., 2.5, 1.). 
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Also the expected cost for the first case is one-tenth that of the 

second. 

If the default options of accepting and rejecting without sampling 

are considered the boundary of the solution space and all other sampling 

plans the interior of this space, then a necessary and sufficient 

condition for the model to have a solution in the interior of the space 

is that there exists one point that has an expected cost lower than that 

of the boundary. However if k̂ . is considered zero, then the condition 

can be simplified. If k̂ . is 0. and if and only if the point (N^,0^,^,02) 

= (1,0,0,0) has an expected cost less than that of both accepting and 

rejecting without sampling, then the optimal point lies in the interior 

of the sampling plan space. The point (1,0,0,0) corresponds to taking a 

sample of one and accepting the lot if it is not defective and rejecting 

the lot if it is defective. For this plan, the probability of acceptance 

given a population of N and a defective population of X is 

P = 1 - X/N. 
a 

and the probability of rejection is 

P = X/N. r 

Noting that X is a function of p, the expected cost is 

1 
E l , 0 , 0 , 0 ( c O S t ) = f (d-X(p)/N)(k i+(N-l)pk a+pk s) + (X(p)/N) 

k ± + (N-l)kg + kgp))f(p)dp 
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Let R x be the interval of p where X=x, F(R) be the integral of the prior 

over the region R, and F'(R) be the integral of p times the prior over 

the region R. Then the expected cost can be written 

_ _ 1000 
El 0 0 0 ( c O S t ) = ki + P ( N _ 1 ) k

a
 + p k s + (( N-D/N) X!x(F(Rx) ' ' ' X=0 

k -F'(R )k ). 
s x a 

This expression, while complicated in form is easily evaluated; and if it 

is less than both the default costs, gives both a necessary and sufficient 

condition for an optimal sampling plan to exist at an interior point. 

Sufficiency is obvious and necessity follows from the description of the 

surface in 3.2. That is, if as one moves along the surface away from the 

boundary the cost increases, then the cost will continue to increase as 

one moves farther away from the boundary. 

3.2 Description of the Surface 

In Figures 3 to 8 the cost vector is 

(kT, k., k , k ) = (1.00, .30, 2.50, .30). 
i l a s 

The prior distribution is the Beta distribution described in Appendix 2 

with parameters a = 1.15, b = 18.35. The mean of the distribution is .1 

and the variance is .004. These figures provide an approximate idea of 

the surface surrounding the optimum point for these costs. It can be 

seen from Figure 4 the optimum is 



Figure 3. Expected Cost Curves for C.=2 and C 2=10 
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(n1, c 1, n 2, c 2) = (31, 2, 62, 11) 

with an expected cost of 219.39938. If three of the variables, n^, n 2, 

c^, c 2, are fixed and the fourth allowed to vary over its range of 

values, the individual points form a unimodal curve. Figure 4 shows a 

set of these curves with c^ = 2 and c 2 = 11 for values of n 2 from 56 to 

68 and n^ from 25 to 37. Figure 9 shows an exaggerated section of these 

curves. If, in Figure 9, the scale for n 2 is increasing, then the value 

of n^ for each curve decreases when moving from left to right. If we 

consider a set of these curves to be defined by fixed values of c^ and c 2 

and each individual curve to be defined by a fixed value of n^, then the 

optimum point on each of these curves also form a unimodal curve when 

joined together. This curve of optimum points is defined by specific 

values of c^ and c 2 > Each point on it is an optimal value of n^ for that 

value of n2« This curve is relatively flat near the optimum but rises 

sharply away from it. Figure 4 shows curves surrounding the global 

optimum. Figures 3 and 5 show curves for (c^,c2) pairs (2,10) and (2,12), 

As expected the optimal value of n 2 increases and decreases as c 2 

increases and decreases while the optimal value of n^ is nearly unaffect

ed. Figures 6 and 7 show curves for c 2 = 11, and c^ equal to 1 and 3. 

Here, for (c-^,c2) = (1,11) the optimal value for n 2 is increased while 

that of n^ is decreased. The inverse is true for (c-^,c2) = (3,11). 

Table 1 indicates the sensitivity of the expected cost to errors 

in the final optimum point. The costs are dependent on the values given 

to the four cost coefficients, but the percent differences are only 

dependent on the ratios k /k and k./k . The first line gives the 
S 3 . 1 3 . 



Figure 9. Expected Cost Curves 
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Table 1. Sensitivity of the Expected Cost to Errors 

in the Optimal Point 

Difference Between 
Sampling Plan Expected Cost Optimal and Exp. Cost 

^1 ^1 ^2 ^2 

31 2 62 11 219.39938 -

23 1* 69 11 219.59324 0.18386 
31 2 54 10* 219.42715 0.02777 
39 3* 54 11 219.51268 0.11330 
31 2 70 12* 219.42244 0.02306 

30* 2 63 11 219.41024 0.01086 
32* 2 61 11 219.41191 0.01253 
31 2 61* 11 219.40300 0.00362 
31 2 63* 11 219.40763 0.00825 

25 2 62 11 220.17467 0.77529 
27 2 62 11 219.71246 0.31308 
29 2 62 11 219.46796 0.06858 
30 2 62 11 219.41395 0.01457 
32 2 62 11 219.42034 0.02096 
33 2 62 11 219.47333 0.07395 
35 2 62 11 219.66334 0.26396 
37 2 62 11 219.94844 0.54906 

31 2 56 11 219.61577 0.21639 
31 2 58 11 219.48929 0.08991 
31 2 60 11 219.41879 0.01941 
31 2 61 11 219.40300 0.00362 
31 2 63 11 219.40736 0.00825 
31 2 64 11 219.42636 0.02698 
31 2 66 11 219.49524 0.09586 
31 2 68 11 219.60173 0.20235 
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optimal point and corresponding cost. The next section gives the 

optimal points if the variables marked with asterisks are forced to that 

value and the others are allowed to move to their optimum values. Table 

1 shows that the surface is very flat in the vicinity of the optimum. The 

expected cost is least sensitive to changes in n 2, then n^, then c 2 and 

most sensitive to c^. The rest of Table 1 shows non-optimal points that 

result if first n^ and then n 2 are varied, while the other, along with c^ 

and c 2, if fixed. 

3.3 Numerical Results 

In all of the results presented the prior distribution used for p 

is the beta distribution presented in Appendix 2. The initial set of 

optimum sampling plans were found using a prior distribution with mean 

u = .1 and variance v = .004. The initial set of cost coefficients 

studied were 

(k., k , k ) = (.3, 2.5, .3) and k T = 1.00. 
l a s I 

The reason for using k̂ . = 1.00 instead of zero is that this value enabled 

the computer program to sense the boundary more easily. The remaining 

optimum points in the first set are found by using plus and minus ten 

percent in each of the cost coefficients. The results are summarized in 

Table 2. Table 3 lists values of the ratios k.,/k and k /k . From Table 
l a s a 

2 we can see that as k is increased while k. and k are fixed, the sample 
a I s ' r 

sizes increase while the acceptance numbers decrease or remain the same. 

The optimum plans therefore accept fewer lots. If k and k are held 
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Table 2. Optimal Sampling Plans for Selected Sets of 

Cost Coefficients and a Beta Prior 

k. = 
l 

.27 

k = s .27 .30 .33 
k = a 

2.25 31,2,62,11 27,2,84,15 30,3,118,22 
197.55944 204.64301 210.06051 

2.50 37,2,59,10 40,3,94,16 36,3,130,22 
208.38643 217.29608 224.24294 

2.75 43,2,65,10 46,3,95,15 49,4,177,27 
217.29933 

k. = 
I 

227.85840 

.30 

236.23612 

k = s .27 .30 .33 
k = a 

2.25 30,2,46,9 26,2,63,12 22,2,77,15 
199.25451 206.3664 211.79430 

2.50 35,2,43,8 31,2,62,11 28,2,77,14 
210.31643 219.39938 226.57758 

2.75 40,2,48,8 36,2,59,10 32,2,86,14 
219.45321 

k. = 
I 

230.33139 

.33 

239.16815 

k = s .27 .30 .33 
k = a 

2.25 28,2,40,8 25,2,49,10 21,2,58,12 
200.69802 207.7998 213.15867 

2.50 34,2,35,7 30,2,46,9 26,2,64,12 
211.93492 221.10921 228.31158 

2.75 39,3,38,7 35,2,42,8 31,2,62,11 
211.20672 232.26430 241.23932 

Plans are 
v=.004 

presented as n^,c l' n2' c 2» Prior Parameters a=1.15,b=18.35,u=.: 



Table 3. Ratios of k./k and k /k 
1 a s a 

k. or k 
i s 

2.25 

2.50 

2.75 

.27 

.120 

.108 

.098 

.30 

.133 

.120 

.109 

,33 

.147 

.132 

.120 



Table 4. Comparison of Sampling Plans by Operating Characteristic Curves 

Prior Cost Vector Optimal Value of p so that 
k. k k .95 .90 .10 a 

Mean--Variance l a s Sampling Plan .95 .90 .10 .05 

0.1 0.004 0.30 2.50 0.30 31,2,62,11 0.080 0.090 0.180 0.200 

0.1 0.004 0.33 2.50 0.30 30,2,46,9 0.087 0.087 0.189 0.210 

0.1 0.004 0.27 2.50 0.30 40,3,94,16 0.087 0.095 0.172 0.189 

0.1 0.004 0.30 2.75 0.30 36,2,59,10 0.070 0.078 0.165 0.180 

0.1 0.004 0.30 2.25 0.30 26,2,63,12 0.092 0.103 0.207 0.230 

0.1 0.004 0.30 2.50 0.33 28,2,77,14 0.094 0.104 0.197 0.218 

0.1 0.004 0.30 2.50 0.37 35,2,43,8 0.065 0.074 0.167 0.186 

0.1 0.01 0.30 2.50 0.30 23,1,55,9 0.075 0.085 0.186 0.207 

0.1 0.02 0.30 2.50 0.30 21,1,42,7 0.069 0.079 0.195 0.220 

0.05 0.005 0.30 2.50 0.30 10,0,38,7 0.075 0.086 0.224 0.264 
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Table 5. Comparison of Optimal Plans for Different Beta Priors 

(k,,k ,k ) = (.30,2.50,-30) 
1 CL S 

k T = 1.00 

Mean 
Variance/Mean 

0.04 

0.10 

0.20 

0.01 

3,0,46,6 
25.36731** 
5,0,46,6 
21.21707 

0.05 

5,0,31,6 
124.62236 
10,0,48,7 
107.70313 
11,0,42,6 
84.96969 

0.10 

31,2,62,11 
219.39938 
23,1,55,9 
183.16498 
21,1,42,7 
145.40971 

(k,,k ,k ) = (.27,2.75,-30) 
1 3. S 

k T = 1.00 

Mean 
Variance/Mean 

0.04 

0.10 

0.20 

0.01 

4,0,57,7 
27.212181 
4,0,57,7 
22.1960 

0.05 

6,0,53,8 
136.04039 
12,0,61,8 
113.28785 
13,0,54,7 
88.1573 

0.10 

46,3,95,15 
227.85840 
27,1,70,10 
189.22116 
17,0,52,7 
14938616 

(k.,k ,k ) = (.33,2.25,-30) 
l a s 

k̂  = 1.00 

Mean 
Variance/Mean 

0.04 

0.10 

0.20 

0.01 

2,0,39,6 
23.30479 
4,0,41,6 
20.071827 

0.05 

1,0,34,6 
113.38509 
8,0,36,6 
101.15162 
9,0,38,6 
81.19038 

0.10 

25,2,49,10 
207.7998 
20,1,35,8 
175.41711 
13,0,55,6 
140.18699 

*** There exists no points with expected cost less than the cost of 
accepting without sampling 

** Cost of acceptance without sampling < 25.36731 < cost of acceptance 
without sampling + 1.00 
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fixed and increased, then fewer items are sampled. Both of these 

results are very intuitive. It is easier to see the effects of varying 

costs if the operating characteristic curves are studied. 

Table 4 lists information about the operating characteristic curves 

for some of the optimum plans and some of the operating characteristic 

curves are shown in Figure 10. Increasing k. holding k and k constant 
IL cL S 

spreads the curve out while decreasing k^ makes the curve steeper. If k g 

is increased with the other two costs constant, the curve becomes steeper. 

Decreasing k g causes the curve to flatten out. Increasing k^ shifts the 

curve to the left; decreasing it shifts the curve to the right. For a 

decreased prior mean and the same ratio of mean to variance, the curve 

remains the same for a high probability of acceptance but includes a 

larger portion of the p axis for low probabilities of acceptance. 

From Table 2 we can see that the expected cost is most sensitive 

to changes in the cost of accepting a defective and only slightly less 

sensitive to changes in cost of scrapping an item. A ten percent change 

in the cost of accepting a defective item causes about a 5 percent change 

in the expected cost. A ten percent change in the cost of scrapping an 

item causes about a 4 percent change in the expected cost, while a 10 

percent change in the cost of inspecting an item causes only a 1 percent 

change in the expected cost. 

Table 5 gives optimal sampling plans for the base point and two 

other points under other prior distributions of process quality. One 

interesting point noted from this table is that the expected cost de

creases when the variance increases for a fixed mean. Once the prior 

distributions are examined, it is clear why this is true. Figure 11 
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Figure 10b. Operating Characteristic Curves for Optimal Plans 
for Several k 

a 
31,2,62,11 k.=.30,k =.30 36,2,59,10 k =2.75 

^=2.5 S 26,2,63,12 ka=2.25 
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The means of curves A and B are the same, but the variance of A 
is greater than that of B. 

Figure 11. Graph of Beta Priors 
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presents two beta distributions which have equal means. However, curve 

A has a higher variance than curve B. This means that it has more area 

towards the ends of the distribution. These are the areas where double 

sampling works most effectively and decisions can be made correctly more 

often on the first sample resulting in a lower cost. In the limit as the 

variance of the prior goes to zero, the expected cost goes either to the 

default cost of acceptance or rejection. 

Table 6 gives the sensitivity of the expected cost to small changes 

in the prior. A ten percent change in the prior mean holding variance/ 

mean constant produces about a 2 percent change in the expected cost and 

does not change the optimal sampling plan. A 20 percent change in the 

variance with a fixed mean produces about the same change in the expected 

cost and also leaves the optimal sampling plan unchanged. 

Table 7 shows an extension of Table 2. If k is increased while 
a 

k g is held equal to k_̂ , both the expected cost and number of items sampled 

increase. If k & is decreased then the opposite happens until the default 

cost of acceptance without sampling is reached. It is interesting to 

examine the costs to determine when it is less costly to accept a lot 

without sampling. If k^ is held equal to k g, then Table 8 gives values 

of k&/k^ such that the optimal point lies in the interior for all values 
of k /k. greater than the ratio. For a fixed mean, the minimum ratio of a x 
k /k. required for sampling increases as the variance decreases. If the a I 

ratio of variance to mean is held constant, the ratio of k /k. required 
a i 

for sampling increases as the mean decreases. 

It is instructive to compare the economically optimum double 

sampling plans to economically optimum single sampling plans and sampling 
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Table 6. Sensitivity to Small Changes in the Prior 

Prior Mean, Variance 

Optimal Plan 

Expected Cost 

(kT,k.,k ,k ) = (1.00,.30,2.50,30) 
l i a s 

u = .05, v = .004 
10,0,48,7 
113.39455 

y = .049, v = .005 y = .05, v = .005 y = .051, v = .005 
10,0,48,7 10,0,48,7 10,0,48,7 
105.34261 107.70313 110.06943 

y = .05, v = .006 
10,0,48,7 
105.39207 



Table 7. Optimal Sampling Plans for Extended Ratios for k./k and k /ka 
1 a s 

Prior Parameters 
u = .1, v = .004 

Costs Ratios Optimal Plan Expected Cost 
k. k k k./k k /k i a s l a s a 

0.09 48 2 61 9 224.66437 
0.083 54 2 65 9 230.80455 
0.077 59 2 71 9 235.9696 
0.068 69 2 68 8 244.03064 
0.054 71 1 85 7 254.44552 

0.27 3. 00 0.27 0.09 
0.27 3. 25 0.27 0.083 
0.27 3. 50 0.27 0.077 
0.27 4. 00 0.27 0.068 
0.27 5. 00 0.27 0.054 

0.33 2. 00 0.33 0.165 
0.33 1. 75 0.33 0.189 
0.33 1. 50 0.33** 
0.33 1. 25 0.33** 
0.33 1. 00 0.33** 

0.36 2. 75 0.24 0.131 
0.39 2. 75 0.21 0.142 

Optimal Plan 
n l Cl n 2 c2 

48 2 61 9 
54 2 65 9 
59 2 71 9 
69 2 68 8 
71 1 85 7 

16 2 58 13 
7 1 44 11 

32 1 32 5 
25 0 17 2 

0.165 16 2 58 13 195.48302 
0.189 7 1 44 11 174.8016 

0.087 32 1 32 5 209.15156 
0.076 25 0 17 2 194.11876 

** The expected cost is greater than that of accepting without sampling. 
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Table 8. Rations of k /k. with k.=k so that the Optimal 
a 1 i s r 

Expected Cost is Less than the Expected Cost 

of Acceptance without Sampling 

Prior Parameters Ratio of 

Mean Variance k /k. 

a l 

0.1 0.004 5.877 

0.1 0.010 3.707 

0.1 0.020 2.410 

0.05 0.005 4.803 

0.01 0.001 8.657 
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plans from the Military Standards given in Duncan (4). Table 9 gives a 

table of optimal single sampling plans, their expected cost, the corre

sponding cost from the optimal double sampling plan, and the percent 

savings attained by using double sampling. The optimal single sampling 

plans were derived by forcing to be zero in the original model. The 

savings range from about one percent for a case of relatively large prior 

mean and small coefficient of variation to about 7 percent for the 

relatively small prior mean and large coefficient of variation case. 

Let the prior with mean y = .1 and variance v = .004, and the cost 

vector 

(k k k k ) = (1., .3, 2.5, .3), 
l i a s 

be used to find the expected cost of the plans. From Military Standard 

105D, the single sampling plan given for N = 1000 with an AQL of 0.1 

under normal insepction is n = 80 and c = 14. The expected cost of this 

plan is about 230. The double sampling plan from Military Standard 105D 

given under the same conditions is 

( n v c 1, n 2, c 2) = (50, 7, 50, 18). r ± = 11, r £ = 19 

The cost for this plan is about 268. This comparison cannot be made 

directly because the Military Standard Plans use curtailment on the 

second sample and do not require rejection numbers to be equal. 



Table 9. Comparison of Optimal Single Sampling Plans and Optimum Single Sampling Plans 

Optimal Double Percent 
Prior Costs Sampling Plan Expected Cost Cost Diff, 

y V k. k k n c y l a s 
0.1 0.004 0.30 2.50 0.30 59 7 222.08544 219.39938 1.22 
0.1 0.004 0.33 2.50 0.30 51 6 223.644447 221.10921 1.15 
0.1 0.004 0.27 2.50 0.30 67 8 220.24410 217.29608 1.36 
0.1 0.004 0.30 2.75 0.30 67 7 232.86303 230.33139 1.10 
0.1 0.004 0.30 2.25 0.30 44 6 209.15113 206.36640 1.35 
0.1 0.004 0.30 2.50 0.33 52 7 229.85326 226.57758 1.44 
0.1 0.004 0.30 2.50 0.27 58 6 212.47219 210.31643 1.02 

0.1 0.01 0.30 2.50 0.30 44 5 186.26519 183.16498 1.72 

0.1 0.02 0.30 2.50 0.30 29 3 148.51286 145.40971 2.14 

0.05 0.005 0.30 2.50 0.30 24 3 111.10403 107.70313 3.16 

0.01 0.001 0.30 2.50 0.30 ******** 

0.01 0.002 0.30 2.50 0.30 8 1 22.747297 21.21707 7.21 

******** Expected cost of all points greater than default cost of acceptance. 
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3.4 The Scrapping Model with Costs Considered as 

Random Variables 

There are some cases where the costs cannot be considered as fixed 

quantities. The cost of scrapping may be dependent on a salvage value 

that changes over time. If a batch of items is to be used in more than 

one way, then the cost of accepting a defective will depend on the 

distribution of usage. If the costs can be considered as independent 

random variables whose distribution does not depend on the lot fraction 

defective, then the expected cost can be written as 

E(cost) =////ECcosOlk̂ k̂ k̂ kj) f k (kp dkx f k (k±) dk ± * 
K K K K 1 1 

I i a s 

f, (k ) dk f, (k ) dk . k a a k s s a s 

K T, K., K , and K are the regions where k T, k., k , and k take on values I I a s ° I* I* a s 
respectively. Also, f̂  , f^ , f^ , and f^ are the distributions of the 

I i a s 
cost coefficients. The E(costIkT,k.,k ,k ) is the right hand side of 

1 I i a s 
equation (1). If any of the distributions are discrete then the corre

sponding integral signs are replaced by summations. Since all of the 

costs and p are assumed independent, the order of integration can be 

interchanged. The integrals corresponding to the costs can be brought 

inside of the E(cost)jk ,k.,k ,k ) integral. These integrals can now be 
. L i a s 

evaluated easily. The result then is the original expected cost equation 

with the cost vector replaced by the vector of the means of the 

distributions of the costs. 
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CHAPTER IV 

OTHER VARIATIONS OF THE BASIC COST MODEL 

4.1 The Inspection Model 

An alternative to scrapping rejected lots is one hundred percent 

screening of the items remaining after a lot has been rejected. If this 

is the case, then the cost of accepting a lot on either sample is un

changed . 

When a lot is rejected, the cost of disposing the remainder of 

the lot must be replaced by the cost of inspecting the remainder and 

scrapping only the defectives. The cost of a lot which is rejected on 

the first sample is then 

C = k T + k.n, + k d, + k.(N - n j + k (X - d,) . rl I 1 1 s i i 1 s 1 

The cost of rejecting a lot on the second sample is 

Cr2 = h + k i ( n i + n 2 ) + k s ( d l + d 2 ) + k i ( N " n l " n 2 ) + k
S

( X " d l " d 2 ) * 

Applying the same approximation as in the basic model C ^ and C 2 become 

C - (p) = k T
 + k - n T + k n - P + k.(N - n j + k (N - njp, rl *I l 1 s i r l 1 s ]/f> 
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C r 2(p) = + kj.0̂  + n 2) + kgC^ + n2)p + k±(N - n± - n 2) + 

kg(N - n 1 - n2)p. 

The cost as a function of p is 

C(P) = c a l(p)P a l( P) + c a 2(p)P a 2( P) + c r l(p)P r l( P) + c r 2(p)P r 2( P) 

From here the development proceeds as in the basic model 

1 
E(cost) = y * E(cost|p)f(p)dp 

0 
1 

= / [P r l(p)( k
I + \ ^ + k sn l P + (N-n1)k± + (N-n^k p) + 

0 

P r 2(p)(k I + k ^ - H ^ ) + k s( n i+n 2)p + (N-n1-n2)k± + 

(N-n;L-n2)ksp) + 

P a l(p)(k I + k ^ + k a(N- n i)p + k gn l P) + 

P a 2(p)(k I + k^n-j+n^ + ka(N-n;L-n2)p + k ^ + n ^ p l f (p)dp 

Table 10 gives some optimal sampling plans derived from the 

inspection model. The optimal expected cost is most sensitive to changes 

in the cost of accepting a defective item and least sensitive to the cost 

of scrapping an item. A 10 percent change in the cost of accepting a 
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defective item results in about a 6.5 percent change in expected cost. 

A ten percent change in or k g results in a 3 percent or .5 percent 

change in expected cost, respectively. 

Table 11 indicates the sensitivity of the inspection model to small 

changes in the prior. The inspection model is somewhat more sensitive to 

changes in the prior than the scrapping model. A ten percent change in 

mean results in a 2 percent change in expected cost and a 20 percent 

change in variance results in a 4 percent change in cost. 

For a given set of cost coefficients these two models can be used 

to determine the optimum disposition of a lot. That is, the decision to 

either screen or scrap rejected lots can be made on the basis of lowest 

expected cost rather than as an arbitrary decision. 

4.2 The Restricted Model 

If we require sample sizes to satisfy a relationship such as 

n 2
 = 2n^ we obtain a higher expected cost. However, we may gain some 

efficiency in administration. Having the plan parameters related in a 

simple fashion reduced the liklihood of the inspector making an error in 

the sampling procedure. Table 12 gives some examples of optimal sampling 

plans resulting from requiring both the sample sizes and acceptance 

numbers to satisfy certain relationships. The plans from the Military 

Standard 105D require n^ and to be equal, but they do not require any 

relationships between acceptance numbers. The plans here were found by 

requiring the specified relationship to hold during the search procedure. 

For a cost vector of 
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Table 10. Optimal Points from the Inspection Model 

Prior Parameters Costs Sampling Plan Expected Cost 
y v k. k a k s n 1,c 1,n 2,c 2 

0.05 0.005 0.30 2.50 0.30 14,1,80,13 113.64701 
0.05 0.005 0.27 2.50 0.30 17,1,80,12 110.18388 
0.05 0.005 0.33 2.50 0.30 12,1,73,13 116.51853 
0.05 0.005 0.30 2.25 0.30 12,1,70,13 105.72691 
0.05 0.005 0.30 2.75 0.30 17,1,81,12 120.79892 
0.05 0.005 0.30 2.50 0.27 15,1,73,12 113.04800 
0.05 0.005 0.30 2.50 0.33 14,1,79,13 114.24791 

0.05 0.002 0.030 2.50 0.30 2,0,39,7 125.7450 

0.05 0.010 0.30 2.50 0.30 9,0,58,9 94.058488 

0.01 0.001 0.30 2.50 0.30 *** 

0.10 0.010 0.30 2.50 0.30 20,1,77,13 200.36394 

*** No point has a cost less than accepting without sampling. 

Table 11. Sensitivity of the Inspection Model to Small Changes 

in the Prior 

(k±,k ,k g) = (.30,2.50,-30) k-j. = 1.00 

Prior Parameters Optimal Sampling Plan Expected Cost 

y v n 1,c 1,n 2,c 2 

0.051 0.005 14,1,80,13 116.06923 
0.049 0.005 14,1,80,13 111.23377 
0.050 0.006 15,1,80,13 109.33044 
0.050 0.004 13,1,73,12 118.13061 
0.050 0.005 14,1,80,13 113.64701 
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Table 12. Table of Optimal Plans with Constraints on the 

Relationships Between Sample Sizes and Rejection Numbers 

Prior Parameters Mean = .1 
Variance = .004 

(kT,k.,k ,k ) = (1.,.3,2.5,.3) Optimal Expected Cost 219.39938 

n 2/n 1 c 2 / c l n l Cl n 2 c 2 Expected Cost 

2 5 29 2 58 10 219.50570 
2 4 35 3 70 12 219.69492 
2 3 38 4 76 12 220.83688 
2 6 33 2 66 12 219.48799 
2 7 37 2 74 14 220.09671 

1 3 39 3 39 9 219.71703 
1 4 34 2 34 8 219.80758 
1 2 47 5 47 10 220.69228 

( k I > k l > k*> kJ = a s (1...3.2. .25,.3) Optimal Expected Cost 206.3664 

n 2/n 1 c 2 / c l n l Cl n 2 c 2 Expected Cost 

2 7 18 1 36 7 206.98228 
2 6 29 2 58 12 206.53202 
2 5 25 2 50 10 206.43778 
2 4 30 3 60 12 206.60484 

(k ,k.,k ,k ) = (1.,.3,2.75,.3) Optimal Expected Cost 230.33139 
J- 1 3. S 

n 2/n I ^2^1 n l c l n 2 c2 Expected Cost 

2 1 42 2 84 14 231.00561 
2 6 37 2 74 12 230.42199 
2 5 35 2 70 10 230.51574 
2 4 37 3 74 12 230.76044 
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(k k k , k ) = (1., .3, 2.5, .3) 
Jl 1 9, S 

the optimum value for the pair (i^/n^, c^/c^) over the set of all 

integers is (2,6). In general, the loss in expected cost obtained by 

using the optimum restricted plan instead of the overall optimum plan is 

less than one percent. As k is increased while k. and k are held r a i s 
constant, the optimal value of the c 2/c^ increases while n^/n^ remains 

near constant. 

4.3 Curtailment 

Often when the number of defectives found during testing reaches 

the rejection number, the rest of the sample is rejected without testing. 

This process is called curtailment. If we curtail only on the second 

sample, the value of n 2 used in the cost model must be adjusted. The 

probabilities of lot acceptance and rejection are based on the original 

sample sizes n^ and n 2 and are therefore independent of curtailment. Fr 

Duncan (4) we have 

C2 
E(n 2|p) = ̂ P(n 1:k)(n 2P"(n 2:C 2-k) + ( (C2-k+l)/P)P1 (n£+l: C2~k+2) ) 

k=c x+l 

with 

om 

P(n:k) 

P' (n:k) 

P"(n:k) 

= Probability of exactly k defective items out of n 

= Probability of k or more defective items out of n 

= Probability of k or less defective items out of n. 
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The E ( n 2 J p ) was evaluated at each end of the intervals of integration for 

p and the largest value was used as an approximation for n 2 over that 

interval in E(cost|p). When curtailment is used in the scrapping model, 

the main change occurs on the second sample. For instance, the optimal 

point from the basic model for the cases 

(k T, k., k , k ) = (1., .3, 2.5, .3) 
v I l a s 

is 

(nv n 2, c 2) = (31, 2, 62, 12) with E(cost) = 43.39938 

as compared to 

(n 1, c 1, n 2, c 2) = (30, 2, 115, 17) with E(cost) = 217.58505 

for the optimum with curtailment. The second sample size for the optimal 

plan increases because the expected number of items sampled is smaller 

under curtailment. The average expected savings over the uncurtailed 

model was about one percent. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The main purpose of this research was to derive a model for the 

design of double sampling plans based on an economic criterion. 

Secondary objectives were to develop methods allowing evaluation of the 

cost function in a reasonable amount of computer time and to find a 

search procedure that would find the global minimum of the associated 

cost surface. All of these were accomplished. The major assumption used 

in accomplishing these purposes was that the number of defectives in a 

lot could be represented as a step function of lot quality. The rejection 

numbers r^ and were assumed to be c 2 + 1. The cost of sampling one 

item k. was also assumed to be the same for both the first and second 

samples. 

The surface around the optimum is relatively flat, but becomes 

steeper as we move away from the optimum. In general, as k is 
cL 

increased while k and k. are held constant the optimum plan becomes s i 
more selective. The expected cost behaves linearly with respect to the 

fixed cost of sampling k̂ . and is uniquely determined by the two ratios 

k-, /k and k /k . The optimum sampling plan remains unchanged under small l a s a 
changes in the prior mean and variance. In general, double sampling is 

not much more efficient than single sampling in terms of total expected 

cost. This agrees with the conclusions of Pfanzagl (15). However, in 
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some cases a 7 percent reduction in cost can be achieved independent of 

the costs involved. If the costs associated with sampling were very high, 

then the use of double sampling could result in a substantial savings. 

5.2 Recommendations 

The costs presented here and in most other research on economic 

acceptance sampling, are constants. In reality, the costs might be a 

function of the sample sizes, based on either the total number of items 

sampled or the maximum number of items on test at any point in time. 

For instance, the inspection procedure might require a test stand that 

would limit the number of items tested at one time. The cost of 

inspection might be a step function, say 

kj = KtM/maxO^,^) ]. 

Here K is a constant, M the maximum number of items that can be tested 

at one time and [] the greatest integer contained within the function. 

Another variation would be to allow k^ to vary from the first sample 

to the second. In reality the cost of inspecting one unit would usually 

be higher on the second sample. This would bring down the number of 

items in the second sample. 

Another extension of the model would be to include inspector error 

and bias. A distribution would be added to model the probability that an 

inspector would misclassify an item. The treatment might be similar to 

that of Mei, Case, and Schmidt (14). 
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The choice of prior is important to the accuracy of the results. 

A type of prior that has not seen much analysis is the mixed beta: 

f(p) = af^(p) + bf 2(p), a+b=l, f^ and f^ beta distributions. 

This distribution is useful for modeling any process that is bimodal, or 

modeling output from a mixture of two production facilities with different 

fraction defectives. Some analysis should be conducted to determine model 

behavior under different prior distributions of lot quality. 

Hald (9) has done some work on optimum double by variables 

sampling using average sample number as an optimality criterion. Bennett, 

Schmidt, and Case (17) analyzed single sampling by variables using fully 

economic criterion. However no fully economic treatment for double 

variables sampling by variables has been performed. 

A last extension concerns changes in the basic structure of the 

sampling procedure. When curtailment on the second sample was tried, 

the first sample size was left almost unchanged. It would be interesting 

to see the results of applying curtailment to the first sample. Another 

assumption made was that the rejection number for the first sample and 

that for the total would be the same. If they were not forced to be equal, 

there would be an improvement in overall efficiency; and it would be 

interesting to determine its significance. 
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APPENDIX I 

OPTIMIZATION METHODS 

A.l Pattern Search in and with and Fixed 

This appendix gives an example of the pattern search used to 

optimize cost. Part A illustrates the search in n^ and n^ while part B 

shows the search in c^ and c^. 

Cost Parameters Rejection Numbers 

k-j. = 0.00 cl = 2 

k ± = .30 c 2 = 11 

k = 2.50 
a 

k = .30 
s 

Beta Prior Step Size 

a = 1.15 d = 1 

b = 18.35 

H = .1 

v = .004 
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Function 
Value Comments 

218.45619 
218.43606 
218.47821 
218.41780 

218.40763 

218.44010 
218.41024 
218.42636 
218.39938 

218.40300 

Starting Point 
(n 1+d 1,n 2) 
(n 1+d 1,n 2+d) 
(n^+d,n2~d) 

( n i+2d,n 2-2d) 

(n-j+d,^) 
(n 1-d,n 2) 
(n^^+a) 
(n 1,n 2-d) 

Steps 2-4 are 
exploratory moves from 
the base point 

Pattern move from 
last base point 

Exploratory moves 
from the new base 
points 

Pattern move 

218.41191 The combination of pattern move and 
218.42950 exploratory moves has not produced any 
218.39938 functional improvement so the pattern 

move has failed and the algorithm 
returns to the previous base prior 
(31,62) 

218.42034 
218.41395 
218.40300 
218.40736 

Exploratory moves from the last base 
point also fail so the algorithm is 
finished 
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Search Values Optimal Values Expected Cost 
C l C 2 n l n 2 
3 13 40 70 217.37248 
3 14 40 79 217.31961 
3 15 40 86 217.29410 
3 16 40 94 217.29068 
3 17 40 102 217.30590 

4 16 48 87 217.44219 
2 16 32 102 217.33452 

The initial search procedure is along the plus direction in C 2 « 

When a decrease in function value is found the plus and minus directions 

in c 1 are tested. When these fail, the optimum is found, 

c l 3 

13 14 15 16 17 
• - tested point, x - rejected 

point 
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APPENDIX II 

BETA PRIOR DISTRIBUTION 

The form of the Beta Distribution used in this study is 

F(p) = (G(a+b+2)/(G(a+l)G(b+l)))pa(l-p)b, 0 > p > 1, a,b > -1. 

The mean is y = (a+1)/(a+b+2) 

2 

and the variance is v = (a+1)(b+1)/((a+b+2) (a+b+3)). 

The function G is the gamma function 

n / . -x n-1 G(n) = e x dx. 

The parameters a and b can also be written in terms of y and v; 

o - y2(l-y) - yv -, 
a = *- 1 

v 

b = (a+1)(1-y) _ 1 

y 

These forms are useful in finding a prior with specified mean and variance. 
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