
The complexity of acyclic conjunctive queries revisited

Arnaud Durand, Etienne Grandjean

To cite this version:

Arnaud Durand, Etienne Grandjean. The complexity of acyclic conjunctive queries revisited.
30 pages. 2006. <hal-00023582>

HAL Id: hal-00023582

https://hal.archives-ouvertes.fr/hal-00023582

Submitted on 2 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47125402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00023582

cc
sd

-0
00

23
58

2,
 v

er
si

on
 1

 -
 2

 M
ay

 2
00

6

The complexity of acyclic conjunctive queries revisited

Arnaud Durand ∗ Etienne Grandjean †

Abstract

In this paper, we consider first-order logic over unary functions and study the
complexity of the evaluation problem for conjunctive queries described by such
kind of formulas.

A natural notion of query acyclicity for this language is introduced and we
study the complexity of a large number of variants or generalizations of acyclic
query problems in that context (Boolean or not Boolean, with or without inequal-
ities, comparisons, etc...). Our main results show that all those problems are fixed-
parameter linear i.e. they can be evaluated in time f(|Q|).|db|.|Q(db)| where |Q| is
the size of the query Q, |db| the database size, |Q(db)| is the size of the output
and f is some function whose value depends on the specific variant of the query
problem (in some cases, f is the identity function).

Our results have two kinds of consequences. First, they can be easily translated
in the relational (i.e., classical) setting. Previously known bounds for some query
problems are improved and new tractable cases are then exhibited. Among others,
as an immediate corollary, we improve a result of [PY99] by showing that any
(relational) acyclic conjunctive query with inequalities can be evaluated in time
f(|Q|).|db|.|Q(db)|.

A second consequence of our method is that it provides a very natural descrip-
tive approach to the complexity of well-known algorithmic problems. A number of
examples (such as acyclic subgraph problems, multidimensional matching, etc...)
are considered for which new insights of their complexity are given.

∗Équipe de Logique Mathématique - CNRS UMR 7056. Université Denis Diderot - Paris 7, 2 place
jussieu, 75251 Paris cedex 05, France. Email : durand@logique.jussieu.fr

†GREYC - CNRS UMR 6072. Université de Caen, 14032 Caen, France Email :
grandjean@info.unicaen.fr

1

Contents

1 Introduction 3

2 Preliminaries 5

2.1 Conjunctive queries . 5
2.2 Conjunctive functional queries. 8
2.3 Basic notions of complexity . 10

3 Translating relational queries into functional queries 11

3.1 Transformation of the structure . 11
3.2 Transformation of the query . 12

4 Samples of unary functions 15

5 The complexity of functional acyclic queries 17

6 Application to the complexity of relational acyclic queries 24

7 Enumeration of query results 24

8 Fixed-parameter linearity of some natural problems 25

8.1 Acyclic Subgraph problems . 26
8.2 Covering and matching problems . 27

9 Conclusion: summary of results and open problems 28

2

1 Introduction

The complexity of relational query problems is an important and well-studied field of
database theory. In particular, the class of conjunctive queries (equivalent to select-
project-join queries) which are among the most simple, the most natural and the most
frequent type of queries have received much attention.

A query problem takes as input a database db and a query Q and outputs Q(db)
the result of the evaluation of Q against db (when the query is Boolean, Q(db) is simply
yes or no). There exist mainly two ways to investigate the complexity of such a problem.
In the combined complexity setting, one expresses the complexity of the problem in terms
both of the database size |db| and of the query size |Q| (and of the output size |Q(db)|
if necessary). It is well-known that, in that context, the Boolean conjunctive query
problem is NP-complete ([CM77, AHV95]). However, it is natural to consider that the
database size is incomparably bigger than the query size and to express the complexity
of the problem in terms of the database size only. In that case, the complexity of
the conjunctive query problem falls down to P (and even less). However, as discussed
by [PY99], that point of view is not completely satisfactory because although the
problem becomes polynomial time decidable, the formula size may inherently occur in
the exponent of the polynomial. Even for small values of this parameter, this may lead
to non tractable cases.

An interesting notion from parameterized complexity ([DF99]) that appears to be
very useful in the context of query evaluation (see [PY99]) is fixed parameter tractability.
A (query) problem is said to be fixed-parameter (f.p.) tractable (resp. linear) if its time
complexity is f(|Q|).P (|db|, |Q(db)|) for some function f and some polynomial P (resp.
linear polynomial P). In that case, the formula size influences the complexity of the
problem by a multiplicative factor only. Identifying the fragments of relational queries
that are f.p. tractable for small polynomials P is then an important but difficult task.
Surprisingly, a very broad and well-studied set of queries appears to lie within this
class: as shown in [Yan81] (see also [FFG02] for a precise bound), ACQ, the acyclic
conjunctive query problem (we refer to the standard notion of acyclicity in databases; for
precise definitions see section 2.1) can be solved in polynomial time O(|Q|.|db|.|Q(db)|).
Besides, it has been proved that evaluating an acyclic conjunctive query is not only
polynomial for sequential time but also highly parallelizable (see [GLS01]).

A natural extension ACQ6= of ACQ allows inequalities between variables, i.e., atoms
of the form x 6= y. In [PY99], it is shown that this latter class of queries is also
f.p. tractable and can be evaluated in time g(|Q|).|db|.|Q(db)|. log2 |db| where g is an
exponential function. Despite of these results, a lot of query problems including the
extension of acyclic queries obtained by allowing comparisons of the form x < y are
likely f.p. intractable as shown again by [PY99].

In this paper, we revisit the complexity of acyclic conjunctive queries under a different
angle. First, a class of so-called unary functional queries based on first-order logic over
unary functions is introduced. Focusing on the existential fragment of this language,
we introduce a very natural graph-based notion of query acyclicity. We then show that
various classes of relational conjunctive query problems can be easily interpreted in linear
time by corresponding (unary) functional conjunctive query problems (see section 3): this
is done by switching from the classical language describing relations between elements

3

of some domain D (i.e., the relational setting) to a functional one over the universe
of tuples: unary functions basically describe attribute values. In this context, unary
functional formulas can be seen as a logical embodiment of the well-known tuple calculus.
A nice feature of the reduction is that it preserves acyclicity of queries in the two
different contexts. The main part of the paper (section 5) is devoted to the analyze of
the complexity of the query problem for a wide range of syntactically defined functional
formulas. More precisely, whether inequalities (6=) are allowed or not, whether the query
is Boolean or not or whether a restricted use of comparisons (<) is allowed are considered.
In each case, we show that such queries can be evaluated in time f(|Q|).|db|.|Q(db)|
(in time f(|Q|).|db| for the Boolean case) where the value of function f depends on the
precise (functional) query problem under consideration.

Coming back to the relational setting, as immediate corollaries, we obtain a substan-
tial (and optimal) improvement of the bound proved in [PY99] for the ACQ6= problem
and a new proof of the complexity of the ACQ problem. Moreover, we generalize the
complexity bound for ACQ to a slightly larger class of queries denoted by ACQ+ that
allow comparisons (<, ≤, 6=) in a restricted way. This should be compared with the
result of [PY99] which shows that an unrestricted use of comparisons inside formulas
leads to an intractable query problem. The results of this paper implies that, regardless
of the query size, ACQ, ACQ+ and ACQ6= are inherently of the same data complexity.

One can easily describe algorithmic problems by queries written in some language.
This allows to reduce the complexity of these problems to the complexity of query eval-
uations for the language. In section 8, this well-known descriptive approach is used
for a number of algorithmic problems (like acyclic subgraph isomorphism, multidimen-
sional matching, etc..). They are considered as well in their decision version as in their
function or enumeration (of solutions) version. The variety of languages considered in
the paper permits to express easily (i.e. without encoding) a large kind of properties
(on graphs, sets, functions, etc...). Our results provides new insight on the complexity
of these problems. In all cases, the best known (data) complexity bounds is at least
reproved and sometimes improved.

The methods we use to prove the main results of this paper are, as far as we know,
original and quite different from those used so far in this context. They are essentially
a refinement of the methods introduced in a recent technical report by Frédéric Olive
and the present authors (see [DGO04]): that paper essentially deals with hierarchies
of definability inside existential second order logic in connection with nondeterministic
linear time. As [DGO04] did before, we introduce here a simple combinatorial notion
on unary functions called minimal sample (see section 4) and develop over this notion
some technics of quantifier elimination in formulas that can be performed in linear time.
Considering unary functions in the language permits the introduction of simple but
powerful new logico-combinatorial methods (based on graphs mainly). Arguments for
this are given here through the consequences on the complexity of relational acyclic con-
junctive queries. There are possible other applications of the methods and the language;
they are discussed in the conclusion.

4

2 Preliminaries

The reader is expected to be familiar with first-order logic (see e.g. [EF99, Lib04]) but
we briefly give some basic definitions on signatures, first-order structures and formulas.

A signature (or vocabulary) σ is a finite set of relation and function symbols, each of
which has a fixed arity which can be zero (0-ary function symbols are constant symbols
and 0-ary relation symbols are Boolean variables). The arity of σ is the maximal arity
of its symbols. A signature whose arity is at most one is said to be unary.

A (finite) structure S of vocabulary σ, or σ-structure, consists of a finite domain D
of cardinality n > 1, and, for any symbol s ∈ σ, an interpretation of s over D (often
denoted also by s, for simplicity).

We will often deal with tuples of objects. We denote them by bold letters: for
example, x = (x1, . . . , xk). If f is a k-tuple of functions (f1, . . . , fk), then f(x) stands
for (f1(x), . . . , fk(x)). Analogously, if f and g are two k-tuples of functions, f(x) = g(y)
stands for the logical statement: f1(x) = g1(y) ∧ . . . ∧ fk(x) = gk(y).

Let ϕ ≡ ϕ(x1, . . . , xk) be a first-order formula of signature σ and free variables among
x1, . . . , xk. Let var(ϕ) denote the set of variables of ϕ . Let L be a class of first-order
formulas (also called a query language). The query problem associated to L (and also
denoted by L) is defined as follows:

Input: A signature σ, a σ-structure S of domainD and a first-order σ-formula ϕ(x1, . . . , xk)
of L.
Output: The set ϕ(S) =def {(a1, . . . , ak) ∈ D

k : (S, a1, . . . , ak) |= ϕ(x1, . . . , xk)}.

In the following, query languages L are always specified by fragments of first-order
logic. The query S 7→ ϕ(S) is often identified with the formula ϕ itself.

In this paper, we consider two different kinds of signature σ: either σ contains
relation symbols only or it contains relation and function symbols of arity at most one.
In the first case, σ is said to be relational, a σ-structure will often be denoted by db

and a σ-query by Q. In the second case, σ is said to be unary functional or, for short,
functional, a σ-structure is often denoted by F and a σ-query by ϕ.

By making syntactic restrictions on the formula ϕ, one may define a number of query
problems. As we will see, the choice of the kind of signature has some influence also
and we will define both relational query problems and the associated functional query
problems. In what follows we briefly recall the basics about ”classical” conjunctive
queries and revisit this notion by introducing a new kind of functional query problem.

2.1 Conjunctive queries

Conjunctive queries can be seen as select-join-project queries (with renaming of
variables). Logically speaking, they are equivalent to queries expressed by first-order
relational formulas with existential quantification and conjunction, i.e., of the form:

Q(y1, . . . , yb) ≡ ∃x1 . . . ∃xa φ(x1, . . . , xa, y1, . . . , yb)

where φ is a conjunction of atoms over some relational signature σ and variables among
x,y. If Q has no free variable the query is said to be Boolean.

5

x1
x2

x3y1 x2

x4

Q1
Q2

x5
x1

y2

x3

Figure 1: The Hypergraphs of queries Q1 and Q2

Example 1 The two queries below are examples of conjunctive queries.

Q1(y1, y2) ≡ ∃x1∃x2∃x3 : R(x1, y1) ∧ S(x1, y2, x2) ∧ T (y2, x3) ∧R(x1, x2)

Q2 ≡ ∃x1∃x2∃x3∃x4∃x5 : S(x1, x2, x3) ∧ S(x1, x4, x5) ∧R(x3, x5)

Query Q2 is boolean.

An important and well-studied class of conjunctive queries are the so-called acyclic
conjunctive queries. To each conjunctive query Q one associates the following hyper-
graph HQ = (V,E) : its set of variables is V = var(Q) and its set of hyperedges is
E = {var(α) : α is an atom of Q}. There exist various notions of acyclicity related
to hypergraphs. We have to use the most general one that is defined as follows. A
hypergraph is acyclic if one can obtain the empty set by repeating the following two
rules (known as GYO rules, see [Gra79, YO79]) until no change occurs:

1. Remove hyperedges contained in other hyperedges;

2. Remove vertices that appear in at most one hyperedge.

As usual (see [Fag83]), a query is said to be acyclic if its associated hypergraph is acyclic.
Denote by ACQ the class of acyclic conjunctive queries.

Example 2 The hypergraphs associated to queries Q1 and Q2 of Example 1 are shown in Fig-
ure 1. Applying GYO rules shows that Q1 is acyclic and Q2 is cyclic.

Conserving the same notion of acyclicity, one can enlarge this class of queries by
allowing inequalities between variables (as defined in [PY99]). This defines the larger
class of so-called ACQ6= queries.

Example 3 Query Q3 below is an example of an ACQ6= query.

Q3(y1, y2) ≡ ∃x1∃x2∃x3 : R(x1, y1) ∧ S(x1, y2, x2) ∧ T (y2, x3) ∧R(x1, x2)
∧y1 6= x3 ∧ x2 6= x1.

6

S(x1, y2, x2)

R(x1, x2)S(y2, x3, y2) R(x1, y1)

y1 < y2x1 ≥ x3

Figure 2: Tree decomposition of query Q4

Alternatively, it is well-known that a conjunctive query Q(y) is acyclic if and only if
it has a join forest (called join tree in case the forest is connected), that is an acyclic graph
GQ = (V,E) whose set of vertices V is the set of atoms of Q and such that, for each
variable x that occurs in Q, the set Ax of relational atoms where x occurs is connected
(is a subtree) in GQ. Similarly, a conjunctive query Q(y) with inequalities is in ACQ6=

if it has a join forest GQ. Note that GQ relies upon the relational atoms but does not
take into account the inequalities.

One obtains another natural generalization of acyclic queries by allowing comparison
atoms x < y. As proved by [PY99] the evaluation problem of such queries is as difficult
with respect to parameterized complexity as the clique problem (both are W [1]-complete
problems) and hence is similarly conjectured to be f.p. intractable. Surprisingly, we will
show that for the following class of acyclic queries with (restricted use of) comparisons,
denoted by ACQ+, the evaluation problem is exactly as difficult, with respect to time
complexity, as that of ACQ. A conjunctive query Q with comparisons, i.e., atoms of
the form xθy where x, y are variables and θ ∈ {6=, <,≤, >,≥} is in ACQ+ if

1. it has a join forest GQ = (V,E) (defined as usual),

2. for each comparison xθy of Q, either {x, y} ⊆ var(α), for some relational atom α
of Q, or there is some edge (α, β) ∈ E in GQ such that x ∈ var(α) and y ∈ var(β),
and

3. for each edge (α, β) ∈ E, there is at most one comparison xθy in Q such that
x ∈ var(α) and y ∈ var(β).

In other words, a conjunctive query with comparisons is in ACQ+ if it has a join forest
GQ and if each comparison of Q relates two variables inside the same vertex of GQ or
along an edge of GQ, with globally at most one comparison per edge. The reason for
authorizing only one comparison per edge of the tree will be explain later in Remark 6.

Example 4 Query Q4 below is in ACQ+.

Q4(y1, y2) ≡ ∃x1∃x2∃x3 : R(x1, y1) ∧ S(x1, y2, x2) ∧ S(y2, x3, y2) ∧R(x1, x2)
∧y1 < y2 ∧ x1 ≥ x3.

Its join tree is shown in Figure 2.

7

Finally, as defined in [FFG02], a query Q(y) is said to be strict if there exists a

relational atom α in Q such that y ⊆ var(α). We denote by ACQ1, ACQ+
1 and ACQ6=

1

the restrictions of the classes of queries ACQ, ACQ+, ACQ6=, respectively, to strict
queries.

2.2 Conjunctive functional queries.

In all this part, σ is a unary functional signature. In full generality, a conjunctive
functional query is a conjunctive query over some unary functional signature σ. More
precisely, it is of the form:

ϕ(y) ≡ ∃x1 . . . ∃xb :

h
∧

i=1

τi(zi) = τ ′i(ti) ∧
k

∧

i=1

Ui(τ
′′
i (vi))

with zi, ti, vi ∈ var(ϕ), and τ, τ ′, τ ′′ are terms made of compositions of unary function
symbols of σ. For example, τ(x) = f1f2 . . . fk(x). Formulas are then interpreted on
functional structures with totally defined unary functions.

In this paper, formulas over a functional language are viewed as an analog of the
well-knowm ”tuple calculus”. Then, for sake of clarity, we will adopt the following
choices in the presentation (these choices do not restrict the applicability of our results
to queries of the most general form. See also Remark 1). In what follows, structures are
considered as multisorted unary algebras i.e. as a collection of partially defined unary
functions. Let σ = σrel∪σfun where σrel contains unary relation symbols only and σfun
contains unary function symbols. A σ-structure F will verify :

• Its finite domain D is such that D is the union of all sets T ∈ σrel. Also, for all
T1, T2 ∈ σrel, T1 ∩ T2 = ∅.

• For each function f ∈ σfun, there is a collection Tj1 , . . . , Tjk of sets in σrel, such
that f is defined over

⋃

i≤k Tji (and undefined elsewhere) and has value in D.

This definition reflects the fact that each T ∈ σrel is seen as a set of tuples with
each function f ∈ σfun being a projection function from tuples to the domain D. The
number of functions defined over T is equal to the arity of the underlying relation that
T represents.

For what concerns σ-formulas two restrictions will be adopted in this paper.

• Quantifications will always be relativized to some universe X ∈ σrel i.e. formulas
are of the form (∃x ∈ T)ϕ which is equivalent to ∃x T (x) ∧ ϕ.

• All atoms are of the form x ∈ T for T ∈ σrel or f(x) = g(y) for f, g ∈ σfun ∪ {Id}
where Id is the identity function. Note that composition of functions is not allowed
here.

Example 5 Formula ϕ1 below defines a functional conjunctive query.

8

ϕ1(x) ≡ ∃y ∈ T1,∃z ∈ T2 :
f1(x) = g1(y) ∧ f2(x) = h1(z)∧
f1(y) = g2(z) ∧ f1(z) 6= h1(y)∧
x ∈ T1

As in the relational setting, one can define a notion of acyclic (unary) functional
queries. The definition is even more natural and simpler since it relies upon graphs
instead of hypergraphs.

Definition 1 Let ϕ be a conjunctive functional query. The undirected graph Gϕ = (V,E)
associated to ϕ is defined by: V = var(ϕ) and for all distinct x, y ∈ V , (x, y) ∈ E iff ϕ
contains at least one atom of the form f(x) = g(y) for some f, g ∈ σ ∪ {Id}. The query ϕ is
acyclic if its graph Gϕ is acyclic.

We denote by F-ACQ the class of acyclic (conjunctive) functional queries. Again, one
may authorize the use of negation inside queries. We then denote by F-ACQ6= the class
of acyclic functional queries ϕ whose atoms are of one of the three forms f(x) = g(y),
f(x) 6= g(y), or T (x), for f, g ∈ σ ∪ {Id} and T ∈ σ (recall that the notion of acyclicity
relies upon equalities only).

Example 6 The following query ϕ2 belongs to F-ACQ 6=.

ϕ2(y1, y2) ≡ ∃x1 ∈ T1,∃x2 ∈ T2,∃x3 ∈ T2 :
f(x1) = f(y1) ∧ g(x1) = x2 ∧ g(x1) = f(y2) ∧ g(y2) = x3∧
∧x3 6= f(x1) ∧ g(y1) 6= f(y2).

The associated graph of ϕ2 is given in Figure 3.

Similarly, let F-ACQ+ denote the class of acyclic functional queries ϕ whose atoms
are of the form f(x) = g(y) or f(x)θg(y) or U(x), for f, g ∈ σ ∪ {Id}, U ∈ σ, and
θ ∈ {6=, <,≤, >,≥}, whose associated graph Gϕ defined at Definition 1) is acyclic and
for which the following holds: if f(x)θg(y) is a comparison atom of Q for two distinct
variables x and y then (x, y) ∈ E and, conversely, for each edge (x, y) ∈ E, there is at
most one comparison f(x)θg(y) in Q.

Example 7 Here is an example of F-ACQ+ query.

ϕ3(y1, y2) ≡ ∃x1 ∈ T1,∃x2 ∈ T2,∃x3 ∈ T2 :
f(x1) = f(y1) ∧ g(x1) = x2 ∧ g(x1) = f(y2) ∧ g(y2) = x3∧
∧f(x1) < g(y2) ∧ f(y2) ≥ g(x3).

Its associated graph is given in Figure 3.

In analogy with the notion defined above in the relational setting, a functional query
is said to be strict if it contains at most one free variable. We denote by F-ACQ1, F-ACQ6=

1

and F-ACQ+
1 the restrictions of the three above defined classes of queries to strict

queries.

9

x3

x2y1 y2

f(y2) < f(x3)

f(x1) < g(y2)

x1

Figure 3: Graph of queries ϕ2 (without comparisons) and ϕ3

In this paper, we will make extensive use of a class of queries defined, roughly
speaking, as the complement of acyclic functional queries. Let F-FO be the class of
first-order queries defined by universal formulas in conjunctive normal form over some
(unary) functional signature σ, i.e., formulas of the form:

ϕ(y) ≡ ∀x :
∧

i≤k

Ci(x,y)

where each Ci is a clause, i.e., a disjunction of literals of the form (¬)f(z) = g(t) or
U(z) for f, g ∈ σ ∪ {Id} and U ∈ σ.

The negation of an F-FO formula is clearly a disjunction of conjunctive functional
queries ∃x ¬Ci. An F-FO query ϕ is said to be acyclic if each query ∃x ¬Ci is acyclic.
By definition, the acyclicity of an F-FO query can be read directly on each clause of the
query by looking at inequalities f(z) 6= g(t) of the clause. The class of F-FO acyclic
queries is denoted by F-AFO; its restriction to strict queries is obviously denoted by
F-AFO1.

Remark 1 In the formulas we consider, terms made of composition of functions are not au-
tohrized at first sight. However, our results easily applies to this more general kind of formulas:
for each term τ(x) = f1 . . . fk(x), one may add τ as a new unary function sombol in the signa-
ture and pre-computes τ(x), for eaxh x ∈ D, from f1,. . . , fk in linear time. In this way, one can
obtain an equivalent query problem but without composed terms. Also, obviously, relativiza-
tion and the use of partially defined functions do not play an essential role for what concerns
the complexity results presented here.

2.3 Basic notions of complexity

The model of computation used in this paper is the Random Access Machine (RAM)
with uniform cost measure (see [AHU74, GS02, GO04, FFG02]). Basically, our inputs
are first-order structures and first-order formulas.

Let E be a finite set or relation. We denote by card(E) the cardinality of E. Let [n]
be the set {1, . . . , n}. A set of cardinality n is often identified with the set [n].

The size |I| of an object I is the number of registers used to store I in the RAM. If
E is the set [n], |E| = card(E) = n. If R ⊆ Dk is a k-ary relation over domain D, with

10

|D| = card(D), then |R| = k.card(R): all the tuples (x1, . . . , xk) for which R(x1, . . . , xk)
holds must be stored, each in a k-tuple of registers. Similarly, if f is a k-ary function
from Dk to D, all values f(x1, . . . , xk) must be stored and |f | = |D|k.

If ϕ is a first-order formula, |ϕ| is the number of occurrences of variables, relation
or function symbols and syntactic symbols: ∃,∀,∧,∨,¬,=, ”(”, ”)”, ”, ”. For example, if
ϕ ≡ ∃x∃y R(x, y) ∧ ¬(x = y) then |ϕ| = 17.

All the problems we consider in this paper are parameterized problems: each takes
as input a list of objects I (e.g., a σ-structure S and a formula ϕ) together with a
parameter k (e.g., the size of ϕ) and outputs an object S (e.g. the result of the query
ϕ(S)).

A problem P is computable in time f(k).T (|I|, |S|) for some function f : N→ R+ if
there exists a RAM that computes P in time (i.e., the number of instructions performed)
bounded by f(k).T (|I|, |S|) using space i.e., addresses and register contents also bounded
by f(k).T (|I|, |S|) 1. The notation Ok(T (|I|, |S|)) is used when one does not want to
make precise the value of function f .

Definition 2 Let T be a polynomial function. A property P is fixed-parameter tractable if it is
computable in time f(k).T (|I|, |S|). When T is of the form T (n, p) = (n × p), P is said to be
fixed-parameter linear.

It is easy to see that one obtains the same complexity measure if instead of the
uniform cost the logarithmic cost is adopted, i.e., if the time of each instruction is
the number of bits of the objects it manipulates. E.g., if the ”uniform” time (and
space) complexity is Ok(|I|, |S|) then the corresponding ”logarithmic” time complexity is
Ok(|I|.|S|. log(|I|.|S|)) which is at most (and in fact less than)Ok(|I|. log |I|.|S|. log |S|) =
Ok(|I|bit.|S|bit) where |I|bit = Θ(|I|. log |I|) denotes the number of bits, i.e. the size in
the logarithmic cost view, of the input I.

3 Translating relational queries into functional queries

The transformation of (acyclic) queries to be constructed in this section is very
similar to the translation of the domain relational calculus into the tuple relational
calculus in the classical framework of database theory. Although one needs to examine
carefully all the details, the idea is very simple.

We want to transform each input (σ,Q,db) of a relational query problem into an
input (σ′, ϕQ,Fdb) of a (unary) functional query problem so that, among other things,
Q(db) is some projection of the relation ϕQ(Fdb). Let us describe successively the
transformation of the structure and the corresponding transformation of the query.

3.1 Transformation of the structure

Let db be a relational σ-structure db = 〈D ;R1, . . . , Rq〉 with each Ri of arity mi. For
convenience and simplicity (but w.l.o.g.), assume that there is no isolated element in D,

1This last restriction on addresses and register contents forces the RAM to use its memory in a
”compact” way with space not greater than time.

11

i.e., for each x ∈ D, there exists i ≤ q and some tuple t in Ri to which x belongs. Let
m = maxi≤qmi be the maximal arity among relations Ris. The associated functional
σ′-structure is defined as follows:

Fdb =
〈

D
′;D,T1, . . . , Tq, f1, . . . , fm

〉

where the domain D′ is the disjoint union of q + 1 sets D′ = D ∪ T1 ∪ . . . ∪ Tq where D
is the domain of db and each Ti, 1 ≤ i ≤ q, is a set of elements identified to the tuples
of Ri (card(Ti) = card(Ri)); each of D, T1, . . . , Tq is a unary relation of Fdb; each fj,
1 ≤ j ≤ m, is a unary function.

Functions fj are defined as follows. For each Ri of arity mi ≤ m (1 ≤ i ≤ q) and for
each t ∈ Ti that represents the tuple (e1, . . . , emi

) of Ri, set f1(t) = e1, . . . , fmi
(t) = emi

.
Intuitively, each fj is the jth projection for each tuple, it is obviously defined on sets
Ti that represents relations Ri with mi ≥ j, else it is undefined. Clearly, the functional
structure Fdb encodes the whole database structure db. We first have to prove the
following result.

Proposition 1 The transformation db 7→ Fdb is computable in linear time O(|db|).

Proof. Since the transformation is immediate, we only have to prove that |Fdb| =
O(|db|). It is essential to notice that each fj is defined and described on some sub-
set of

⋃

i≤q Ti so that |fj | = O(
∑

i≤q,j≤mi
|Ti|) = O(

∑

i≤q,j≤mi
card(Ri)) and hence

∑

j≤m |fj| = O(
∑

i≤qmi.card(Ri)) = O(
∑

i≤q |Ri|) = O(|db|). Finally, Fdb = |D′| +
|D|+

∑

i≤q |Ti|+
∑

j≤m |fj | = O(|db|). 2

3.2 Transformation of the query

The transformation is essentially the same for all the variants (ACQ,ACQ6=, etc) of

acyclic queries. We present it here for ACQ
6=
1 . Let Q(y1, . . . , yb) denote an ACQ

6=
1

query, i.e., a strict acyclic query with inequalities of the form:

Q(y1, . . . , yb) ≡ ∃x1 . . . ∃xaΨ(x1, . . . , xa, y1, . . . , yb)

with Ψ(x,y) ≡
∧

1≤i≤k Ai∧ I where the Ai’s are relational atoms and I is a conjunction
of variable inequalities v 6= v′ for v, v′ ∈ {x,y}.

By definition of the strict acyclicity, Q has a join forest F = (V,E) whose set of
vertices is V = {A1, . . . , Ak} so that y ⊆ var(A1). We want to construct a conjunctive
functional σ′-formula ϕQ whose graph GϕQ

is exactly the acyclic graph F . Roughly, the
idea is to replace the k atoms A1, . . . , Ak by k variables t1, . . . , tk that represent the cor-
responding tuples. For a relational atom Au, 1 ≤ u ≤ k, let vari(Au) denote the ith vari-
able of Au: e.g., if Au is the atom S(y2, x3, y2) then var1(Au) = var3(Au) = y2. As de-
fined before, each function fj, j ≤ m, of the functional structure Fdb gives for each tuple

t (of a relation of db) its jth field fj(t). E.g., the above equality var1(Au) = var3(Au) for
Au = S(y2, x3, y2) is expressed by the formula f1(tu) = f3(tu). The following functional
formula essentially mimics the description of formula Q and of its forest F = (V,E):

ϕQ(t) ≡ Ψrel(t) ∧ΨV (t) ∧ΨE(t) ∧ΨI(t).

Each conjunct of ϕQ is described precisely as follows.

12

• Ψrel(t) is
∧

u≤k Tvu(tu) if the atom Au is of the form Rvu(. . .).

• ΨV (t) is
∧

u≤k Ψu where Ψu is nonempty if Au has at least one repeated variable
and contains for each (repeated) variable that occurs at successive indices j1, . . . , jr
of Au the conjunction

∧

i<r fji(tu) = fji+1
(tu).

• ΨE(t) is
∧

(Au,Av)∈E Ψu,v where Ψu,v contains, for each variable w that occurs both
in Au and Av with (Au, Av) ∈ E, one equality of the form fi(tu) = fj(tv) for two
arbitrarily chosen indices i, j such that vari(Au) = w = varj(Av).

• ΨI(t) is constructed as follows. For each inequality w 6= w′ of I, choose (arbitrarily,
again) two atoms Au and Av so that w (resp. w′) occurs in Au (resp. Av) at index
i (resp. j). Replace w 6= w′ by the inequality fi(tu) 6= fj(tv). Let ΨI be the
conjunction of all those inequalities.

Due to formula Ψrel(t), each quantified variable is relativized to some domain Ti.

Example 8 The following query:

Q(y1, y2) ≡ ∃x1∃x2∃x3 : R1(x1, y1, y2) ∧R2(x2, x1, x2) ∧R1(x2, x2, x3) ∧ y1 6= x2,

is translated into the formula ϕQ(t), with t = (t1, t2, t3), that is the conjunction of the follow-
ing formulas:

Ψrel(t) ≡ T1(t1) ∧ T2(t2) ∧ T1(t3)
ΨV (t) ≡ f1(t2) = f3(t2) ∧ f1(t3) = f2(t3)
ΨE(t) ≡ f1(t1) = f2(t2) ∧ f1(t2) = f1(t3)
ΨI(t) ≡ f2(t1) 6= f1(t2)

Finally, it is easy to check that the following equality holds:

Q(db) = {(f2(t1), f3(t1)) : t1 ∈ D
′ and (Fdb, t1) |= ∃t2∃t3ϕQ(t)}.

In other words, Q(db) is the result of the projection t 7→ (f2(t1), f3(t1)) applied to the relation
ϕQ(Fdb). Obviously, formula ∃t2∃t3ϕQ(t) is equivalent to the relativized formula:

∃t1 ∈ T1,∃t2 ∈ T2 : T1(t3) ∧ΨV (t) ∧ΨE(t) ∧ΨI(t).

More generally, the transformation process described before yields the following prop-
erties.

Lemma 2 Let Q(y1, . . . , yb) be a query in ACQ
6=
1 (resp. ACQ 6=, ACQ1, ACQ, ACQ+

1 ,
ACQ+). The following properties hold:

1. ϕQ ∈ F-ACQ
6=
1 (resp. F-ACQ6=, F-ACQ1, F-ACQ, F-ACQ+

1 , F-ACQ+).

13

2. For each relational σ-structure db, the result Q(db) (of query Q over db) is obtained by
some ”projection” of the relation ϕQ(Fdb). More precisely, there are two lists of indices
i1, . . . , ib and j1, . . . , jb such that 2

Q(db) = {(fi1(tj1), . . . , fib(tjb)) :
there exist t1, . . . , tk ∈ D

′ such that (Fdb, t) |= ϕQ(t)}.

where yh = varih(Ajh) for h = 1, . . . , b.

3. |ϕQ| = O(|Q|).

Proof. For simplicity of notation, let us still assume that Q belongs to ACQ
6=
1 .

1. By construction, the graph GϕQ
is (up to isomorphism) the join forest F (associ-

ated to Q); this corresponds to the conjunct ΨE . See also Remark 2

2. By definition of the join forest F , the set of atoms where any fixed variable of Q
occurs is connected in F . This implies that the conjunct ΨV ∧ΨE exactly expresses
which variables the relational atoms A1, . . . , Ak of Q share. Moreover, ΨI correctly
expresses the conjunction I of inequalities of Q. This proves that for each relational
σ-structure db = 〈D ;R1, . . . , Rq〉 where Fdb = 〈D ′;D,T1, . . . , Tq, f1, . . . , fm〉 and

for all y ∈ Db, it holds:

(db,y) |= Q(y) iff
there exists t1, . . . , tk ∈ D

′ such that
(Fdb, t) |= ϕQ(t) and fih(t1) = yh for each h = 1, . . . , b.

3. Let NbOcc denote the number of occurrences of variables in Q. It is easy to see
that:

|ΨV |+ |ΨE | = O(NbOcc).

Clearly, we also have |ΨI | = O(|I|) and |Ψrel| = O(k). That implies |ϕQ| = O(|Q|).

2

Remark 2 Having a join forest F for Q is not necessary to construct the acyclic formula
ΨE in ϕQ. There is an alternative way to obtain an equivalent ΨE using the GYO rules
([Gra79, YO79]). Let HQ be the hypergraph associated to query Q. For each application of
rule 2 (”remove vertices that appear in at most one hyperedge”) nothing as to be done. However,
each time rule 1 (”remove hyperedges contained in other hyperedge”) is applied to some atom
Au and Av, one proceed as for the original construction of ΨE : for each variable w that occurs
in Au and Av, one equality of the form fi(tu) = fj(tv) for two arbitrarily chosen indices i, j
such that vari(Au) = w = varj(Av) is constructed.

Applying these rules tillH is empty will result in a new acyclic formula ΨE .

2In case Q(y) is a strict query with y ⊆ var(A1) then j1 = . . . = jb = 1.

14

4 Samples of unary functions

In this section, some simple combinatorial notions about unary functions are defined.
They may be seen as some kind of set/table covering problem. They will be essential
for proving the main results of this paper.

Definition 3 Let E,F be two finite sets and g = (g1, . . . , gk) be a tuple of unary functions
from E to F . Let P ⊆ [k] and (ci)i∈P be a family of elements of F . (P, (ci)i∈P) is said to be a
sample of g (indexed by P) over E if

E =
⋃

i∈P

g−1
i (ci).

where g−1
i (ci) is the set of preimages of ci by function gi. A sample is said to be minimal if,

moreover, for all j ∈ P :

E 6=
⋃

i∈P\{j}

g−1
i (ci).

Finally, if (P, (ci)i∈P) is a sample (resp. minimal sample) of g over E, the family of sets
(g−1
i (ci))i∈P is called a covering (resp. minimal covering) of E by g.

Samples will often simply be denoted (c1, . . . , ck) with ci = ′−′ when i 6∈ P .

Example 9 Let g = (g1, g2, g3) be the following tuple of unary functions over some do-
main/table T with tuples a, b, c, d, e.

g1 g2 g3
a 1 2 4
b 1 5 1
c 3 2 4
d 3 5 3
e 5 2 4

It is easily seen that the tuples (1, 2, 3), (1, 5, 4), (3, 2, 1) and (−, 5, 4) are the samples of g
over T . Among them, (1, 2, 3), (3, 2, 1) and (−, 5, 4) are minimal.

Remark 3 Let P ⊆ [k] and (ci)i∈P be a sample of g over E. Then, there exists P ′ ⊆ P
such that (ci)i∈P ′ is a minimal sample of g over E. Informally, it is obtained by repeating the
following steps as long as possible:

- pick a j from P such that E =
⋃

i∈P\{j} g
−1
i (ci)

- set P ← P \ {j}.

Note that the only minimal sample of g over the empty set is (−,−, . . . ,−)

15

In the rest of this section, problems about minimal samples are defined and their
complexities are studied. Those problems will play a key role in the paper.

MIN-SAMPLES
Input: two finite sets E and F and a k-tuple of unary functions g =

(g1, . . . , gk) from E to F .
Parameter: integer k.

Output: the set of minimal samples of g over E.

Lemma 3 Let E, F , g be an input of MIN-SAMPLES.

1. There are at most k! minimal samples of g over E.

2. Problem MIN-SAMPLES can be solved in time Ok(|E|).

Proof. Let us identify E with the set {1, . . . , n}. We describe the construction of a
tree T of depth n with at most k! leaves and hence at most k!|E| = Ok(n) nodes. The
leaves represent all the minimal samples of g over E. Level i of the tree corresponds to
element i of E. Each node x of level i is labelled by a subset P x ⊆ [k] and by a sample
(cxj)j∈Px of g over {1, . . . , i} . The root r of the tree is labelled by P r = ∅.

Let i = 1. There are at most k possibilities to cover element 1 with gh(1) = ch
(h = 1, . . . , k). Then, the root of T has k children xh each labelled by (P xh = {h}, ch).

At each level i (i = 2, . . . , n), the same strategy is used. Let x be a node of level i−1
labelled by (P x, (cxj)j∈Px). The set of children y of x labelled by (P y, (cyj)j∈P y) will
correspond to all the possibilities to extend the covering of {1, . . . , i−1} by (P x, (cxj)j∈Px)
in a minimal way in order to cover node i (if i is not already covered).

Testing whether i is already covered, i.e., if i ∈
⋃

j∈Px g
−1
j (cxj) can be done in constant

time Ok(1): it suffices to test the disjunction
∨

j∈Px gj(i) = cxj . Two cases may occur:

• Either i ∈
⋃

j∈Px g
−1
j (cxj). In this case, node x has a unique child node y of level i

with P y = P x and ∀j ∈ P x, cyj = cxj .

• Or i 6∈
⋃

j∈Px g
−1
j (cxj). Two subcases may hold.

– Either P x = [k]. Then, it is not possible to cover element i, the construction
fails and stops here for that branch.

– Or P x [k]. Then, for each h ∈ [k]\P x, one constructs a child node y for x
such that: P y = P x ∪ {h}, cyj = cxj for j ∈ P x and cyh = gh(i). Node y and its
label can be constructed in constant time.

That process ends after Ok(|E|) steps with a tree of size Ok(|E|) whose leaves rep-
resent the (up to) k! minimal samples of g over E: (c1, . . . , ck) with ci = ′−′ when
i 6∈ P . 3. 2

3To be completely rigorous, we should mention that some of the (up to) k! samples that our algorithm
constructs may be not minimal. The essential property is that, by construction, each minimal sample
(of g over E) is included in (at least) one of the constructed samples. The algorithm above should
be completed by a variant of the algorithm of Remark 3 that extracts from a sample all the minimal
samples that it contains. Note that the whole additional time required is Ok(1) and that some minimal
samples may be repeated.

16

We will also need a more elaborate problem about samples. Let l be an integer and
v be a function from E to El. The image set of v is denoted by v(E). It is clear that
the collection of sets v−1(a) for a = (a1, . . . , al) ∈ v(E) ⊆ El forms a partition of E.
Let us define the following problem.

MIN-SAMPLES-PARTITION
Input: two finite sets E and F , two integers k and l, a k-tuple of unary

functions g = (g1, . . . , gk) from E to F and a function v from
E to El.

Parameter: integers k and l.
Output: for each a ∈ v(E) ⊆ El, the set M(a) of minimal samples of g

over v−1(a).

Lemma 4 Problem MIN-SAMPLES-PARTITION can be solved in time Ok,l(|E|).

Proof. The algorithm is the following.

1. Compute the set S = {(v(x), x) : x ∈ E} in time Ol(|E|).

2. Sort S by values of v(x): this computes the partition (v−1(a))
a∈v(E) of E in time

Ol(|E|).

3. For each a ∈ v(E), compute the set M(a) of minimal samples of g over v−1(a)
in time Ok(|v

−1(a)|) (by Lemma 3). The total time required for this last step is
Ok(

∑

a∈v(E) |v
−1(a)|) = Ok(|E|).

2

Remark 4 The ”sampling” problems and their algorithms that are involved in Lemmas 3 and 4
can be seen as generalizations of the well-known k-VERTEX COVER problem in graphs and
its algorithm of parameterized linear complexity Ok(|G|) (see [DF99]).

Let G = 〈V ;E〉 be a graph and FG = 〈D ; f1, f2〉 be its functional representation : D =
V ∪E and for each e ∈ E, f1(e) and f2(e) describe the endpoints of e. ThenC = {c1, . . . , ck} ⊆
V is a k-VERTEX COVER of G if:

∀x ∈ E, f1(x) = c1 ∨ . . . ∨ f1(x) = ck ∨ f2(x) = c1 ∨ . . . ∨ f2(x) = ck.

In other words, (c1, . . . , ck, c1, . . . , ck) is a (f1, . . . , f1, f2, . . . , f2)-sampling of V .

5 The complexity of functional acyclic queries

Roughly, the main technic of this paper shows among other things that it is possible
to eliminate quantified variables in an acyclic conjunctive query (by transforming both
the query and the structure)without overhead in the query evaluation process, i.e., so
that evaluating the query so simplified is just as hard as evaluating the original query.

17

For the sake of clarity, the main result will first be stated in the context of F-AFO

queries. Let us explain the method on a very simple example. Let ϕ be the following
Boolean F-AFO query (without negation and only two variables):

ϕ ≡ ∀x∀y : f1(x) = g1(y) ∨ . . . ∨ fk(x) = gk(y)

A first naive approach for evaluating ϕ against a given unary functional structure
F = 〈D ; f ,g〉 consists in testing the truth value of the matrix for any possible value of
(x, y): that requires a time Ok(|D|

2). Alternatively, ϕ can be interpreted as follows: for
each value of x, the family of sets g−1

i (fi(x)), for i ∈ {1, . . . , k}, is a covering of D. In
other words, for each x, there exists a sample (P, (ci)i∈P) of g over D (with initially
P = [k]) that ”agrees” with values of f(x), i.e., such that:

∧

i∈P

fi(x) = ci holds. (1)

Such a sample can be chosen among minimal ones (recall Remark 3). Then, evaluating
ϕ against F can be done as follows. First, the set of the (up to) k! minimal samples of
g over D is computed. Then, for each x, it is looked for one of these minimal samples
that satisfy Property 1. Because of Lemma 3, the whole process requires Ok(|D|) steps.

With some more work, this basic idea can be extended to the general case of (non
necessarily Boolean) acyclic queries where both equalities and inequalities are allowed.
This is achieved through the main result that follows.

Theorem 5 The F-AFO1 query problem can be solved in time f(|ϕ|).|D| where D is the
domain of the input structure F , ϕ is the input formula and f is a fixed function from N to R+.

Proof. Let a unary functional structure F of domain D and a formula ϕ(x) ≡ ∀yφ(x,y)
with y = (y1, . . . , yd) be the inputs of an F-AFO1 query problem. Since clauses may be
reduced independently, it can be supposed that ϕ(x) contains only one clause φ. The
proof is done by induction on the number of variables of ϕ.

Let Gϕ denote the acyclic graph associated to ϕ whose set of vertices is var(ϕ).
Recall that Gϕ only takes into account the inequalities of the clause φ. Without loss of
generality, assume that Gϕ is connected, i.e., is a tree T and choose x as the root of T .
Order the nodes of T , i.e., the variables of ϕ, by increasing levels from the root to the
leaves, as y0 = x, y1, . . . , yd. Note that the restriction of T to the subset of variables
{y0, y1, . . . , yi} for i ≤ d is a subtree Ti where yi is a leaf. The variables of ϕ except
y0 = x will be eliminated one by one according to this ordering. Let yi0, i0 ≤ d− 1, be
the parent of leaf yd in T . W.l.o.g., assume that ϕ is of the form 4:

ϕ(y0) ≡ ∀y1 . . . ∀yd :
∨

j≤l

vj(yd) 6= uj(yi0) ∨ ψ(y) ∨
∨

j≤k

gj(yd) = fj(ypj
)

where y is now the d-tuple of variables (y0, y1, . . . , yd−1) , the uj, vj, for 1 ≤ j ≤ l,
and fj, gj , for 1 ≤ j ≤ k are unary function symbols, ψ(y) is an acyclic clause over

4In case ϕ contains one-variable atoms of the form (¬)u(yd) = v(yd) or (¬)U(yd), we can easily
replace them by two-variable positive atoms by expanding the signature and the structure by new unary
functions computable in linear time

18

y of associated graph Gψ = Td−1, and for each j ≤ k, 0 ≤ pj ≤ d − 1. Replacing our
disjunction of negated atoms by an implication, one obtains:

ϕ(y0) ≡ ∀y1 . . . ∀yd−1∀yd : v(yd) = u(yi0)→ (ψ(y) ∨
∨

j≤k

gj(yd) = fj(ypj
))

where v(yd) = u(yi0) stands for
∧

j≤l vj(yd) = uj(yi0). Formula ϕ can be equivalently
written as:

ϕ(y0) ≡ ∀y1 . . . ∀yd−1 : ψ(y) ∨ [∀yd ∈ v−1(u(yi0))
∨

j≤k

gj(yd) = fj(ypj
)].

The second disjunct states that (fj(ypj
))j≤k is a sample of g over v−1(u(yi0)) and

hence contains such a minimal sample.
The family M = {(b,M(u(b))) : b ∈ D} of the sets of minimal samples M(u(b)) =

{(ch1 (b), . . . , chk(b)) : 1 ≤ h ≤ k!} of g over v−1(u(b)) is computed by Algorithm A below
(since the number of minimal samples is only bounded by k!, there may be repetitions
of identical samples).

Algorithm A:

1. Compute the family A = {(a,M(a)) : a ∈ v(D)} whereM(a) is the set of minimal
samples of g over v−1(a): this amounts to solve the problem MIN-SAMPLES-
PARTITION in time Ok,l(|D|) by Lemma 4 for E = F = D and v = v.

2. Sort A in lexicographic order according to a.

3. Compute and lexicographically sort the set B = {(u(b), b) : b ∈ D} in time
Ol(|D|).

4. Merge the sorted lists A and B (in time Ok,l(|D|)) to compute the set

C = {(u(b),M(u(b)), b) : b ∈ D}

5. Return the family of sets (of minimal samples) M = {(b,M(u(b))) : b ∈ D}

Hence, the time complexity of Algorithm A is Ok,l(|D|). In the set M , we are
interested, of course, by the elements b for which M(u(b)) is not empty. Let:

K = {b : M(u(b)) 6= ∅}.

We now eliminate variable yd by expanding the signature of the query and the
structure (a classical method in quantifier elimination). New unary relations K, Shj and

functions chj (for h ≤ k! and j ≤ k) are introduced.

Functions chj are those that appear in the description of the minimal samples. Pred-

icates Shj are defined from P h as follows: for all j, h and y ∈ D,

Shj (y)↔ y ∈ K and chj 6=
′ −′ .

19

Let F ′ be the expansion of structure F defined as F ′ = (F , (Shj , c
h
j)h≤k!,j≤k). Let

now ϕ′ be the following formula having d variables y0, . . . , yd−1 (recall i0 < d):

ϕ′(y0) ≡ ∀y1 . . . ∀yd−1 : ψ(y) ∨ [K(yi0) ∧
∨

h≤k!

∧

j≤k

(Shj (yi0)→ fj(ypj
) = chj (yi0))]

The last part of formula ϕ′ simply asserts that if j belongs to the index set of the h-th
minimal sample of g over v−1(u(yi0)) then, fj(ypj

) must be equal to the j-th value
of the h-th minimal sample. That means that (fj(ypj

))j≤k contains a minimal sample
of g over v−1(u(yi0)). It is then clear that, for each possible value a of x = y0, it
holds (F , a) |= ϕ(x) ↔ (F ′, a) |= ϕ′(x), that means ϕ(F) = ϕ′(F ′). Notice that the
last part of formula ϕ′ does not really introduce negative atoms: it can be rephrased
as

∨

h≤k!

∧

j≤k(S
h
j (yi0) = 0 ∨ fj(ypj

) = chj (yi0)) where Shj is now regarded as a unary
function from D to {0, 1}. From the previous paragraphs, the two following facts also
clearly hold.

Fact 1 The expansion F ′ of structure F can be computed in time Ok,l(|D|).

Fact 2 Formula ϕ′(x) can be easily transformed into a conjunction of acyclic clauses each hav-
ing d variables and associated tree Td−1.

By iterating this process d times, i.e., eliminating successively variables yd, yd−1, . . . , y1,
one obtains in time Oϕ(|D|) an expansion F ′ of F and a quantifier-free formula ϕ′(x)
with only one variable x = y0. It is clear that the final query ϕ′(F ′) = {a ∈ D : (F ′, a) |=
ϕ′(x)} = ϕ(F) can be computed in linear time O(|ϕ′|.|D|). 2

Remark 5 (On the constant value f(|ϕ|)) In the worst case, the value of f(|ϕ|) may be
huge: each elimination step may introduce a number of new atoms bounded by k! (and requires
to put the new formula in conjunctive normal form for the next step).

A very interesting particular case concerns F-AFO1-queries without positive atoms (closely
related to the ACQ1 problem). In that case, formula ϕ(x) is of the following form, for some
i0 ≤ d:

ϕ(x) ≡ ∀y1 . . . ∀yd−1∀yd :
∨

j≤l vj(yd) 6= uj(yi0) ∨ ψ(y)

≡ ∀y1 . . . ∀yd−1 : ψ(y) ∨ ¬∃yd(v(yd) = u(yi0))

with y = (y0, . . . , yd−1). It is easy to see that one can compute, in time O(l.|D|), the set D0 of
elements y ∈ D such that u(y) ∈ v(D) (i.e., such that there exists yd with v(yd) = u(y)). By
enlarging the signature, the formula ϕ can be transformed into an equivalent formula without
variable yd (also denoted by ϕ for convenience):

ϕ(x) ≡ ∀y1 . . . ∀yd−1 : ψ(y) ∨ ¬D0(yi0)

Note that, although a new atom D0(yi0) has been introduced, the sum of the number of quan-
tifiers plus the number of literals of ϕ has been decreased by l. Summing up the costs of all the
steps, it yields that F-AFO1-queries without positive atoms can be evaluated in timeO(|ϕ|.|D|).

20

We are now able to state the consequences of our results, first in the context of
acyclic conjunctive functional queries.

Theorem 6 The query problem F-ACQ
6=
1 (resp. F-ACQ1) can be solved in time f(|ϕ|).|D|

(resp. O(|ϕ|.|D|)).

Proof. Let F and ϕ(x) be inputs of the F-ACQ6=
1 (resp. F-ACQ1) problem. By defi-

nition, ¬ϕ(x) defines the F-AFO1 query (resp. F-AFO1 query without positive atoms)
whose output is D \ ϕ(F). By Theorem 5, Remark 5 and the fact that ϕ(F) can be
computed from D \ ϕ(F) is time O(|D|), we are done. 2

For what concerns F-ACQ+
1 queries, the following result can be proved.

Theorem 7 The query problem F-ACQ+
1 can be solved in time O(|ϕ|.|D|)

Proof. The proof, that is a generalization of the proof for F-ACQ1, is similar and, in

several aspects, is simpler than that of the similar result for F-ACQ
6=
1 . Let us mention

essentially the differences. W.l.o.g., let ϕ ∈ F-ACQ+
1 be a formula of the form

ϕ(x) ≡ ∃y1 . . . ∃yd−1∃yd : Ψ(y0, y1, . . . , yd−1) ∧ u(yi0) = v(yd) ∧ f(yi0)θg(yd) ∧ γ(yd)

where y0 is x, θ ∈ {6=, <,≤, >,≥}, 0 ≤ i0 ≤ d− 1, γ(yd) is a quantifier-free formula on
the unique variable yd, and u(yi0) = v(yd) stands for

∧

j≤l uj(yi0) = vj(yd). Formula ϕ
can be equivalently written as:

ϕ(x) ≡ ∃y1 . . . ∃yd−1 : Ψ(y) ∧ δ(yi0)

where y = (y0, y1, . . . , yd−1) and δ is the following two-variable formula:

δ(y) ≡ ∃z : γ(z) ∧ u(y) = v(z) ∧ f(y)θg(z)

The key point is the following:

Lemma 8 The set D0 = δ(F) = {a ∈ D : (F , a) |= δ(y)} is computable in time O(|δ|.|D|)

Proof. The set B = γ(F) = {b ∈ D : (F , b) |= γ(z)} is obviously computable in time
O(|γ|.|D|). Assume that the comparison symbol θ is < (the other cases are variants of
this case). Now, compute and lexicographically sort the following lists of (l + 3)-tuples
(in time O(l.|D|)):

Y = {(u(y), f(y), 1, y) : y ∈ D}, and

Z = {(v(z), g(z), 0, z) : z ∈ B}.

Then, merge the sorted lists Y , Z into the sorted list L. It is easy to see that the
following fact holds:

Fact 3 δ(F) is the set of elements y ∈ D such that there exists z ∈ B such that u(y) = v(z)
and (u(y), f(y), 1, y) occurs before (v(z), g(z), 0, z) in L.

21

Using this fact, the following algorithm computes δ(F) (knowing set B) in time
O(l.|D|).

• Partition the sorted list L into nonempty (sorted) sublists L(a), for a ∈ u(D) ∪
v(B), according to the first l-tuple u(y) = a or v(z) = a of each tuple.

• In each sorted list L(a), compute the last tuple, denoted by MaxB(a), of the form
(v(z) = a, g(z), 0, z), z ∈ B, with g(z) maximal if such element exists. Otherwise,
set MaxB(a) = −∞.

• In each L(a), compute the list L<(a) of the tuples of the form (u(y) = a, f(y), 1, y)
that occur before MaxB(a) in L(a). By convention, L<(a) is empty in case
MaxB(a) = −∞.

• Return the set of elements y that appear in the lists L<(a). By Fact 3, this is
clearly the required set δ(F).

Globally, δ(F) is computed in time O((|γ| + l).|D|) = O(|δ|.|D|). This proves the
lemma. 2

End of proof of Theorem 7: Let F ′ be the expansion of structure F defined as F ′ = (F ,D0)
where D0 is the unary predicate defined as D0 = δ(F). Let ϕ′ denote the following
formula, of signature expanded with D0:

ϕ′(x) ≡ ∃y1 . . . ∃yd−1 : Ψ(x, y1, . . . , yd−1) ∧D(yi0)

where yi0 ∈ {x, y1, . . . , yd−1}. By construction, we have:

Fact 4 ϕ(F) = ϕ′(F ′).

In order to simply compare the lengths of ϕ and ϕ′, let us introduce a simplified
notion of formula length: let |ϕ|s denote the number of quantifiers of ϕ plus its number
of occurrences of atoms. Clearly, it holds: |ϕ| = Θ(|ϕ|s). By construction, we get the
following fact:

Fact 5 |ϕ′|s = |ϕ|s − |δ|s + 1.

Lemma 8 immediately yields the following:

Fact 6 The expansion F 7→ F ′, i.e., the computation of the added unary relation D0 = δ(F)
is computed in time 0(|δ|s.|D|).

Iterating the transformation (F , ϕ) 7→ (F ′, ϕ′) d times allows to eliminate suc-
cessively the quantifed variables yd, yd−1, . . . , y1; this can be performed in total time
O((|ϕ|s + d).|D|) by Facts 5 and 6, and hence in time O(|ϕ|.|D|) as required. This
completes the proof of the theorem. 2

22

Remark 6 Allowing more than one comparison along the edges of the tree decomposition leads
to a class of queries that seems intrinsically non-linear. Let’s consider the very simple following
formula with two comparisons:

∃x∃y : f1(x) ≤ g1(y) ∧ f2(x) ≤ g2(y).

Finding two satisfying witnesses x and y, amounts to find lexicographically ordered pairs
(f1(x), f2(x)) and (g1(y), g2(y)) which seems not doable in linear time (even if ”tables” (f1, f2)
and (g1, g2) are already sorted).

The following theorem states the complexity of our (functional) acyclic queries in
the general case.

Theorem 9 The F-ACQ6= (resp. F-ACQ, F-ACQ+) query problem can be solved in time
f(|ϕ|).|D|.|ϕ(F)| (resp. O(|ϕ|.|D|.|ϕ(F)|)) for some function f .

Proof. We prove that, for any function f : N 7→ R+, if problem F-ACQ+
1 (resp.

F-ACQ6=
1) can be solved in time f(|ϕ|).|D| then problem F-ACQ+ (resp. F-ACQ6=) can

be solved in time f(|ϕ|).|D|.|ϕ(F)| for the same function f . Combined with Theorem 6
and 7, this yields the desired result.

Let F be a functional structure and ϕ(x1, . . . , xk) be a formula for the query problem
F-ACQ+ or F-ACQ6=. For i = 1, . . . , k, let:

Ei = {(x1, . . . , xi) ∈ D
i : (F , x1, . . . , xi) |= ∃xi+1 . . . ∃xkϕ}

Obviously, ϕ(F) = Ek. Sets E1, . . . , Ek are computed inductively by the following
algorithm that only evaluates strict acyclic queries as subroutines.

E1 ← {x1 ∈ D : (F , x1) |= ∃x2 . . . ∃xkϕ}
For i from 2 to k do

Ei ← ∅
For all (x1, . . . , xi−1) ∈ Ei−1 do

S ← {xi ∈ D : (F , x1, . . . , xi) |= ∃xi+1 . . . ∃xkϕ} (*)
Ei ← Ei ∪ {(x1, . . . , xi−1, xi) : xi ∈ S}

End

End

ϕ(F)← Ek

The main step of the algorithm, that is step (*), requires time f(|ϕ|).|D|. It is repeated,
a number of times bounded by:

card(E1) + card(E2) + . . .+ card(Ek) ≤ k.card(Ek) = |Ek| = |ϕ(F)|

This yields total time f(|ϕ|).|D|.|ϕ(F)|. 2

Finally, let us give another consequence of our results in the functional setting.
Any two-variable quantifier-free (CNF) functional formula ψ(x, y) is acyclic because

23

any undirected graph with at most two vertices is acyclic. Let F-FOvar2 denote the set
of functional first-order formulas (not necessarily in prenex form) with only two variables
x, y which may be quantified several times. Denote by F-FOvar2

1 its restriction to strict
queries.

Corollary 10 The F-FOvar2
1 query problem is computable in time Oϕ(|F|).

Proof. The proof is done by induction on the structure (i.e., subformulas) of the input
formula ϕ by using Theorem 5. 2

6 Application to the complexity of relational acyclic queries

In the context of ”classical”, i.e., relational conjunctive queries, Theorem 9 immediately
yields the following improvement of the time bound g(|Q|).|db|.|Q(db)|. log2 |db| (for
some function g) proved by [PY99] for the complexity of acyclic queries with inequalities.

Corollary 11 The ACQ 6= (resp. ACQ
6=
1) query problem can be solved in time f(|Q|).|db|.|Q(db)|

(resp. f(|Q|).|db|) where Q is the input query and db is the input database.

Proof. This comes from Theorem 9 and from the fact that the class ACQ6= can be
linearly interpreted by the class F-ACQ6= (see section 3). 2

Another consequence of Theorems 6 and 9 is an alternative proof of the following
well-known result of [Yan81] (see also [FFG02]) that we slightly generalize since now
also restricted comparisons are allowed.

Corollary 12 The ACQ and ACQ+ (resp. ACQ1 and ACQ+
1) query problems can be solved

in time O(|Q|.|db|.|Q(db)|) (resp. O(|Q|.|db|)).

In a two-atom query each database predicate appears at most two times. These
kind of queries have been studied in [KV00, Sar91] mainly in the context of query-
containment. A consequence of Corollary 10, is the following.

Corollary 13 Any two-atom conjunctive query with inequalities can be evaluated in time
Oϕ(|db|) i.e. in time Oϕ(|T1|+ |T2|) where T1 and T2 are the two input tables.

7 Enumeration of query results

For all kind of queries considered in this paper, the complexity of the evaluation
process can be done in time f(|Q|).|db|.|Q(db)|. In other words, coming back to data
complexity, this is equivalent to say that there exists a polynomial total time algorithm
(in the size of the input and the output) that generates the output tuples. It is natural
to ask whether one can say more on the efficiency of this enumeration process. This
could be justified, for example, in situation where only parts of the results are really
needed quickly or when having solutions one by one but regularly is required (e.g., in

24

order to be tested by an other procedure that runs in parallel). Some remarks on this
subject are sketched in this section.

One of the most widely accepted notion of tractability in the context of generation
of solutions is the following. A problem P is said to be solvable within a Polynomial
(resp. linear) Delay if there exists an algorithm that outputs a first solution in polynomial
(resp. linear) time (in the size of the input only) and generates all solutions of P with
a polynomial (resp. linear) delay between two consecutives ones (see [JYP88] for an
introduction to complexity measures for enumeration problems). Of course, a Polynomial
Delay algorithm is polynomial total time (but, unless surprise, the converse is not true).

Not too surprisingly, our complexity results can be adapted to obtain polynomial,
even linear, delay algorithms for acyclic queries as shown by the following corollary.

Corollary 14 Generating all results of a F-ACQ 6= (resp. F-ACQ, F-ACQ+, ACQ 6=, ACQ,
ACQ+) query can be done with a linear delay (and with linear space also).

Proof. We proceed in a similar way as for Theorem 9. Results for relational query
classes are obtained by reduction. Let F be a functional structure and ϕ(x1, . . . , xk) be
a functional query in F-ACQ6=, F-ACQ or F-ACQ+.

The simple (recursive) algorithm below outputs all satisfying tuples of ϕ(x1, . . . , xk).

Algorithm 1 Eval(i, ϕ(xi, . . . , xk),F , sol)

if i = k + 1 then

Output sol
end if

Ei ← {xi ∈ D : (F , xi) |= ∃xi+1 . . . ∃xkϕ}
for a ∈ Ei do

sol← (sol, a)
ϕ← ϕ(xi/a, xi+1, . . . , xk)
Eval(i + 1, ϕ,F , sol)

end for

Due to results of the preceding sections, computing Ei can be done, in all cases, in
time f(|ϕ|.|D|). Then, running Eval(1, ϕ(x1, . . . , xk),F , ∅) generates all solutions sol in
a depth-first manner with a linear delay detween each of them. It can be easily rewritten
in a sequential way to use linear space. 2

8 Fixed-parameter linearity of some natural problems

In this part of the paper, the different kind of formulas introduced so far are used to
define classical algorithm properties as query problems. This method provides a simple
and uniform method to cope with the complexity of these problems. In all cases, the
complexity bound found with this method reaches or improve the best bound known so
far (at least in terms of data complexity). However, some of these problems have been
the object of intensive researches and recent optimize ad-hoc algorithms (against which
a general and uniform method can not compete) have better constant values.

25

8.1 Acyclic Subgraph problems

Given two graphs G = 〈V ;E〉 and H = 〈VH ;EH〉, H is said to be a subgraph (resp.
induced subgraph) of G if there is a one-to-one function g from VH to V such that, for all
u, v ∈ VH , E(g(u), g(v)) if (resp. if and only if) E(u, v). Also, a graph G is of maximum
degree d if none of its vertex belongs to more than d edges. This gives rise to the two
following problems.

ACYCLIC SUBGRAPH ISOMORPHISM (A.S.I.)
Input: an acyclic graph H and a graph G

Parameter: |H|.
Question: is H a subgraph of G ?

ACYCLIC INDUCED SUBGRAPH ISOMORPHISM (A.I.S.I.)
Input: an acyclic graph H and a graph G of maximum degree d

Parameter: |H|, d.
Question: is H an induced subgraph of G ?

The treewidth of a graph G is the maximal size of a node in a tree decomposition
of G. In [PV90] it is proved that for graphs H of treewidth at most w, testing is H
is a subgraph (resp. induced subgraph) of G can be done in time f(|H|).|G|w+1 (resp.
f(|H|, d).|G|w+1). For the particular case of acyclic graphs (which have tree width 1),
the bounds given in [PV90] can be improved. The following corollary is easily obtained
from our results.

Corollary 15 The two following results hold:

• Problem A.S.I. can be solved in time f(|H|).|G|.

• Problem A.I.S.I. can be solved in time f(|H|, d).|G|.

For the two problems, generating all satisfying subgraphs can be done with a linear delay.

Proof. We will express problem A.S.I. as a boolean ACQ6= query. Let G = 〈V ;E〉,
H = 〈VH = {h1 , . . . , hk};EH〉 be the two input graphs. Let Q be the following formula:

Q ≡ ∃x1 . . . ∃xk :
∧

i,j≤k

xi 6= xj ∧
∧

EH(hi,hj)

E(xi, xj)

Since H is acyclic, formula Q defines an ACQ6= query whose size is linear in the size
of the graph H. It is easily seen that Q is true in G if and only if it admits H as a
subgraph. The complexity bound follows from Corollary 11.

For problem A.I.S.I., let again G and H = 〈VH = {x1 , . . . , xk};EH〉 be the two inputs
of the problem. Since G is of maximum degree d, we partition its vertex set V into d
sets V 1, . . . , V d where each V α contains vertex of degree α. This can be done in linear
time from G. We proceed the same for graph H and obtain the sets V 1

H , . . . , V
d
H . In case

there exists a vertex in H of degree greater than d, it can be concluded immediately
that the problem has no solution. Now, let Q be the following formula:

26

Q ≡ ∃x1 . . . ∃xk :
∧

i,j≤k

xi 6= xj ∧
∧

V α
H

(hi)

V α
H (xi) ∧

∧

EH(hi,hj)

E(xi, xj).

Formula Q simply check that H is a subgraph of G and that each distinguished
vertex xi has the same degree than its associated vertex hi of H. The size of Q is linear
in the size of H and d. Again, Q defines a boolean ACQ6= query and the result follows
again from Corollary 11. The bound on the linear delay comes from Corollary 14. 2

8.2 Covering and matching problems

MULTIDIMENSIONAL MATCHING
Input: a set M ⊆ X1 × . . .×Xr where the Xi are pairwise disjoints

Parameter: r, k.
Question: is there a subset M ′ ⊆ M with |M ′| = k, such that no two

elements of M ′ agree in any coordinate ?

Corollary 16 Problem MULTIDIMENSIONAL MATCHING can be solved in time Or,k(|M |).

Proof. Let FM = 〈M ; f1, . . . , fr〉 where for all x = (x1, . . . , xr) ∈M , it is set fi(x) = xi.
Then, there exists a multidimensional matching M ′ of M if and only if:

FM |= ∃x1 . . . ∃xk :
∧

i≤r

∧

1≤j<h≤k

fi(xj) 6= fi(xh)

2

Corollary 17 below improves the bound of Or,k(|M |(log |M |)
6) (reported in [DF99])

obtained by perfect hashing methods. A recent result however of [FKN+04] based
on the color coding method of [AYZ95] gives a bound of O(|M | + 2O(k)) for the r-
MULTIDIMENSIONAL MATCHING problem.

The following problems are also known to be fixed-parameter tractable [DF99].

UNIQUE HITTING SET

Input: a set X and k subsets X1, . . . ,Xk of X.
Parameter: k.
Question: is there a set S ⊆ X such that for all i, 1 ≤ i ≤ k, |S ∩Xi| = 1 ?

ANTICHAIN OF r-SUBSETS
Input: a collection F of r subsets of a set X, a positive integer k.

Parameter: r, k.
Question: are there k subsets S1, . . . , Sk ∈ F such that ∀i, j ∈ {1, . . . , k}

with i 6= j, both Si − Sj and Sj − Si are nonempty ?

DISJOINT r-SUBSETS

Input: a collection F of r subsets of a set X, a positive integer k.
Parameter: r, k.
Question: are there k disjoint subsets of F ?

27

Corollary 17 Problems UNIQUE HITTING SET, ANTICHAIN OF r-SUBSETS and DISJOINT

r-SUBSETS can be solved in time Or,k(|M |). In all cases, the respective sets of solutions can be
generated with a linear delay.

Proof. The following acyclic formula holds for the UNIQUE HITTING SET problem:

ϕ ≡ ∃x1 . . . ∃xk :
∧

i≤k

Xi(xi)
∧

1≤i<j≤k

(xi 6= xj ⇒ ¬Xj(xi)).

The formulas are similar for the two other problems. 2

9 Conclusion: summary of results and open problems

The following array summarizes the main results of this paper. For all our classes of
(”classical”, i.e., relational, or functional) queries we make use here of the notation ϕ
for the query formula, S for the database, i.e., the input structure db or F , and ϕ(S)
for the result of the query, i.e., the output.

Query Problems Complexity

ACQ1,ACQ+
1 ,F-ACQ1,F-ACQ+

1 |ϕ|.|S|

ACQ6=
1 ,F-ACQ6=

1 ,F-FOvar2
1 f(|ϕ|).|S|

ACQ,ACQ+,F-ACQ,F-ACQ+ |ϕ|.|S|.|ϕ(S)|

ACQ6=,F-ACQ 6= f(|ϕ|).|S|.|ϕ(S)|

Note that among those complexity results the only ones to be known before this paper
(to our knowledge) where those concerning ACQ and ACQ1.

We are convinced that (variants of) our technics of construction of minimal samples
can be efficiently implemented to compute such queries. The reason is that we think
that the total number of minimal samples should be very low in most databases.

Finally, four lines of research are worthwhile to develop:

• Generalize our complexity results to tractable or f.p. tractable tree-like queries
e.g., queries of bounded tree-width (see [CR00, FFG02]) or of bounded hypertree-
width ([GLS02]). Our reduction technic from relational to functional queries,
which preserves acyclicity, may permit also to control the value of the tree-width
when passing from one context to the other.

• Apply our results to constraint satisfaction problems by using the now well-known
correspondence between conjunctive query problems and constraint problems (see
among others [KV00]).

• Enlarge the classes of tractable or f.p. tractable problems as much as possible,
i.e., determine the frontier of tractability/intractability, and obtain for the (f.p.)
tractable problems the best sequential or parallel algorithms; e.g., it is reasonable
to conjecture that the ACQ+ evaluation problem is highly parallelizable as it
is known for ACQ (see for example [GLS01] which proves that this problem is
LOGCFL-complete).

• Apply our methods to queries over tree-structured data (recall that a rooted tree
can be seen as a graph of a unary function).

28

References

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundation of databases. Addison-Wesley,
1995.

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM,
42(4):844–856, 1995.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive
queries in relational databases. In ACM New York, editor, Proceedings of the
9th Annual ACM Symposium on Theory of Computing, pages 77–90, 1977.

[CR00] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited.
Theoretical Computer Science, 239(2):211–229, 2000.

[DF99] R. G. Downey and M. R. Fellows. Parametrized complexity. Springer-Verlag,
1999.

[DGO04] A. Durand, E. Grandjean, and F. Olive. New results on arity vs. number of
variables. Research report 20-2004, LIF, Marseille, France, April 2004.

[EF99] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 2nd
edition, 1999.

[Fag83] R. Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. Journal of the ACM, 30(3):514–550, 1983.

[FFG02] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree decompositions.
Journal of the ACM, 49(6):716–752, 2002.

[FKN+04] M. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U. Stege,
D. Thilikos, and S. Whitesides. Faster fixed-parameter tractable algorithms
for matching and packing problems. In European Symposium on Algorithms
2004, pages 311–322, 2004.

[GLS01] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. Journal of the ACM, 48(3):431–498, 2001.

[GLS02] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and
tractable queries. Journal of Computer and System Sciences, 64(3):579–627,
2002.

[GO04] E. Grandjean and F. Olive. Graphs properties checkable in linear time in the
number of vertices. Journal of Computer and System Sciences, 68(3):546–597,
2004.

[Gra79] R. Graham. On the universal relation. Technical report, Univ. Toronto, 1979.

29

[GS02] E. Grandjean and T. Schwentick. Machine-independent characterizations and
complete problems for deterministic linear time. SIAM Journal on Computing,
32(1):196–230, 2002.

[JYP88] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating
all maximal independent sets. Information Processing Letters, 27(3):119–123,
1988.

[KV00] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and con-
straint satisfaction. Journal of Computer and System Science, 61(2):302–332,
2000.

[Lib04] L. Libkin. Elements of finite model theory. EATCS Series. Springer, 2004.

[PV90] J. Plehn and B. Voigt. Finding minimally weighted subgraphs. In Springer,
editor, 16th workshop on graph theoretic concepts in computer science, volume
484 of Lecture Notes in Computer Science, pages 18–29, 1990.

[PY99] C. Papadimitriou and M. Yannakakis. On the complexity of database queries.
Journal of Computer and System Sciences, 58(3):407–427, 1999.

[Sar91] Y. Saraiya. Subtree elimination algorithms in deductive databases. PhD thesis,
Stanford University, 1991.

[Ull89] J.D. Ullman. Principles of Database and Knowledge-Base Systems, Volume II.
Computer Science Press, 1989.

[Yan81] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of
the 7th International Conference on Very Large Databases, pages 82–94, 1981.

[YO79] C. T. Yu and M. Z Özsoyoglu. An algorithm for tree-query membership of a
distributed query. In IEEE Computer Society Press, editor, IEEE COMPSAC,
pages 306–312, 1979.

30

