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Abstract

We extend our combinatorial approach of decomposing the partition function

of the Potts model on finite two-dimensional lattices of size L × N to the case of

toroidal boundary conditions. The elementary quantities in this decomposition are

characters Kl,D labelled by a number of bridges l = 0, 1, . . . , L and an irreducible

representation D of the symmetric group Sl. We develop an operational method of

determining the amplitudes of the eigenvalues as well as some of their degeneracies.



1 Introduction

The Q-state Potts model on a graph G = (V, E) with vertices V and edges E can be

defined geometrically through the cluster expansion of the partition function [1]

Z =
∑

E′⊆E

Qn(E′)(eJ − 1)b(E′) , (1)

where n(E ′) and b(E ′) = |E ′| are respectively the number of connected components

(clusters) and the cardinality (number of links) of the edge subsets E ′. We are interested

in the case where G is a finite regular two-dimensional lattice of width L and length N ,

so that Z can be constructed by a transfer matrix TL propagating in the N -direction.

In a companion paper [2], we studied the case of cyclic boundary conditions (pe-

riodic in the N -direction and non-periodic in the L-direction). We decomposed Z

into linear combinations of certain restricted partition functions (characters) Kl (with

l = 0, 1, . . . , L) in which l bridges (that is, marked non-contractible clusters) wound

around the periodic lattice direction. We shall often refer to l as the level. Unlike Z

itself, the Kl could be written as (restricted) traces of the transfer matrix, and hence

be directly related to its eigenvalues. It was thus straightforward to deduce from this

decomposition the amplitudes in Z of the eigenvalues of TL.

The goal of this second part of our work is to repeat this procedure in the case of

toroidal boundary conditions. This case has been a lot less studied than the cyclic case

(a noticeable exception is [3]). Indeed, when the boundary conditions are toroidal, the

transfer matrix (of the related six-vertex model, to be precise) does no longer commute

with the generators of the quantum group Uq(sl(2)). Therefore, there is no simple alge-

braic way of obtaining the amplitudes of eigenvalues, although some progress has been

made by considering representations of the periodic Temperley-Lieb algebra (see for in-

stance [4]). But the representations of this algebra are not all known, and therefore we

choose to pursue here another approach than the algebraic one.

We use instead the combinatorial approach we developed in [2], as it is for now the

only approach which can be easily extended to the toroidal case. There are however

several complications due to the boundary conditions, the first of which is that the

bridges can now be permuted (by exploiting the periodic L-direction). In the following
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this leads us to consider decomposition of Z into more elementary quantities than Kl,

namely characters Kl,C labeled by l and a class C of permuations of the symmetric

group Sl. However, Kl,C is not simply linked to the eigenvalues of T , and thus we will

further consider its expansion over related quantities Kl,D, where D labels an irreducible

representation (irrep) of Sl. It is Kl,D which are the elementary quantities in the case of

toroidal boundary conditions.

The second complication comes from the fact that, due to the planarity of the lattice,

not all the permutations between bridges can be realised. It follows that the Kl,D are

not all independent, and so there are eigenvalue degeneracies inside and between levels.

Finally, there can be additional degeneracies because of the particular symmetry of the

lattice, and even accidental degeneracies1. We have therefore not been able to go as

far as in the cyclic case, where the amplitude of any eigenvalue in Kl was given by a

simple expression, depending only on l. We do however establish an operational method

of determining, for any fixed (but in practice small) L, the amplitudes and degeneracies

of eigenvalues in the case of a generic lattice2.

The structure of the article is as follows. In section 2, we define appropriate generali-

sations of the quantities we used in the cyclic case [2]. Then, in section 3, we decompose

restricted partition functions—and as a byproduct the total partition function—into

characters Kl and Kl,C. Finally, in section 4, we expose a method of determining the

amplitudes of eigenvalues.

2 Preliminaries

2.1 Definition of the Zj,n1,P

As in the cyclic case, the existence of a periodic boundary condition allows for non-trivial

clusters (henceforth abbreviated NTC), i.e., clusters which are not homotopic to a point.

1An example occurs for the square lattice of width L = 4, where an eigenvalue at level 1 coincides

with an eigenvalue at level 2 [3], without any apparent reason.
2By a generic lattice we understand one without mirror symmetry with respect to the transfer axis,

i.e., without any accidental degeneracies. An example of a generic lattice is the triangular lattice, drawn

as a square lattice with diagonals added.
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Figure 1: Cluster configuration with j = 2 non-trivial clusters (NTC), here represented

in red and blue colours. Each NTC is characterised by its number of branches, n1 = 2,

and by the permutation it realises, P = (12). Within a given configuration, all NTC

have the same topology.

However, the fact that the torus has two periodic directions means that the topology

of the NTC is more complicated that in the cyclic case. Indeed, each NTC belongs to

a given homotopy class, which can be characterised by two coprime numbers (n1, n2),

where n1 (resp. n2) denotes the number of times the cluster percolates horizontally (resp.

vertically) [5]. The fact that all clusters (non-trivial or not) are still constrained by

planarity to be non-intersecting induces a convenient simplification: all NTC in a given

configuration belong to the same homotopy class. For comparison, we recall that in the

cyclic case the only possible homotopy class for a NTC was (n1, n2) = (1, 0).

It is a well-known fact [6, 7] that the difficulty in decomposing the Potts model

partition function—or relating it to partition functions of locally equivalent models (of

the six-vertex or RSOS type)—is due solely to the weighing of the NTC. Although a

typical cluster configuration will of course contain trivial clusters (i.e., clusters that are

homotopic to a point) with seemingly complicated topologies (e.g., trivial clusters can

surround other trivial clusters, or be surrounded by trivial clusters or by NTC), we shall

therefore tacitly disregard such clusters in most of the arguments that follow. Note also

that the so-called degenerate clusters of Ref. [7] in the present context correspond to

n1 = 1.

Consider therefore first the case of a configuration having a single NTC. For the pur-

pose of studying its topology, we can imagine that is has been shrunk to a line that winds

the two periodic directions (n1, n2) times. In our approach we focus on the the proper-
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ties of the NTC along the direction of propagation of the transfer matrix TL, henceforth

taken as the horizontal direction. If we imagine cutting the lattice along a vertical line,

the NTC will be cut into n1 horizontally percolating parts, which we shall call the n1

branches of the NTC. Seen horizontally, a given NTC realises a permutation P between

the vertical coordinates of its n1 branches, as shown in Fig. 1. Up to a trivial relabelling

of the vertical coordinate, the permutation P is independent of the horizontal coordinate

of the (imaginary) vertical cut, and so, forms part of the topological description of the

NTC. We thus describe totally the topology along the horizontal direction of a NTC by

n1 and the permutation P ∈ Sn1 .

Note that there are restrictions on the admissible permutations P . Firstly, P cannot

have any proper invariant subspace, or else the corresponding NTC would in fact corre-

spond to several distinct NTC, each having a smaller value of n1. For example, the case

n1 = 4 and P = (13)(24) is not admissible, as P corresponds in fact to two distinct NTC

with n1 = 2. In general, therefore, the admissible permutations P for a given n1 are sim-

ply cyclic permutations of n1 coordinates. Secondly, planarity implies that the different

branches of a NTC cannot intersect, and so not all cyclic permutations are admissible P .

For example, the case n1 = 4 and P = (1324) is not admissible. In general the admissible

cyclic permutations are characterised by having a constant coordinate difference between

two consecutive branches, i.e., they are of the form (k, 2k, 3k, . . .) for some constant k,

with all coordinates considered modulo n1. For example, for n1 = 4, the only admissible

permutations are then finally (1234) and (1432).

Consider now the case of a configuration with several NTC. Recalling that all NTC

belong to the same homotopy class, they must all be characterised by the same n1 and

P . Alternatively one can say that the branches of the different NTC are entangled.

Henceforth we denote by j the number of NTC with n1 ≥ 1 in a given configuration.

Note in particular that, seen along the horizontal direction, configurations with no NTC

and configurations with one or more NTC percolating only vertically are topologically

equivalent. This is an important limitation of our approach.

Let us denote by Zj,n1,P the partition function of the Potts model on an L × N

torus, restricted to configurations with exactly j NTC characterised by the index n1 ≥ 1

and the permutation P ∈ Sn1; if P is not admissible, or if n1j > L, we set Zj,n1,P =
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0. Further, let Zj,n1 be the partition function restricted to configurations with j NTC

of index n1, let Zj be the partition function restricted to configurations with j NTC

percolating horizontally, and let Z be the total partition function. Obviously, we have

Zj,n1 =
∑

P∈Sn1
Zj,n1,P , and Zj =

∑L
n1=1 Zj,n1, and Z =

∑L
j=0 Zj. In particular, Z0

corresponds to the partition function restricted to configurations with no NTC, or with

NTC percolating only vertically.

In the case of a generic lattice all the Zj,n1,P are non-zero, provided that P is an

admissible cyclic permutation of length n1, and that n1j ≤ L. The triangular lattice is

a simple example of a generic lattice. Note however that other regular lattices may be

unable to realise certain admissible P . For example, in the case of a square lattice or a

honeycomb lattice, all Zj,n1,P with n1j = L and n1 > 1 are zero, since there is not enough

“space” on the lattice to permit all NTC branches to percolate horizontally while realising

a non-trivial permutation. Such non-generic lattices introduce additional difficulties in

the analysis which have to be considered on a case-to-case basis. In the following, except

when explicitly stated, we consider therefore the case of a generic lattice.

2.2 Structure of the transfer matrix

The construction and structure of the transfer matrix T can be taken over from the cyclic

case [2]. In particular, we recall that T acts towards the right on states of connectivities

between two time slices (left and right) and has a block-trigonal structure with respect

to the number of bridges (connectivity components linking left and right) and a block-

diagonal structure with respect to the residual connectivity among the non-bridged points

on the left time slice. As before, we denote by Tl the diagonal block with a fixed number

of bridges l and a trivial residual connectivity. Each eigenvalue of T is also an eigenvalue

of one or more Tl. In analogy with [3] we shall sometimes call Tl the transfer matrix at

level l. It acts on connectivity states which can be represented graphically as a partition

of the L points in the right time slice with a special marking (represented as a black

point) of precisely l distinct components of the partition (i.e., the components that are

linked to the left time slice via a bridge).

A crucial difference with the cyclic case is that for a given partition of the right time
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slice, there are more possibilities for attributing the black points. Namely, a connectivity

component which is not apparently accessible from the left (and thus markable) may in

fact be so due to the periodic boundary conditions identifying the top and the bottom

rows. This will obviously increase the dimension of the level l subspace of connectivities

(for 0 < l < L). Considering for the moment the black points to be indistinguishable,

we denote the corresponding dimension as ntor(L, l). It can be shown [3] that

ntor(L, l) =



























1
L+1

(

2L

L

)

for l = 0
(

2L−1
L−1

)

for l = 1
(

2L

L−l

)

for 2 ≤ l ≤ L

(2)

and clearly ntor(L, l) = 0 for l > L.

Suppose now that a connectivity state at level l is time evolved by a cluster con-

figuration of index n1 and corresponding to a permutation P . This can be represented

graphically by adjoining the initial connectivity state to the left rim of the cluster con-

figuration, as represented in Fig. 1, and reading off the final connectivity state as seen

from the right rim of the cluster configuration. Evidently, the positions of the black

points in the final state will be permuted with respect to their positions in the intial

state, according to the permutation P . As we have seen, not all P are admissible, but

it turns out to be advantageous to consider formally also the action of non-admissible

permutations. This is permissible since in any case Tl will have only zero matrix elements

between states which are related by a non-admissible permutation. Since ntor(L, l) was

just defined as the number of possible connectivity states without taking into account

the possible permutations between black points, the dimension of Tl is l! ntor(L, l).

Let us denote by |vl,i〉 (where 1 ≤ i ≤ ntor(L, l)) the ntor(L, l) standard connectivity

states at level l. The full space of connectivities at level l, i.e., with l distinguishable

black points, can then be obtained by subjecting the |vl,i〉 to permutations of the black

points. It is obvious that Tl commutes with the permutations between black points (the

physical reason being that Tl cannot “see” to which positions on the left time slice each

bridge is attached). Therefore Tl itself has a block structure in a appropriate basis.

Indeed, Tl can be decomposed into Tl,D where Tl,D is the restriction of Tl to the states

transforming according to the irreducible representation (irrep) of Sl corresponding to the

Young diagram D. One can obtain the corresponding basis by applying the projectors
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pD on all the connectivity states at level l, where pD is given by

pD =
dim(D)

l!

∑

P

χD(P ) P . (3)

Here dim(D) is the dimension of the irrep D and χD(P ) the character of P in this irrep.

We have used the fact that all characters of Sl are real. The application of all possible

permutations on any given standard vector |vl,i〉 generates a regular representation of Sl,

which contains therefore dim(D) representations D (each of dimension dim(D)). As there

are ntor(L, l) standard vectors, the dimension of Tl,D is thus [dim(D)]2 ntor(L, l). Further-

more, using Schur’s lemma, we deduce that each of its eigenvalues is (at least) dim(D)

times degenerate. Therefore Tl,D has (at most) dim(D) ntor(L, l) different eigenvalues,

which we shall denote λl,D,k.
3

2.3 Definition of the Kl,D

We now define, as in the cyclic case [2], Kl as the trace of (Tl)
N . Since Tl commutes

with Sl, we can write

Kl = l!
ntor(L,l)
∑

i=1

〈vl,i| (Tl)
N |vl,i〉 . (4)

In distinction with the cyclic case, we cannot decompose the partition function Z over

Kl because of the possible permutations of black points (see below). We shall therefore

resort to more elementary quantities, the Kl,D, which we define as the trace of (Tl,D)N .

Since both Tl and the projectors pD commute with Sl, we have

Kl,D = l!
ntor(L,l)
∑

i=1

〈vl,i|pD (Tl)
N |vl,i〉 . (5)

Obviously one has

Kl =
∑

D

Kl,D , (6)

the sum being over all the irreps D of Sl. Recall that in the cyclic case the amplitudes of

the eigenvalues at level l are all identical. This is no longer the case, since the amplitudes

depend on D as well. Indeed

Kl,D =
dim(D)ntor(L,l)

∑

k=1

dim(D) (λl,D,k)
N . (7)

3It turns out that there are more degeneracies than warranted by this argument. The reason is that

the cluster configurations cannot realise all the permutations of Sl (recall our preceeding discussion),

and thus some λl,D,k with different l and/or D are in fact equal. We shall come back to this point later.
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In order to decompose Z over Kl,D we first introduce the auxiliary quantities

Kl,Cl
=

∑

Pl∈Cl

Kl,Pl
, (8)

the sum being over permutations Pl ∈ Sl belonging to the class Cl. We then have

Kl,Pl
=

ntor(L,l)
∑

i=1

〈vl,i| (Pl)
−1 (Tl)

N |vl,i〉 . (9)

So Kl,Pl
(resp. Kl,Cl

) can be thought of as modified traces in which the final state differs

from the initial state by the application of the permutation Pl (resp. the class Cl). Note

that Kl,Id is simply equal to Kl

l!
. Since the character is the same for all permutations

belonging to the same class, Eqs. (5) and (3) yield a relation between Kl,D and Kl,Pl
:

Kl,D = dim(D)
∑

Cl

χD(Cl)Kl,Cl
. (10)

These relations can be inverted so as to obtain Kl,Cl
in terms of Kl,D, since the number

of classes equals the number of irreps D:

Kl,Cl
=
∑

D

c(D, Cl)

l!
Kl,D (11)

With the chosen normalisation, the coefficients c(D, Cl) are integer. Multiplying Eq. (10)

by χD(C ′
l) and summing over D, and using the orthogonality relation

∑

D χD(Cl)χD(C ′
l) =

l!
|Cl|

δCl,C
′
l
one easily deduces that

c(D, Cl) =
|Cl| χD(Cl)

dim(D)
. (12)

We also note that
∑

D

[dim(D)]2 c(D, Cl) = l! δCl,Id (13)

3 Decomposition of the partition function

3.1 The characters Kl

By generalising the working for the cyclic case, we can now obtain a decomposition of

the Kl in terms of the Zj,n1. To that end, we first determine the number of states |vl,i〉

which are compatible with a given configuration of Zj,n1, i.e., the number of initial states
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Figure 2: Standard connectivity states at level l = 1 which are compatible with a given

cluster configuration contributing to Z2,1.

|vl,i〉 which are thus that the action by the given configuration produces an identical final

state. The notion of compatability is illustrated in Fig. 2.

We consider first the case n1 = 1 and suppose that the k’th NTC connects onto the

points {yk}. The rules for constructing the compatible |vl,i〉 are identical to those of the

cyclic case:

1. The points y /∈ ∪j
k=1{yk} must be connected in the same way in |vl,i〉 as in the

cluster configuration.

2. The points {yk} within the same bridge must be connected in |vl,i〉.

3. One can independently choose to associate or not a black point to each of the sets

{yk}. One is free to connect or not two distinct sets {yk} and {yk′}.

The choices mentioned in rule 3 leave ntor(j, l) possibilities for constructing a compatible

|vl,i〉. The coefficient of Zj,1 in the decomposition of Kl is therefore l! ntor(j,l)
Qj , since the

permutation of black points in a standard vector |vl,i〉 allows for the construction of l!

distinct states, and since the weight of the j NTC in Kl is 1 instead of Qj . It follows

that

Kl =
L
∑

j=l

l! ntor(j, l)
Zj,1

Qj
for n1 = 1. (14)
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Figure 3: Standard connectivity states at level l = 1 which are compatible with a given

cluster configuration contributing to Z2,2.

We next consider the case n1 > 1. Let us denote by {yk,m} the points that connect

onto the m’th branch of the k’th NTC (with 1 ≤ m ≤ n1 and 1 ≤ k ≤ j), and by

{yk} = ∪n1
m=1{yk,m} all the points that connect onto the k’th NTC. As shown in Fig. 3,

the |vl,i〉 which are compatible with this configuration are such that

1. The connectivities of the points y /∈ ∪j
k=1{yk} are identical to those appearing in

the cluster configuration.

2. All points {yk,m} corresponding to the branch of a NTC must be connected.

3. For each of the k NTC there are two possibilities. A) Either one connects all {yk,m}

(with 1 ≤ m ≤ n1) corresponding to all n1 branches of the NTC, obtaining what

we shall henceforth call a big block. B) Or alternatively one connects none of the

n1 branches.

4. Because of the constraint of planarity and the fact that the NTC are entangled, all

the different big blocks are automatically connected among themselves. One can

therefore attribute at most one black point to the collection of big blocks.

To obtain rule 3 we have used the fact that the permutations P characterising the NTC do

not have any proper invariant subspace. Note that rule 4 implies that the decomposition
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of Kl with l ≥ 2 does not contain any of the Zj,n1 with n1 > 1. We therefore have simply

Kl =
L
∑

j=l

l! ntor(j, l)
Zj,1

Qj
for l ≥ 2 . (15)

It remains to obtain the decomposition of K1 and K0. The number of standard

connectivities |vl,i〉 compatible with r big blocks is 0 for l ≥ 2 (because of rule 4);
(

j

r

)

for

l = 1 and r ≥ 1 (by rule 3 we independently choose to link up r of the j NTC, and by

rule 4 the resulting big block must carry the black point); 0 for l = 1 and r = 0 (since

one needs a big block to attribute the black point); and
(

j

r

)

for l = 0. Summing over r,

we finally obtain the number of compatible |vl,i〉: 0 for l ≥ 2;
∑j

r=1

(

j

r

)

= 2j −1 for l = 1;

and
∑j

r=0

(

j

r

)

= 2j for l = 0. The decomposition of K1 reads therefore

K1 =
L
∑

j=1

ntor(j, 1)
Zj,1

Qj
+

⌊L
2 ⌋
∑

j=1

(2j − 1)
Zj,n1>1

Qj
(16)

and that of K0 is

K0 =
L
∑

j=0

ntor(j, 1)
Zj,1

Qj
+

⌊L
2 ⌋
∑

j=1

2j Zj,n1>1

Qj
. (17)

Note that the coefficients in front of Zj,n1 do not depend on the precise value of n1 when

n1 > 1. To simplify the notation we have defined Z0,1 = Z0.

3.2 The coefficients b(l)

Since the coefficients in front of Zj,1 and Zj,n1>1 in Eqs. (16)–(17) are different, we cannot

invert the system of relations (15)–(17) so as to obtain Zj ≡ Zj,1 + Zj,n1>1 in terms of

the Kl. It is thus precisely because of NTC with several branches contributing to Zj,n1>1

that the problem is more complicated than in the cyclic case.

In order to appreciate this effect, and compare with the precise results that we shall

find later, let us for a moment assume that Eq. (15) were valid also for l = 0, 1. We

would then obtain

Zj,1 =
L
∑

l=j

b
(l)
j

Kl

l!
(18)

where

b(l) ≡
l
∑

j=0

b
(l)
j =











∑l
j=0(−1)l−j 2l

l+j

(

l+j

l−j

)

Qj + (−1)l(Q − 1) for l ≥ 2
∑l

j=0(−1)l−j
(

l+j

l−j

)

Qj for l ≤ 2
(19)
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The coefficients b(l) play a role analogous to those denoted c(l) in the cyclic case [2];

note also that b(l) = c(l) for l ≤ 2. Chang and Schrock have developed a diagrammatic

technique for obtaining the b(l) [3].

Supposing still the unconditional validity of Eq. (15), one would obtain for the full

partition function

Z =
L
∑

l=0

b(l) Kl

l!
. (20)

This relation will be modified due to the terms Zj,n1>1 realising permutations of the

black points, which we have here disregarded. To get things right we shall introduce

Young diagram dependent coefficients b(l,D) and write Z =
∑L

l=0

∑

D b(l,D)Kl,D. Neglecting

Zj,n1>1 terms would lead, according to Eq. (20), to b(l,D) = b(l)

l!
independently of D. We

shall see that the Zj,n1>1 will lift this degeneracy of amplitudes in a particular way, since

there exists certain relations between the b(l,D) and the b(l).

3.3 Decomposition of the Kl,Cl

The relations (15)–(17) were not invertible due to an insufficient number of elementary

quantities Kl. Let us now show how to produce a development in terms of Kl,Cl
, i.e.,

taking into account the possible permutations of black points. This development turns

out to be invertible.

A standard connectivity state with l black points is said to be Cl-compatible with a

given cluster configuration if the action of that cluster configuration on the connectivity

state produces a final state that differs from the initial one just by a permutation Cl of

the black points. This generalises the notion of compatibility used in Sec. 3.1 to take

into account the permutations of black points.

Let us first count the number of standard connectivities |vl,i〉 which are Cl-compatible

with a cluster configuration contributing to Zj,n1,P . For n1 = 1, Sn1 contains only the

identity element Id, and so the results of Sec. 3.1 apply: the Zj,1 contribute only to Kl,Id.

We consider next a configuration contributing to Zj,n1,P with n1 > 1. The |vl,i〉 which

are Cl-compatible with this configuration satisfy the same four rules as given in Sec. 3.1

for the case n1 > 1, with the slight modification of rule 4 that the black points must be

attributed to the big blocks in such a way that the final state differs from the initial one
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by a permutation Cl.

This modification makes the attribution of black points considerably more involved

than was the case in Sec. 3.1. First note that not all Cl are allowed. To be precise,

the cycle decomposition of the allowed permutations can only contain id (the identity

acting on a single black point) or P (recall that P is the permutation of coordinates

realised by the branches of a single NTC). Indeed, if one attributes a black point to a big

block its position remains unchanged by action of the cluster configuration, whereas if

one attributes n1 black points to the n1 branches of one same NTC these points will be

permuted by P . Furthermore, since the big blocks are automatically connected among

themselves, one can at most attribute to them a single black point, and so id is contained

in the cycle decomposition 0 or 1 times. Note also that the entanglement of the NTC

will imply the entanglement of the structure of the allowed permutations, but this fact

is of no importance here since we are only interested in Cl, i.e., the classes of allowed

permutations.

Denoting by nP the number of times the permutations of class Cl contains P , the

two types of allowed Cl are: 1) those associated with permutations that only contain P ,

i.e., such that l = nP n1, and 2) those associated with permutations that contain id once,

i.e., such that l = nP n1 + 1. In the following we denote these two types as (nP , n1) and

(nP , n1)
′, respectively, and the corresponding Kl,Cl

will be denoted K(nP ,n1) and K(nP ,n1)′

respectively.

Let us consider the first case, which is depicted in Fig. 4. If the |vl,i〉 have r big blocks,

there are
(

j

r

)

ways of choosing them among the j NTC, and
(

j−r

nP

)

ways to attribute the

black points. Indeed one needs to distribute l = nP n1 black points among nP groups of

n1 non-connected blocks corresponding to the same NTC, out of a total of j − r. Since

the |vl,i〉 can contain at most j − nP big blocks, the number of Cl-compatible standard

connectivities is

j−nP
∑

r=0

(

j

r

)(

j − r

nP

)

=
j−nP
∑

r=0

(

j

nP

)(

j − nP

r

)

=

(

j

nP

)

2j−nP . (21)

From this we infer the decomposition of K(nP ,n1):

K(nP ,n1) =

⌊

L
n1

⌋

∑

j=nP

(

j

nP

)

2j−nP
Zj,n1

Qj
. (22)
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Figure 4: Standard connectivity states at level l = 2 which are (12)-compatible with a

given cluster configuration contributing to Z2,2. The action of the cluster configuration

on the connectivity states permutes the positions of the two black points.

Consider next the second case. The |vl,i〉 can still contain at most j−nP big blocks, but

they are now required to contain at least one, as one black point needs to be attributed.

Therefore, the sums in Eq. (21) start from r = 1, leading to the following result for the

decomposition of K(nP ,n1)′ :

K(nP ,n1)′ =

⌊

L
n1

⌋

∑

j=nP +1

(

j

nP

)

(2j−nP − 1)
Zj,n1

Qj
. (23)

It remains to study the special case of nP = 0, i.e., the case of Cl = Id. This is in fact

trivial. Indeed, in that case, the value of n1 in Zj,n1 is no longer fixed, and one must sum

over all possible values of n1, taking into account that the case of n1 = 1 is particular

(absense of big blocks). Since Kl,Id = Kl

l!
, one obtains simply Eqs. (15)–(17) of Sec. 3.1

up to a global factor.

3.4 Decomposition of Zj over the Kl,Cl

To obtain the decomposition of Zj in terms of the Kl,Cl
, one would need to invert

Eqs. (22)–(23) obtained above. But we now encounter the opposite problem of that

announced in the beginning of Sec. 3.3: there are too many Kl,Cl
. Indeed, the elemen-
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tary quantities Kl,Cl
are not independent, since a given cluster configuration can realise

different permutations depending on the way in which the black points are attributed.

We must therefore select an independent set of Kl,Cl
, and we make the choice of selecting

the K(nP ,n1), i.e., the Cl of the first type. Inverting Eq. (22) for varying nP and fixed

n1 > 1 one obtains:

Zj,n1 = Qj

⌊

L
n1

⌋

∑

nP =j

(

nP

j

)

(−2)nP−jK(nP ,n1) for n1 > 1 . (24)

Since the coefficients in this sum do not depend on n1 (provided that n1 > 1), we can

sum this relation over n1 and write it as

Zj,n1>1 = Qj

⌊L
2 ⌋
∑

nP =j

(

nP

j

)

(−2)nP−jK(nP ,n1>1) (25)

where we recall the notations Zj,n1>1 =
∑L

n1=2 Zj,n1 and K(nP ,n1>1) =
∑L

n1=2 K(nP ,n1),

corresponding to permutations composed of nP cycles of the same length > 1.

Consider next the case n1 = 1. For j ≥ 2 one has simply

Zj,1 =
L
∑

l=j

b
(l)
j

l!
Kl , (26)

recalling Eq. (18) and the fact that for l ≥ 2 the Zj,n1>1 do not appear in the decompo-

sition of Kl. However, according to Eqs. (16)–(17), the Zj,n1>1 do appear for l = 0 and

l = 1, and one obtains

Z1,1 =



QK1 − Q
L
∑

j=1

(2j − 1)
Zj,n1>1

Qj



+
L
∑

l=2

b
(l)
j

l!
Kl . (27)

Inserting the decomposition (25) of Zj,n1>1 into Eq. (27) one obtains the decomposition

of Z1,1 over Kl and K(nP ,n1):

Z1,1 =
L
∑

l=1

b
(l)
j

l!
Kl +

L
∑

nP =1

Q(−1)nP K(nP ,n1>1) . (28)

We proceed in the same fashion for the decomposition of Z0 ≡ Z0,1, finding

Z0 =
L
∑

l=0

b
(l)
j

l!
Kl −

L
∑

j=1

Zj,n1>1

Qj
. (29)

Upon insertion of the decomposition (25) of Zj,n1>1, one arrives at

Z0 =
L
∑

l=0

b
(l)
j

l!
Kl +

L
∑

nP =1

[

(−1)nP +1 + (−2)nP

]

K(nP ,n1>1) . (30)
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Since Zj = Zj,1 + Zj,n1>1, we conclude from Eqs. (26)–(25) that, for any j,

Zj =
L
∑

l=j

b
(l)
j

l!
Kl +

L
∑

nP =j

b
(nP ,n1>1)
j K(nP ,n1>1) , (31)

with the coefficients

b
(nP ,n1>1)
j =



























Qj
(

nP

j

)

(−2)nP−j for j ≥ 2

Q [nP (−2)nP−1 + (−1)nP ] for j = 1

(−1)nP +1 + (−2)nP for j = 0

(32)

The decomposition of Z ≡
∑

0≤j≤L Zj is therefore

Z =
L
∑

l=0

b(l)

l!
Kl +

L
∑

nP =1

b(nP ,n1>1)K(nP ,n1>1) (33)

with

b(l) =
∑

0≤j≤l

b
(l)
j ,

b(nP ,n1>1) =
∑

0≤j≤nP

b
(nP ,n1>1)
j . (34)

Note that b
(l)
j (resp. b

(nP ,n1>1)
j ) is just the term multiplying Qj in b(l) (resp. b(nP ,n1>1)).

Computing the sum over j, we obtain the simple result

b(nP ,n1>1) = (Q − 2)nP + (−1)nP (Q − 1) . (35)

4 Amplitudes of the eigenvalues

4.1 Decomposition of Z over the Kl,D

The culmination of the preceeding section was the decomposition (31) of Zj in terms of

Kl,Cl
. However, it is the Kl,D which are directly related to the eigenvalues of the transfer

matrix T. For that reason, we now use the relation (11) between Kl,Cl
and Kl,D to obtain

the decomposition of Zj in terms of Kl,D. The result is:

Zj =
∑

l,D

b
(l,D)
j Kl,D (36)
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where the coefficients b
(l,D)
j are given by

b
(l,D)
j =

bl
j

l!
+

∑

(n1>1)|l

b

(

l
n1

,n1>1

)

j

l!
c

(

D,

(

l

n1
, n1

))

. (37)

Indeed, Kl =
∑

D Kl,D, and since K(nP ,n1) corresponds to the level l = nP n1, we have

K(nP ,n1) =
∑

D∈SnP n1

c(D,(nP ,n1))
l!

KnP n1,D. (Recall that (nP , n1) is the class of permutations

composed of nP cycles of the same length n1.) As explained in Sec. 3.2, the b
(l,D)
j are

not simply equal to
bl
j

l!
because of the n1 > 1 terms. Using Eq. (13) we find that they

nevertheless obey the following relation

∑

D∈Sl

[dim(D)]2 b
(l,D)
j = b

(l)
j . (38)

But from Eq. (37) the b
(l,D)
j with l < 2j are trivial, i.e., equal to

bl
j

l!
independently of

D. This could have been shown directly by considering the decomposition (15) of Kl.

Finally, since b
(1,n1>1)
1 = 0 from Eq. (32), only b

(l,D)
0 is non-trivial for l = 2 or l = 3.

The decomposition of Z over Kl,D is obviously given by

Z =
∑

l,D

b(l,D)Kl,D (39)

where

b(l,D) =
l
∑

j=1

b
(l,D)
j . (40)

The b(l,D) then satisfy
∑

D∈Sl

[dim(D)]2 b(l,D) = b(l) . (41)

4.2 Relations among the Kl,D

Just like the Kl,Cl
, the Kl,D are not independent, and for the same reasons. Indeed, the

number of Kl,D which are independent among themselves, and independent of Kl′,D′ at

higher levels l′ > l, equals the number of independent Kl,Cl
. This number in turn equals

the number of integers dividing l, since the independent Kl,Cl
are Kl,Id and the K(nP ,n1)

with l = nP n1.

Therefore one can write relations between the Kl,D, by selecting an independent

number of Kl,D and expressing the others in terms of those selected. This produces
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relations of the form

Kl,Dl
=
∑

Dl′

e(Dl, Dl′)Kl′,Dl′
(42)

where the Kl,Dl
are now those not selected, and the sum of Kl′,Dl′

is over the Dl′ selected

with l′ ≥ l. The expressions of the coefficients e(Dl, Dl′) depend of the choice of Kl,D

made. Note in particular that to obtain the e(Dl, Dl′), the K(nP ,n1)′ must be expressed

in terms of the K(nP ,n1). By combining Eqs. (23) and (24) we obtain

K(nP ,n1)′ =

⌊

L
n1

⌋

∑

n′
P

=nP +1

n′
P
∑

j=nP +1

(

j

nP

)(

n′
P

j

)

(2j−nP − 1)(−2)n′
P
−jK(n′

P
,n1) , (43)

and performing the sum over j this becomes

K(nP ,n1)′ =

⌊

L
n1

⌋

∑

n′
P

=nP +1

(

n′
P

nP

)

(−1)n′
P
−nP +1K(n′

P
,n1) . (44)

Let us give an example of this relation: for L = 4 we find that K3,(1,2)′ = 2K4,(2,2).

The coefficients e(Dl, Dl′) have the following properties:

∑

Dl′∈Sl′=l

[dim(Dl′)]
2 e(Dl, Dl′) = [dim(Dl)]

2 (45)

∑

Dl′∈Sl′>l

[dim(Dl′)]
2 e(Dl, Dl′) = 0 (46)

which can be proved using the fact that the e(Dl, Dl′) are independent of L and that the

number of eigenvalues, including degeneracies, corresponding to Kl,Dl
is [dim(Dl)]

2 ntor(L, l).

These relations between Kl,Dl
have strong physical implications: additional degeneracies

inside a level and between different levels. We shall give in the next subsection a method

to determine these degeneracies, but note for now that they depend of L although the

e(Dl, Dl′) are independent of L.

We can now repeat the decompositions of the preceeding subsection, but expanding

only over the selected independent Kl,D. To that end, we define the coefficients c̃(D, Cl)

by

Kl,Cl
=

∑

indep. D∈Sl′≥l

c̃(D, Cl)

(l′)!
Kl′,D . (47)

Note that contrary to Eq. (11), the sum carries over all independent (selected) D at levels

l′ ≥ l. Because of Eq. (46), the c̃(D, Cl) have the following properties: if Cl 6= Id

∑

indep. D∈Sl′

[dim(D)]2c̃(D, Cl) = 0 , (48)
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whereas if Cl = Id

∑

indep. D∈Sl′=l

[dim(D)]2c̃(D, Id) = |Cl| ,

∑

indep. D∈Sl′>l

[dim(D)]2c̃(D, Id) = 0 . (49)

Inserting the decomposition (47) of Kl,Cl
into Eq. (33), we obtain the decomposition of

Z over independent Kl,D:

Z =
∑

l,D

b̃(l,D)

l!
Kl,D (50)

where the b̃ can be obtained using the c̃.

We do not have any general closed-form expression4 for b̃, but in the next subsection

we show how they can be determined in practice by a straightforward, though somewhat

lengthy, procedure. More precisely, we determine all the b̃(l,D) up to l = 4, with a given

convention for the choice of independent Kl,D. As the b(l,D), the b̃(l,D) verify

∑

indep. D∈Sl

[dim(D)]2b̃(l,D) = b(l) (51)

except that now the sum is over independent D. This is a consequence of the properties

of the c̃.

4.3 Method to obtain the amplitudes of the eigenvalues

Because of the additional degeneracies between the Kl,D, we have not been able to find

a general formula giving the total degeneracies of the eigenvalues. But, using Eq. (33)

and the fact that the c(D, Cl) defined by Eq. (11) are integers, we deduce that the

amplitudes of the eigenvalues are integer combinations of the b(l)

l!
and the b(nP ,n1>1)

(nP n1)!
. De-

termining precisely with which integers is not an easy task, and we give here a method

which is operational for all values of L, though in practice it will probably become quite

cumbersome for large L.

One must begin at the highest possible level, l = L. Since not all permutations

are admissible, one can write relations between the KL,D and deduce which eigenvalues

4The best one could hope for would be an explicit formula relating b̃ to the characters of the symmetric

group.

20



are shared by several different KL,D. One then proceeds to the next lower-lying level,

l = L − 1. Since not all permutations are admissible, and as some permutations are not

independent of those at level l + 1, one can write relations between the Kl,D and the

Kl+1,D. These relations permit to deduce which eigenvalues appearing at level l are new

and what are their degeneracies. This method is then iterated until one attains level

l = 3. Considering l ≤ 2 is not necessary: all the eigenvalues at these levels are new

as there are no relations between the corresponding Kl,D. Finally, using Eq. (33) where

all Kl,D have been expressed in terms of an independent number of Kl,D, we deduce the

amplitudes of the eigenvalues.

Let us consider in detail the case L = 4. At level 4, the possible K4,D are K , K ,

K , K and K , while the admissible Kl,Cl
are K4,Id, K4,(2,2) and K4,(1,4). Using the

table of characters of S4, we can write:

K = K4,Id + K4,(2,2) + K4,(1,4) (52)

K = K4,Id + K4,(2,2) − K4,(1,4) (53)

K = 9K4,Id − 3K4,(2,2) − 3K4,(1,4) (54)

K = 9K4,Id − 3K4,(2,2) + 3K4,(1,4) (55)

K = 4K4,Id + 4K4,(2,2) (56)

We choose K , K and K as independent K4,D, and we express the K4,Cl
in terms

of those K4,D:

K4,Id =
K

4
+

K

12
(57)

K4,(2,2) = −
K

4
−

K

12
+

K

4
(58)

K4,(1,4) = K −
K

4
(59)

Next, using these expressions, we obtain K and K in terms of the independent K4,D

chosen:

K = −K +
K

2
(60)

K = 6K + K −
3

2
K (61)
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With these two relations we can determine the eigenvalue degeneracies between the chosen

K4,D. Recall first that according to Eq. (7) the number of eigenvalues contributing to

Kl,D is ntor(L, l) dim(D) and that each eigenvalue has multiplicity dim(D). Further,

dim( ) = 1, dim( ) = 3 and dim( ) = 2. Consider now Eq. (60), recalling that

the Kl,D have been defined in Eq. (7) as a trace. We deduce that the corresponding

eigenvalues must satisfy

(

λ

)N

= − (λ )N +
2
∑

i=1

(

λ ,i

)N
(62)

for any positive integer N . This implies that λ ,1 = λ and that λ ,2 = λ . Using

this, Eq. (61) then yields

3
∑

i=1

(

λ
,i

)N

= (λ )N −

(

λ

)N

+
3
∑

i=1

(

λ ,i

)N
(63)

for any N . This is possible provided that either λ = λ or λ = λ ,1. But the first

possibility can be excluded since, by Eqs. (52)–(53), it would imply K4,(1,4) = 0 which is

inconsistent with our hypothesis that we work on a generic lattice where all admissible K

are non-zero. We conclude that λ = λ ,1 and hence that λ = λ
,1

and λ ,i = λ
,i

for i = 2, 3. There are therefore only 4 different eigenvalues at level 4 instead of 10.

Consider now the level l = 3. From the character table of S3 we obtain:

K = K3,Id + K3,(1,2)′ + K3,(1,3) (64)

K = K3,Id − K3,(1,2)′ + K3,(1,3) (65)

K = 4K3,Id − 2K3,(1,3) (66)

K3,(1,2)′ must be expressed terms of the independent K4,Dl
chosen:

K3,(1,2)′ = 2K4,(2,2) = −
K

2
−

K

6
+

K

2
(67)

We choose K and K as independent K3,D, and we express the K3,Cl
in terms of the

independent K3,D and K4,D chosen:

K3,Id =
K

3
+

K

6
+

K

6
+

K

18
−

K

6
(68)

K3,(1,3) =
2

3
K −

K

6
+

K

3
+

K

9
−

K

3
(69)
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We obtain then the expression of K :

K = K + K +
K

3
− K (70)

Using again Eq. (7) and the eigenvalue identities obtained at level l = 4, this becomes

8
∑

i=1

(

λ
,i

)N

=
8
∑

i=1

(λ ,i)
N − (λ )N −

(

λ ,1

)N
+
(

λ ,2

)N
+
(

λ ,3

)N
(71)

from which we deduce that λ ,1 = λ , and that λ ,2 = λ ,1. (Note that we cannot

have, for example, λ = λ ,2 since these eigenvalues were shown to be independent in

the preceeding analysis at level l = 4.) We can then further deduce that λ
,1

= λ ,2,

that λ
,2

= λ ,3, and that λ
,i

= λ ,i for i = 3, 4, . . . , 8. So among the 8 eigenvalues

participating in K and the 8 participating in K only a total of 6 are new. On the

other hand, all 16 eigenvalues participating in K are new, since K did not appear in

an identity such as Eq. (70).

The eigenvalues for l ≤ 2 are all new, as there are no relations between the Kl,D.

Therefore, there are 28 new eigenvalues associated to K , 28 to K , 35 to K1 and 14 to

K0.

To obtain the amplitudes associated to the eigenvalues, we use Eq. (33):

Z = K0 + b(1)K1 + b(2)K2,Id + b(1,n1>1)K2,(1,2) + b(3)K3,Id + b(1,n1>1)K3,(1,3)

+ b(4)K4,Id + b(1,n1>1)K4,(1,4) + b(2,n1>1)K4,(2,2) (72)

and insert the expressions of the Kl,Cl
in terms of the independent Kl,D chosen above:

Z = K0 + b(1)K1 + b̃( )K + b̃( )K + b̃( )K + b̃( )K

+ b̃( )K + b̃( )K + b̃( )K (73)

where the amplitudes associated to the independent Kl,D are:

b̃( ) =
b(2)

2
+

b(1,n1>1)

2
(74)

b̃( ) =
b(2)

2
−

b(1,n1>1)

2
(75)

b̃( ) =
b(3)

3
+

2b(1,n1>1)

3
(76)
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b̃( ) =
b(3)

6
−

b(1,n1>1)

6
(77)

b̃( ) =
b(3)

6
+

4b(1,n1>1)

3
+

b(4)

4
−

b(2,n1>1)

4
(78)

b̃( ) =
b(3)

18
+

b(1,n1>1)

9
+

b(4)

12
−

b(2,n1>1)

12
(79)

b̃( ) = −
b(3)

6
−

7b(1,n1>1)

12
+

b(2,n1>1)

4
(80)

These can now be calculated explicitly from Eqs. (19) and (35):

b̃( ) =
Q2

2
−

3Q

2
(81)

b̃( ) =
Q2

2
−

3Q

2
+ 1 (82)

b̃( ) =
Q3

3
− 2Q2 +

8Q

3
− 1 (83)

b̃( ) =
Q3

6
− Q2 +

4Q

3
(84)

b̃( ) =
Q4

4
−

11Q3

6
+

15Q2

4
−

5Q

3
− 2 (85)

b̃( ) =
Q4

12
−

11Q3

18
+

15Q2

12
−

5Q

9
−

1

3
(86)

b̃( ) = −
Q3

6
+

5Q2

4
−

25Q

12
+

3

2
(87)

Note that the four first amplitudes in this list have been obtained by Chang and Schrock

[3] using a different method.

We can finally give the amplitudes of the eigenvalues themselves. The 14 eigenvalues

at level 0 have amplitude 1. The 35 eigenvalues at level 1 have amplitude b̃(1). At level

2, the 24 eigenvalues contributing to K have amplitude b̃ , and the 24 eigenvalues

contributing to K have amplitude b̃ . At level 3, the 6 new eigenvalues contributing to

K have amplitude b̃ , and the 16 eigenvalues contributing to K have amplitude 2b̃ .

At level 4, λ has amplitude b̃ + 2b̃ + b̃ , λ has amplitude 3b̃ + 2b̃ + b̃ , and

λ ,1 and λ ,2 both have the same amplitude 3b̃ .

Note that when we know the amplitudes of the Kl,D in the expansion of Z and the

relations between Kl,D for a given width L, we know it for all widths smaller than L,

as they do not change. The only difference is that for smaller widths some of the Kl,D
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vanish, so the equations must be truncated. For example, the result (70) obtained here

for L = 4, implies by truncation of the K4,D terms that for L = 3:

K = K (88)

Likewise, the expansion (73) of Z obtained here for L = 4, implies by truncation that for

L = 3:

Z = K0 + b(1)K1 + b̃( )K + b̃( )K + b̃( )K + b̃( )K (89)

From these equations, it is then simple to obtain the amplitudes of eigenvalues for L = 3.

4.4 Particular non-generic lattices

The degeneracies we have obtained apply to the case of a generic lattice. In the case of a

specific lattice, i.e., one having extra non-generic symmetries, there might be additional

degeneracies. An example is the case of a square or a honeycomb lattice, because of the

invariance of the lattice under reflection by its symmetry axis.

Specifically, the transfer matrix TL of the square lattice commutes with the dihedral

group DL, since the lattice enjoys both translational and reflectional symmetries in the

space perpendicular to the transfer direction. Likewise, for the honeycomb lattice, the

symmetry group is DL
2
. Those groups act on the right time slice, not on the left one

(i.e., the black points), and thus commute with the symmetry group Sl at level l of the

bridges. There are therefore additional degeneracies inside a given Kl,D.

In the case of the dihedral group, since all its irreps are of dimension 1 or 2, there

are additional degeneracies between pairs of eigenvalues, as observed in Ref. [3]. The

method to determine precisely these degeneracies is to decompose the space at level l

of symmetry D into irreps of the dihedral group, and to count the number of irreps of

dimension 2.

Furthermore, in the case of a square or a hexagonal lattice, there are yet additional

degeneracies (which do not exist for a generic lattice with a dihedral symmetry). Indeed,

for these two lattices, the ZL,n1 with n1 > 1 are found to be zero: at level l = L no

permutation between bridges is allowed. At this level there is thus only one eigenvalue

of total degeneracy
∑

D∈Sl
[dim(D)]2 b̃(L,D) = b(L). Finally, in the case of a square lattice,
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there appears to be additional “accidental” degeneracies: for example, an eigenvalue at

level 1 coincides with an eigenvalue at level 2, as observed in Ref. [3].

5 Conclusion

To summarise, we have generalised the combinatorial approach developed in Ref. [2] for

cyclic boundary conditions to the case of toroidal boundary conditions. In particular,

we have obtained the decomposition of the partition function for the Potts model on fi-

nite tori in terms of the generalised characters Kl,D. This decomposition is considerably

more difficult to interpret than in the cyclic case, as some eigenvalues coincide between

different levels l for all values of Q. We have nevertheless succeeded in giving an opera-

tional method of determining the amplitudes of the eigenvalues as well as their generic

degeneracies.

The eigenvalue amplitudes are instrumental in determining the physics of the Potts

model, in particular in the antiferromagnetic regime [8]. Generically, this regime be-

longs to a so-called Berker-Kadanoff (BK) phase in which the temperature variable is

irrelevant in the renormalisation group sense, and whose properties can be obtained by

analytic continuation of the well-known ferromagnetic phase transition [9]. Due to the

Beraha-Kahane-Weiss (BKW) theorem [10], partition function zeros accumulate at the

values of Q where either the amplitude of the dominant eigenvalue vanishes, or where

the two dominant eigenvalues become equimodular. When this happens, the BK phase

disappears, and the system undergoes a phase transition with control parameter Q. De-

termining analytically the eigenvalue amplitudes is thus directly relevant for the first of

the hypotheses in the BKW theorem.

For the cyclic geometry, the amplitudes are very simple, and the values of Q satisfying

the hypothesis of the BKW theorem are simply the so-called Beraha numbers, Q = Bn =

(2 cos(π/n))2 with n = 2, 3, . . ., independently of the width L. For the toroidal case, we

have no general formula for the amplitudes, valid for any L. It is however clear from

the amplitudes given for L ≤ 4 in Sec. 4.3 that many of them vanish at Q = 2, and

yet other differ just by a sign by virtue of Eq. (35). Indeed, it is consistent with simple

physical arguments, that a phase transition in the antiferromagnetic regime must take
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place at Q = 2. However, it remains to elucidate whether the BK phase exists for all

other Q ∈ (0, 4), and whether the Beraha numbers play any special role in the toroidal

case.
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