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Abstract: In this work we consider the dual-primal Discontinuous Petrov-Galerkin (DPG)
method for the advection-diffusion model problem. Since in the DPG method both mixed
internal variables are discontinuous, a static condensation procedure can be carried out,
leading to a single-field nonconforming discretization scheme. For this latter formulation,
we propose a flux-upwind stabilization technique to deal with the advection-dominated case.
The resulting scheme is conservative and satisfies a discrete maximum principle under stan-
dard geometrical assumptions on the computational grid. A convergence analysis is devel-
oped, proving first-order accuracy of the method in a discrete H'-norm, and the numerical
performance of the scheme is validated on benchmark problems with sharp internal and
boundary layers.
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Stabilisation flux-upwind
de la formulation Discontinuous Petrov—(Galerkin
avec multiplicateurs de Lagrange
pour des problémes de convection-diffusion

Résumé : Dans cette étude nous considérons la méthode duale-primale Discontinuous
Petrov-Galerkin (DPG) pour le probléme de convection-diffusion en deux dimensions. Comme
dans la méthode DPG les variables internes mixtes sont discontinues, nous pouvons effectuer
un procédé de condensation statique et ansi parvenir & un schéma discret non-conforme en
un seul champ. Pour cette derniére formulation, nous proposons une technique de stabili-
sation de type flux-upwind adaptée au cas de convection dominante. Le schéma résultant
est conservatif et satisfait un principe de maximum discret sous hypothéses standard pour
le maillage de calcul. Une analyse de convergence de la méthode est présentée, afin de dé-
montrer une précision a 'ordre un dans une norme discréte H'. La performance numérique
du schéma est validée sur des cas test qui sont caractérisés & 'intérieur et sur la frontiére
du domaine par des couches limites présentants de trés fortes variations.

Mots-clés : méthodes des éléments finis; méthodes mixtes-hybrides; méthodes non-con-
formes; méthodes Galerkin discontinues, méthodes Petrov-Galerkin; multiplicateurs de La-
grange; éléments finis stabilisées; flux-upwinding; problem de convection-diffusion
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Introduction

It is well known that there exist several physical problems (for example, flow in porous
media or semiconductor charge transport) where, at the same time, it is desirable to pre-
serve interelement flux continuity and to account for the presence of strongly varying coef-
ficients. The numerical approximation of these kinds of problems can significantly benefit
from the use of mixed discretizations. These latter methodologies are well established for
the approximation of elliptic problems, but they still lack a robust extension to deal with
advective-diffusive problems.

The idea proposed in [18, 17, 16, 31] is to handle the diffusive term with a standard mixed
approach and to introduce an upwind technique (or a Riemann solver) to deal with the ad-
vective term. Using the terminology introduced in [17], we will denote these approaches
as Upwind Mized (UM) methods. The UM methods proposed in the above references were
proved to be stable and convergent. Nonetheless, mixed methods may suffer from the com-
putational cost associated with the solution of the corresponding linear algebraic system.
Lumping procedures of the stress mass matrix can be designed to eliminate the mixed vari-
able from the system, but these are typically limited to finite element approximations of
lowest order [5, 23]. In [31] an hybridized method is proposed that allows for a significant
reduction of the computational cost. With this aim, a fractional step algorithm is intro-
duced, that leads to the solution of a sequence of explicit problems. In this context, the
hybrid variable is recovered as a purely post-processed quantity, its role merely being that
of producing a discontinuous mixed field.

In this paper we propose an approximate formulation of the advective-diffusive problem
that is indeed solved as a function of the sole hybrid variable, as in standard mixed methods
after static condensation. The method here discussed is based on the Discontinuous Petrov-
Galerkin (DPG) formulation, discussed and analyzed in references [6, 11, 12, 10, 7]. The
DPG method is a dual-primal hybrid formulation that, after static condensation, reduces
to a nonconforming single-field method. It is on this form that we apply an upwinding
technique in order to stabilize the discrete scheme, as discussed in Sect. 5. This latter
upwind formulation does not require to introduce any secondary partition of the computa-
tional domain, as is the case with the upwind-based nonconforming scheme proposed in [25].
Once the problem on the interface variable is solved, we can recover the mixed structure
of the method by applying a simple element-by-element post-processing procedure, which
provides an approximation of the advective-diffusive flux that is both self-equilibrated and
conservative over the computational grid.

The work is organized as follows. In Sect. 1 we introduce the advective-diffusive model.
In Sect. 2 we provide the DPG weak formulation of the advective-diffusive equation and its
corresponding finite element discretization in the lowest-order case. The static condensation
procedure which allows one to derive a nonconforming single-field Galerkin formulation is
described in Sect. 3. The construction of the stiffness matrix of this latter method, as
well as its stability analysis, are carried out in Sect. 4, where a standard limitation on the
Peclét number is shown to be a sufficient condition to obtain a numerical scheme enjoying a
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4 C.L. Bottasso, P. Causin, R. Sacco

discrete maximum principle. This latter condition, which can be quite severe in terms of the
choice of the mesh size, is overcome in Sect. 5, where an upwind treatment of the convective
fluxes across the element boundary is proposed. This, in turn, yields a conservative and
monotone nonconforming finite element method. A convergence analysis of the stabilized
DPG formulation is carried out in Sect. 6, where it is proved that the discretization error
satisfies first-order accuracy measured in a discrete H'-norm. We illustrate in Sect. 7 the
post-processing procedure which allows for an element-by-element recovery of the interface
fluxes. Finally, the numerical performance of the proposed method is demonstrated in the
concluding Sect. 8, where the scheme is applied to representative benchmark test problems
of advection-dominated flows. Some concluding remarks and future work are addressed in
Sect. 9.

1 The Advection-diffusion problem

1.1 Mathematical setting of the problem

Let Q be an open, bounded set of R?, and let I' = 9Q be the piecewise smooth boundary of
Q, n being the unit outward normal vector to I'. With reference to Fig. 1, we set

I'"={zel|b(z) n<0}, rt=r-r-,
IS5 =TpnNTH, % =TxnNTH,
Ip=THUT, Iy =T{UTy,

where the subscript D indicates the Dirichlet part of the boundary, while the subscript N
indicates the Neumann part of the boundary.

Figure 1: Computational domain and partition of its boundary.

INRIA



The Discontinuous Petrov—Galerkin Formulation for Advection-Diffusion Problems 5

We consider the following model problem

Lo(u)=f in Q,
u=gp on I'p, (1)
eVu-n—b,u=gn on I'y,

where Lo (u) = —div (eVu) + div (bu) is the linear advection-diffusion operator in conserva-

tive form, and b is a given advective field with

_ bn — |bn|

ba=b-m, b = ot
n — 3 - 2

n 2 ? b;

The function f is a given source term, and the boundary data are

9p onI'p, In on I'y,
gD = gN =

+ + + +
95 on I'j, IN on I'y.

On the inflow portion of the Neumann boundary the total advective-diffusive flux (eVu —
bu) - n is prescribed, while on the outflow portion of the Neumann boundary only the
diffusive flux eVu - n is prescribed (see Fig. 1).

The conservative form of the linear advection-diffusion operator £ (u) represents a sim-
plified model for the compressible Navier-Stokes equations or the Drift-Diffusion transport
model in semiconductor device simulation [22, 19].

Under the assumption that b is solenoidal, and that € and b are sufficiently smooth
functions, the conservative form is completely equivalent to the semi-conservative form of
the advection-diffusion operator, i.e.

Lo(u) = Lso(u) = —div (eVu) + b - Vu. (2)

The semi-conservative form represents a simplified model for incompressible fluid-dynamics
problems in the presence of a variable viscosity [21].

1.2 Primal weak formulation of the advection-diffusion problem

Let S C R? be an open bounded set with Lipschitz continuous boundary 8S. For a non-
negative integer m, let H™(S) be the usual m-th order Sobolev space defined over S and
equipped with the norm and seminorm

1/2 1/2

lollms = { D2 IIDllos | lolma=| D ID%lGs |

la|<m |a|=m
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6 C.L. Bottasso, P. Causin, R. Sacco

where D%v is the distributional derivative of order « of a function v and || -||o,s is the norm
in L2(S). We refer to [1, 20] for definitions and properties of Sobolev spaces. We set

V={veH' (Q) |v=00onTp}

and we define the bilinear form on V x V as
B(u,v) = / (eVu —bu) - Vo dz u,v €V,
Q

where we assume that e € L>°(Q) and b € (W1>(Q))2. The weak primal problem associated
with (1) reads: find ug € V such that

. upvbmnds = (f, U)O,Q—B(up,v)—/

N FN

uDvb-nds+/
* r

B(uo,v)+/

vg;,ds+/ v gk ds
r ~ ¥

3)
where up € H'(Q) is a function such that up = gp on T'p in the sense of traces, f € L?(Q),
gp and gy belong to appropriate trace spaces on I'p and T'y and (-, -)o,o denotes the L?
inner product. The primal problem (3) has a unique solution under the condition that there

exists a positive constant « such that

€ .
—(; — ||divbl|es,0 > @ > 0,
Ca
where Cq is the Poincaré constant and ¢¢ = ing2 g(z) > 0.
T€

2 DPG Formulation of the Advection-Diffusion Problem

Before introducing the DPG formulation, we need some additional notation. Let 75 be a
given triangulation of Q into triangles K, with area |K|, boundary 0K and outward unit
normal vector ngg on 0K. We denote by hx the diameter of K and by pi the diameter of
the largest ball inscribed in K. We assume henceforth that 7y, is regular [13], i.e. that there
exists a positive constant x independent of h such that

hk

— <k VK € T. (4)
PK

It is immediate to check that the previous inequality implies also that

h%  4k?

S VK . 5

K= n T ©)
Let &, denote the set of edges in Tp, and for each edge e € &, let |e| represent the edge length.
Moreover, let 0K, = OKNQ, 0Kp = 0KNTp, 0Ky+ = OKNT} and 0K - = OKNTy,
so that for each K € Ty, 0K = 0K, UOKp UOK y+ UOK y—.

INRIA
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The Discontinuous Petrov—Galerkin Formulation for Advection-Diffusion Problems 7

Proceeding as in standard Discontinuous Galerkin formulations [3], we introduce the
mixed variable o = eVu associated with the diffusive flux and we formally integrate by parts
both equations in (1), yielding the following one-element Discontinuous Petrov-Galerkin
(DPQ) weak formulation of the model advection-diffusion problem:

find (u,o, (A, 1)) such that for all K € T, and for all (7, v), we have

' /E_IO'-Td.’E +/udiv7‘daz— / AT -ngg ds = /’PuDT-naK ds v,
K K dK\0Kp 8K p
) /K(o'—bu)-Vvdx— /(,u—b)\-naK)vds—/,uvds+ / bA-nggvds
OKint 8Kp OK i
z/fvdw—/bPuD-nades+ / Pgyvds + / ng(,vds Yo,
\ K dKp OK Kyt

(6)
where P is the L2-projection over the constant functions, 7 and v are smooth functions
inside each element K € 7} and

olk = (eVu)lk, A=ulsx, p=o0-njsgx VK €T

Two different kinds of variables are present in the DPG one-element formulation (6): the
internal — discontinuous — variables v and o that express (in a weak sense) the constitutive
and the equilibrium relations at the interior of each element, and the boundary variables
A and p that represent (in weak sense) the trace of the internal variables on the element
boundary. Formulation (6) is of Petrov-Galerkin type since the functional spaces for the
shape and test functions are different. We refer to [6] and [12] for a presentation of the DPG
method and its convergence and stability analysis in the case of diffusion problems.

In view of the finite element approximation of (6), we introduce some notation for the
polynomial spaces and the projection operators. For a given nonnegative integer k, we
denote by P (K) the space of all polynomials of degree < k on K, and by R;(0K) the space
of all functions defined over the boundary 0K of K whose restrictions to any side e € 0K
are polynomials of degree < k. Functions in R (0K) can be discontinuous at the vertices of
K. Moreover, denoting by x the position vector in R?, we let

RT(K) = (Pr(K))? @ xP,(K) VK € Ty, (7

be the Raviart-Thomas (RT) finite element space of degree k [27]. In the case k = 0, we
define RTo(7,) C H(div, Q) the space of RT polynomials of lowest degree having continuous
normal component across each internal edge of £,. Finally, we denote by P{E(K) the
Crouzeix-Raviart space of linear polynomials over the element K [15] and by P${®(7,) the
space of affine functions that are continuous at the midpoints of each edge of £, and whose
restriction on each element K belongs to P{F(K).

RR n° 5157



8 C.L. Bottasso, P. Causin, R. Sacco

We define the projection operator Px from L?(K) onto Po(K) such that, for all v €
L?(K), we have

/ (Pkv—v)po dz =0 Vpo € Po(K), VK € Th. (8)
K
The operator Pk associates a scalar function with its mean integral value over K. From the
operator Pk, for all v € L?(Q2), we construct the global operator P, as

Ph’l)lK:PKU VK € Ty
Then, we define the projection operator II#! : H(div; K) — RTy(K) satisfying the orthog-
onality relation

/ (M —7) -npx o ds =0 Vrg € Ro(0K), VK € Tp,. 9)
oK

The operator ITET associates a vector function with its fluxes across the boundary 9K.
From the operator IIET for all 7 € H(div;), we construct the global operator ITFT :
H(div; ) - RT(7y) as

07 r|x =0T VK €T

Finally, given a function = € H(div;Q) such that div 7 = 0, we define 7 = IIFT+ with
div IT&T+ = 0 for each K € Tj. Function T is a piecewise constant vector over T, with a
continuous normal component across each internal edge of &j,.

The finite element discretization of (6) using the lowest-order DPG method reads:

find (up, o, (An, pr)) € (Up x By x (A X M},)) such that for all K € T, we have

' / e toy - do +/ up div T, dz — / A Th "N ds = / Pup 11, - nyk ds V1, € Qn(K),
K K OK\OKp 8K p
/ (on —Euh)-VUh dx — / (1, —EAh ‘ngk)vp ds — / pr v ds + / EAh-nath ds
K K int 9Kp OK ot
:/ fop dz — / bPup - np vy, ds + / Pgy v ds + / Pyl v ds Yo, € Wp(K).
{ K 8Kp OK 5 OK ot
(10)
The discrete local trial spaces are defined as
Un(K) = Po(K), Yh = (Po(K))? VK € Th, a

AR(OK) = v,k (P{E(K)), Mp(0K) = Ry(0K) VK € Ty,

where vo i : H'(K) — H'/?(0K) is the linear continuous operator which associates with a
function defined on K its trace on 0K.

INRIA



The Discontinuous Petrov—Galerkin Formulation for Advection-Diffusion Problems 9

The discrete local test spaces are defined as
Qu(K) = RTo(K),  Wi(K) =Py(K) VK € Th. (12)
The global finite element spaces of the DPG method of lowest degree are constructed as
Uy, = {un|x € Un(K)VK € Tp}, Y ={onlk € En(K)VK € Tp},
An = {An € 70,7, (BSE(Th)) | \w = Pgp at the midpoints of Tp}, My, = {un|k € Mp(OK)VK € Tp},
Qn =A{Tnlx € Qn(K)VK € Ty}, Wi = {vn|x € Wi(K)VK € Tp},

where v0,7;, : [Iger, HY(K) = [Ixer, H/?(0K) is the linear continuous operator which
associates with a piecewise smooth function defined on 7}, its trace on £, in such a way that
this trace is continuous at the midpoint of each internal edge.

3 The single-field problem associated with the DPG for-
mulation

In this section, we describe the static condensation procedure carried out on an element-
by-element basis, which allows for the elimination of the internal variables uf, o and
also of the boundary variable % from the DPG formulation (10) in favor of the boundary
variable A\p. As a matter of fact, from the definition of the space Ay, one can notice that the
Lagrange multiplier A, represents the trace on the edges of the triangulation of a noncon-
forming finite element basis. Exploiting this feature, we will end up with a nonconforming
single-field scheme in the sole unknown A, which makes the formulation computationally
convenient (see [2] and [14] for a discussion on the procedures to perform static condensation
on hybridized mixed methods for elliptic problems).

For ease of presentation, we assume that OK N T = {, i.e. that the element is in the
interior of the domain {2, with a straightforward extension of the elimination procedure to
the case where also the boundary conditions in (1) are accounted for. Moreover, we indicate
from now on, with a slight abuse of notation, with the symbol A, the element itself of
P¢E(K) (and not only its trace on OK). Integrating by parts in (1); the boundary term,
then gives

/ (Eilo'h —V)\h) -1 dx +/ (uh _/\h) divr, de =0 V1, € Qh(K) (13)
K K

Taking first 7, € (Po(K))? in (13), yields
ok =K VNS VK €T, (14)

K = (/Kel(m) d:c/|K|> - (15)

where

RR n° 5157



10 C.L. Bottasso, P. Causin, R. Sacco

is the harmonic average of the diffusion coeflicient € over K.
Taking then 7, = (z,y)T in (13), and replacing the function (e
(%)~1, yields

K)%' with its average

3
1
uf = [ M daIK|=Pidi = 53N VK €T, 16)
K i=1

where A; are the nodal values of A, at the midpoints of each edge of K. Notice that (14)
and (16) imply

/ up, dz =/ A dz VK € T. (17)
K K

Let us now consider equation (10); and take v, € P{F(7). Summing (10)y over
the elements of the triangulation, and using the fact that p, is constant on each edge of
&n, automatically eliminates this latter variable when each element boundary contribution
Jox pn vn ds is assembled together over all the internal edges. Then, substituting (14) and
(16) into (10)2, incorporating the boundary conditions and using (17), yields the discrete
problem:

find Ap, € V},4,, such that

Z {/(éVAh—BAh)-Vvhdm—/ EAh-nathds}
K BKiniUBKN+

KeTh

= z {/ fup dx +/ Pgyvn ds +/ Pg}vh ds} Yup, € Vi 0,
K oK K

KeTy N-—
where, for a given function ¢ € L?(I'p), we have defined
Vhe ={vn € PYR(Ty) | v = PEat the midpoints of the edges of T'p}.

Finally, using the fact that b is divergence-free, an integration by parts of the convective
term — || & bAn - Vo dz in the previous equation gives the following single—field form of the
DPG method (10):

find A, € Vj g, such that

Z {/(EV)\h-Vvh +B-V)\hvh) dx — / E/\h-nath ds}
KeT; K
" K- (18)

= Z{/fvhdm+ / Pgyvn ds + / Pg;(,vhds} Yo € Vio.
K
K

KeTn 0Ky - 0Ky +

The Galerkin problem (18) can be interpreted as the nonconforming finite element ap-
prozimation of the advection-diffusion boundary-value problem (1) in semi-conservative form

INRIA



The Discontinuous Petrov—Galerkin Formulation for Advection-Diffusion Problems 11

and with harmonic averaging of the diffusion coefficient €. Notice that, the solution A\, of
(18) differs from the solution A'¢ of the standard nonconforming approximation of problem
(1) in semi-conservative form, which would in fact read:

find AN¢ € V}, 4, such that

> {/(gv,\ﬁC-VUHE-VA;y%h) dr — / bANC - ngk vy, ds}
KeT K oK

N
= Z {/ fop dx + / Pgyvn ds + / Pg;(,fuh ds} Yup, € Vi,
K K - Kyt

KeTn

(19)

where

gk :/ e(z) dx /| K|
K

is the usual (note, not the harmonic) average of € on K. It is well known that in the presence
of rough (or strongly varying) coefficients, the use of harmonic averaging provides superior
accuracy and stability than standard averaging (see [4] for the 1D case, and [9, 23, 12] for
applications in 2D).

4 The plain DPG discrete formulation

In this section we explicitly construct the finite element equations that arise from the non-
conforming DPG formulation (18) and analyze the properties of the stiffness matrix K of
the associated linear algebraic system

KX=f, (20)

where A and f are the vectors of nodal unknowns and the right-hand side, respectively. For
ease of presentation, we consider the special case I' = I'p (i.e., nonhomogeneous Dirichlet
boundary conditions in (1)).

Let us denote by Nel the number of triangles in 7; and by Ned the number of edges
in &, with Ni internal edges and Nb boundary edges. Correspondingly, we denote by @;,
i =1,...,Ni, the global basis function of the space V},. The function @; has its support on
the two triangles K, K that share the common edge e; (see Fig. 2 for the notation), and
satisfies the following property

/ &z ds = (s’iplei|a p= i;jakalam' (21)

We let henceforth S; = K3 U K5 denote the support of ¢;, and write

Ned

)\h = Z )\r (.57'7
r=1

RR n° 5157



12 C.L. Bottasso, P. Causin, R. Sacco

Figure 2: Basis function @; for V}, (left) and notation (right).

where A, is the nodal value of A, at the midpoint of edge e,, with A\, = Pup|e, for any
e, € I'p. For each element K € S;, we assume a counterclockwise orientation over 0K
and denote by b, the value of b at the midpoint of edge e, € K. Then, we set ®7K =
E,If -1, skler| = b, - n, sKle,| to be the convective flux across edge e, € 0K with outward
unit normal vector n, gk, such that

Yy @K = (22)
e,€OK

Taking now vy, = @; in (18) and using the two-dimensional midpoint rule to compute the
right-hand side contribution fs- fundx, we obtain the following finite element equation
associated with each edge e; € &;

> Ky =fi, i=1,...,Ni. (23)

p=1,J,k,l,m

The stiffness matrix coefficients K;p, p = 1, j, k,l, m, are given by

Kip = K;iplﬂ + Kz?;iv7 b= 7:7j7 kalama (24)
where
NKez"ep f .
€ |K| if p#£14,
diff _
Bl =) (e e
— + —]e;i-e€ if p=1,
(|K1| |Kz|>’ ’ P
(25)
Lpox if p#i
v _ 3P ’
Kfpd =
0 ifp=1,

INRIA



The Discontinuous Petrov—Galerkin Formulation for Advection-Diffusion Problems 13

are the separate contributions due to the diffusive and convective fluxes across each edge
ep, p = i,5,k,1,m. Notice that the i-th row of K has (a priori) five nonzero matrix entries.
The i-th component of the right-hand side f is given by

1 . .
fi= 5 (UK + PR, i= 1, N, (26)

where fK1, fK2 are the values of the source function f at the centroids of K, K>. From
(24)-(25), and using (22), it is immediate to check that:

(P1) be RTo(7,) implies that @?Kl + <I>?K2 = 0, which explains why only a diffusive
contribution is present in the diagonal matrix entry Kj;, unlike the case of the off-
diagonal matrix terms K, p # 1;

(P2) when 8S;NT =0
Z Ko = Z Kxlv =, (27)

p=i,j,k,l,m p=i,5,k,l,m

that is, both the net diffusive and advective fluxes across 0S; are zero when A, is
constant and b is divergence-free;

(P3) when e, € 0S; is such that e, € T, p # i, then the associated nodal unknown A, is
eliminated from the system by setting A, = Pup|e, -

Having characterized the basic properties of the stiffness matrix of the DPG nonconform-
ing formulation (18), we are in a position to address the stability analysis of the discretization
scheme. In particular, we aim at obtaining sufficient conditions for K to be an M-matrix.
This, in turn, allows one to ensure that the solution of system (20) satisfies a Discrete Maz-
imum Principle (DMP). In other words, when f = 0, the discrete solution A is nonnegative
over 1 and attains its maximum value on the boundary T.

To start with, let us recall the definition of an M-matrix [29].

Definition 4.1 A matriz A € R™ "™, with n > 1, is an M-matriz if it is invertible, its
entries A;; satisfy Aij <0,4i# 4, and (A7) >0,4,5=1,...,n.

The diagonal entries of an M-matrix are positive and an M-matrix is inverse-monotone,
i.e., Ax < Ay implies that x <y, Vx,y € R™. The next result provides a useful sufficient
condition which allows to check whether a given matrix is an M-matrix (29], Thm. 3.1,
p.202).

Theorem 4.1 Let A € R™*™ be an irreducible matriz such that

(a‘) A’ii>07 Az'jSO, i)j:]-a"'ana

(b) |Aii|ZZ|Ai]’|, i=1,...,n,
JF#i

(c) |Agr| > z |Ak;l, for at least one row index k € [1,...,n].
J#k

(28)
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Then, A is an M-matriz with (A=');; >0,4,5 =1,...,n.

Notice that a matrix fulfilling the assumptions in Theorem 4.1 satisfies a DMP.

From now on, we assume that the triangulation 7} is of weakly acute type (i.e., all the
angles of the triangles are less or equal to 7/2). Therefore, e; - e, < 0, p # i, so that the
diffusion contribution to the off-diagonal matrix entries is nonpositive. As a consequence,
since K;; > 0 for every i = 1,...,n, it is easy to check that if b = (0,0)7 (i.e. when (1) is a
purely diffusive boundary-value problem) then stiffness matrix K satisfies Theorem 4.1, and,
therefore, a DMP ([29], p. 203). When b # (0,0)7, then the request that the off-diagonal
entries of K are nonpositive is satisfied if

bK .n |K]|

p “tp )
— <1, € {J,k,l,m}, K e {K,,K>},
3EK  |e;| cos(0ip) — peds } {K, Ko}

where p = {j,k} if K = K; or p={l,m} if K = K, and ;, is the angle between the edges
e; and e,. Denoting by h, > 0 the height relative to edge e,, noting that |K| = hp|e,|/2, and
letting v;p = |ei| cos(8ip)/|ep|, with 74, € [0,1), we immediately obtain that the off-diagonal
entries of K are nonpositive if

TK
|bp - np| by <1

65K >4 pE {jakalam}a K e {KliKQ}' (29)

Observing that h, can be interpreted as the length of K in the direction of the convective
flow across edge e,, we can define the Péclet number associated with edge e, as

[bK - n, | A ,
ap = pT;’P, pG{j,k,l,m}, KE{K1,K2},

and conclude that, as usual in the finite element approximation of advection-diffusion prob-
lems, the DPG nonconforming formulation (18) is stable (i.e. the associated stiffness matrix
is an M-matrix) if the local Péclet number is less than 1. Clearly, condition (29) can be
too restrictive on the mesh size when the flow is advection-dominated. For this reason, we
introduce in the next section a suitable stabilization of the plain DPG method (18), which
allows to compute a reasonably accurate solution even on a coarse mesh 7.

5 The Stabilized DPG Formulation

In this section we introduce a stabilization technique for the nonconforming DPG formulation
(18). The technique is based on a suitable treatment of the convective term in the finite
element equation (23) associated with each internal edge e; € &},.

From relation (22) and (P1), it follows that the DPG nonconforming scheme is conser-
vative with respect to both the single element K (K; or K») and to the control volume
K; U K,. At the same time, it is clearly seen that (22) prevents all the convective fluxes
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®2K, p # i, to have the same (negative) sign, except in the (trivial) case b = (0,0)”. This
eventually prevents the stiffness matrix from being an M-matrix for any value of the Péclet
number ay,.

A possible remedy is suggested by the fluz-balance interpretation of the nonconforming
DPG formulation discussed in Sect.4, and proceeds as follows. For every K € T, we let

OK™ = J{e, € 0K |b, -n, 0k <0}, 0K =|J{e, € 0K |b, -0, 9k > 0}

T T

denote the inflow and outflow boundaries of K, respectively. Moreover, we associate with
every edge internal e; an absolute unit normal vector n; by setting, for instance, n; = nsg, |e;
(cf. Fig. 3). Accordingly, we define the upstream triangle K}®*"™ associated with edge e;

as .
Kppstrm _ K1 if b, n; > 0,
' K> if b; - n; < 0.

(30)

The definition of K;lps“m in the special case b; - n; = 0 will be addressed at the end of this
section. Then, we introduce the following min-max treatment of the edge convective fluxes

) min (0, %¢2K> if p#i,

adv,upw __

K;, = 1 on . ' (31)
Zmax O,§<I>p ifp=1,
pEi

where the sum is taken over all the edges of 85;. The flux-upwind stabilized DPG finite
element equation associated with e; € &, \ T' reads

Z Kiszt)abAp = iStab7 i = 17 RS Ni7 (32)

p=1,5,k,l,m
where the stabilized stiffness matrix coefficients K f;,ab, p= 1,7,k,1l,m, are given by
K30 = K+ K3V, p=i,g,k,1,m. (33)

Definition (31) obeys the classical upwind philosophy. Precisely, relation (31); amounts to
setting to zero the convective flux associated with an edge, whenever this latter edge belongs
to OK°"t. This procedure is equivalent to subtracting some edge contributions to the whole
net convective flux balance across 85;. Accordingly, relation (31), allows to redistribute
the missing convective fluxes, in order to satisfy at the same time the net flux conservation
property (27) and the request of positive diagonal matrix entries, as stated by Thm. 4.1.
The redistribution procedure of the outflow convective fluxes is schematically illustrated
in Fig. 3 (left) and results into a flux upwind-modified DPG nonconforming scheme, which
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DKL

Figure 3: Left: redistribution procedure of the outflow convective fluxes. Right: definition
of K™ when b; - n; = 0 (the upstream triangle is the shaded area in the figure).

is conservative with respect to both the single element K (K; or K») and to the control
volume K; U K, as was the case with the plain formulation (18). Moreover, it is immediate
to check that the stiffness matrix K of the flux upwind-modified DPG method satisfies the
conditions in Thm. 4.1, which allows one to conclude that the scheme satisfies a DMP
irrespectively of the Péclet number o,.

An important issue in upwind finite element procedures is related to the appropriate
treatment of the integral fS,- f@idx. Tt is in fact well-known that upwind methods can
produce a physically uncorrect solution in the presence of a non-zero source term f [24, 8].
For this reason, we have devised the following “upwind" rule for the evaluation of the above
integral if |b;| # 0:

K’E.\pstrm gpstrm
/ f 3Kz | if bi ‘n; 7é 0,
f@ide = 2 = (34)
. 1 K K
Si 5(fK1—| 31| +fK2—| 32|> 1fb,n,=0,

while we obviously set f5*3b = f; if |b;| = 0. Fig. 3 (left) helps in providing a simple and
immediate interpretation for this upwind rule, by observing that in the case ®; # 0 the
integral in (34) is computed only over K}***"™ according to a full-upwind treatment (in the
present case, we have K;P*"™ = K,), while in the case ®; = 0 the upstream triangle is
defined as the union of the two triangles having as sides the half of edge e;, the two edges
lying on the inflow boundary of K; and K, and the two segments joining node ¢ and the
two vertices of Ky and K> opposite to i (see Fig. 3, right). The beneficial effect of the use of
(34), in contrast to the application of the two-dimensional midpoint rule as done in (23) to
compute the approximate right-hand side, will be examined in Sect. 8.3. A suitably different,
although equivalent, interpretation will be provided in Sect. 6 for the upwind relations (31)
and (34). This will cast the DPG stabilized formulation into a more conventional upwind
framework, allowing a simpler error analysis of the method.
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6 Convergence Analysis

In this section we provide a convergence analysis of the stabilized DPG formulation intro-
duced in Sect. 5. Our approach follows the guideline of [25].

6.1 Bilinear and linear forms

Throughout this section, for ease of presentation, we assume that homogeneous Dirichlet
boundary conditions are enforced in (1), i.e., I'p =T, 'y = 0§ and gp = 0, and for brevity
we shall write V}, instead of V}, o. Since the discrete DPG upwind-stabilized formulation is of
nonconforming type, we have that the finite element space V}, ¢ H}(Q). However, functions
in V}, satisfy the following compatibility conditions:

(C.1) For any K1,K, € Tp, with e = 0K N 0K, we have

/(U,Ifl —uf)ds =0 Yo, € V.

(C.2) For any K € Ty, we have

/ v ds =0 Vo, € V.
OKNT

Let us introduce the following quantities

1/2 1/2
[onll1,n = ( > ||vh||f,1<> s vnlie = ( > |Uh|f,K> Vo € Vh.

KeTn KeTy,

It can be shown that functions in V}, satisfy the following discrete Poincaré inequality ([32],
Proposition 4.13)
[lorllo,2 < Cplunli,n Yop € Vi, (35)

where Cp = Cp(f2) is a positive constant. As a consequence, conditions (C.1)-(C.2) and
(35) imply that |- |1,, is a norm over the space V}, (equivalent to || - ||1,4)-

We associate with each edge mid-point M;, i = 1,...,Ned, the following index sets

Z; = {the pair of neighboring triangles K7 € Ty, j € [1,Nel], that share the edge e;},
Ji = {j # i; M; is the mid-point of the side of a triangle having M; as another one},

and denote any edge that is adjacent to e; by

[is = {s #1i; e; € & | e, shares a vertex with e;}.
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Then, we define the following bilinear forms on V}, x V}, for all wy, vy € V3
a(wp,vp) = Z / EVwy, - Vo dz, b(wh,vp) Z / b Vwp) vy dz, (36)
KeTh KeTn
and the linear form on V}, for all v, € V},
Z > ( fn dm) vn(M;), (37)
i=1 jEI;
where fi|k = Pk f for all K € 7. Finally, we define for any wy, v, € V}, the bilinear form
B(w’h Uh) = a(’LUh, Uh,) + b(U}h, vh)a

in such a way that the plain DPG formulation (18) applied to the advection-diffusion problem
reads:

find A\, € V4 such that
B()\h,vh) = F(Uh) Yo € V. (38)

Recalling (P1) of Sect. 4, it can be easily verified that

b(wh, vp) Z > (/ ij  Dij W ds) vn(M;)  Vop € Vi, (39)

i=1 jET;

where b;; is the value lof b at the midpoint of edge I';; and n;; is the unit outward normal
vector along I';; NOK?, j € J;. We define the following modification of b(-, -)

b (wp,vp) Z Z (/ ij - Mij w;;j ds) v (M;) Ywp,vp € Vi, (40)

1_1 JjE€ET;
where . y .
wy = a¥wp(M;) + (1 = & )wp (M),
. 1 if bz'j sy ds Z 0, (41)
1) — ij
a¥ = rii
0 otherwise.

Moreover, we define the modified form of F(vy) as follows

Z > (/ i dm) M;) Vo € Vp, (42)

i=1 j€I;
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where we set

fi=BPr,f+ (1~ B)Pr,f  if [bi| #0,
1 if b; -n; > 0,

gi=] 0 ifbini<0, (43)
% if b;-n; =0,
and we set f,{ = fp, if |b;| = 0. Finally, we define our modified form of B(-,-) as
By (wp,vr) = a(wp,vp) + by (wh, vp) Yy, wp, € V,
in such a way that the DPG upwind-stabilized formulation introduced in Sect. 5 reads:
find A} € V4 such that
Br(An,vn) = Fp(vg) Yo, € V4. (44)

6.2 Consistency analysis for b(-,-)

The following result shows that the modified bilinear form by (-,-) is consistent with b(-,-).

Theorem 6.1 Under the regularity assumption (4), there exists a positive constant Cy in-
dependent of h such that

|b(wh,vp) — ba(wh,vn)| < Cp h|wh|i,m|vn1,k YV wp, vp € Vi (45)
Proof.
From (39) and (40), we find that

|b(wh, vn) — br(wh, vh)| Z Z / ij " Nyj (Wr(8) — h( s)) vh(M;) ds

=1 jeT;
=—ZZ/ i3+ 0% (wn(s) — wn (M3)) + (1 = 09) (wn(s) — wn (M)} (on (M) = vn (M) ds
1= 1_7€J
= _Z Z/ i - Dij & (wp(8) — wi (M) (vn (M;) — v (M;)) ds .
i=1 jeJ;

The last equality follows by noticing that frﬁ (wp(s) —wp(M;))ds = 0. Using the mean
value theorem and noting that V wy, is constant over K, we have

_ IV wnllo,xhx

lwh (%) — wp (My)| = [V wh - (x = x3)| < |V wn|hx K2
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from which, using (5) and the fact that o < 1, we obtain

/F iy -y % (wn () — wn (M) (0n (M:) = v (M;)) ds

The consistency estimate (45) then immediately follows summing over £, and using the
discrete Cauchy-Schwarz inequality, with Cj depending on « and ||b - nf|«,&, but not on h.
6.3 Coercivity analysis for By(-,-)

We have the following result.

Theorem 6.2 Let 0 < g9 = ings(x). Then, we have
x€

Br(wp,wp) > e |wh|ih Ywy € V. (46)

As a consequence, assuming o' defined as in (41), problem (44) has a unique solution
A € V.

Proof.
In order to prove the coercivity of By(-,-), we show that the modified bilinear form by(-,-)
is coercive with respect to the norm |- |1 5. For all wy, € V} we have

o n) zz(/r

ij - T wflj ds) wh(Mz)

i=1 jeT; ij
= (since n;; = —nj;) = Z Z / ij - D) wh vh(M) wzj vn(M;)) ds
i=1jET;
- —Z > / i -y (9w (M;) — ol (My) + wn (Miywn (M) (1 — a¥ — 14 o)) ds
i=1 jET;
= (since o/t = Z Z / i - nij (o wi (M;) + @ wi (M;) — 20wy, (M;)wr (M;)) ds
i=1 jeT; Lij

1 Ni
= gZ Z bij - ni; o (wp(M;) — wi(M;))? ds > 0,

i=1 jeJ; 'L

from which (46) immediately follows. Using this latter result and (45), we can also show
that the plain DPG formulation is stable only for small values of the Péclet number, while
the stabilized DPG method is stable irrespectively of the size of the Péclet number. We have

B(wp,wp) = Bp(wp,wp) + b(wp, wr) — by (wp,wp) > (€0 — Cbh)|wh|ih
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from which it follows that, taking a sufficiently small value h* > 0 of the mesh size, there
exists a suitable constant €* > 0 such that, for all h < h*, we have
B(wh,wh) > e* |wh|ih Ywy € V.

Using the Lax-Milgram Lemma and (35), we immediately get the a priori estimate

C
|)‘h|1 A S P ||{:||059
IS

)

(47)

6.4 Consistency analysis for Fj(-,-)

The following result shows that the modified linear form Fj,(-) (as well as F(-)) are consistent
with the ezact linear form (f,-)o q-

Theorem 6.3 Assuming that f € W1°(Q), there exists a positive constant Cy independent
of h such that
|F(’Uh) - Fh(’Uh)| < Cf h|Uh|1,h Yo, € V. (48)

Proof.
For all v, € V}, we have

Ni

o)~ Fa(on) =330 3 ( /K QU da:) on(M)

i=1jET;
__;g; (/ (fn — f(x)) dm) 2;3; (/ fh)dw> n(M).

Using standard interpolation estimates ([26], Sect. 6.2.3), noticing that 87 < 1 in the defini-
tion of f] and using the discrete Cauchy-Schwarz inequality, we obtain

|F(vh) — Fr(vp)] <

where C' > 0 is a constant independent of h. The estimate (48) then immediately follows
using (35).

6.5 Error estimates

In this section we prove optimal error estimates for the nonconforming flux-upwind stabilized
DPG method. We start proving that the solutions of the two DPG problems (plain and
stabilized) are close in the discrete H'-norm |- |1 p.

Theorem 6.4 Under the assumptions of Theorems 6.1, 6.2 and 6.3, we have
€o

where A, and X}, denote respectively the solutions of problems (38) and (44).
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Proof.
We have

Br(An — Ay vn) = bu(An, vn) — b(An,vn) + F(vr) — Fa(vp)  Vop € Vi,
from which we immediately obtain
[Br(An — A, vn)| < Coh|Anl1,n|vnli,e + Crhlvp|ie Yoy, € V.
Taking vy, = Ap, — A}, we get
golAn = Ah1T 0 < CohlAnlinlAn — ALk + CrhlAn — Al1ns
from which, using (47), we immediately get inequality (49).

The error analysis of the stabilized DPG formulation can now be easily concluded using
the convergence result of [27] for the primal-hybrid nonconforming finite element approxi-
mation AN solution of (19), estimating the difference |AYY — Ap|1,, (by means of Strang
Lemma, [23]) and then using the triangle inequality.

Theorem 6.5 Under the assumptions of Theorems 6.1, 6.2 and 6.3, and assuming also that
u € H?(Q) N HE(Q), we have

|u — X}:ll,h < (Cl |u|2,Q +Cs + 03) h, (50)

where C1, C2 and Cs are positive constants independent of h and depending only on |Q], €,
b and f.

7 Recovery of interface fluxes

Once the nonconforming single field problem (in its plain or stabilized form) has been solved,
the convective flux is immediately available, while the diffusive flux u; can computed using
the element-by-element recovery procedure illustrated in the following.

Going back to equation (10)s, the diffusive flux is obtained by solving on each K € T,
such that K N T = ) the following local subproblem of dimension 3

/uhvh ds :/ (EV A —l;)\h) -V, dx +/l~)-naK)\hvh ds —/ fop dz Yo, € Wi(K).
K K
0K

(51)
On the Neumann boundaries we have
Pyl on every e € T'};
HUh = ~
Pgn +bK -ngPAp on every e € I'y.
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Notice that standard linear Lagrangian nodal-based test functions are used in (51), this being
the same procedure adopted in primal-hybrid formulations implemented as nonconforming
finite elements (see [28], p. 691).

Problem (51) can be written in matrix form as

MK;J,K:rK
where
0 lez| e
Mic= 3| lerl 0 lesl |, mS = (o, ), = (AR 4 AN K,
lex| lez] O

having introduced a local counterclockwise numbering of the edges of 0K, denoted by e;,
i =1,2,3, and where

e -e; e;-ey e;-eg @?K (I,QK <I>§K
=gy | @@ e e |, AR =g &F 03F e3f |,
e ez ey-eg eg-eg IR S
K
fK = |3—|PKf 1,1, 1)T7 AK = (A1, Az, /\B)T-

Once pp, is available on each edge e, € &, (denoted by pp, p=1,...,Ned), it is possible
to compute the approximate advective-diffusive edge flux J, = (up — by -1npAp) |€p| and then

the corresponding approximate advective-diffusive vector field J, = Z Jp Tp(x) over T,
e, EER

using the RT(7) finite element space, where 7, is the RT basis function associated with

edge e,. The discrete advective-diffusive field J;, computed by the DPG formulation (18)

enjoys the conservation property at each element K € Tj,. An example of the flux recovery

procedure will be given in Sect. 8.1, while we refer to [12] for a comparison with other kinds

of flux-recovery procedures proposed in a standard primal-based Galerkin framework.

8 Numerical Results

To test the numerical performance of the upwind—stabilized DPG method discussed in
Sect. 5, we solve several benchmark test problems for advective-diffusive flows, both on
structured and unstructured meshes, characterized by the presence of steep interior and
boundary layers.

8.1 Test case nr. 1: the Smith and Hutton test problem

We consider the classical Smith and Hutton benchmark model problem, with f = 0. In this
test case, a fluid enters the lower left edge of the rectangle Q = [—1,1] x [0,1] and exits at
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the lower right edge of the domain, where a homogeneous boundary condition is enforced
on the diffusive flux. On the remaining sides of the rectangle, Dirichlet boundary conditions
are prescribed so that the total advective-diffusive normal flux is zero (see Fig. 4). Precisely,
we set

b=(2y(1 —a?), —2z(1 — )7,

and
{ 1+ tanh(10(2z + 1)) on I'y={(z,y) el'|ze[-1,0],y =0},
u(a:,y) =
0 on I'\(TpHUT%h),
du(z,y)
T = 0 on F}

Numerical computations have been performed on a structured uniform triangulation with

p
— — —
! - = - &
7 .

p

—_— —= —
~
fl

Figure 4: Computational domain and prescribed convective field b for the Smith and Hutton
test case.

40 subdivisions in both z and y directions, corresponding to h, = 1/20 and h, = 1/40,
respectively.

In Figs. 5 and 6 we show the numerical results in the case ¢ = 107%, corresponding to
a nondimensional Peclét number Pe = (h;||b||s,0)/(2¢€) equal to 5 - 10*. Fig. 5 displays
the surface plot of A\;. A nodally continuous interpolation of the nonconforming finite
element solution is employed for graphical purposes. The stabilizing effects of the flux-
upwind procedure are clearly visible (right), in contrast with the severe oscillations arising
in the non-stabilized case (left). Fig. 6 (left) shows the contour lines of the computed
solution, with no appreciable numerical dissipation in the crosswind direction, as expected
in this quasi-hyperbolic problem. In Fig. 6 (right) the profile of the solution along the
inlet/outlet boundary of the domain is illustrated. No oscillations arise in the computed
profile, which is in good agreement with other results in the literature.
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Finally, Fig. 7 shows the vector plot of the approximate advective-diffusive vector field
Jp, reconstructed using the recovery procedure discussed in Sect. 7. Two values of the
diffusion coefficient have been used in the numerical experiments, namely ¢ = 10~ (left)
and ¢ = 10~ (right), in order to better emphasize the (different) role played by the diffusive
flux in the computation of J,. In both cases, an accurate and smooth representation of the
advection-diffusion field is achieved, with continuous interelement fluxes over 7.

Plain DPG: g = 10°° Stabilized DPG: & = 107

Figure 5: Surface plot of Aj. Left: plain DPG formulation, right: stabilized DPG formula-
tion.

Stabilized DPG: g = 10°
25 T

Stabilized DPG: € = 107° 2t
1
0.8 15F
0.6f Bl
0.4
0.5r
0.2F
0 w 0
-1 -0.5 0 0.5 1

Figure 6: Contour lines (left) and profile of A} along the inflow-outflow boundary (right).
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Stabilized DPG: & = 107 Stabilized DPG: & = 107

ogf - LU TITITIOIOC 0.8

Sy
0.6r- -+ 0.6
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02 - 0.2
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Figure 7: Vector plots of Jj,. Left: ¢ = 107!, right: ¢ = 1076,

8.2 Test case nr.2: advective transport of a discontinuity in the
boundary data

The domain Q is the unit square, where we set f = 0, b = (cos(f),sin(d))T with § = tan—1(3),
and prescribe the Dirichlet boundary conditions

u(z,y) =1, forz=0, y<landz<1/3, y=0,
u(z,y) =0, elsewhere.

The presence of a discontinuity in the boundary data, together with a small value of the
viscosity €, gives rise to an almost-hyperbolic transport problem along the characteristic
direction of b. The corresponding solution in this latter case is very close to a discontinuous
function, jumping from the value 0 to the value 1 along the line y = 3z — 1, with a steep
outflow boundary layer along x = 1, due to the abrupt change in the boundary data from
the (transported) value 1 to the (imposed) value 0. The results are shown in Fig. 8 for
e = 107? and with mesh discretization parameter h = 0.05. The solution computed by the
stabilized DPG method is again unaffected by spurious oscillation, and the internal layer
is well approximated, without introducing an excessive smearing in the crosswind direction
(i.e., the direction orthogonal to b).

8.3 Test case nr.3: low with a non-zero source term

The computational domain (2 is again the unit square, where we prescribe b = (1,0)%, f =1
and homogeneous Dirichlet boundary conditions, in such a way that the solution is a bubble
function with an outflow (“hyperbolic”) boundary layer along z = 1, the width of the layer
becoming stronger as the viscosity gets smaller, and two “parabolic” boundary layers along
y=0and y=1]29].
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Figure 8: Solution for the discontinuity transport test case, using a structured grid.

In Fig. 9 and Fig. 10 we show the computed solution A, (after a suitable re-interpolation
over the space of continuous piecewise linear functions for graphical purposes), for different
values of g, using structured (h = 0.08) and unstructured meshes (h = 0.05), respectively.
The results show the ability of the scheme in capturing the steep outflow layer in the solution
without introducing neither any spurious oscillation, nor any appreciable amount of extra-
viscosity along the direction of the flow. Morever, notice how, in the case of a structured
grid, the method can handle without difficulties the case of a convective field aligned with
the mesh itself (corresponding to the special case b - n; = 0 discussed in Sect. 5).

Concerning this latter aspect, it is interesting to investigate the role played by the “up-
wind” quadrature rule (34) in the performance of the stabilized DPG method. With this
aim, assume to consider the case of a uniform grid of Friedrichs—Keller type with mesh size
h=1/N ([29], p- 206). This is equivalent to constructing two sequences of one—dimensional
parallel grids, the first (finer, identified by the label (A)) grid with mesh size equal to h/2,
the second (coarser, identified by the label (B)) grid with mesh size equal to h. Then, it
is easy to check that the use of exact integration of the right-hand side would produce the
following discrete solution in the hyperbolic limit (which amounts to assuming £ = 0 in (1))

M =24, +h, i=1,...,2N -1,
/\0=0

B _ h .

A= ()‘21 1‘*')\2(Z y) + > i=1,...,N,
)\B:O.
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The two sequences of discrete nodal values of A, are aligned on the straight line y = 2z,
while the exact solution in the hyperbolic limit is y = . In the same case, the stabilized
DPG scheme with an upwind treatment of the source function f computes the following
discrete solution

h
)\24:)\1'—14'5; i=1...,N,
N =0,
1 h .
2B = 5()\%71 +)\124(i—1))+ T i=1,...,N,
A =0.

In this case, the two sequences of discrete nodal values of Ap are correctly aligned on the
straight line y = x. This result can be interpreted as the exact fulfillment of the patch-test
for consistency proof of the nonconforming formulation [30].

e=107! £=10"°

Figure 9: Solution for the bubble test case using structured meshes for different values of €.
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Figure 10: Solution for the bubble test case using unstructured meshes for ¢ =
[1071,1073,1076,1077].

9 Conclusions

In this article we have extended the DPG finite element method to the numerical solution of
the advection-diffusion equation. A static condensation procedure was used to eliminate the
internal and the flux interface variables in favor of the remaining (hybrid) interface variable,
leading to a nonconforming single-field formulation of strongly reduced size. In order to
deal with the advection-dominated case, we have introduced a suitable flux-upwind stabi-
lization technique, that has been proved to produce an optimally converging approximation
measured in a discrete H'-norm. The performance of the method and a simple (and conser-
vative) flux-recovery post-processing have been successfully demonstrated in the numerical
solution of several benchmark problems characterized by the presence of steep boundary
and interior layers. The promising behaviour and economical (single-field) implementation
of the proposed stabilized dual-primal DPG formulation suggest its use and extension to the
solution of more complex problems in fluid mechanical applications.
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